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A unified hydrodynamic theory is presented that is appropriate for crystals; smectic,
cholesteric, and nematic liquid crystals; glasses; and normal fluids. In the theory, the in-
creased spatial degeneracy as the system progresses from crystalline and mesomorphic
phases to the isotropic fluid phase is marked by successive reductions in the number of first-
order elastic constants and in the number of transport coefficients. Distinction between local
lattice dilations and local mass changes, and recognition of processes like vacancy diffusion
that this difference makes possible, are crucial for understanding the connection between
theories in different phases. Formulas are derived that give the number of hydrodynamic
modes and the frequencies, lifetimes, and intensities of these modes in all of the above sys-
tems. In the nematic and cholesteric phases, the results agree with some found previously.

In more complex systems, they are new.

An attempt is made to explain the differences be-

tween the present hydrodynamic theory and other phenomenological proposals.

I. INTRODUCTION

When a system with many degrees of freedom
is disturbed from a thermal-equilibrium state
and then allowed to relax, almost every degree of
freedom will relax to its equilibrium value in a
time determined by and characteristic of the sys-
tem’s detailed microscopic interactions. There
will, however, be a few collective modes which
will decay more slowly. More specifically a few
will decay in times proportional to some power of
their wavelength. Hydrodynamics describes these
“long-lived” degrees of freedom or modes. The
existence of such modes can always be traced ei-
ther to conservation laws or, inthe case of ordered
systems, to “continuous broken symmetries,”
since many-body systems are too chaotic for slow
relaxation to occur “accidentally.”

Let us illustrate by example: Sound waves and
thermal conduction in a simple fluid! have charac-
teristic frequencies (~ inverse times) which vanish
as the wavelength goes to infinity because of the
conservation laws for energy, momentum, and
density. On the other hand, the long-wavelength
spin waves in an isotropic antiferromagnet have
hydrodynamic behavior? by virtue of the continuous
rotational symmetry of the spin system (relative
to the lattice). That is, the system has equal en-

8

ergy for all orientations of the staggered spin ar-
rangement relative to the lattice.

In contrast to the orientation of the staggered
magnetization which is a hydrodynamic variable in
the isotropic antiferromagnet, the magnitude of the
staggered magnetization is not. If disturbed from
equilibrium the magnitude will decay, in micro-
scopic times, to a value characteristic of a local
thermal equilibrium, following which further de-
cay will be completely described by the hydrody-
namic decay of temperature, density, etc. Thus
although the magnitude of the magnetization decays
slowly, it is not a new independent hydrodynamic
variable. Changes in the magnitude of the mag-
netization do not change the symmetry of the
equilibrium state, and since they couple to the
total energy and density in microscopic times they
do not lead to new independent long-lived degrees
of freedom. :

Since the hydrodynamic properties of a system
follow from the conservation laws and broken sym-
metries (for ordered systems) they can be derived
from the thermodynamic properties of the system
under the single assumption that the slowly vary-
ing time derivatives at small wave number have
first, and in some cases second, derivatives with
respect to wave number (i.e., that spatial gradi-
ents exist). This assumption is by no means com-
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pletely trivial; there are indications that hydrody-
namics, in the sense used here, does not exist for
certain systems. For example, it has been argued
that the heat current and stress tensor are not
proportional to gradients of temperature and ve-
locity in two dimensions. Consequently, viscosity
and thermal conductivity do not exist. Also, in
two dimensions there are systems which seem to
“order” in the sense that they undergo a phase
transition, but in which we know for certain that the
order parameter vanishes® (e.g., a two-dimen-
sional Heisenberg magnetic system).

This problem is not an academic one. There
are strong arguments®® that indicate that precisely
the same phenomenon occurs in three-dimensional
cholesteric and smectic liquid crystals. The diffi-
culties produced by such a failure are hard to
assess. The likelihood that a gradient expansion
is rigorously valid is certainly reduced. Nonethe-
less, we would expect, and experiments on two-
dimensional Heisenberg systems suggest, that the
failure may not be serious, especially for wave-
lengths small compared to the size of a container
that stabilizes the order.

The point of view summarized here has been
previously utilized in normal fluids,! mixtures of
normal fluids,® superfluids,” ferromagnets and anti-
ferromagnets,®® and nematic® and cholesteric
" liquid crystals.’ Although such discussions give
no estimate for the magnitude of the parameters
that are introduced, they do predict the long-wave-
length long-time behavior of systems with as much
rigor as more detailed presently feasible micro-
scopic approaches. They are only rigorously ap-
plicable to those ordered fluids which have a hy-
drodynamic regime. For those that do not, we
believe that a rigorous description is impossible
but that it is not unreasonable to hope that our
equations will be quantitatively correct for all but
the longest wavelengths.

Subject only to this qualification, we present
here a unified picture of the hydrodynamics of
systems that exhibit spatial order. From it we
shall retrieve the results that have been obtained
previously for nematic and cholesteric liquid crys-
tals and also derive for the first time the corre-
sponding properties of smectic liquid crystals and
ordinary crystals. An important conclusion of our
work is that all ordered systems contain extra dis-
sipative processes (and thus extra transport pa-
rameters) in addition to the thermal conductivities
and viscosities of simple fluids. In crystals!®
these processes are the diffusion and thermal dif-
fusion of point defects or vacancies. It would be
interesting to search for their effects in both crys-
tals and smectic liquid crystals. It is also quite
possible that some observed low-temperature prop-
erties of glasses and radiation-damaged crystals
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might be explained in these terms.

The present paper demonstrates that the proper-
ties of all fluids (simple liquids as well as liquid
crystals) can be obtained by relaxing (i.e., set-
ting equal to zero) properties which are present in
a complicated crystal. This was the prejudice that
prompted an earlier incomplete attempt!! to ex-
plain liquid crystals. It appears that the prejudice
was correct and the effort failed fundamentally be-
cause the crystal was not treated generally enough.

In the present paper we shall eschew certain
mathematical machinery involving correlation func-
tions, % !2 which would make a number of deriva-
tions clearer and lead to a number of additional
results. The reader interested in calculating the
intensities of modes is therefore left with some
cumbersome exercises. In compensation, the
formulas which we shall exhibit will be relatively
brief and hopefully comprehensible.

II. GENERAL CONSIDEI'{ATIONSV

As mentioned above the first task in developing
any hydrodynamic theory is to list the independent
hydrodynamic variables. Corresponding to con-
servation of mass, momentum, and energy, there
are the mass density p, the momentum density g,
and the energy density ¢, which satisfy the con-
servation equations

2.1)

where o;; is the stress tensor and J,° is the energy
current density. We take o0,; =0;, and reserve
further discussion on this point for Appendix A.

All quantities are the averages of the micro-
scopic expressions for the state in question in the
fixed “laboratory” space-time frame.'* The as-
sumption that a gradient expansion is valid is in-
voked by asserting that for any slowly varying
fluctuation, with wave vector ¢, the currents on
the right-hand side of Eqs. (2.1) all go to zero as
some power of g in the local rest system of the
fluid. Thus, in the long-wavelength limit the
characteristic frequencies (e.g., p=-iwp) all
vanish. For an ordinary fluid these are all the
equations and one proceeds by expanding the cur-
rents in Egs. (2.1) about thermal equilibrium, so
as to obtain five (because there is a separate equa-
tion for each component of §) simultaneous differ-
ential equations, first order in d/dt. Substituting
- iw=d/dt in these equations leads to a deter-
minantal equation

P==Vigi, &=-V,0i, é="ViJze,

5
Z_/;An(ﬁ)w%o

in which the polynomials in §, A,(q) depend on the
wave vector. To lowest order in g two of the five
roots of this equation are of the form w=+cq and

describe propagating sound. The other three have
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the form w=4Dg? and describe the diffusive behav-
ior of thermal relaxation and of the two nonprop-
agating transverse shear waves of an ordinary
fluid. It is worth noting here a general property
of any hydrodynamic theory: Propagating modes
must occur in pairs. This requirement is a con-
sequence of time-reversal invariance.

The five equations (2.1) that apply in any system
are not sufficient when the system has some sym-
metry that can be continuously broken. For ex-
ample, in the isotropic antiferromagnet discussed
above,? the orientation of the staggered magnetiza-
tion (and similarly, in a nematic liquid crystal,
the director) can point in any direction. Conse-
quently a slow (continuous) spatial variation in the
direction will require little energy and since the
energy required to produce a deviation without al-
lowing the system to readjust is greater than the
energy associated with the mode, the time rate of
change of the variable that describes the “broken
symmetry” must be small and the variable hydro-
dynamic. For the nematic liquid crystal® this
argument implies that there are two additional
variables and so there are two equations beside
Eqs. (2.1). There are therefore seven hydrody-
namic modes for a nematic liquid crystal. Note
also that the extra variables are even under time-
reversal symmetry. This is not always the case.
In particular, in a superfluid the extra hydrody-
namic variable is the superfluid’ velocity which is
odd under time reversal. The continuous broken
symmetry for superfluidity is related to gauge
invariance. Since the three components of the
superfluid velocity are given in terms of the gradi-
ents of a single variable, the superfluid phase,
there is just one extra equation to add to Egs.
(2.1). In place of the fifth-order equation for the
characteristic frequencies of a normal fluid, the
superfluid has a sixth-order equation and the pos-
sibilities are all propagating modes w =+ ¢,q, * ¢zq,
+ c3q; two pairs of propagating modes w =+ ¢,q,

* cpq and two of the diffusive type w=iD,q% iDyg5%
etc. Further analysis is necessary to determine
which possibility occurs, e.g., to conclude that
in helium the second case, corresponding to first
and second sounds, is realized.

Before going further we would like to emphasize
what we have illustrated above—that the most sim-
ple and fundamental quantity in any hydrodynamic
theory is the number of independent degrees of
freedom the theory contains. As we have seen
above this number is an invariant property of the
system and it determines directly the number of
modes one will find in that system. Furthermore,
since propagating modes always occur in pairs,
having counted the modes, we can readily list the
possible types of solutions for any system. Start-
ing from the simple liquid with two propagating

solutions and three diffusive, the addition of one
new variable will either eliminate one of the previ-
ous diffusive modes in favor of a pair of propagat-
ing modes, as in the superfluid,” or it will add a
further diffusive mode as in a normal binary fluid
mixture. We shall see below that for most direc-
tions of g the mode structure of smectic A and
cholesteric liquid crystals resembles the mode
structure in a superfluid (i.e., two pairs of propa-
gating and two diffusive modes) but that in special
symmetry directions, there are, as in a binary
fluid mixture, four diffusive and one pair of propa-
gating modes. " The same will be demonstrated for
smectic C phases except that the latter have an addi-
tional diffusive mode. Finally, we shall argue that
crystalline solids have three extra hydrodynamic
variables so that there are, in general, three pairs
of propagating sound waves (six solutions), one dif-
fusive mode for thermal conductivity, and (for a
monomolecular crystal) one extra, corresponding
to diffusion of vacancies.'® In all, there are eight
solutions. Except in special directions the mode
structure of a smectic B phase is the same as that
of a crystalline “solid, ¢

Having counted the number of hydrodynamic vari-
ables, and consequently the number of modes, it
remains to develop mathematical expressions that
will describe the physically observable properties
of the modes. Since we are considering a theory
that is applicable only in the limiting case of w
- 0 we can exploit the fact that irreversible or dis-
sipative effects can be made arbitrarily small by
taking ¢ arbitrarily small. Strictly speaking, in
the absence of externally applied forces and in the
limit of vanishingly slow temporal changes all hy-
drodynamic motions are thermodynamically re-
versible and adiabatic (i.e., entropy is conserved).
Dissipative or irreversible effects only enter a
hydrodynamic theory at the next order in frequency
and wave vector. This property is of course inti-
mately related to the connection between thermody-
namics and hydrodynamics to which we have al-
luded. The hydrodynamic regime is the regime
in which every process takes place slowly com-
pared to any microscopic time. For such slow
processes the dissipation in modes with wr «<1 will
be arbitrarily small. Only those terms for which
T is inversely proportional to ¢ contribute, and
their contribution vanishes with ¢q. If we were to
try to include some of the processes which occur
in microscopic times and to stop short of a detailed
microscopic calculation we would have to present
some microscopic argument for including only
those processes we chose to single out (i.e.,
some reason for expecting their decay to be expo-
nential and their lifetime longer than others we
chose to ignore). It is confusion on this point which
has led to the inappropriate “generalizations”!’
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of the hydrodynamic equations of nematic liquid
crystals.

Having argued that for specific systems there
can be variables in addition to the conserved ones
which are both independent and “slow” we proceed
by adding to Egs. (2.1) equations like

(2.2)

where {x"‘} are the extra independent hydrodynam-
ic variables and the {J*} describe their decay.
Asserting that there is an equilibrium state with
an order parameter is equivalent to saying there is
a thermodynamic identity of the form

)'ca:Ja,

(2.3)

where ¢ is the energy density of the system in the
laboratory frame. If € is the energy density of
the system in its rest frame (moving with velocity
v; relative to the laboratory frame), then

Td(ps)=de - pdp —v; dg; — 20y F* dx* |

- _ 0,1 2
8i=pv;, €=€ +tzpv,

o . (2.4)
pu=p+e —Tps—3zpv°.

The quantities p and s are the thermodynamic pres-
sure and the entropy in the rest frame of the sys-
tem and u is the chemical potential in the labora-
tory frame. In thermal equilibrium, in the absence
of externally applied forces, F*=0. Equation
(2. 3) represents a prescription for calculating the
work done on the system when slow hydrodynamic
external forces 67, 6u (or 6p), 6V, and 6F* are
applied to it. The “forces” F® that appear in
(2.3) must approach zero as the wave vector §
tends to zero since this was just the criterion by
which we admitted {x"‘} as hydrodynamic variables.
A convenient way to incorporate this requirement
is to write

FY=-v,0,* (2.5)

and through a redefinition of ¢,

Td(ps)=de — pdp —v; dg; =20y $;% d(v,;x%) .
(2.6)
[In a superfluid,_’x is the superfluid velocity poten-
tial (or phase), vx is the (irrotational) superfluid
velocity V,, and ¢; is p,; in the frame in which
the whole fluid is at rest.] For thermal equilib-
rium in the absence of external forces,

pd(u+3v®)=dp - psdT, 2.7)

and for hydrodynamic fluctuations about thermal
equilibrium we define the nonequilibrium quanti-
ties T(F, ¢), u(, t) or p@, t), v;(F, ¢), and

{¢,*@, t)} to be the same functions of the local
mass, energy, and momentum densities and order
parameter as they are in equilibrium,

(2.8)

Restricting attention to the arbitrary slow hy-

pVi(p+308)=v,p—psv,T .
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drodynamic changes in ¢, p, g, and {x*}, we can
rewrite Eq. (2.6) as

9 . . . .
T—(ps)=€-up—vigi-—z $;%v,x% (2.9)
3

at
where all time derivatives are calculated in the
laboratory frame. The observation that the work
that would be done on the system by external for-
ces 6, 6v, 8¢, 8T must be positive if the sys-
tem is stable and the recognition that in this case
the work would be done at the rate

4| & [os]=R (2.10)

dt
imply that R>0.'

In the absence of dissipative effects, that is, in
the limit as q— 0, the hydrodynamic motions are
reversible adiabatic motions; R differs from zero
only to the extent that q# 0 when dissipation is taken
into account. Thus Eq. (2.10) actually constitutes
a definition of the entropy changes accompanying
irreversible nonequilibrium motions. These
changes can be expressed in terms of thermody-
namic variables because a “gradient expansion”
is possible for hydrodynamic motions. Substituting
Egs. (2.1) and (2. 2) and using definitions (2. 4),
(2.8), and (2.10), we obtain

R=- [ @t{Q/T)[J° - (p+ €], v, T
-0;(v;0;; = V; ) +206 629, %}

+ (terms of order ¢® and terms of higher
order in the gradient)
20, (2.11)
Henceforth we shall consider only small deviations
from a state in equilibrium and at rest. We shall
therefore drop all terms not given explicitly in
Eq. (2.11) and retain only the terms that are lin-
ear in the small fluctuating quantity v,.

For a normal fluid, in which there is no order
parameter, there are no ¢;* terms and the revers-
ible parts of J;=(p + €%)v; can be obtained by argu-
ments on Galilean invariance. The reversible part
of the stress tensor satisfies v,0;; =V, p so that
for adiabatic reversible motion ¢, =6;;p. Irre-
versible effects are taken into account by writing

J.€ DEJ.E - + 0 v
(,)D_, (p+€; , 2.12)
VjO'” = VIGH' - V;P 3
and, including only terms quadratic in the devia-
tions from equilibrium,

~= [ dF [T, T) (J;5)° - (v,0,)0;,°1.  (2.13)

The positive definiteness of R, corresponding
to the fact that energy is dissipated, is guaranteed
by writing for the normal fluid

(7;°)P=—ky,v,T,



K=

(UH)D = =M Vilp - (2.14)

Ky and 7m;,, are the usual thermal conductivity and
viscosity of a normal fluid. Note that there are no
cross terms (J;¢)°~v,v,, etc. This is a special
case of a fundamental property of the equations of
motion. Irreversible effects appear in the equa-
tions of motion with opposite time-reversal prop-
erties to reversible effects. Since ¢ is even
under time reversal the reactive parts must be
proportional to odd variables [(J;*)* = (p +€)v,;]
and the dissipative parts to even ones [(J;°)?
=—k;,v;T]. There is no possibility for cross
terms. Note also that because the mass current
is conse'rved there are no dlss1pat1ve coefficients
linking J¢ with Vp and g with V7. Note ﬁnally that
reactive terms coupling J¢ with V¥ and o with vT
are of higher order in the gradient than we need
consider and that, furthermore, in a simple fluid
they are ruled out by considerations of spatial
symmetry.

As we noted, R represents the irreversible work
that would have to be done onthe system by exter-
nal “forces” if the hydrodynamic fluctuations were
sustained, rather than allowed to decay. For an
ordered system, again to second order in fluctua-
tions from equilibrium, we have

R- f & (= T @D 0 - (0 0)°
T @ o).
Taking into account the time-reversal property of
dissipative effects and recognizing that from a
phenomenological point of view all definitions of

()2, ©)°, and (J*)P that lead to the same R are
physically equivalent, we can immediately write

("U)Dz ~MNijur Vile
(Jie)D == K{jVjT_Ea Eiu(Vj(bja) )
%P =T, %9, T+25, T (v,0,%")

(2.15)

where I'*®’ =1*"%,

We shall show explicitly in Appendix A that with
no loss in generality we can always take o;; =0y
and thereby conveniently include all consequences
of angular momentum conservation. Accepting this
fact, we see that we can describe the dissipation
by two symmetric positive definite matrices. The
first is a 6 X6 matrix for the viscosities whose
rows and columns are labeled by the indices of
oy; (11, 22, 33, 12, 23, 31). The second is a
(8 +#)x (3 +n) positive definite matrix whose rows
and columns are labeled by the three components
of the heat current and the » components {8x%/at}.
When there is a single order parameter, as is the
case in a smectic A phase, this matrix is 4x4
(n=1). For a smectic C phase, on the other hand,
n=2 and the dissipative matrix is 5X5. For a
crystal, »n=3. In a superfluid the phase variable

UNIFIED HVDRODYNAMIC THEORY FOR CRYSTALS, ... 2405

is odd under time reversal; as a result there are
no additional dissipative cross terms of the type
discussed above but instead additional viscosities.

Having obtained the dissipative parts of J¢, 3,
and {J ®} it only remains to specify how the reversi-
ble parts of these quantities depend on 6p, be, 65,
and {6x°‘}, or their conjugate variables 5 u or 6p,
57, ¥, and ¢°,

The reversible parts of the momentum density
€ and energy current J¢ can be deduced by using
Galilean invariance arguments [Eqs. (2.4) and
(2.12)]. To the required order in » and gradients
they are unchanged by the introduction of the vari-
ables {x*}. Since the {x*} considered here are all
even under time reversal the most general form
for the {J*} is

*=A%v +A V0 + (2.186)

For the problems we shall be discussing here the
{x*} will always be some components of vectors.

In a smectic A phase, for example, the “broken
symmetry” is translational,* that is, a small
translation along the normal to the planes produces
a different, but equivalent, state of the system.

If we take the 3 axis in this direction then the only
nonvanishing component of the single order param-
eter A, is Ay, and x=Agv;. Since nothing has been
said about the dimensions or magnitude of the

{x"‘} we can, with no loss in generality, take Az;=1
and write J=v;3.

In a nematic phase, the broken symmetry is ro-
tational, not translational. With this type of order
a uniform displacement of such a system does not
change the state, so that {4,}=0, and J*
=A;;*V,v;. The conventional representation for a
nematic phase is one in which {x*} is identified with
dng (@=1, 2) and

O, = lhygp 950 =5 M8, 5 + 039;) — 3(0,05 — 830;) .
(2.17)
In this case A;% =0 and the quantity A, called
14, is chosen so that p;;,=3(A = 1)8;,0 3
+3(A+1)5;,6,3. The quantity X is conventionally
written as A= - y,/7, in the literature'®?? of ne-
matic phases with y,™! the dissipation coefficient
T of (2.15). Discussion in Appendix B is directed
towards differentiating between the physical signi-
ficance of y, and v,.
The effects of the {x®} on the reictive part of
o, that is, on the reactive part of g follow immedi-
ately from the fact that they can contribute nothing
to R [Eq. (2.11) or (2.9)]. Thus, if Eq. (2.16)
leads to reactive terms ), ¢,°V,A;,*V,0; in (2.11),
others in g;,~%, A4;,°V,(v,¢,%) must cancel them.
The cancellation must occur since the reactive
terms, resulting from expansion about thermal
equilibrium, can be obtained from thermodynamic
derivatives, i.e.,
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<3vk )T,p,@ <3[Vt¢(a])’r,p,17 ( )

To be more specific on this point, the hydrodynam-
ic fluctuations, satisfying Eq. (2.6) and definitions
(2.4) and (2.7), also satisfy

d(e/p)==pd(1/p)+pg; dv; +p™ 23y ,%V, dx* + T ds.

: (2.19a)
Alternatively, neglecting a divergence term that
would contribute only to surface energies, to sec-
ond order in deviations from thermal equilibrium,
we have

dle’'/p)==pd(1/p)+p g, dv,

+p % dv, 6,* + Tds , (2.19b)

€ =€+, X2V,0,% .

The reactive, or nondissipative parts, of the hy-
drodynamic variations can always be discussed by
treating the limit in which q approaches zero.
Thus, from Eq. (2.19b), all the reactive parts of
the hydrodynamic variations satisfy the cross-
derivative relations

8g; _9x®
8(v,0,%) ov,

To the necessary order, the independent variables
held constant in Eq. (2.20) can be chosen in sev-
eral different fashions. Equation (2.18) follows
from Eq. (2.20) for hydrodynamic variations.
Thus with the definitions of the nonequilibrium
quantities p, (v;¢,%*), and T [Eqs. (2.7) and
(2.19a)] in terms of the microscopically defined
variables p, x*, ¢ (or, with a suitable definition,
s in place of ¢), all of the reactive parts of g, ¢,
and x* can be specified in terms of the {4,,%} and
the symmetric matrix of thermodynamic deriva-

tives
9 s* ]
p( oY) )
5p 5, 5%

o). )
P (30 8, x% P ap s, %%
op <_8_2) L (o9,°
CLY 3S Jya P\ 3 /i,
( aP) ( aT) l(acpj“)
BV!xB $,0 BV,xB 8,0 p BVixB $)P o
(2.21)

Although there are only »+ 2 independent hydro-
dynamic variables this matrix is a square matrix
of dimension 3z+2. This difference should be kept
in mind and we shall return to it later. It reflects
the interdependence of the variations v,x* and
ija (i#7). Indeed, since some of these deriva-
tives may vanish, the (3%+2)x (83n+2) matrix in
Eq. (2.21) may not have an inverse. For deter-
miring conditions of stability it is necessary to
consider the matrix which describes the indepen-
dent (n+2) degrees of freedom x? and the forces

(2. 20)

associated with deviations in them. Note also that
although ¢,* is a small quantity (resulting from ex-
pansion about equilibrium), (8¢;%8p)need not be,
that is, ¢,*~6p and (8¢;%/8p)=p(8/9p)($,*/p).

If we could neglect dissipative effects complete-
ly, that is, if R in Eq. (2.11) could be taken to be
zero, all of the remaining hydrodynamic fluctua-
tions could be taken at constant s. Thus the equa-
tions of motion and the characteristic frequencies
can all be expressed in terms of the isentropic
derivatives in the upper left-hand part of Egs.
(2.21). This is not the case for the mode inten-
sities (the mean-square fluctuations in the ampli-
tudes of the hydrodynamic variables). They are
more simply related to the isothermal derivatives.
Hence, even when dissipation is omitted, the full
matrix (2. 21) is required for a complete hydrody -
namic theory.

Before going on to consider specifically the vari-
ous liquid crystalline and crystalline cases, it may
be in order to make another remark on the ques-
tion of a symmetric versus an unsymmetric stress
tensor. In the present discussion, we never ob-
tained a form for the reversible part of the stress
tensor; we only obtained an expression for the re-
versible part of v;0;;. Any stress tensor that leads
to this expression for the acceleration is satis-

_factory. It is certainly possible to use an unsym-

metric one, but a symmetric one can always be
constructed and employed to advantage. Moreover,
with a symmetric one, the effects of the boundary
are described as taking place at the boundary and
not transformed from the surface to the volume.
The rearrangement is hardly startling since one
such tensor is the averaged microscopic stress
tensor, and in the microscopic theory there is no
place for “volume torques” despite the fact that by
exerting the proper forces on the boundaries we
can produce a different local configuration from
the one that would result with free surfaces.

We can also illustrate that it is possible to con-
struct a macroscopic stress tensor which is sym-
metric in another fashion—a fashion which will
clarify the connection between our discussion and
the conventional elastic theory of solids. It is suf-
ficient to consider the dissipation-free limit. The
reactive effects, including the reactive part of the
stress tensor determined in this limit, are not
modified by dissipation because in the limit g— 0
the irreversible part of the hydrodynamic motions
is negligible. Because the dissipative terms have
time-reversal properties opposite to the reactive
terms they are orthogonal to first order. If we
also assume that there is only one variable of the
type {x*} satisiying % =v; + (higher-order terms),
and use Eq. (2.18),

PO ==V, p+0;3(v;0,) 2. 22)
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with the thermodynamic identities that follow from
Eq. (2.21), we find

pP; =V, [(%%) PV, — P (8_;1);) V,vs]

—6,3V,[p(%> Valp = (%) Vkv;,] . (2.23)

Terms of order »? have been neglected.
Multiplying by v, and integrating over space,
neglecting surface terms, we obtain

d =2, 1 /8
-d—t dr [‘%IVIZ-{-'Z"(E%) (V,vi)(Vjvj)

+§% ( 8¢’~> (v,03) (Vy03) - (-‘33%—) (9 ,20) (V34 )] -0,

av,x

(2.24)
For the dissipation-free case we may always con-
sider stationary oscillatory states of a single de-
fined frequency w. In that case we may divide
Eq. (2.24) by «? and the integrand will be exactly
equivalent to the expression for the elastic energy
employed in the conventional elastic theories of
solids. Anticipating the discussion following (3. 2)
regarding the long-wavelength dependence of 8¢,/
av,x, when j, k=1, 2 as in the case of solids, (2.24)
can be entirely written in terms of the “deformation
variables” (V,v, + V,0,) by partial integration. Using
identities of the type

2V, V0, =V (V01 + V,0,) + 9, (V,0, +7,0;5)

- v, (V0 +Vi05)
this can be shown to be true for terms of all orders
in the wave vector. It follows that a symmetric
elastic stress tensor (in particular the derivative
of the energy obtained above), can always be found.
More important, the connection between an elastic
description and a fluid description is clarified.
When terms proportional to the second term in
(2.16) are necessary, second-order elastic con-
stants result. It is this description which was
utilized in Martin ef al. (MPS)!! and it is com-
pletely equivalent to the one employed here.

Note also that, as in a solid, there is a stability
condition associated with a nonsingular upper 2x2
part of the matrix (2.21). Taking x* to have the
symmetry of the 3 component of a vector, i.e.,

x;* =x06;3, we may write

(32),. 5 (im0

;). (@), 00 e
.. o(%).. Tz

and, for the special case that spatial gradients are
along the 3 direction,

2407
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The stability criterion for arbitrary spatial gradi-
ents is more complicated and illustrates the re-
mark made following Eqs. (2.21). For example,
as we will discuss below, in the case of smectic
A-phase liquid crystals we shall also require high-
er-order terms since (1/v?) (8v,¢/9x) vanishes in
the state of homogeneous thermal equilibrium in
the absence of externally applied forces. On the
other hand, if we carred out a microscopic calcu-
lation for %,(q), where v,(q) is the spatial Fourier
transform (wave vector ) of the microscopic quan-
tity p"g,(f ), we would not only find the terms that
appear in Eq. (2.23) but higher-order terms pro-
portional, for example, to v,V,;V,V,v,. As we
mentioned above, when the lower-order terms

that appear explicitly in Eq. (2.23) vanish, these
higher-order terms must be included in the elasto-
hydrodynamic theory. Although there are several
ways to account for them, probably the simplest is
to carry out the previous discussion in terms of the
spatial Fourier transforms of the hydrodynamic
quantities 6p(@¢), 6v;(q¢), 6e(@?), 6x*(q¢), etc. In
place of the operator v,, we then have the alge-
braic quantity ig;.

To illustrate the conditions leading to higher-
order elastic constants consider a nematic phase,
in which the extra hydrodynamic variables asso-
ciated with the broken symmetry are angles rather
than displacements. The variables {x*} are then
two independent director components 6%, and 6#,.
In the dissipation-free region they are related to v
by Eq. (2.17). The thermodynamic derivative in
Eq. (2.18) thus has the formal property

on
(5;:)1",,0 = KigeVe -
The interpretation of Eq. (2.27) is that if »,(¥) and
v, () are replaced by 7;(q) and v,(q), then the equa-
tion is satisfied when v, is replaced by ig,. In
this same sense, whenever the lower-order ther-
modynamic derivatives in (2. 21) vanish, we must
consider higher-order terms. With proper account
for the difference between variables and their com-
plex conjugates, the cross-derivative relation
(2.18) becomes

(2.27)

() une-(5), -
;)10 8(Vyts' ) 15,3

We also have in the nematic phase terms like

80, _ o __@P__)
o5, o (5o,

and others coupling T to v« in the matrix (2. 21).
In place of Eq. (2.23), when dissipative effects are
neglected, we obtain for a nematic phase

(2.28)

(2.29)
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v; = N\ A
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TVt Mrst ViV ViV Us + Uyl jps Ve VeV Ve Ut

i
- “”’(5%;:).)3 p#mserVtthV:Us . (2.30)
The transverse modes are characterized by second-
order elastic constants. The terms [8¢,//
8(V;ny)],,, are the “usual” isentropic Frank elas-
tic constants. The {v} terms couple density to

order -parameter fluctuations. While it appears as
if five independent second-order elastic constants
are necessary in general to specify the hydrody-
namic frequencies in a uniaxial nematic .hase, only
four are really required. The term that arises
from (8¢,’/ ap)ﬁ represents a negligible correction
to the term (8p/8p)p because the former always ap-
pears in combination with the latter and contributes
in Eq. (2.30) a term of order V* (i.e., of the order
of the Frank energy, not V). Since it is always
possible to redefine the pressure by a term of order
v? [and thus to eliminate this term in favor of a
term of order V%, by completing the square in the
expression for the elastic energy analogous to (2.24)
that is obtained with the aid of (2.30)], v, does
not play a role.
ing four “elastic ” parameters and the three Frank
constants and the parameter X [i.e., the quantity
(bou/adﬂ’)p which describes the stress induced by a
static change of magnetic field in a nematic liquid
crystal and is analogous to the quantity (dp/dT), in
a simple fluid] is given in FLMPS. The four pa-
rameters occur in a similar fashion in this adia-
batic-elasticity-theory version, whereas the three
Frank elastic parameters®! and the reactive-flow—
reorientation-variable coupling appear in a rather
different fashion in the director formulation, 2

9 2f0T
#D.. ).
G, )

9s %0 9s %,p

( 8p !) ( 8T )

8V3X /5,0 aVsx /s,
0 0

We take the gradient in the 1-3 plane since all di-
rections in the 1-2 plane are equivalent. The
zeros in (3. 2) correspond to thermodynamic deriv-
atives of ¢,=[8(e/p)/8 (V,x)],,,, and by symmetry
must be proportional to at least one power of v,
and vanish in the limit ¢— 0. - Thus, in accordance

MARTIN, PARODI,

The connection between the remain-

AND PERSHAN 6

III. CHOLESTERIC AND SMECTIC 4 LIQUID CRYSTALS -

The symmetry property that distinguishes a
smectic A liquid crystal from the isotropic fluid
is the fact that although it is translationally in-
variant to arbitrary displacements in two ortho-
gonal spatial directions, it is not translationally
invariant to displacements in the 3 direction. Thus
the extra, slow, independent hydrodynamic varia-
ble for a smectic A phase describes the displace-
ment of the smectic layers in this third direction.
Note that it is the local displacement of the layers,
not the angular rotation of the 3direction, thatisused.
Local homogeneous rotations of a layered struc-
ture produce infinite displacements of the layered

" pattern at infinite distances from the rotation axis,

and this is not consistent with the local hydrody-
namic theory of small fluctuations. Also, since
inhomogeneous variations in layer displacement
induce local rotations, the two types of deforma-
tions (rotations and displacements) are not com-
pletely independent. There is only one hydrody-
namic variable, the layer displacement in the 3
direction. If we call it x, we arrive at the follow-
ing equations of motion:

p+pv;v;,=0,

X —v3 =8V, +ETVST,
3 ivi 3 (3.1)

Q=¢-pHe+p)p=EVsV;0; + K, V2T + (k, = k,)V52T,
PO = = Vi p+8;3V,0; + M0 V; V10 B

which, together with the thermodynamic param-
eters that relate ¢, T, p, to x, @ (or ¢), and p,
determine the properties of the system. The
thermodynamic parameters are given by the sym-
metric positive definite matrix®

fedoR)
G, °
(m) 0

9s/ .,

! (3.2)

8¢§> 0

dVsX /5.0

o)

P \BV1X /s, |

with our earlier discussion of higher-order elastic
constants, these terms can be disregarded since
lower-order terms always dominate them. Note
also that in smectic A liquid crystals there is

no restoring force to either a uniform shear pro-
duced by sliding layers over each other or to a
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uniform rotation about an axis in the plane of the
layers. This is a consequence of the fact taat
there is no marking to describe motions along the
layers; i.e., the translational symmetry in these
directions is unbroken.? Since the effective elas-
tic energy [Eq. (2.24)] can always be expressed in
terms of symmetric strains (830, +8,v3), the ab-
sence of elastic restoring forces to both uniform
rotations (850, — 9,v3) and shears (9sv,) implies the
absence of resistance to a uniform deformation
(8,03). Thus the elastic energy associated with
(8301 +8y03), that is, (8¢,/8Vyx), ;, is of higher
order in g than conventional elastic energies. The
lowest nonvanishing terms permitted by symmetry
are of order v,? or v,2. Whenever v3#0 (i.e.,
gs#0) energies related to ¢, are of higher order,
and can be neglected in comparison to other terms
in (3.2). If v43=0 (i.e., g3=0) the term in (8¢, /
av,x), , proportional to v,* must be considered.
There are therefore six first-order “elastic” con-
stants in a smectic A phase, corresponding to the
upper 3x3 block of the symmetric matrix, (3.2),
and one second-order constant,

801\ _[81) __ o2
<8V1x)p,r (l’ile)‘,_s KV (3.3)

In accordance with Eqs. (2.15)and (3.1), the dis-
sipative parameters are described by one 4%X4
positive definite matrix coupling v,;¢; , the three
components of v; 7T, and the 6x 6 positive definite
matrix for the viscosities. The symmetry of the
problem reduces the 4 x4 matrix to the four con-
stants «,, k,, & and ¢ satisfying

K20, k20, £20, xk¢-(%/7)20, 3.4)
and to the five viscosities, characteristic of an ar-
bitrary uniaxial system. If v;;=3(v,v,+V,v;), the
dissipative part of the stress tensor defining the
viscosities? is
(Uu)p == 2Mv;; — 2(ng = ms,) (1)13513 + 1)13513)

- (ns - nZ)Gijvkk ~ (ny +mg — 4mg — 215 +14)0,;30 13053
— (M5 = Ma+7p) (05,033 +0430;305)»  (3.5)

and it must satisfy the conditions

MMe2ns®, 7520, 7320, 720, m,20. (3.6)
The discussion of the modes is simplest when

v (or §) is in the 3 direction. The two equations
for the transverse velocity are decoupled from one
another and from the other four equations of mo-
tion. The frequency for these two modes, taking
q=gs, is

w=-insg®p™ . 3.7)
The remaining four equations become [with 6@
=5e—pe+p)op]

—iwbp +ipqus =0,

- iwsQ + £q%0 by + K gBT=0 ,
- iwbx —vy — i£qd s —i(£/T)gd T=0,
— jwpvs +iq(6p - 5¢3) + MmqPvs =0, (3.8)

‘or

- iwb(Vyx )= w0 6p + g2 Py + (£/T)g? T=0,
— Wb Q+ g0y +K,g%6 T =0, (3.9)
w%p - ¢*(6p — 5bg) + imq wp™6p=0 .

By changing the notation in Egs. (3.9) we could
make them identical to the equations that describe
the coupling between sound propagation, thermal
conductivity, and diffusion in a two-component
fluid. The quantity vsx would play the role of the
concentration fluctuations and ¢3 the role of the
osmotic pressure.B Although it is somewhat com-
plicated, this mode structure of binary fluids has
been discussed extensively. We can therefore im-
mediately give the smectic-phase modes when a
is in the 3 direction. In addition to the two shear
waves, there is a sound wave whose attenuation de-
pends on all of the transport coefficients and ther-
modynamic derivatives; itsvelocity is given simply
by

), (.,
39 $§,% ap 8,% p ast Py 8

There are also two diffusive modes whose fre-
quencies depend on the transport coefficients &,
k., ¢, and three thermodynamic derivatives. A
light-scattering experiment in which the momentum
transfer is along the 3 direction would observe the
usual Brillouin peaks and two superposed central
peaks. The relative intensities of the various
contributions would depend on the coupling between
de and 67, 6p, and 936x. It would be interesting
to measure the analogies to thermal and particle
diffusion.

When 3 (or q) is in a direction perpendicular
to the 3 direction, say the 1 direction, there is one
decoupled shear wave, »,, with frequency w
= — inyq®/p; three coupled modes, vy, 6p, 67,
which yield sound waves and thermal diffusion as
in a normal fluid; and two others, reminiscent of
the nematic phase, coupling v3 and 8;x. The latter
plays the same role as 61, in a nematic liquid
crystal. The frequencies of the last pair of modes
are given approximately, as in the nematic phase,
by

Wy~ = ingg®p™ s

(3.10)

w,~ —iKg%/ns . (3.11)

Note that these two frequencies are determined
solely in terms of the viscosity. Inthis case ¢ does
not contribute and the result is therefore the same
as that obtained by MPS when the additional dissi-
pative parameter akin to ¢{ was incorrectly omitted.
We shall not discuss the Landau-Placzek spectrum
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beyond noting that in the standard expression® for
it, the thermal conductivity is «, and the viscosity
Mo+ Mg

The additional transport parameters ¢ a}_nd ¢
actually play no role in the case in which v (or q)
is perpendicular to the 3 direction, and the higher-
order elastic term only plays a role in this direc-
tion. More quantitatively it is important only when
0%/ qs%> (8¢5 /8v3x)n" 2. The inequality gives the
condition under which the coupled shear order-
parameter fluctuations change from the form de-
scribed by Egs. (3.11) to propagating modes.

For arbitrary direction of ¥ (or 4) there are five
coupled equations. They could be solved, but the
result would not be very illuminating. It seems
more worthwhile and informative to determine the
qualitative behavior of the solution from Eqgs.

(2. 23) which applies in the dissipation-free limit.
In this limit the coupling between v, and v; leads
to a quadratic equation in the variable w?

4 _ 2 / 3_0) (4:% + ¢.2)
w w {(3[} o a1 +q3
1/ 8¢s 903 2 4
+[n (6 Vsx ) - 2< 9p >s,x]q3 gy

1 /9 3 agg) 2
[ @) ), - (5), Jatao.
' ’ o (3.12)
The solution of Eq. (3.12) yields two propagating
modes with vélocitites ¢; and ¢, satisfying (to
lowest order in g)

2, 0.2= (22 g [ L (303 _ (2%
crre (ap)s,fcosw[p (avax YN E

(3.13)
. 1 /op 8¢\ 2

o' - Zsaw[“<) _( > ’
eree = oSSyl o\ 90, ) sx

where y is the angle between the direction of _‘5, or
4, and the symmetry axis 3. Thus, in a smectic
A phase, neglecting dissipation, we obtain two
sound waves, with speeds determined by Eq.
(3.13). In addition to these four modes, there are
two of zero frequency. One of them corresponds
to the shearing motion 830, (or 8,v,) for which there
is no associated elastic energy and the other is the
thermal-conductivity mode which, in the absence
of dissipation, always has zero frequency. The ef-
fect of including dissipation is to make the zero-
frequency shear mode (85v,) diffusive with a fre-
quency [Eqs. (3.7), for example] determined sole-
ly by the viscosity coefficients, to make the zero-
frequency thermal-conduction mode diffusive with
a frequency which is an involved function of the
dissipative parameters, and to add attenuation
to the propagating modes. The attenuation coeffi-
cients will be frightening algebraic functions of the
dissipative and thermodynamic parameters.?

The results are illustrated in Figs. 1 and 2.

()
9V3X/s,o
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Figure 1 shows the velocity of the two propagating
waves as a function of orientation relative to the
symmetry axis of the smectic A phase. Figure
2(a) shows the spectral density for a general hy-
drodynamic variable, at arbitrary q, as a function
of w. There are two Brillouin peaks, w?=c,%¢* and
w?=c,2¢% and a central peak that consists of the
thermal-diffusion mode and the shear velocity v,
mode. Thus, in general, the central peak is the
sum of two Lorentzians. On the other hand, in an
experimental measurement, suchas polarized light
scattering, the coupling to v, may vanish. When
it does the central peak is essentially a single
Lorentzian. Figure 2(b) sketches the same effects
for q in the 3 direction. There is only one sound-
like mode and the central peak is the superposition
of four Lorentzian lines. Again, if in a given ex-
periment the coupling to the diffusive shear veloci-
ty modes is absent, the central peak will consist of
two superposed Lorentzians, in analogy with the
two-component fluid. For J in the 1 direction,
Fig. 2(c), the mode structure reduces to a Landau—
Placzek triplet superposed on a central peak that
consists of the coupled nematiclike modes 8,x and
8,03 (shown separately in the figure). While the
3,v, mode can also contribute to the central peak,
it often does not couple to experimentally observed
variables for the reasons mentioned above.

The theory described for a smectic A phase is
also applicable to cholesteric liquid crystals and
its essential results are identical to the theory de-
scribed by Lubensky.® From a macroscopic point
of view the only difference between the symmetry
of cholesteric and smectic A liquid crystals is
that the former lacks a mirror symmetry that
is present for the latter. The presence, or ab-

Ot>

C2 ()

C ()
cX(0)

Latd

L__Cf(-g-)

FIG. 1. Speed of propagating modes in a smectic A phase
as a function of direction of propagation.
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Modes that do not couple to density
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FIG. 2. Hydrodynamic spectral
densities for a smectic A phase with
G along different directions. For§
Il 3, the central line that couples to
the density is the sum of two Loren-
tzians that in general have widely

a)§ arbitrary

] |

different half-widths. The part of
the spectral density that does not
couple to the density consists of two
Lorentzians of identical half-widths.

Mg 75

They have different polarizations
and do not couple. For 1 3 the
part that does not couple to the den~
sities consists of one pair of Loren~

tzians that has different symmetry,
and thus does not couple to a third

sence, ofthis symmetry element changes absolutely
nothing in the analysis and the hydrodynamic the-
ories of the two systems are identical. Of course,
as presented here, hydrodynamics is rigorously
applicable only in the limit of (w, §)~ 0. Thus a
very real difference between the two systems will
be the magnitude of w and ¢ that can be considered
small enough to apply the hydrodynamic theory.

A reasonable guess might be g <n/d, where d is
either the period of the cholesteric-phase twist or
the smectic-phase layer spacing. The hydrody-
namic theory is therefore restricted to much
smaller wave vectors in cholesteric than in smec-
tic liquid crystals. Likewise, we would expect
the various elastic constants and transport pa-
rameters to be much smaller in cholesteric than
in smectic liquid crystals. In other words, al-
though the theory of this section applies to the
long-wavelength low-frequency properties of
cholesteric liquid crystals, it is far from clear
that it is sufficient for cholesteric liquid crystals
at the wavelengths and frequencies of practical in-
terest in light scattering. Note also that when ¢

- G and 6x is constant the deformation is a uniform
rotation of the molecular orientations about the
cholesteric axis (i.e., the 3 direction). The phys-
ical effects resulting from the coupling of this de-
formation to a temperature gradient 837 and simi-
lar couplings can be discussed with the aid of Egs.
(3.8). The relation between these equations and the
description of a two-component fluid is of some
assistance in understanding the type of effects that
might be expected in a cholesteric phase. We
know that in a two-component fluid, it is boundary
conditions that determine whether or not there is
particle diffusion and thermal conduction or only
the latter. Likewise it is boundary conditions that
are crucial for determining whether a temperature
gradient will induce a uniform ¥ in the cholesteric
phase ¢

-
I

Lorentzian. For all orientations of
4, there are six modes.

(3]

IV. SMECTIC C LIQUID CRYSTALS

From a macroscopic point of view, smectic C
liquid crystals differ from smectic A liquid crystals
in only one respect.?” Whereas the smectic A phase
is invariant under all rotations about the 3 axis (we
take the 3 axis to be the single direction in which
the smectic A phase is not translationally invari-
ant), a smectic C phase is not, For a smectic C
phase we can again take the 3 direction perpendicu-
lar to the layers and define a second direction, the
1 direction, by the intersection of the layers and
the mirror planes. This identification of the 1-3
plane is consistent with the microscopic model of
a smectic C phase in which one imagines molecules
tilted from the 3 direction towards the 1 direction,
Thus, we identify two “extra” hydrodynamic vari-
ables for a smectic C phase. One, as in a smectic
A phase, corresponds to the translation of the
smectic liquid-crystal layers. The other, remi-
niscent of the nematic phase, corresponds to the
rotation of the 1 direction about the 3 axis. Taking
the displacement variable x =x® (@ =3), the rotation
variable 6n,=x" (@ =2), and using ¢;=¢,;* (a=3),
hi=¢,% (a =2), Eqs. (2.15), (2.16), (2.18), and
(2.28), and considering the constraints of symme-
try, we obtain

p+pviv; =0,
x=v3=¢Vy ¢ + T8V, T,
g = MapaBy; =" Vil @.1)
PV; ==V p+0;3V,;0; = Baip VeVl + Myju V5 V10 »
Q=é-pUe+p)p=k,V,V,T+E,V,9,0,; .
There are, in the biaxial smectic C phase, 13 in-
dependent viscosity parameters 7;,,, , four ther-
mal-conductivity parameters «;;, two parameters

£,, one ¢, and one y for a total of 21 dissipative
parameters.?®
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The elastic, and other, reversible parameters
can be determined by exactly the same arguments
as in a smectic A phase. First we note that in a
smectic C phase, as in a smectic A phase, the only
uniform stresses that produce strains are those
directed along the axis normal to the smectic
liquid-crystal layers. Consequently, to lowest
order in gradients the expression analogous to the
elastic energy [see Eq. (2.24)] is the same for
smectic A and smectic C phases. A complete
description of the reversible properties of a
smectic C phase requires the addition of thermal-
expansion coefficients and other terms yielding
“effective” elastic energies [see Eq. (2.24)] of
higher order in the gradients. Although the number
of such additional coefficients can be determined,
and we shall do so, their enumeration is of sec-
ondary importance. The various functions describ-
ing mode intensities and frequencies are cumber-
some functions of more parameters than we believe
it is reasonable to measure. The qualitative fea-
tures of the mode structure, however, are not
complicated and follow rather easily from the same
arguments employed for a smectic A phase.

For arbitrary directions of §, Egs. (3.1) for a
smectic A phase decoupled the transverse shear
mode with » (=v,) parallel to the layer surfaces
from the other five variables p, 7, »;, v;, and x.
These five resulted, for arbitrary directions, in
two pairs of propagating sound waves and one dif-
fusive thermal-conductivity mode. Since the
speeds of the propagating modes are solely deter-
mined by the first-order elastic properties and
since these are the same in both smectic A and
smectic C phases, the propagating modes will have
exactly the same qualitative behavior in both, Quan-
titative differences will arise in the attenuation
coefficients because of the lower symmetry of the
viscosity and thermal-conductivity tensors and also
in the special directions where the “propagating”
shear mode is determined by the second-order
elastic constants (i.e., in directions for which it
becomes diffusive). The shear wave that is always
diffusive (v, in a smectic A phase) couples to the
variable » in a smectic C phase in much the same
manner as in a nematic phase., Thus for propaga-
tion in the 1-3 plane the shear mode with V parallel
to the planes of a smectic C phase and the “direc-
tor ” i couple to form “fast” and “slow” diffusive
modes analogous to those that occur in nematic
liquid crystal. When the propagation vector does
not lie in the 1-3 plane, the corresponding shear
mode involves v; and v,, not simply v, as in a
smectic A phase.

Although it is possible to write down general
expressions for all the mode intensities and fre-
quencies it does not seem worth the effort at the
present time and we will simply enumerate the
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number of coefficients of each type that appear in
the general theory. The symmetric matrix, analo-
gous to Eq. (3.2), is larger. Inthe first place,
terms like

8*(e/p) dh, oh,

= = 4.2
vV nVm  dVn v’ 4.2)

corresponding to Frank-like terms, must be added.
Saupe has previously pointed out there are four of
them.?® Off-diagonal elements like (8, /8p), (9k,/
8V3x), (9h, /8s) can be neglected; or, from another
equivalent point of view, they can be incorporated
into the first-order elastic constants. The logic
here is similar to that employed in omitting v -like
terms in the nematic equations.

Second, the 1 and 2 directions in a smectic C
phase are not equivalent, as they were in a smectic
A phase, and, as previously noted by de Gennes,3°
there are three terms

¥(e/p) _1 8¢, _1 8¢,
IV X9V;Xx p OV;X p dViX

) (4.3)

where 7 and j are either 1 or 2, which are similar
to the smectic A-phase terms [Eq. (3.3)] in that
they vanish as the wave vector vanishes. These
are also Frank-like terms and three constants are
required to specify them. Third, there are off-
diagonal terms, also like those in Eq. (3.3), that
vanish as ¢ vanishes but which are necessary for
q in the 1-2 plane where the lower-order elastic
terms vanish. Thus, as de Gennes previously
pointed out,?! there are two terms of the type
8%(e/p) oh; 8¢,

= = 4.
9V xdVm 8V;x 8V;n @.4)

for 7 and j in the 1-2 plane that must be included.
These are also Frank-like terms, so that we have
a total of (4 +3 +2) nine terms from Eqgs. (4.2)-
(4.4).

To complete the description of the higher-order
elasticity we must add the terms u,;, that relate
# to 9,0, [see Eq. (4.1)]. By the same reasoning
used in the nematic phase [see the discussion fol-
lowing Eqs. (2.16) and (2.17)], we see that®

Hojud50s =5 (8105 = 8501) + 3 A®) (8,05 + 8,04)

+ 3N D (8505 + 8,05) . (4.5)

Consequently there are two additional parameters,
bringing the total number of constants necessary
to specify the second-order elasticity®® of a
smectic C phase to 11.

Away from the special directions, we have as
reversible parameters three first-order elastic
constants, the four Frank-Saupe constants de-
scribed by Eq. (4.2), the two coefficients relating
nto v,u; [Eq. (4.5)], and the three that describe
the effects of temperature variations.
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V. CRYSTALS AND SMECTIC B LIQUID CRYSTALS

A far simpler example than the smectic C phase
is the crystal. The reason for the simplicity is
that there are no vanishing shear moduli in any
direction. Thus the theory outlined in Sec. II ap-
plies immediately. There are three displacement
order parameters, and therefore eight modes in
all.’® Six of them correspond to sound waves w
=+ ¢q, and the remaining two to defect diffusion
and thermal conduction.

The dissipative parameters are given by the two
symmetrical matrices involving n and (k, X, &),
that is,

0157= =My V10
(535)P == k;; 9,0 T - £/ v,00, (5.1)
(F)P=T1E,iv,6T+E9 9,0, .

There are, in general, 21 elements in each of the
symmetrical positive definite 6 X6 matrices that
describe the dissipation. In a uniaxial crystal
with no preferred sense, these reduce to five vis-
cosities, and two each of «x, & and ¢. In a cubic
crystal there are three n and one of each of the
other parameters, an honestly manageable num-
ber. The reasoning is the same that is normally
applied, respectively, to the elastic constants and
thermal expansion.

Likewise, the elastic properties are described

by the 88 analogs of (3. 2),
8¢i
P ( J )

[ G) 26 (o
@ @ )| e

op <9T 1 /8¢,
| \ov,«’ 9V, «* p \8V,x

1

To the required order, the quantities cpf can be
taken equal to the symmetric stresses, p =%¢>i‘,
p=V,x*. Therefore, there are, in principle, 21+6
+1 elastic constants, thermal expansions, and
specific heats. Again, the number reduces to 5
+2+1 in a uniaxial system andto 3+1+1ina
cubic crystal (the three elastic constants, thermal
expansion, and specific heat). We see then that
the elastic constants and dissipative coefficients
of the liquid crystal can all be obtained by setting
terms in the expressions for a crystal equal to
zero and retaining higher-order elastic constants
exactly as proposed in a previous letter. Ironical-
ly, the theory!! proposed there was deficient be-
cause the theory of the crystal was incomplete in
that it omitted the dissipative parameters ¢ that
allow for the possibility that mass motion is no#
synonymous with lattice motion.

The most solid of the liquid crystals is a smectic
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B liquid crystal., As far as we know, a smectic B
liquid crystal is nothing more than a crystal which
cannot sustain uniform 1-3 or 2-3 shears., There
are, however, distances defined in three direc-
tions, If this is the case, a uniaxial smectic B
liquid crystal differs from a uniaxial crystal only
in having two second-order elastic constants in-
stead of one of its five first-order elastic constants.
Here, too, while the complete determination of
all constants is of little interest, a determination
of the effect and size of the additional transport
processes seems to be a worthwhile endeavor.

VI. SUMMARY AND CONCLUSIONS

The basic goal of this paper, to present a unified
hydrodynamic theory for crystals, ordered fluids,
and simple fluids, is summarized by the equations

p+pV,0;=0, €+V,;JF=0,
JE = (4 phvy ==y V0T = £,°V,;0,%
= APy = AP0, = (U/TESY ST+ 25,0,

pv; = (A% V;0,% = Ay VyV;0,%) + V0D =Miym ViV

(6.1)

together with the various thermodynamic deriva-
tives described by Egs. (2.21). The unity of the
description depends on the presence of terms of the
type described in Egs. (3. 3).

In Table I we list the number of different coeffi-
cients that enter the general theory for different
phases. The caption to the table explains the
column headings. Note, for example, that the
number given for the two dissipative coefficients
that do not couple directly to the order parameter
(or the extra hydrodynamic modes in the case of a
multicomponent liquid), 7;;,, and k;;, is deter-
mined solely by the symmetry of the system. For
all the otiier columns the entry depends on both the
symmetry of the system and the number and type
of the extra hydrodynamic variables above the five
always present in a simple fluid.

In the case of nematic liquid crystals, these re-
sults are identical with those of Forster et al.
(FLMPS).® For the incompressible nematic phase,
neglecting thermal conductivity, the equations of
motion are equivalent to those derived by the Orsay
group after they are supplemented by the “Onsager”
relation obtained by Parodi.!® With this “Onsager”
relation and also neglecting an inertial term which
leads to additional nonhydrodynamic modes, the
equations proposed by Leslie and Ericksen are
also equivalent to the present result.?’ For choles-
teric liquid crystals, they are basically in agree-
ment with the work of Lubensky.® The picture for
crystals differs from the conventional one in that
it recognizes the difference between deviations
from equilibrium of the lattice structure and the
mass. As a practical matter, the conventional
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TABLE I. Display of the number of parameters that enter the hydrodynamic theories of different systems (Ref. 34).
The column labeled N lists the number of independent hydrodynamic variables. The second through fifth columns give
the numbers of transport or dissipative parameters of various types. For the viscosity 7,4, the first entry gives the
general number of viscous coefficients while the second (in parentheses) gives the number that remain if one adds the con-
dition of incompressibility. The last six columns list the number of coefficients required in the nondissipative system.
The four columns labeled ‘“Reversible first-order” give the number of independent thermodynamic derivatives [Eq. (2.21)]
of zeroth order in the wave vector: in general [column (a)], for the incompressible system but allowing coupling to tem-~
perature (b), for the compressible isothermal system (c), and finally, forthe incompressible isothermal system (d). The
column “Reversible second order ” gives the number of second-order elastic constants not masked by first-order terms,
and the last column gives the number of parameters required to specifiy the coupling between order parameter and flow,

Dissipative (transport)

Reversible
First order

Phase N Nigrt Ky £y g8 (2) ) (0 (@ Second order Flow
Simple fluid 5 2 (1) 1 0 0 3 1 1 0 0 0
Binary fluid 6 2 (1) 1 1 1 6 3 3 1 0 0
Ternary fluid 7 2 1) 1 2 3 10 6 6 3 0 0
Nematic 7 5 (3) 2 0 1 3 1 1 0 3 1
Smetic A -

and cholesteric 6 5 @) 2 1 1 6 3 3 1 1 0
Smectic B 8 5 (3) 2 2 2 7 4 4 2 2 0

(uniaxial)
Uniaxial crystal 8 5 (3) 2 2 2 8 5 5 3 0 0
Smectic C 7 13 (9) 4 2 2 6 3 3 1 9 2
General crystal 8 21(15) 6 9 6 28 21 21 15 0 0
Cubic crystal 8 3 (2) 1 1 1 5 3 3 2 0 0
Glass 8 2 (1) 1 1 1 4 2 2 1 0 0

picture which does not distinguish between the two
can be obtained by setting {¢,*}, {¢**} equal zero.
To illustrate Table I observe that the incom-
pressible isothermal simple fluid is characterized
completely by only one viscous coefficient (the
columns k;; and £;* have no meaning for isother-
mal systems), while the incompressible isother-
mal nematic phase has only three viscous coeffi-
cients, one dissipative parameter ¢**~1/y,, three
Frank constants, and cne flow parameter. Al-
though it is harder to justify incompressibility and
isothermal approximations for a smectic A phase,
a theory with these approximations would have
three viscosities, one dissipative parameter, one
first-order elastic constant, and one of second or-
der. The increase in the number of first-order
elastic constants from the uniaxial nematic phase,
through the uniaxial smectic phases, to the uni-
axial single crystal phase demonstrates quite
clearly how one progresses through these phases
by introducing various elastic restoring forces.
Smectic C liquid crystals which are biaxial
have more dissipative parameters than the other
smectic liquid crystals listed in Table I, and also
more second-order elastic constants. However,
their first-order elastic properties are exactly
the same as those of a smectic A liquid crystal.
The cubic crystal has, in general, three isothermal
elastic constants, one thermal-expansion param-
eter, and one independent heat capacity for the

total of five shown in column (a). The compressi-
ble isothermal cubic crystal, on the other hand,
has only three elastic constants.

The row listing the parameters for a glass is
more phenomenological than the others. In a glass
we believe it is possible to argue that the relaxa-
tion time for a local shear is astronomically long
even though the glass is amorphous. Thus we may
view a glass, for times short compared to the .
shear relaxation time but long compared to all
other microscopic times, as possessing an addi-
tional “thermodynamic” variable, corresponding
to isotropic volume-preserving stresses. If we
allow for this extra “conserved variable” we must
allow for the “thermodynamic derivative,” which
gives the shear elastic constant, and also for the
two additional dissipative parameters £ and £. As
in a solid, we may look upon these modes as de-
scribing the diffusion of “vacancies” (e.g., dan-
gling bonds in the accepted three-dimensional
models of amorphous Si or Ge).

One of the simplest applications of Egs. (6.1)is
to solve an NXN secular determinant to obtain N
roots for w((). The qualitative nature of these N
solutions is rather easily inferred from the basic
properties of the various systems. In fact, itis
far easier to specify the number and type of modes
that exist for a system than it is to count the num-
ber of parameters required to fully describe the
system (Table I). Table II summarizes the quali-



6 UNIFIED HYDRODYNAMIC THEORY FOR CRYSTALS, ...

tative results for the number of extra variables
and type of modes that occur in the various phases
described in this paper. The square brackets
about certain entries denote that they apply only

in special directions of q, where certain first-or-
der elastic effects vanish and propagating modes
may become diffusive. We say “may” because
diffusive behavior is not required. The elastic
constants and viscosities could lead to “under-
damped ” propagating modes with a dispersion law
w~q® (as they also could, in principle, in a nematic
phase). The necessary inequality for such propa-
gating modes, spin waves, occurs in an isotropic
ferromagnet but it is not anticipated in liquid crys-
tals.

Note also that the propagating modes with w =cq
and w = - cq are counted separately. Thus, the
sum of the last two columns equals the N that ap-
pears in Table I. Note finally that all “extra vari-
ables” in this table are even under time reversal.
For a superfluid, by contrast, the superfluid phase
is an extra variable that is odd under time rever-
sal, and there are six modes, four propagating and
two diffusive.

A more general application of Egs. (6.1) is to
extract the long-time, or low-frequency, behavior
of the spectral densities,

Seslw)= [ e =t (5U (U, (¢')Yalt - 1) ,
(6.2)
where the quantities {§U, ()}, «=1,2, ..., Nare
the N time-dependent hydrodynamic variables: p,
81 & {x“} More specifically, we may use Eqgs.
(6.1) to calculate for each spatial Fourier compo-
nent with wave vector g, the quantity S,4(q, w).
The procedure involves the fluctuation-dissipation
theorem and the general theory of linear response
functions. Details of these general theories are
available elsewhere'!? and we only sketch their
application to the present problem.
Assume that when #<0, external forces f,(q) are
applied to disturb the system from homogeneous

TABLE II. Summary of the number and type of modes
(Ref. 34). See the text for further explanation.

Extra variable(s) No. propagating No. diffusive

Phase (number) modes modes
Simple fluid (0) 2 3
Binary fluid Concentration (1) 2 4
Ternary fluid Concentration (2) 2 5
Nematic Direction (2) 2 5
Smectic A Displacement (1) 4, [2] 2, 4]

and cholesteric
Smectic B Displacement (3) 6, [] 2, [4]
Displacement (1) -
Smectic C 4, 2 3,
Smectic & and direction (1) : Gl
Crystal :
and glass Displacement (3) 6 2
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thermal equilibrium. The external forces appro-
priate to Eqs. (6.1) are, for example, 57(q),
6v,@), 61(@), and 6¢;*({). Then the initial devia-
tions in the hydrodynamical variables from equilib-
rium are given by the linear relations

GUO,(E, t)lt50=x°¢r(a’0)f;‘(a), (63)
where

_ (30 ) 6.4

Xay(., 0) < afy(a) )t=0' ( . )

At time ¢=0 the external forces are turned off and
the 65U, (q, ¢) for ¢>0 decay back to thermal-equilib-
rium values. This decay is described by Eqs.

(6.1) or (to simplify the discussion)

60U, @, )+ Ay s(@)oF,@, )=0 .

The Fourier transform of this equation, which is
applicable only for #>0, yields

-iwdU, (_(i, w)+Ams(§)6fB(ﬁ, w)= Xaa(a; 0) y(a) .
(6.86)

(6.5)

Defining the restoring forces 6/,(q, w),
[6U, (@ )/0f3@ w)]=x4s(@, 0),

in the same manner as for the initial external force
[a justifiable step for the hydrodynamic problem in
view of Egqs. (2.8), (2.15), etc.], we obtain

6Ua q, (4))’—" [— iw +A(5)X'1(a’ 0)]:!15 Xar(a, O)f‘r(a) .
(6.8)
The general linear susceptibility y,, (g, w) is ob-
tained from

[6 Um(ay w)/afr(a)]: (i/w)[Xar(ay (JJ) _Xa‘}‘(aa O)] )

6.7)

(6.9)
which gives
Xar @ @) = X6y @, 0)
= iw[iw - A@x (@, 0)]5s xs+@, 0)
=[x'@, 0)+w (@, 0)A@x MG 0)]L . (6.10)

One important result may now be obtained with the
aid of the fluctuation-dissipation theorem which
states®®

Saﬂ(a, w): z(kBT/w)XdB”(a’ w)
== 2(ksT/w)(diss pt)
x[x'(@, 0)+iwx '@ 0)A@x @ 0)]z5 - 6.11)

Equations (6. 10) and (6.11) show that the poles in
the correlation functions correspond to the fre-
quencies at which det[iw — A@)x*(d, 0)] vanishes.

A second result is the identity (related to the
Kramers-—Kronig relation)

Xa'ﬁ(a: O) = 77-1 f dw Xotﬂ” (a’ w)/w,
=21k, TV [ dw Ses(@, )

= (k7)™ (6 U, (G, 10U, 1)) . (6.12)
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For the system to be thermodynamically stable,
the matrix (6U,(q, )6U,(q, t)) must be positive
definite. From Eq. (6.7) this positive definite
matrix is just the inverse of the positive definite
matrix 6fp(d, w)/6U,(q, w) that yields the stability
criterion mentioned earlier. See, for example,
Eq. (2.21) and the remarks following it.

A further general result follows from the hy-
drodynamic nature of these response functions.
The matrix [iw -~ A@)x™(@, 0)]25 can be written
in a form that will be proportional to IT%; [w
- w,(@)]*, where the {w,(q)} are the hydrodynamic
frequencies., From the fact that the {w,,} vanish

~as ¢=0 one can justify, in the limit ¢— 0 while w
remains finite, that the above hydrodynamic equa-
tions give

Lim Sap(d, ) =(2k5 T/ w?) Lim Re(A(@)ag) . (6.13)
q- -
For those elements in A(g),s for which the limit
does not vanish (i.e., in nematiclike systems the
(6n, 6ng) fluctuations are of this type), one has

lim lim (0%/2k5T)Sas(q, @) =1lim lim ReA(q) s
w-0 §-0 w-0 -0
(6.14)

(which for nematic liquid crystals is just v,™).
For the more usual hydrodynamic variables this
limit vanishes as ¢% and we find

lim lim (w%/2k5Tq%) Sos(d, ) =1im lim ReA(q),4/q° .
w-0 §-0 w-0 q-0
(6. 15)

Thus, for example, the (v;v;) correlations yield
the viscosity coefficients 7;;,,. Although there are
subtleties in the g— 0, w~— 0 limits they do not
enter into the tedious but straightforward deter-
mination of the measured quantities S,4(q, w).

Equations (6. 14) and (6. 15) are known as the
Kubo formulas and they express rather general
properties of many-body systems. We believe
that it is preferable for a hydrodynamic theory of
liquid crystals, like any other hydrodynamic the-
ory, to manifest these properties. Specifically,
as we spell out in more detail in Appendix B, we
believe that it is unfortunate and deceptive to treat
vs in the hydrodynamics of nematic liquid crystals
as a “dissipative parameter.”

In addition to our own previous papers®!! on the
subject and those of Lubensky, % there have been
several discussions with which we are in com-
plete accord. In some of these, certain proper-
ties were intentionally omitted. For example, in
the treatment of smectic liquid crystals by
de Gennes,* dissipation was neglected, and in vari-
ous papers on nematic liquid crystals, assump-
tions about incompressibility were, with some
justification, employed. ® 1t is of course possible
by the latter restriction to limit the discussion to
nonpropagating modes, modes whose frequency
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is of order ¢® and not of order g when ¢ is small.
One does so, however, only with the loss of one
of the simplest and clearest properties of hydro-
dynamics, conservation of the number of modes.
We find it difficult to understand the justification
for the oft-made approximation that retains modes
with finite frequencies w~ —4/7 and simultaneously
discards as too high frequency a sound wave for
which w~ ¢q can be arbitrarily slow. (Such a mode
is always retained when one includes the “inertia”
of the director, or equivalently when one writes
a separate conservation law for the internal an-
gular momentum,) Theories of liquid crystals
that describe internal relaxation in this form are
conjectural and although they may sometimes
agree with experiment, they may very well not.
Disagreement with experiment, for theories of
this type, would not force any profound readjust-
ment in our understanding of the material proper-
ties. Hydrodynamics in the sense we use the word
here is less ambitious than many of the “conjec-
tural” theories presented, but, on the other hand,
when it disagrees with experiment one must face
the fact that either the experiment was improperly
performed or that the basic thermodynamic prop-
erties of the material have been misunderstood.
There have been several attempts to “general-
ize” earlier hydrodynamic theories of liquid crys-
tals which we believe are not, in fact, generaliza-
tions, but incomplete and inconsistent extensions
which have no basis and are incorrect in the hy-
drodynamic sense. 17 This same criticism applies
with equal force to the discussions of chemical
processes or internal relaxation in standard ref-
erences on irreversible thermodynamics. 3 Phe-
nomenological irreversible theories which make
hypotheses of this type may well be consistent with
their hypotheses, but in contrast with hydrody -
namic theories there is no reason why they must
apply in the real world. Their predictions may be
qualitatively and are likely to be quantitatively in
contradiction with experiment.
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APPENDIX A: GENERAL ARGUMENTS CONCERNING
SYMMETRIC STRESS TENSORS

In this appendix we recall the argument®’ which
states that if the total angular momentum is con-
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served, the momentum density g,° satisfies g,°
+8,0,,=0, and 0,,° is not symmetric, then it is
always possible to choose a new g; and a new o
such that

(i) p+9,8,=0,
(ii) fd;g,:fd-{‘gjo ,
(iii) g;+98,0,,=0,

(iv) o;=0y;,
and the conservation of angular momentum is ex-
pressed by
W) (Vi;é’J - Vje.gi) +8,(7; 05 = 7;04)=0 .

All physical properties may be calculated with
equal ease using the new stress tensor in terms
of which angular momentum conservation is a
tautology and thus introduces no new modes, pa-
rameters, or dynamical properties,

The proof is an exercise in arithmetic. We be-
gin with separate statements for the conservation
of angular momentum,

9 0 0 0
ot (rig) =7;80 + € Sp)= 0 Mgy

where s, represents some internal angular mo-
mentum of the particles, and for the conservation
of linear momentum,

s 0_ 0
&g =—9;04 .
Since
0 0
=V 00y +7; 0,0,

= 0 0 0 0
=8,(= 7,00+ 7,050 + 0,0 = 0y,°,
the antisymmetric part of o,,.°+ %émsk, i.e.,
0 0 o = 0 0
050 =03+ € Sp=0,(M 0 + 7,00 —7;0,0)
= =28, figm»
is a divergence. By construction, the quantity
- 0 1 M
0:5=0;; —3€;nSe = 0Sipn+ %fins+ 0uSini
is symmetric., Furthermore,
= 0 1
gi=8i t29;€;5 5

has the properties that [g;=/g and 9,g,=9,g;
= ~p. Substituting, we obtain

0

) .
8i=&i +%3; €ise Sk
==8,0,5=8;0,fin+0; 0, ins+ 8 0 ppi -
The second and third terms on the right-hand side

cancel and the last term vanishes because f,; is
antisymmetric in j and 2. We therefore have

8i==19;04
and .
(ri8y =758 =0 (=705 +7;04)

_ 0 . .
=8, (M2 + 3 (7 €40y Sy =7y € S -

The significance of these manipulations is the fol-
lowing. It is impossible to really distinguish be-
tween intrinsic angular momentum and the orbital
angular momentum of the particles that make up
a molecule. % Alternatively, it is always possible
subtract the derivative of any intrinsic angular mo-
mentum from the linear momentum density without
changing either its volume integral or its diver-
gence. At a microscopic level this can have no
effect. The difference between the stress tensors
and the momentum densities is a microscopic
quantity whese (microscopic) relaxation cannot be
predicted rigorously. The different stress tensors
also have different values on boundaries, but, in
fact, those have no effect and do not even occur in
a calculation since both of them give the same val-
ue to 3;0,= -g,=0 in equilibrium.

We can get another insight into the difference by
noting that in the microscopic theory we may write

gimol - Z piatom 5 ['I’. _ 'I:atcm(t)]

atom

- Z[ piatom{é[; _ ;mol(t)]

atom

- [Fatom(s) — r™N(t)], v, o[F —r™HB)]+- - -}

___gio mol | i >, {VX [(;atom - 'I','mol)x'f)ntm]
atom

X8[T ™))}, + v{. .},

in which case the second term plays the role of
the internal angular momentum.* There appears
to be no reason for prefering g,°™'to g,"' ona
macroscopic level and all the physical conse-
quences follow just as simply when we use

2 g imol =8i-

mol
Indeed, the symmetric stress tensor comes closer
to describing the microscopic situation and the
large forces that must be supplied to keep large
quantities of liquid crystals in a distorted position.

Finally we remark that the absence of a mode
related to the angular momentum density is con-
nected with its nonlocal character —the reference
to an unbounded and irrelevant moment arm when
the system is unbounded in extent.

APPENDIX B: REMARKS ON PHYSICAL SIGNIFICANCE OF
PARAMETERS v; AND 7,

We have argued that the writing of the director
equation as a frictional equation, labeling y; as a
dissipative coefficient, is not the most desirable
or natural procedure from a microscopic or even
a macroscopic point of view. We would like to ex-
plain the reasoning behind this argument by using
the same artificial parametrization in an analo-
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gous, more familiar example from ordinary fluids.
For slowly varying disturbances it is always pos-
sible to write

. IBS . o8 .
6s—<aT)p 6T+(BP)T5p s (B1)
and, furthermore, using T ds + (p/p ) dp=d(e/p) and
p=-V;pv;,

. [\ - _Cy .n
os (8T>pp V.pv;= T 6T . (B2)

If we use the known correct result for the heat-
diffusion modes, i.e., 7= (k/pC,) V*T, we may
write

-1 . 9p -1 Co\ o2
- = . , = v
k™ Tpds (8T>,, k™'Y, bv; <Cp 8T  (B3)
or
Y165 =¥, V;v;=(C,/C,) V26T . (B4)

In fact, this parametrization is essentially identi-
cal to the one that has been introduced for the di-
rector; i.e., y;"! is essentially the transport coef-
ficient and y,=7,p 1 (8p/8T),. The fact that 7y, is
not a transport coefficient but that y,/7; is a
thermodynamic derivative, p~'(6p/87T), has many
consequences,

(i) 75~ and 7;"~ 0 such that p~t (9p/07T) is fin-
ite is a possible limit. Its value (y,/v,) can be
measured in a static experiment in which there is
no entropy production.

(ii) v, always appears as a square in the expres-
sion for the normal modes, i.e.,

2 [8p\ _[8p 1 fop\2[/aT
()48, ()6
P /s P/ P 4 S /e
() (2) (50). o)
9 Jr Y1 9s /,

and its sign cannot be determined in this fashion,

(iii) The sign of y,/7; and its magnitude are
arbitrary (i.e., not determined by any general
principle) and y, does not appear in the entropy
production.

The claim that ;! is the proper Onsager coeffi-
cient for the dissipation is also in accord with the
expectation that were it not for the coupling to
compression, the frequency of this temperature
mode would be ¥,"1(C,/T)™, where ;™ is the On-
sager coefficient and

().(%)--(F)

the second derivative of the free energy per unit

mass, i.e., the susceptibility. The connection be-

tween the parameters y,™! and y,"! and between

(C,/T) and the inverse Frank constant K !, like

that between (dp/dT), and (- y,+1)/y,, is apparent.
The difference manifests itself in various
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microscopic fashions. For example, there is no
Kubo formula (in term of currents) for y, or y; al-
though there is one for ;™
717t =lim lim x2%Q, w)/@
w-0 -0
=1im lim (w?%/2%5T) Sp,d, @) - (B6)
w-0 §-0
There is also a thermodynamic relation for the
analog of the thermal expansion,
lim limy,, 013 Q,w), B7)
-0 w0
from which one determines y,/y;=~x. There is
one subtle detail concerning the correlation func-
tion in Eq. (B7) that is discussed separately in
Appendix C,

In the same way as there is a phenomenological
qualitative relation between translational self-
diffusion, a nonhydrodynamic process, and vis-
cosity (Stokes’s law) which states

D~ kyT/6m°*, (B8)

there is a phenomenological expression that re-
lates a “rotational-diffusion” model for the relax-
ation of molecular orientation and the viscosity
fi.e., [8/8t - D,y (8%/86%)](orientation) =0}, namely,

Do~ kpT/nd’ , (B9)

where a is a typical “molecular dimension,”

The usual parametrization of the director mode
is very much in this spirit. The smallness of the
diffusion constant for the director brings to mind
the smallness of the mutual diffusion constant near
the critical point of binary mixture. Near this
point, the effect of coupled modes is extremely
important and gives rise to a very long effective
relaxation time. It seems likely that the same
mechanism may be responsible for the anomalous
sound attenuation at low frequencies in nematic
liquid crystals, %

APPENDIX C: DETAILED DISCUSSION OF RELATION
BETWEEN p;;; AND CORRELATION FUNCTIONS

There is a subtlety involved in infinite systems
that might be of interest to some readers. Im-
agine, for example, in a nematic phase that in
place of equations like (2. 17) the reversible part
of 551,-(&) were characterized by

Ghi(a)=Ai,(a)5v,(€1) ’ (Cl)
where

A @D =Xy e, (@, 0) =17 [ dw X (@ w)/w . (C2)
Employing, successively, the invariance in time

X:‘,;,”(a, W)=X:n’i,ij(a’ w) ’ (CS)
momentum conservation

X:.:,g‘j(a; w):ix;;,ojk(a’ w) e s (C4)
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and the fluctuation-dissipation theorem [Eq. (6. 11)],
we obtain

A;y(q)= (2nkpT)™ [ dw S"i'm(a’ w)igy . (C5)
The quantity u,,,, introduced in Eq. (2.17), is
thus formally defined as

Mige= (ZﬂkBT)-Ifdw S, Qu) . (Ce)

%k

If »; and oy, had only short-range correlations,
that is, if u,y were truly a local quantity, there
would be only one constant,

(o))

that must be symmetric in j2. This would imply
a relation

Bip=2O+1) (6,0 + 6,10, i#j

(Cc8)

in place of Eq. (2.17). The fact that », and o, have
long-range correlations can be shown to follow
from the known effects of rotating the system.
Specifically the effect of a uniform rotation is

9 - ’ -
Ekjl('a;k>Au(q)= m 1fdw Xn;, 8555 (q, w)

_ 0
=€ipTNy

6n;=5(1+1) (V,v3+Vz0,) for i=2and 3

(C9)
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Thus there is an additional term in Eq. (C7) of the
form

_[(qianko+qiqknjo)_(n(;ql)qiajk] q-a (C10)
which implies Eq. (2. 17), i.e.,
on;= — 1 [nx(Vxv)];+ 31 (V, 05+ V30,) (c1y)

for i=1or 2.

The fact that this extra term exists implies, as
mentioned above, that the stress tensor and the
director have infinite range correlations. This
should not be surprising since, for example, ap-
plication of a uniform magnetic field, at an arbi-
trary angle to the director, produces a stress in
the fluid which (assuming dislocations do not ap-
pear) will have to be balanced by the forces (or
torques) exerted at the boundary.

The situation is quite parallel to one that arises
in a superfluid. There it is the current-current
correlations that have an infinite range, and their
correlation functions depend on direction as g~ 0.
Likewise, there is a tendency to produce vortices
at vanishing small rotational rates in large sam-
ples.
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