Analytical Methods in Mesoscopic Systems

DSpace/Manakin Repository

Analytical Methods in Mesoscopic Systems

Citable link to this page

. . . . . .

Title: Analytical Methods in Mesoscopic Systems
Author: Mason, Douglas Joseph
Full Text & Related Files:
Abstract: The propsect of designing technologies around the quantum behavior of mesoscopic devices is enticing. This thesis present several tools to facilitate the process of calculating and analyzing the quantum properties of such devices – resonance, boundary conditions, and the quantum-classical correspondence are major themes that we study with these tools. In Chapter 1, we begin by laying the groundwork for the tools that follow by defining the Hamiltonian, the Green’s function, the scattering matrix, and the Landauer formalism for ballistic conduction. In Chapter 2, we present an efficient and easy-to-implement algorithm called the Outward Wave Algorithm, which calculates the conductance function and scattering density matrix when a system is coupled to an environment in a variety of geometries and contexts beyond the simple two-lead schematic. In Chapter 3, we present a unique geometry and numerical method called the Boundary Reflectin Matrix that allows us to calculate the full scattering matrix from arbitrary boundaries of a lattice system, and introduce the phenomenon of internal Bragg diffraction. In Chapter 4, we present a new method for visualizing wavefunctions called the Husimi map, which uses measurement by coherent states to form a bridge between the quantum flux operator and semiclassics. We extend the formalism from Chapter 4 to lattice systems in Chapter 5, and comment on our results in Chapter 3 and other work in the literature. These three tools – the Outward Wave Algorithm, the Boundary Reflection Matrix, and the Husimi map – work together to throw light on our interpretation of resonance and scattering in quantum systems, effectively codifying the expertise developed in semiclassics over the past few decades in an efficient and robust package. The data and images that they make available promise to help design better technologies based on quantum scattering.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9752071

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters