The Alexander Polynomial of a 3-Manifold and the Thurston Norm on Cohomology

DSpace/Manakin Repository

The Alexander Polynomial of a 3-Manifold and the Thurston Norm on Cohomology

Show simple item record

dc.contributor.author McMullen, Curtis T.
dc.date.accessioned 2012-11-06T18:39:31Z
dc.date.issued 2002
dc.identifier.citation McMullen, Curtis T. 2002. The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. Annales Scientifiques de l'École Normale Supérieure 35(2): 153–171. en_US
dc.identifier.issn 0012-9593 en_US
dc.identifier.uri http://nrs.harvard.edu/urn-3:HUL.InstRepos:9871964
dc.description.abstract Let M be a connected, compact, orientable 3-manifold with \(b_1(M)>1\), whose boundary (if any) is a union of tori. Our main result is the inequality \({\parallel \phi \parallel}_A \le {\parallel \phi \parallel}_T\) between the Alexander norm on \(H^1(M,\mathbb{Z})\), defined in terms of the Alexander polynomial, and the Thurston norm, defined in terms of the Euler characteristic of embedded surfaces. (A similar result holds when \(b_1(M)=1\).) Using this inequality we determine the Thurston norm for most links with 9 or fewer crossings. en_US
dc.description.sponsorship Mathematics en_US
dc.language.iso en_US en_US
dc.publisher Elsevier en_US
dc.relation.isversionof doi:10.1016/S0012-9593(02)01086-8 en_US
dash.license LAA
dc.title The Alexander Polynomial of a 3-Manifold and the Thurston Norm on Cohomology en_US
dc.type Journal Article en_US
dc.description.version Accepted Manuscript en_US
dc.relation.journal Annales Scientifiques de l'École Normale Supérieure en_US
dash.depositing.author McMullen, Curtis T.
dc.date.available 2012-11-06T18:39:31Z

Files in this item

Files Size Format View
alexander_polynomial.pdf 264.6Kb PDF View/Open

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7213]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University

Show simple item record

 
 

Search DASH


Advanced Search
 
 

Submitters