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Abstract 

 

Uncertainties in model projections of carbon cycling in terrestrial ecosystems stem from 

inaccurate parameterization of incorporated processes (endogenous uncertainties) and 

processes or drivers that are not accounted for by the model (exogenous uncertainties). 

Here we assess endogenous and exogenous uncertainties using a model-data fusion 

framework benchmarked with an artificial neural network (ANN). We used 18 years of 

eddy-covariance carbon flux data from the Harvard Forest, where ecosystem carbon 

uptake has doubled over the measurement period, along with 15 ancillary ecological 

data sets relative to the carbon cycle. We test the ability of combinations of diverse data 

to constrain projections of a process-based carbon cycle model, both against the 

measured decadal trend and under future long-term climate change. The use of high-

frequency eddy-covariance data alone is shown to be insufficient to constrain model 

projections at the annual or longer time step. Future projections of carbon cycling under 

climate change in particular are shown to be highly dependent on the data used to 

constrain the model. Endogenous uncertainties in long-term model projections of future 

carbon stocks and fluxes were greatly reduced by the use of aggregated flux budgets in 

conjunction with ancillary data sets. The data-informed model, however, poorly 

reproduced interannual variability in net ecosystem carbon exchange and biomass 

increments, and did not reproduce the long-term trend. Furthermore, we use the model-

data fusion framework, and the ANN, to show that the long-term doubling of the rate of 



 

 

carbon uptake at Harvard forest cannot be explained by meteorological drivers, and is 

driven by changes during the growing season. By integrating all available data with the 

model-data fusion framework we show that the observed trend can only be reproduced 

with temporal changes in model parameters. Together, the results show that exogenous 

uncertainty dominates uncertainty in future projections from a data-informed process-

based model. 

Introduction 

Terrestrial ecosystems mediate a large portion of the CO2 flux between the Earth’s 

surface and the atmosphere, with approximately 120 Pg C yr-1 taken up by gross 

photosynthesis, and a slightly smaller amount respired back (Prentice et al., 2000; Beer 

et al., 2010; Pan et al., 2011). The balance of these two numbers, net ecosystem 

exchange, drives the terrestrial carbon cycle and is tightly coupled to the growth rate of 

atmospheric CO2 (Bosquet et al., 2000; Knorr et al., 2007). For policy makers, and many 

earth-system scientists, a major goal of global change research is therefore to understand 

the processes responsible for changes in terrestrial carbon cycling, and to project future 

states of ecosystems and climate at decadal, or even longer time scales (Clark et al., 

2001; Luo et al., 2011).  

Increasingly, many long-term data sets show trends that demand investigation. Inventory 

data show increased forest growth rates in eastern North America (McMahon et al., 

2010), potentially due to recent changes in climate, nutrient deposition, or community 

structure. Similar increases in tropical (Lewis et al., 2009) and temperate (Salzer et al., 

2009, Urbanski et al., 2007; Pilegaard et al., 2011; Dragoni et al., 2011) forest carbon 

uptake have been reported (but see Fahey et al., 2005), and have been linked to changes 



 

 

in the growing season length, and vegetation dynamics. Open questions remain as to the 

dominant controls of such long-term changes, and the relative importance of climatic 

and biotic factors (Richardson et al., 2007). As we move into a data-rich era in ecology 

(Luo et al., 2008), and an era of advanced data mining (e.g., Abromowitz et al., 2007; 

Moffat et al., 2010) and model uncertainty analysis techniques (e.g., Braswell et al., 

2005; Wang et al., 2009; Keenan et al., 2011c) we are now in a position to address such 

long-term questions. 

Process based models are the most commonly used tools for the projection of long-term 

ecosystem function. For terrestrial vegetation, the term ‘process-based’ incorporates a 

broad range of methodologies for describing eco-physiological processes, from semi-

empirical relationships to mechanistic descriptions based on physical laws. Such models 

are often shown to reproduce observations ‘reasonably well’ (e.g., Williams et al., 2005; 

Braswell et al., 2005). However, model intercomparisons and model-data comparison 

studies show tremendous variations among models for both short- and long-term 

projections (e.g., Friedlingstein et al., 2006; Siqueira et al. 2006; Sitch et al., 2008; 

Schwalm et al., 2010; Dietze et al., 2012; Keenan et al., in pressGCB).  

Model-data fusion (also referred to as ‘data assimilation’, or ‘inverse modeling’) (Wang 

et al., 2009; Keenan et al., 2011c) is a means by which to use observational data to 

optimize a model and quantify model uncertainty. The approach identifies combinations 

of model parameters that give an equivalent model-data agreement. In this way, data 

from different sources can be synthesized using the model as the interpreter, 

independent of parameter assumptions. Results are conditional on model structure, and 

the information content of observational data along with data uncertainties (Raupach et 



 

 

al., 2005; Keenan et al., 2011c). For example, model-data fusion applications of both 

simple (Braswell et al., 2005) and complex (Medvigy et al., 2009) models at Harvard 

forest acknowledged the limitation of using only one or two data streams to constrain 

model parameterization.  

 

Even with an optimized model, results remain contingent on model structure. An 

optimized model is therefore not necessarily correct, or even good. For example, if the 

model structure is inadequate, or the model parameters are not well constrained, an 

optimized model can get the right answer for the wrong reason or through a variety of 

unverified process combinations (equifinality) (Beven, 2006). It is thus important to test 

the optimized model against data that was not used for training. Another approach to 

assessing model performance is to test the optimized model using an independent 

‘benchmark’. Empirical data-mining tools such as artificial neural networks can serve as 

an excellent means by which to benchmark model performance (Abramowitz, 2007). 

Such data-mining tools have been shown to capture the complex response of ecosystem 

carbon cycling to climatic drivers (Moffat et al., 2010). They therefore provide an 

indication of how well a good (though not necessarily best) model should be expected to 

perform.  

Carbon uptake at Harvard forest has increased from ~200 to ~500 g C m-2 y-1 during the 

18-year period from 1992 to 2009; around this long-term trend, there is also interannual 

variability on the order of ± 117 g C m-2 y-1 (1 SD). In this paper, we use a parsimonious 

forest carbon cycle model, embedded in a multiple constraints Markov chain Monte 

Carlo optimization framework, to examine trends and variability in uptake. We first 



 

 

assess the impact of using different data constraints on uncertainty in model 

performance, both in training and test periods. An artificial neural network approach 

(Moffat et al., 2010) is then used to benchmark the optimized process-based model. By 

examining how the use of different constraints can reduce uncertainty we test whether 

recent changes in uptake are driven by concurrent trends external to the model system 

(exogenous factors) or model-internal (endogenous) factors. The impact of endogenous 

uncertainty in ecological forecasting is also assessed and compared to current trends in 

carbon uptake at the Harvard forest. 

Materials and Methods 

Site 

All data used were obtained within the footprint of the eddy-covariance tower at the 

Harvard Forest Environmental Measurement Site (HFEMS) 

(http://atmos.seas.harvard.edu/lab/hf/index.html), which is located in the New England 

region of the northeastern United States (42.53N 72.17W, elevation 340m) (Wofsy et 

al., 1993; Barford et al., 2001; Urbanski et al., 2007). The forest within the tower 

footprint is largely deciduous, dominated by red oak (Quercus rubra, 52% basal area), 

red maple (Acer rubrum, 22% basal area), eastern hemlock (Tsuga Canadensis, 17% 

basal area), and a secondary presence of white pine (Pinus strobus) and red pine (Pinus 

resinosa) are also found within the tower footprint.  

Data 

We used 18 complete years (1992-2009) of hourly meteorological and eddy-covariance 

(Wofsy et al., 1993; Goulden et al., 1996; Barford et al., 2001; Urbanski et al., 2007) 

measurements of net ecosystem exchange (NEE) 



 

 

(http://atmos.seas.harvard.edu/lab/data/nigec-data.html). Hourly gap-filled 

meteorological variables used include incident photosynthetically active radiation 

(PAR), air temperature above the canopy, soil temperature at a depth of 5 cm, vapor 

pressure deficit, and atmospheric CO2 concentration. Quality controlled hourly eddy-

covariance observations (without gap-filling) of NEE were used to optimize the 

ecosystem model and train the artificial neural network. Gap-filled NEE values were 

only used to provide annual sums for evaluating optimized model performance. 

 

For ancillary data constraints we used measurements of leaf area index, soil organic 

carbon content, carbon in roots, carbon in wood, wood carbon annual increment, 

observer-based estimates of bud-burst and leaf senescence, leaf litter, woody litter, and 

continuous and manual measurements of soil respiration (Table 1), downloaded from the 

Harvard forest data repository (http://harvardforest.fas.harvard.edu/data/archive.html).  

 

In addition to the ancillary data available from the Harvard forest data repository, we 

used two other model constraints: 1) annual estimates of the contribution of root 

respiration to total soil respiration, and 2) estimates of turnover times of soil organic 

matter pools. Radiocarbon and soda-lime (in combination with trenching) based 

estimates of the contribution of autotrophic respiration (Ra) to total soil respiration 

(Rsoil) were obtained from Gaudinski et al. (2000), Bowden et al. (1993) and Davidson 

(unpublished data). Bowden et al. (1993) provide a mean annual estimate of 

belowground autotrophic respiration as roughly 33% of total annual soil respiration. 

Gaudinski et al. (2000) and unpublished data from Davidson et al. suggested an 



 

 

approximate error of roughly 50% associated with this estimate. Although annual fluxes 

were constrained to a specific proportion, Ra:Rsoil could vary on shorter timescales. 

Turnover times of litter and the two soil organic matter pools (slow, passive) were also 

taken from Gaudinski et al. (2000). Microbial biomass turnover times were estimated as 

1.7 +/- 1.3 years (Davidson et al. unpublished data). 

 

Estimates of uncertainty were used for each data stream in the optimization. Uncertainty 

estimates for NEE were taken from Richardson et al. (2006), where uncertainties were 

shown to follow a double-exponential distribution, with the standard deviation of the 

distribution specified as a linear function of the flux. Estimates of uncertainty due to flux 

gap-filling (which apply to the annual NEE totals) were taken from Barr et al. (in 

review). Soil respiration uncertainty estimates were taken from Savage et al. (2009) and 

Phillips et al., (2010), where measurement uncertainty increased linearly with the 

magnitude of the flux. Leaf area index (LAI) sampling uncertainties were estimated as 

the standard error (n = 34 plots) of the mean LAI. Litterfall sampling errors were 

calculated as the standard error (n = 34 plots) of the annual total litterfall across all plots. 

Uncertainty of carbon in wood was calculated from the standard error (n = 34 plots, 635 

trees) of the mean plot-level cumulative increment, which averaged ~10% over all years. 

Two independent measurements (Gaudinski et al., 2000; Bowden et al., 2009) were used 

to constrain the initial value of total soil C content (CSOM = 8.3 ± 1.4 kg C m-2; mean ± 1 

SE), with uncertainties estimated based on the standard deviation between datasets. Root 

biomass uncertainties were estimated from spatial variation in the samples (n= 21 plots), 

taken in the control plots of the DIRT project 



 

 

(http://www.lsa.umich.edu/eeb/labs/knute/DIRT/). Uncertainty estimates for the dating 

of phenological events were based on the between tree standard deviation. 

 

Additionally, three different soil respiration data sets, two automated and one manual, 

were used (Savage et al., 2009; Phillips et al., 2010). Although seasonal cycles were 

similar between the data sets, disagreement in the magnitude of the flux was evident 

between the different soil respiration data sets, reflecting high spatial variability in soil 

characteristics. We included three additional scaling parameters (data harmonizing 

parameters) in the optimization process (e.g., van Oijen et al., 2011). These scale 

different chamber datasets to account for the possibility that a particular dataset is not 

representative of the mean soil respiration of the tower footprint. This thus harmonizes 

the magnitude of the different soil respiration data streams to give an estimate of the 

spatial average soil respiration of the tower footprint, but then leverages the temporal 

patterns in the data as model constraints. 

 

The FöBAAR Model 

We developed a forest carbon cycle model that strikes a balance between parsimony and 

detailed process representation. Working on an hourly timescale, FöBAAR (Forest 

Biomass, Assimilation, Allocation and Respiration) calculates photosynthesis from two 

canopy layers, and respiration from eight carbon pools (leaf, wood, roots, soil organic 

matter [microbial, slow and passive pools], leaf litter and [during phenological events] 

mobile stored carbon), using as environmental forcings canopy air temperature (Ta), 5 



 

 

cm soil temperature (Ts), photosynthetic active radiation (PAR), vapour pressure deficit 

(VPD), and atmospheric CO2.  

 

The canopy in FöBAAR is described in two compartments representing sunlit and 

shaded leaves (Sinclair et al., 1976; Wang & Leuning, 1998). Intercepted radiation by 

sunlit or shade leaves depends on the position of the sun, and the area of leaf exposed to 

the sun based on leaf angle and the canopy’s ellipsoidal leaf distribution (Campbell, 

1986). Here we assume a spherical leaf angle distribution. Assimilation rates for sunlit 

and shaded leaves are calculated through the commonly used Farquhar approach 

(Farquhar et al., 1980; De Pury & Farquhar, 1997), with dependencies on absorbed 

direct and diffuse radiation, air temperature, VPD and the concentration of CO2 within 

the leaf inter-cellular spaces. Stomatal conductance is calculated using the Ball–Berry 

model (Ball et al., 1987), coupled to photosynthetic rates through the analytical solution 

of the Farquhar, Ball Berry coupling (Baldocchi, 1994). Rates of photosynthesis are 

dependent on the minimum between rate of carboxylation and the proportional rate of 

electron transport. The canopy integrated (over space and time) RuBP (ribulose-1,5-

bisphosphate) rate of carboxylation, Vc, and the rate of electron transport, J, are 

calculated following Farquhar et al. (1980) and de Pury and Farquhar (1997). The CO2 

compensation point and the mitochondrial respiration rate are calculated using an 

Arrhenius-type equation (Bernacchi et al., 2002). 

 

Maintenance respiration is calculated as a fraction of assimilated carbon. The remaining 

assimilate is allocated to foliar carbon, then to the wood and root carbon pools on a daily 



 

 

time step. Mobile stored carbon relates only to foliage, and is respired only during 

periods of bud-burst and leaf-fall. Carbon allocation and canopy phenology are 

simulated as in the DALEC model (Williams et al., 2005; Fox et al., 2009). 

 

Root respiration is calculated hourly and coupled to photosynthesis through the direct 

allocation to roots. Dynamics of soil organic matter is modeled using a three-pool 

approach (microbial, slow, and passive pools) (Knorr et al., 2005). Decomposition in 

each pool is calculated hourly, with a pool specific temperature dependency. Litter 

decomposition is also calculated hourly, but on an air temperature basis. Litter and root 

carbon are transferred to the microbial pool, then to the slow and finally to the passive 

pool. 

 

In total, 35 model parameters (including three data harmonization parameters, Table 2; 

P40, P41, P42) and 7 initial pools were optimized, giving a total of 42 free parameters. 

The inclusion of the initial biomass and soil pools in the optimization process removed 

the need for a model spin-up. 

  

Model-data fusion 

An adaptive multiple constraints Markov-chain Monte Carlo (MC3) optimization was 

used to optimize the process-based model and explore model uncertainty. The algorithm 

uses the Metropolis-Hastings (M-H) approach (Metropolis and Ulam, 1949; Metropolis 

et al., 1953; Hastings, 1970) combined with simulated annealing (Press et al., 1992). It is 

loosely based on that of Braswell et al. (2005), and is adaptive in the sense that the step 



 

 

size, which is expressed as a fraction of the initial parameter range, is automatically 

adjusted in order to obtain a fixed acceptance rate. Preliminary tests with synthetic data 

indicated an acceptance rate of ~21% gave optimal efficiency (good mixing) for the 

posterior exploration. Prior distributions for each parameter given in Table 2 were 

assumed to be uniform (non-informative, in a Bayesian context). 

 

The optimization process uses a two-step approach. In the first stage, the parameter 

space is explored for 100,000 iterations using the MC3 optimization algorithm. At each 

iteration the current step size is used as the standard deviation of random draws from a 

normal distribution with mean zero, by which parameters are varied around the previous 

accepted parameter set. Parameters that fall outside the initial parameter range are 

‘bounced’ back within their range. This stage identifies the optimum parameter set by 

minimizing the cost function (see Eq. 2 below). 100,000 model iterations were used to 

identify the optimum parameter set, as longer runs led to no improvement.  

 

In the second stage, the parameter space is again explored, and a parameter set is 

accepted if the cost function for each data stream (defined below) passes a 2 test (at 

90% confidence) for acceptance/rejection (after variance normalization based on the 

minimum cost function obtained (e.g. Franks et al., 1999; Richardson et al., 2010)). This 

approach is preferable to using the aggregate cost function, as it ensures that model 

predictions are consistent with each of the individual data streams.  

 



 

 

The cost function quantifies the extent of model-data mismatch using all available data 

(eddy-covariance, biometric, etc.), constructed here as in Keenan et al. (2011c). 

Individual data stream cost functions, ji, are calculated as the total uncertainty-weighted 

squared data-model mismatch, averaged by the number of observations for each data 

stream (Ni): 

ji = yi(t) − pi(t)
δi(t)

 

 
 

 

 
 

t =1

Ni
2 

 
 
 

 

 
 
 /Ni     (1) 

where yi(t) is a data constraint at time t for data stream i and pi(t) is the corresponding 

model predicted value. i(t) is the measurement specific uncertainty. For the aggregate 

multi-objective cost function we use the average of the individual cost functions, which 

can be written as: 

J = ji
i=1

M 

 
 

 

 
 / M       (2) 

where M is the number of data streams used. 

 

Thus, each individual cost function is averaged by the number of observations and the 

average of the cost functions from all data streams is taken as the total cost function. In 

this manner each data stream is given equal importance in the optimization (Franks et 

al., 1999; Barrett et al., 2005).  

 

Model Benchmarking - Artificial Neural Network Ensemble 

We used an Artificial Neural Network (ANN) to benchmark the FöBAAR model 

performance (e.g., Abramowitz et al., 2007) and characterize the climatic sensitivity of 

ecosystem-atmosphere carbon exchange. An ANN is an inductive modeling approach 



 

 

based on statistical multivariate modeling (Bishop, 1995; Rojas, 1996) by which one can 

map drivers directly onto observations (e.g., Moffat et al., 2010). The benchmarking 

framework used in this paper is based on a feed-forward ANN with a sigmoid activation 

function trained with a back propagation algorithm (Moffat et al., 2010; Moffat et al., 

2012). An ensemble of six ANNs was trained on non gap-filled eddy-covariance carbon 

fluxes only. It should be noted that the ANN is a benchmark only for short-term 

environmental controls on hourly NEE, as it does not account for lagged effects on 

ecosystem state or function, or long term changes in pool sizes. 

 

The ANN was also used as a gap-filling tool to compare to the gap-filled eddy-

covariance carbon fluxes. When used as a gap-filling tool (e.g. Moffat et al. 2008), the 

ANN was trained on each year of eddy-covariance carbon flux data separately. Thus 

applied, the ANN agreed with the annual carbon flux from the independently gap-filled 

data with a root mean square error of 32 g C m-2.  

 

Experimental Set-up 

We divided the 18 years of available data into three distinct 6-year periods (1992-1997; 

1998-2003; 2004-2009. Fig. 2) to perform two experiments. In the first experiment, we 

used the middle period (Period 2, Fig. 1) to quantify the added benefit of using different 

data streams as constraints. This involved optimizing FöBAAR using as constraints 

either: 1) only hourly net ecosystem exchange data; 2) hourly, monthly and yearly net 

ecosystem exchange data, or (3) all eddy-covariance carbon flux data (hourly, monthly, 

yearly) and ancillary data (Table 1). We then assessed the optimized model performance 



 

 

for the two periods not used for training. The ANN was trained to the eddy-covariance 

carbon flux data for the same 6-year period on which the FöBAAR model was trained 

and compared to the FöBAAR model. 

 

The second experiment was designed to test whether model deficiencies highlighted by 

the first experiment could be resolved by training the model on each period. In the 

second experiment, we used all available data to optimize the FöBAAR model on each 

6-year period individually. This allowed us to assess changes in model parameters when 

optimized on different periods.  

 

Finally, for each of the three approaches to constraining the model (1, 2 and 3 above) in 

the first experiment, we projected carbon stocks and fluxes to 2100, in order to assess 

the effect of each constraint approach on the future propagation of uncertainty. 

 

Downscaled future climate projections 

For the climate change projection, we used downscaled data (Hayhoe et al., 2008) from 

the regionalized projection of the GFDL-CM global coupled climate-land model 

(Delworth et al., 2006) driven with socio-economic change scenario A1FI (IPCC, 2007). 

Model projections for Harvard forest under this scenario predict an increase in 

atmospheric CO2 to 969 ppm by 2100, and an increase in mean annual temperature from 

7.1 to 11.9 °C. 



 

 

Results 

 

Assessing the benefit of additional constraints 

We first tested the benefit of using flux and ancillary data for constraining model 

projections. Here we use the middle six years of the time series (Period 2, Fig. 2) to 

optimize the FöBAAR model and the other two periods for testing, assessing three 

different approaches to constraining the model (see Methods section). When using only 

hourly net ecosystem exchange as a constraint, uncertainty in annual mean net 

ecosystem exchange model estimates was large (+/- 200 gC m-2 yr-1 95% CI, Fig. 1). 

Particularly large uncertainty was evident among the component fluxes of gross primary 

productivity (+/- 320 gC m-2 yr-1), autotrophic (+/- 410 gC m-2 yr-1) and heterotrophic 

respiration (+/- 290 gC m-2 yr-1). The use of monthly and annual flux aggregates largely 

reduced uncertainty in model estimates of annual net ecosystem exchange (to +/- 60 gC 

m-2 yr-1) during both the training and test periods, though only slightly reduced 

equifinality, shown in Fig. 1 as relatively large uncertainties in the component fluxes. 

Using all available data to constrain the model only slightly reduced uncertainty for 

annual flux estimates but gave a large reduction in uncertainty in the responsible 

processes (Fig. 1). Uncertainty in modeled fluxes in the test periods was comparable to 

that in the training period for each of the constraint approaches. 

 

FöBAAR and ANN evaluation in training and test periods 

In the following analysis, we trained both FöBAAR using all constraints and the ANN 

on Period 2 using only short term flux constraints (Fig. 2), and tested the models on the 



 

 

other two periods. When trained on Period 2, neither FöBAAR nor the ANN captured 

the large increase in annual NEE during Period 3 (Fig. 3). The mean annual NEE 

estimated from the gap-filled tower data for the last six years of the time series (Period 

3, Fig. 2) was roughly twice that of the previous six-year period (Period 2, Fig. 2). In 

contrast, both FöBAAR and the ANN mean annual NEE for Period 3 was comparable to 

that of Period 2 (Fig. 2). As with all models that do not consider dynamic vegetation, 

FöBAAR and ANN predictions of NEE outside the training period make the implicit 

assumption that the climatic sensitivity of ecosystem function does not change between 

years. Long-term temporal trends in the residuals between the modeled and observed 

annual NEE can be interpreted as an alteration in the carbon uptake of the ecosystem 

that is independent of recent changes in the climate variables included in the model. 

Long-term trends in Harvard Forest mean annual uptake (increased by ~300 gC m-2 

(~150%) between Period 1 and Period 3) were thus shown to be independent of any 

recent changes in climate drivers included here. 

 

In general, when trained on Period 2, the FöBAAR model reproduced the mean values 

for the ancillary data streams, but not the interannual variability. FöBAAR-modeled 

carbon in wood for Period 2 was well simulated with an RMSE of 51 gC yr-1 (Table 3). 

Mean annual wood increments were also well captured, allowing for the accurate 

reproduction of biomass accumulation. Outside of the training period, RMSE 

performance for woody biomass was reduced, most noticeably for mean annual woody 

increment in Period 3, where the model under-predicted growth. Interannual variability 

in modeled wood increment did not show a significant correlation with the observations 



 

 

in any period (Table 3). For canopy processes, the seasonal evolution of leaf area index 

(LAI) was well captured during the training period (r2: 0.89, RMSE: 0.49 m2 m-2). Mean 

bud-burst dates were well simulated (RMSE: 4.17 days), though interannual variability 

was not (r2: 0.24). Mean leaf senescence was simulated with a similar accuracy (RMSE: 

3.4 days) though model correlation with inter-annual variability in senescence was low 

(r2: 0.35). Outside of the training period, model skill at reproducing observations of LAI, 

and phenology declined (Table 3), most notably in Period 3, and in particular for inter-

annual variability in leaf senescence. The magnitude of leaf litterfall was well simulated 

for the training period (RMSE: 12 gC m-2) but much less so for Period 3 (RMSE: 51 gC 

m-2), and interannual variability was poorly captured in all three periods. 

 

For hourly daytime net ecosystem exchange in the training period, FöBAAR and the 

ANN performed comparably (r2: 0.76, 0.74), with an equivalent RMSE (0.19). The 

ANN showed better data-model agreement for the night-time fluxes than the FöBAAR 

model (Table 3). Cumulative annual fluxes show that both models tended to slightly 

underestimate the total annual NEE. Neither the FöBAAR model nor the ANN captured 

the high uptake seen in 2001 (data not shown), suggesting that the observed uptake in 

this year was not driven by the climatic variables included in this study. The ANN 

residuals showed no seasonal bias during the training period, whereas the optimized 

FöBAAR was slightly biased towards underestimating uptake during the growing 

period, and underestimating carbon released by the ecosystem during winter months 

(Fig. 3). 

 



 

 

For the testing periods, both the ANN and the FöBAAR model performed well for 

hourly NEE fluxes during 1992-1997 (Period 1, Fig. 3), with no systematic temporal 

biases (Fig. 3). During 2004-2009, FöBAAR and the ANN both showed strong 

systematic biases, but only during the growing season (Fig. 3) in particular during the 

months of June, July, August and September (Fig. 3, panel C). The correlation of 

measured and ANN/FöBAAR-modeled day-time NEE for the 2004-2009 period was 

equivalent to that of the other two periods, but a larger bias was evident for hourly 

predictions which accumulated to a large bias in the annual total (Table 3). This shows 

that good correlation to short term fluxes does not eliminate the possibility of large bias 

at longer time scales. 

 

Model extrapolation in time 

With a perfect understanding of the system, a model trained on one period should be 

able to predict the fluxes in the other periods. Experiment 1 showed that neither model 

used here could do so at Harvard Forest. In experiment 2 we calibrated the FöBAAR 

model to each period individually. When calibrating FöBAAR to all of the available data 

on the three individual periods, little bias is evident for FöBAAR NEE during that 

period, but large biases are evident in the other periods (Fig. 4). Calibrating to the whole 

time series thus over-estimates annual NEE for the first period, gives low bias in annual 

NEE for the middle period, and under-estimates annual NEE for the last period. Inter-

annual variability in NEE was not captured by the model when trained on any period. 

Long-term changes in estimated modeled canopy photosynthetic potential (here Vcmax, 

P19) were needed in order to reproduce the observations. Reproducing the required 



 

 

trend in NEE required an increase in Vcmax of ~50% over the 18 years (Fig. 5). Vcmax  co-

varied strongly with the proportion of assimilate lost through maintenance respiration 

(Fig. 5).  Such parameter equifinality could explain previous findings that models with 

very different Vcmax values can give comparable estimates of canopy photosynthesis 

(e.g., Keenan et al., 2011b). Although the use of multiple constraints allowed for the 

constraining of 24 of the 42 free model parameters, no other significant changes in 

parameters could be detected between the different periods. 

 

Long-term changes at Harvard Forest 

From a carbon accounting perspective, changes in the measured annual increment in 

aboveground biomass over the 18 years (Period 1: ~100 gC m-2; Period 2: 185 gC m-2; 

Period 3: 220 gC m-2), do not fully account for the observed increase in ecosystem 

carbon storage (NEE). In Period 2, measured aboveground biomass increment was 72% 

of all carbon sequestered. In Period 3, biomass increment accounted for 42% of 

observed carbon sequestered. In our model system, which accurately reproduced the 

mean biomass increment for each period, the remaining increase in uptake could only 

accumulate in the litter, root or soil pools. In the model, any increase in the root, litter, or 

microbial pools would cause an observable increase in soil respiration, yet no increase in 

soil respiration was observed between the different periods. As the only viable 

alternative, the model predicted that the remaining uptake (after discounting for 

increases in aboveground biomass) accumulated in the slow cycling carbon pool at a rate 

of 300 gC m-2 yr-1 during Period 3. This contrasted with the accumulation rate of ~70 gC 



 

 

m-2 yr-1 in periods 1 and 2. This implies that the reported large increase in net ecosystem 

carbon uptake, if true, should be detectable in the slow cycling carbon pool. 

 

Ecological forecasting 

Long-term model projections of future carbon cycling and stocks (using posterior 

parameter distributions from the FöBAAR model optimized on Period 2) were strongly 

dependent on the data used to constrain the model (Fig. 6). The use of short-term 

(hourly) NEE flux data alone, although it gave a good fit to available hourly NEE 

measurements (Table 3), led to poor constraint of the long-term evolution of the carbon 

sink-source state of the forest. Future projections of annual NEE were highly uncertain 

and ranged from ~ 600 to -900 gC m-2 y-1 (90%C.I.) in the last decade of the century, 

compared with an average range of -50 to -520 gC m-2 y-1 (90%C.I.) in present day 

conditions (when using only hourly NEE flux data). Largest uncertainty propagated 

beyond 2050. Uncertainty in autotrophic respiration increased by ~50% by the end of 

the century and uncertainty in heterotrophic respiration doubled.  

 

The use of long-term (monthly and annual) flux constraints greatly reduced future flux 

uncertainty. For example uncertainty in future NEE was reduced to within a range of -50 

to -450gC m-2 y-1. The largest reduction in uncertainty came from the synchronous use 

of all data constraints available. The additional use of biometric constraints particularly 

reduced endogenous uncertainty in future projections of all carbon stocks. With the use 

of all data constraints, uncertainty in projections of all future stocks and fluxes was 

within present day uncertainty, with the exception of the slow cycling carbon pools (soil 



 

 

organic matter and carbon in wood). Interestingly, projected future carbon sequestration 

under climate change is never predicted to increase to the extent observed in the last 18 

years at Harvard forest.  

Discussion 

 

High frequency eddy-covariance measurements of forest-atmosphere carbon exchange 

contain a wealth of information, which can be used to characterize an ecosystems 

response to climatic drivers, and the evolution of that response over time. When used to 

constrain a terrestrial carbon cycle model, a large improvement in posterior vs prior 

model performance can be achieved for high frequency fluxes (e.g., Medvigy et al., 

2009), along with a reduction in the posterior uncertainty of some model parameters 

(e.g. Braswell et al., 2005). The annual carbon balance of an ecosystem, however, is not 

an instantaneous response to a driver, but an accumulation of ecosystem responses to 

climate variability within the year (leMaire et al., 2007). Here we show that when using 

only high frequency measurements of net ecosystem exchange, small high-frequency 

model biases can accumulate to give large uncertainty in the total modeled annual 

carbon balance of the ecosystem over annual and inter-annual time periods. The 

resulting uncertainty range is of a similar magnitude to the range among models reported 

from model inter-comparison studies (Heimann et al., 1998; Cramer et al., 2001, 

Schwalm et al., 2010; Keenan et al., in pressGCB). By incorporating information on 

long-term (monthly, annual) cumulative fluxes into the model optimization, we greatly 

reduced the uncertainty in model estimates of the annual carbon budget of the forest in 

both training and test periods.  



 

 

 

This reduction was not as pronounced, however, for the components of the carbon 

budget. When using only eddy-covariance carbon flux data, modeled gross primary 

productivity and ecosystem respiration compensated for each other to give the observed 

value for net ecosystem exchange. Such equifinality (Beven, 2006) between quantities 

allows for large uncertainty in both, but good model performance for the net value of 

ecosystem carbon exchange. The use of additional constraints in conjunction with eddy-

covariance carbon flux data led to a reduction in uncertainty in the component parts of 

net ecosystem exchange during the test and training periods, if not in net ecosystem 

exchange itself. In particular, the additional use of biometric and soil flux constraints led 

to a halving of uncertainty in heterotrophic respiration, and a large reduction in 

uncertainty regarding the size of the carbon pools.  

 

Synchronously using 15 different data streams as constraints successfully reduced 

posterior uncertainty in 24 out of 42 parameters. The well-constrained nature of the 

model was evidenced by the accurate simulation of multiple compartments of the 

ecosystem at various different time scales. Previous model-data fusion efforts have 

focused on using one or two constraints (with some notable exceptions e.g., Xu et al., 

2006; Richardson et al., 2010; Medvigy et al., 2009; Weng & Luo, 2011; Riccuito et al., 

2011), which invariably led to a low number of constrainable parameters (e.g., ~4->6 

parameters, Wang et al., 2001, 2007; Knorr & Kattge, 2005). Here, constrained 

parameters were typically associated with processes for which data was available. For 

instance, the soil organic matter and wood carbon initial pools were well constrained by 



 

 

the measurement data, whilst the canopy carbon reserve pool was not constrained, as no 

measurements of mobile canopy carbon were included. Five additional parameters, 

which were not well constrained, demonstrated strong co-variance with other 

parameters, thus giving information as to their true distribution. Vcmax and the proportion 

of recent assimilate used for maintenance respiration serve as a good example in this 

study – where higher Vcmax was compensated for by higher maintenance respiration (Fig. 

5). It should be noted that the absolute values of Vcmax reported here are specific to the 

model used.  Different assumptions regarding the distribution of light and temperature 

within the canopy affect the value of Vcmax needed to reproduce the observed fluxes 

(e.g., Keenan et al., 2011b), potentially along with the value assumed for the proportion 

of assimilate lost to maintenance respiration as shown here. The increased use of 

multiple data streams in the future will help better constrain models and aid our 

understanding of long-term processes. However, not all additional data constraints give 

the same reduction in model uncertainty (Richardson et al., 2010; Riccuito et al., 2011). 

In this study, components of ecosystem carbon cycling most uncertain after the 

integration of all available data were related to gross primary productivity, and the 

timing and magnitude of aboveground growth and maintenance respiration. Identifying 

which additional data would better inform model projections should be a focus of future 

efforts. 

 

By testing the optimized process based model against the artificial neural network, we 

have shown that process-based models can reproduce observed net ecosystem exchange 

measurements as well as data-mining tools. This shows that parsimonious model 



 

 

structures are sufficient to reproduce the observed short-term variability represented in 

eddy-covariance carbon flux data. It also suggests that, although eddy-covariance fluxes 

undoubtedly contain more information than any other individual data constraint, they are 

not sufficient to adequately test many aspects of more complex models (e.g., Medvigy et 

al., 2009; Zaehle & Friend, 2010; Bonan et al., 2011). As in other studies (e.g., Hanson 

et al., 2004; Braswell et al., 2005; Siqueira et al. 2006; Richardson et al., 2007; Urbanski 

et al. 2007; Richardson et al., 2010; Keenan et al., in pressGCB; but see Desai et al., 

2010), the process-based model failed to accurately reproduce observed inter-annual 

variability in carbon cycling and biomass increments, even within the training period. As 

the process-based model here was optimized to the data, parameter error can be 

discounted, leaving model structural error, biotic effects, or missing drivers (e.g., diffuse 

radiation: Moffat et al., 2010) as potential culprits for the poor model performance for 

inter-annual variability. Lagged effects of climate variability on ecosystem state (e.g., 

Gough et al., 2009) have been shown to affect model performance on interannual 

timescales (Keenan et al., in pressGCB), potentially due to inaccurate model allocation 

structures (Gough et al., 2009). Though it has been suggested that process-based models 

may effectively reproduce inter-annual variability (Desai, 2010; but see Keenan et al., in 

pressGCB), both biotic and abiotic factors are known to affect normal between-year 

variability (Richardson et al., 2007). Further work on model structural error, biotic 

effects, and the impact of unaccounted for drivers should improve our ability to 

accurately model interannual variability in terrestrial carbon cycling in the future.  

 



 

 

Eddy-covariance measurements at Harvard Forest suggest a long-term trend of 

increasing uptake over the 1992-2009 period, with a particularly pronounced increase in 

uptake in the last 6 years. Results here suggest that long-term changes evidenced by the 

eddy-covariance carbon flux data are independent of recent changes in climate variables 

included in this study. By comparing the temporal distribution of model-data residuals, 

we found that non-climate driven change in carbon fluxes is only evident during the 

growing season. By comparing the posterior parameters for the FöBAAR model 

optimized on three separate six-year periods of contrasting uptake, we show that even 

with increased leaf area, substantial increases in canopy productivity (here Vcmax) are 

needed in order to reproduce the observed fluxes.  

 

Although carbon in wood, leaf area and litter-fall all exhibit increases over the past 18 

years, a large proportion of the estimated increased uptake is unaccounted for in the 

measured carbon stocks. Our model results suggest that the rate of accumulation of slow 

cycling soil organic matter doubled in Period 3 compared with the two earlier periods. 

Under that working hypothesis, the large influx of carbon in recent years should 

therefore be detectable with an appropriate sampling intensity (Fernandez et al., 1993) in 

soil organic matter measurements, with largest increases in the slow cycling soil carbon 

pool. Without adequate measurements, our model results regarding the fate of the 

sequestered carbon should not be regarded as strong evidence, and provide but a testable 

hypothesis. Current efforts to quantify age and residence times of soil carbon with 

techniques such as isotopic analysis and radiocarbon dating should aid in identifying the 

ultimate fate of the sequestered carbon. 



 

 

 

Inventory data reports an increase in the biomass of Red Oak within the tower footprint 

(~20% increase over the last 18 years), and a concurrent increase in Red Oak leaf area. 

Other species in the footprint of the tower do not show a comparable increase, with the 

exception of a slight increase in understory Hemlock. Changes in community dynamics 

provide one potential explanation of the changes in ecosystem uptake. Increasing 

understory activity has been suggested to have the potential to explain trends  (Jolly et 

al., 2004), through enhanced photosynthetic uptake before the overstory canopy has 

developed in spring, or after it has senesced in autumn. Understory activity, however, is 

unlikely to explain the consistent higher uptake throughout the season as observed here. 

The observed increase in forest carbon uptake could also be due to higher atmospheric 

CO2 levels (Cramer et al., 2001), or the cumulative effect of nitrogen deposition. The 

Farquhar et al. (1980) photosynthesis model used in this study accounts for effects of 

increased atmospheric carbon, though there is significant uncertainty as to the direct 

effect of carbon fertilization (e.g., Long et al., 2006). Although nitrogen deposition at 

Harvard forest is 10 to 20 times above historic background levels 

(http://www.chronicn.unh.edu/), it remains only ~12% of annual N mineralization 

(Munger et al., 1998), and control data from long-term nitrogen fertilization studies do 

not report a significant increase in foliar nitrogen (data not shown). It should be noted 

that there is no evidence to suggest that any of the processes discussed above could, in 

isolation, realistically lead to a ~50% increase in the photosynthetic potential of the 

canopy. 

 



 

 

Future projections from terrestrial models have been reported to diverge greatly under 

climate change (Friedlingstein et al., 2006; Heimann & Reichstein, 2008). Such 

divergence could be explained by process mis-parameterization, or mis-specification. 

We show that using short-term high frequency eddy-covariance carbon flux data alone 

to inform model parameterization allows for divergent future projections, even with 

good model performance when tested against current data. Parameter mis-specification 

could therefore potentially explain the different future trajectories reported by different 

models. We show that using orthogonal constraints can reduce this divergence, leading 

to a better data-informed model projection. Using long-term flux data in combination 

with biometric data greatly reduced endogenous (internal to the model system) 

uncertainty in predictions of how net carbon sequestration at Harvard Forest would 

respond to future climate change. Considerable uncertainty in the components of net 

ecosystem exchange remained, due to equifinality between gross photosynthesis and 

autotrophic respiration.  

 

Although process-based models should theoretically be more reliable than empirical 

models under future climate scenarios (see Keenan et al., 2011a for discussion), not all 

processes are fully understood (e.g., species adaptation, down-regulation, nitrogen 

cycling etc.). Such exogenous uncertainty is shown here to be large, with the optimized 

model incapable of reproducing the observed long-term trend in carbon cycling at 

Harvard forest without temporal changes in parameters. This suggests that, when the 

model is sufficiently informed by data, model process representation still represents a 



 

 

large source of uncertainty for making future projections, making the statistical 

uncertainty in ecological forecasts an underestimate of the true uncertainty.  

 

Models of forest carbon cycling, such as the one used here, have been coupled with 

earth system models to project terrestrial carbon sinks and sources (e.g., Sitch et al., 

2008) and feedbacks to climate change in the 21st century (Cox et al., 2000; Fung et al., 

2005; Friedlingstein et al., 2006). Results have been incorporated into the assessment 

reports of the Intergovernmental Panel on Climate Change (IPCC, 2007) to guide 

mitigation efforts by governments and public (Solomon et al., 2007), though models 

diverge largely when projecting the future responses to climate change (Friedlingstein et 

al., 2006; IPCC, 2007). None of the terrestrial carbon cycle models used, however, are 

directly informed by data. Here we have shown how this can lead to overconfidence in 

individual model projections. Model intercomparison studies that use data-informed 

models would be a significant step towards rigorously assessing errors due to model 

process representation, and improving our ability to provide policy-actionable 

predictions of future carbon cycle responses to change. 
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Table 1. Data sets used in this study 

Measurement Frequency # data 

points 

Reference 

Eddy-covariance Hourly 73,198 Urbanski et al., and 1 

Soil Respiration 1 Hourly 26,430 Savage et al., 2009 

 

Soil Respiration 2 Hourly 19,030 Phillips et al., 2010 

Soil Respiration 3 Weekly 498 2 

Leaf area index Monthly  51 Norman, 1993; 

Urbanski et al., and 1 

Leaf litter fall  Yearly  10 Urbanski et al., and 1 

Woody biomass  Yearly  15 Jenkins et al., 2004. 

Urbanski et al., and 1 

Woody litterfall Yearly 8 Urbanski et al., and 1 

Root biomass One Year 1 DIRT project1 

     

Forest floor carbon  One Year  1 Gaudinski et al., 2000 

Budburst Yearly 15 O’Keefe, 20001 



 

 

Leaf Drop Yearly 14 O’Keefe, 20001 

Soil carbon pools  Three years 3 Gaudinski et al., 2000 

Magill et al., 2000 

Bowden et al., 2009 

Soil carbon turnover  One 1 Gaudinski et al., 2000 

Proportion of     

heterotrophic  

respiration in soil 

One 1 Gaudinski et al., 2000 

    

 

1 See data download page: http://harvardforest.fas.harvard.edu/data/archive.html 

2 ftp://ftp.as.harvard.edu/pub/nigec/HU_Wofsy/hf_data/ecological_data/soilR/ 



 

 

 

 

 

Table 2. FöBAAR model parameters and pools. Both parameters and initial pool sizes 

were optimized conditional on the data constraints. The posterior 90% confidence 

interval for each parameter is given, based on optimization to Period 2 using all data 

constraints. 

Id. Name Definition Min Max 90% CI  

   Initial Carbon Pools (g C m-2) 

P1 RC Carbon in roots 20 500 (28,205) 

P2 WC Carbon in wood 8000 14000 (7792,10931) 

P3 LitC Carbon in litter 10 1000 (146,528) 

P4 SOMC Slow Carbon in slow cycling soil organic m

layer 
10 1000 (95,278) 

P5 SOMC Passive Carbon in passive cycling soil organic m

layer 
1500 12000 (1800,4560) 

P6 MobC Mobile carbon 75 200 (90,175) 

   Allocation and Transfer Parameters 

P7 Af Fraction of GPP allocated to foliage 0.1 1 (0.31,0.48)  

P8 Ar Fraction of NPP allocated to roots 0.5 1 (0.57,0.83)  

P9 Lff  Litterfall from foliage (Log10) -6 -0.85 (-1.12,-0.88)  

P10 Lfw  Litterfall from wood (Log10) -6 -1 (-5.14,-4.88)  

P11 Lfr  Litterfall from roots (Log10) -6 -1 (-2.62,-1.88)  

P12 Fc_lf Fraction of Cf not transferred to mobile ca 0.3 0.8 (0.36,0.52)  



 

 

P13 Lit2SOM Litter to slow SOMC transfer rate (Log10) -6 -1 (-2.79,-2.09)  

P14 Lit2SOM Td Litter to slow SOMC temperature depende 0.01 0.5 (0.01,0.07)  

P15 SOMS2SOMP Slow SOMC to passive SOMC rate 0.03 0.8 (0.07,0.77)  

P16 SOMS2SOMP T Slow SOMC to passive SOMC t

dependence 
0.01 0.8 (0.03,0.55) 

 

   Canopy Parameters 

P17 LMA Leaf mass per area (g C m-2) 50 120 (81,120) 

P18 MaxFol Maximum canopy carbon content (g C m-2 150 600 (180,550) 

P19 Vcmax Velocity of carboxylation (umol mol-1) 60 175 (90,165) 

P20 Ea Vcmax Activation energy for Vcmax 58000 75000 (58000,75000) 

P21 Ed Vcmax Deactivation energy for Vcmax 20000 250000 (200000,250000) 

P22 Ea Jmax Activation energy for the electron tran

rate 
40000 50000 (40000,50000) 

P23 Ed Jmax Deactivation energy for the electron tran

rate 
18000 230000 (180000,230000) 

P24 Rd Rate of dark respiration 0.01 1.1 (0.01,1.1) 

P25 Q10 Rd Temperature dependence of Rd 0.4 2.8 (0.45,2.75) 

   Phenology Parameters 

P26 GDD0 Day of year for growing degree day initiat 50 150 (91,117) 

P27 GDD1 Growing degree days for spring onset 135 300 (135,277) 

P28 AirTs Leaf senescence onset mean air temper

(°C) 
0 15 (11,12.4) 

P29 GDD2 Spring photosynthetic GDD maximum 500 1000 (660,1000) 

   Respiration Parameters 



 

 

P30 Litd Litter respiration rate (Log10) -7 -1 (-6.6,-3.7) 

P31 LitdTd Litter respiration temperature dependence 0.001 0.1 (0.01,0.1) 

P32 SOMSd Slow cycling SOMC respiration rate (Log1 -6 -1 (-4.55,3.11) 

P33 SOMSdTd Slow cycling SOMC temperature dependen0.01 0.2 (0.01,0.19) 

P34 SOMPd Passive cycling SOMC respiration rate (Lo -6 -1 (-6.38,-5.15) 

P35 Rrootd Root respiration rate (Log10) -6 -1 (-5.09,-3.77) 

P36 RrootdTd Root respiration rate temperature depende 0.01 0.2 (0.07,0.2) 

P37 MobCr Mobile stored carbon respiration rate (Log -6 -0.5 (-1.5,0.5) 

P38 MobCTr Fraction of mobile transfers respired 0 0.1 (0,0.1) 

P39 Maintr Fraction of GPP respired for maintenance 0.1 0.5 (0.1,0.44) 

   Scaling Parameters 

P40 Rsoil1 Soil respiration scaling co-efficient (data s 0.5 2 (0.96,1.65) 

P41 Rsoil2 Soil respiration scaling co-efficient (data s 0.5 2 (0.62,1.53) 

P42 Rsoil3 Soil respiration scaling co-efficient (data s 0.5 2 (0.45,1.65) 

       

 



 

 

 

 

Table 3. Performance metrics for all data streams used in the FöBAAR model, and net 

ecosystem exchange for the ANN. See Table 1 for a description of the data used. All 

non-zero r2 values are significant for p< 0.05; n.s. => no significant relation found. 

 Period 1  

(Test) 

Period 2 

(Trained) 

Period 3 

(Test) 

Period 3 

(Trained) 

 r2 RMSE r2 RMSE r2 RMSE r2 RMSE 

ANNe         

NEE Day 0.77 0.17 0.74 0.19 0.76 0.22   

NEE Night 0.11 0.10 0.17 0.10 0.19 0.10   

NEE Annual n.s. 118.18 n.s. 73.40 n.s. 213.80   

         

FöBAAR         

NEE Day 0.79 0.16 0.76 0.19 0.75 0.25 0.78 0.20 

NEE Night 0.09 0.11 0.15 0.11 0.10 0.11 0.14 0.11 

NEE Annual n.s. 63.23 n.s. 90.57 n.s. 298.27 n.s. 87.3 

Soil Respiration n.s. n.s. 0.90 0.68 0.71 1.17 0.70 1.08 

Leaf Area Index 0.89 0.86 0.89 0.49 0.76 0.85 0.84 0.71 

Litter fall n.s. n.s. n.s. 11.58 n.s. 50.56 n.s. 13.34 

Woody biomass 1.00 60.15 0.96 52.93 0.99 111.44 0.99 56.08 

Woody 

increment n.s. 0.01 n.s. 0.06 n.s. 0.15 n.s. 0.02 



 

 

Bud Burst 0.20 4.24 0.24 4.17 0.21 3.70 0.32 0.57 

Leaf Drop 0.17 5.74 0.35 3.42 0.18 3.68 0.18 3.68 

         

FöBAAR vs 

ANNe 

        

         

NEE Day 0.76 0.18 0.76 0.18 0.71 0.21   

NEE Night 0.62 0.06 0.63 0.05 0.54 0.06   

NEE Annual n.s. 79.18 n.s. 70.58 n.s. 80.70   

         

   

 



 

 

 

 

Figures: 

Figure 1 Model uncertainty for NEE, GPP, Ra and Rh, for the FöBAAR model. The 

FöBAAR model was constrained on data in Period 2, and tested on periods 1 and 3. 

Three different approaches to constraining the model are shown: 1) Using all data 

available (flux and biometric, black), 2) Using hourly tower measurements of NEE, and 

monthly and annual aggregates (dark grey), 3) using only hourly tower measurements of 

NEE (light grey). The shaded areas thus represent the confidence in model projections, 

without a direct comparison to data. 

 

Figure 2 Measured (line) and modeled (light grey area) annual NEE with the FöBAAR 

model trained on data from Period 2. Horizontal dark grey bars represent measured 

means for each period. 

 

Figure 3 The daily NEE residuals (modelled-measured, gC m-2 d-1) for FöBAAR and 

the ANN, showing the seasonal cycle of data-model mismatch, when both models are 

trained on Period 2. The residuals are shown in polar plots, where a full circle 

corresponds to 1 year, and monthly intervals are represented by the initial letter of the 

month. The zero residual is indicated by the inner black circle (solid line). The smoothed 

line (red, solid) is a 7-day moving average mean based on all years of data in each 

period. 

 



 

 

Figure 4 The cumulative daily NEE residuals (modeled-measured, gC m-2) for FöBAAR 

when trained on each period individually and tested on the other two periods. The red 

line represents the mean cumulative residual for each 6-year period, and the grey area is 

one standard deviation about the mean. The dashed black line represents the zero 

residual. 

 

Figure 5 The co-varying posterior distribution of Vcmax and the proportion of gross 

primary productivity (GPP) respired for maintenance, for the FöBAAR model calibrated 

independently on each of the three 6-year periods (Fig. 2). Contour lines represent the 

mean annual GPP (gC m-2 yr-1) for a particular combination of parameters. 

 

Figure 6 FöBAAR model projections to 2100 for carbon fluxes (top, gC m-2 y-1) and 

pools (bottom, kgC m-2) from 2000 to 2100, using posterior parameters from a model 

optimization using: 1) Only hourly net ecosystem exchange fluxes (dark grey); 2) 

hourly, monthly and annual net ecosystem exchange fluxes (medium grey); 3) all flux 

and ancillary data (light grey) (Table 3). Shaded areas represent 90% confidence limits 

on model projections, generated by parameter sets taken from the posterior parameter 

distribution. 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 


