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Abstract

Measurement error is an important issue in studies of environmental epidemiology. We

considered the effects of measurement error in environmental covariates in several important

settings affecting current public health research. Throughout this dissertation, we investigate

the impacts of measurement error and consider statistical methodology to fix that error.

In Chapter 1, we investigate the effects of measurement error in a linear health effects

model with a gene-environment interaction term. We examine these effects under gene-

environment dependence. We derive closed-form solutions for the bias in naive parameter

estimates, and we find that the resulting bias may be toward or away from the null. We

also identify specific cases when the bias will be attenuated and when tests will preserve the

Type I error rate.

In Chapters 2 and 3, we consider the problem of measurement error in studies of air

pollution health effects, considering the case when air pollution exposure is predicted by

kriging or land use regression. Chapter 2 approaches this problem from a more theoretical

standpoint, and develops the spatial SIMEX methodology to correct for spatially-correlated

classical measurement error. Chapter 3 complements the theoretical work in Chapter 2 in

a practical assessment of the effects of measurement error on actual air pollution surfaces.

This question is addressed by a simulation study using high-resolution satellite data.
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Chapter 1

Measurement error in tests for gene-environment

interactions: Implications of gene-environment

dependence.

Stacey E. Alexeeff1 and Xihong Lin1

1 Department of Biostatistics, Harvard School of Public Health
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1.1 Introduction

Many complex disease processes are thought to be influenced by a number of genetic and

environmental factors. Modern genetics studies seek to identify a set of genetic and envi-

ronmental risk factors that can explain a meaningful proportion of disease risk. Examples

of genetic data of scientific interest include single nucleotide polymorphisms (SNPs), gene

expression data, proteomics data, and epigenetic measures such as DNA methylation data.

Genetic variants that have been identified and validated to explain complex diseases only

explain small proportions of the estimated heritability of these diseases; one hypothesis is

that gene-environment interactions could help explain the missing heritability of complex

diseases.(Manolio et al., 2009)

Studies of gene-environment interaction studies can have several purposes: (i) identify

novel genes which act through interactions rather than marginal effects and help explain

the “missing heritability”, (ii) identify potential causal mechanisms of how the environ-

mental exposure may affect risk and (iii) identify genetically susceptible or resistant sub-

populations.(Thomas, 2010) Identifying these more susceptible subpopulations allows us to

better stratify estimates of disease risk, and ultimately inform guidelines on how much re-

duction in environmental exposure could reduce disease risk to protect the most susceptible

populations.

An important issue gaining attention in the study of gene-environment interactions is the

assumption of gene-environment (G-E) independence. Although the assumption of G-E inde-

pendence is often reasonable for exogenous exposures, other environmental exposures related

to behavioral or anthropometric characteristics may be dependent on genetic traits.(Thomas,

2010)

Previous research on the detection of gene-environment interactions in the presence of

mismeasured exposures assumes G-E independence in the underlying population.(Garcia-

Closas et al., 1998, 1999; Wong et al., 2004; Zhang et al., 2008) These studies have demon-
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strated that under G-E independence, non-differential measurement error in binary or con-

tinuous environmental exposures leads to the typical attenuation bias and loss of power when

testing for the presence of an interaction. However, the allowing for potential correlation

between G and E may induce a different more complicated structure of bias than what is

observed under G-E independence.

Only one recent study has considered the role of G-E dependence in tests for gene-

environment interactions in the presence of mismeasured exposures.(Lindstrom et al., 2009).

That study considers testing for gene-environment interactions only in the setting of a logistic

regression model when the exposure and gene are both binary. Thus, the issue of how G-

E dependence impacts linear models with environmental health effects has not yet been

investigated.

In this paper, we investigate the effects of measurement error in tests for gene-environment

interactions under gene-environment dependence. We first present a general bias analysis by

deriving closed-form solutions for the naive gene-environment interaction model parameters

in Section 1.2. We show that the general form of the bias is not attenuation toward the

null, rather the bias could be in either direction. In Section 1.3 we study the inference for

the naive test by deriving the general form of the variance of the naive MLEs. We find that

the Type I error rates are only preserved in certain special cases. In Section 1.4 we study

several special cases assuming different models for G-E dependence to illustrate the effects

of measurement error on bias and inference. In Section 1.5, we consider two functional-type

measurement error correction strategies, regression calibration and SIMEX. We present a

simulation study in Section 1.6. We then apply this to a real dataset in Section 1.7. We end

with a concluding discussion.
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1.2 Bias Analysis for Naive GxE Interaction Model

First, we introduce our model setup for the true model and the naive model when the

surrogate of the environmental exposure that is measured with error is used ignoring possible

measurement error. Then we derive the naive bias in the parameter estimate for the effect

of the GxE interaction.

1.2.1 Model Setup

True Model. For subjects i = 1, . . . , n, let Yi be a continuous health outcome of interest,

let Ei be an environmental exposure, and let Gi be a genetic covariate. We assume a linear

health effects model with an interaction between Ei and Gi,

Yi = α0 + αGGi + αEEi + βEiGi + εi (1.1)

with errors εi assumed to be independent N(0, σ2).

Then assume that we observe a surrogate of the environmental exposure measured with

classical error, Ẽi = Ei + Ui, where Ui
iid∼ N(0, σ2

U) and Ei
iid∼ N(0, σ2

E). The parameter of

interest is β, the parameter relating the interaction effect to the health outcome.

Naive Model. The naive model is the model where the surrogate exposure Ẽi is used in

place of Ẽi, and we denote these parameters by superscript N ,

Yi = α0,Naive + αG,NaiveGi + αE,NaiveẼi + βNaiveẼiGi + εNaive,i (1.2)

with errors εN,i assumed to be independent N(0, σ2
Naive). Denote the vector of parameters

for the mean as θNaive = (α0,Naive, αG,Naive, αE,Naive, βNaive). We are interested in how the

naive parameters θNaive, σNaive are related to the true parameters θ, σ. We are particularly

interested in how βNaive is related to β.

In both models, we assume that the covariates are centered to have mean zero.

4



1.2.2 General form of bias in the naive model

For the naive linear regression model, the maximum likelihood estimates (MLEs) of the model

parameters θNaive, σ
2
Naive are the solutions to the score equations ∂

∂θNaive
logLn(θNaive, σ

2
Naive) =

0 and ∂
∂σ2

Naive
logLn(θNaive, σ

2
Naive) = 0. Therefore, the probability limits of the naive model

MLE’s are the solutions to the expected score equations E
{

∂
∂θNaive

logL1(θNaive, σ
2
Naive)

}
= 0

and

E
{

∂
∂σ2

Naive
logL1(θNaive, σ

2
Naive)

}
= 0.

Let the subscript 1 denote an arbitrary iid observations from our data. Let X1 =

(1, G1, E1, E1G1), letW1 = (1, G1, Ẽ1, Ẽ1G1), let U1 = (0, 0, U1, U1G1) so thatW1 = X1 +U1.

Let X1 and W1 be centered to have mean zero. Then the solutions to the expected score

equations for θNaive satisfy

E{W1(Y1 −WT
1 θNaive)} = 0 (1.3)

and the solutions to the expected score equations for σNaive satisfy

− 1

σNaive
+

1

σ3
Naive

E
[
Y1 −WT

1 θNaive
]2

= 0 (1.4)

Starting from equation (1.3), using iterated expectation conditional on (E1, G1) and

taking expectation under the true model, calculations in the appendix show that

θNaive = Λθ (1.5)

where

Λ = [Cov(W1)]
−1Cov(X1) (1.6)

Thus, we have solutions for θNaive in terms of the true parameters θ, which depend

on these particular covariance matrices. This solution relies on our assumption that all

covariates are centered so that they have mean 0. Solutions for the case when covariates

5



are not centered are given in the Appendix Section. To solve equation (1.4) for σ2
Naive,

we substitute our solutions for θNaive and use properties of vectors and quadratic forms.

Calculations in the appendix show that

σ2
Naive = σ2 + θT

[ (
I−ΛT

)
Cov(X1)

]
θ (1.7)

From equation (1.7), it is clear that σ2
Naive will always be inflated compared to the true

σ2, and the degree of inflation will depend on the particular matrix Λ relating θNaive to θ.

We next consider how the covariance matrices Cov(W1) and Cov(X1) affect the relation-

ship between the naive model coefficients and the true model coefficients.

1.2.3 Bias under dependence between E and G

Let E,G be correlated. Let the correlations be parameterized as ρ1 ≡ Corr(E1, G1), ρ2 ≡

Corr(G1, E1G1), ρ3 ≡ Corr(E1, E1G1).

Under this general parameterization, not yet assuming any particular model for E|G,

Calculations in the Appendix show that the solutions to equation (1.5) can be written as

α0,Naive = α0

αG,Naive = αG + λ5αE + λ6β

αE,Naive = λ3αE + λ4β

βNaive = λ1αE + λ2β

6



where

λ1 =
1

det[Cov(W1)]
· (ρ3 − ρ1ρ2)σEσEGσ2Gσ2U

λ2 =
1

det[Cov(W1)]
·
[ (

1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23
)
σ2E +

(
1− ρ22

)
σ2U

]
σ2Gσ

2
EG

λ3 =
1

det[Cov(W1)]
·
[ (

1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23
)
σ2EG +

(
1− ρ21

)
σ2Gσ

2
U

]
σ2Eσ

2
G

λ4 =
1

det[Cov(W1)]
· (ρ3 − ρ1ρ2)σEσEGσ4Gσ2U

λ5 =
1

det[Cov(W1)]
·
[
(ρ1 − ρ2ρ3)σ2EG + ρ1σ

2
Gσ

2
U

]
σEσGσ

2
U

λ6 =
1

det[Cov(W1)]
·
[
(ρ2 − ρ1ρ3)σ2E + ρ2σ

2
U

]
σEGσ

3
Gσ

2
U

and

det[Cov(W1)] =
[
σ2Gσ

2
U+
(
1− ρ22

)
σ2EG+

(
1− ρ21

)
σ2Eσ

2
G

]
σ2Gσ

2
U+
(
1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23

)
σ2Eσ

2
Gσ

2
EG.

Result 1. In general under G-E dependence, the direction of bias of βNaive

could be toward or away from the null, and the bias depends on the magnitude

and direction of the marginal effect of the environmental exposure.

Next, we consider the interpretation of the λj’s. Since all variances are assumed to be

positive, then det[Cov(W1)] > 0, and hence λ1, λ2, λ3, λ4, λ5, λ6 ∈ (−1, 1) where they are

well-defined. Based on the expressions for αG,Naive, αE,Naive, βNaive, the naive coefficient

for the marginal genetic effect has an additive bias factor that depends on the magnitudes

and directions of both the marginal effect of the environmental exposure and the interaction

effect. The naive coefficient for the marginal environmental exposure effect is attenuated

toward the null as long as λ3 > 0. We are most interested in the direction of bias for βNaive.

Further interpretation requires considering particular distributions for G, E, and the

dependence relationship E|G. Those distributional assumptions will determine the moments

E[EG], E[EG2], E[E2G] and the relationships between ρ1, ρ2, ρ3. In Section 1.4 we consider

7



a number of specific models and examine the λj’s under those models.

1.3 Inference in naive GxE models

Next, we turn our attention to inferences made using the naive model. The first question of

interest is whether the naive test preserves the Type I error rate under the null hypothesis.

Under the true model, the test statistic for the t-test of H0 : β = 0 using the MLE β̂ is

given by β̂/s.e.(β̂), where V ar(θ̂|X) = σ2(XTX)−1. The naive t-test for H0 is constructed us-

ing the test statistic β̂Naive/s.e.Naive based on the naive variance σ2
Naive(W

TW)−1. However,

it is not necessarily true that this naive variance σ2
Naive(W

TW)−1 is equal to V ar(θ̂Naive|W),

the true variability of the naive MLEs given the data with measurement error.

1.3.1 Type I error rate

For the size of the naive test to be correct, we require that

(i) βNaive = 0 under the null, and

(ii) the naive variance, σ2
Naive(W

TW)−1, is equal to the true true variability of the naive

MLEs given the data with measurement error, V ar(θ̂Naive|W).

Based on our investigation of the bias in Section 1.2, we know that condition (i) will

be violated unless λ1 = 0 or αE = 0. We now derive V ar(θ̂Naive|W) to determine whether

condition (ii) is violated.

1.3.2 General Form of Variance of MLEs θ̂Naive

Let θ̂Naive be the MLEs for the naive parameters θNaive. Then,

V ar
{
θ̂Naive

∣∣∣W}
= (WTW)−1WTV ar

{
Y
∣∣W}

W(WTW)−1 (1.8)
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Now, each observation i = 1, . . . , n is i.i.d. so V ar
{
Y
∣∣W}

is a diagonal matrix. The diagonal

entries correspond to the conditional variance for each observation, V ar {Yi|Wi}. To simplify

this expression we would need constant variance V ar {Yi|Wi} = σ2
∗ for all i = 1, . . . , n,

for some σ2
∗. Under that condition, equation (1.8) would simplify to V ar

{
θ̂Naive

∣∣W}
=

σ2
∗(W

TW)−1. In order to meet the condition that the estimated model variance in the naive

model, σ2
Naive(W

TW)−1, is equal to the true V ar
{
θ̂Naive|W

}
, that constant σ2

∗ would have

to be equal to the naive model variance parameter σ2
Naive.

Calculations in the Appendix show that by using iterated expectation, the conditional

variance for any observation i can be expressed as

V ar {Yi|Wi} = σ2 +
(
α2
E + β2G2

i + 2αEβGi

)
V ar

{
Ei

∣∣∣(Gi, Ẽi)
}

(1.9)

Under H0, equation (1.9) simplifies to

V ar {Yi|Wi} = σ2 +
(
α2
E

)
V ar

{
Ei

∣∣∣(Gi, Ẽi)
}

(1.10)

In general, this variance will not be constant for all i = 1, . . . , n because the conditional

variance could depend on Gi. When the variance is not constant, this equation will not

simplify and will not be equal to σ2
Naive(W

TW)−1. Thus, in general the Type I error rates

will not be preserved.

Result 2. In general under G-E dependence, the naive variance estimator

will not reflect the true variability of the naive MLE’s. The Type I error

of the naive test will be inflated, leading to an increased rate of spurious

associations.

There may be some special cases where the inferences will be valid under the null. One

such case is the independent case. We will explore potential special cases further in the next

section.
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1.4 Bias and Inference Derivations for Specific Models

We now consider four special cases of interest for G-E dependence to illustrate the impacts

of this measurement error. We derive particular expressions for the biases and illustrate the

parameters of the bias expressions in Figure 1.1.

Scenario (a) Independence between E and G

When E and G are independent, equations (1.5) and (1.6) greatly simplify because the

covariance matrices Cov(W1) and Cov(X1) are both diagonal.

Bias. Defining λ′ = σ2
E/(σ

2
E + σ2

U) and with some algebra, then λ1 = λ4 = λ5 = 0 and

λ2 = λ3 = λ′. Then equation (1.5) can be written as

α0,Naive = α0

αX,Naive = αX

αG,Naive = αG

αE,Naive = λ′αE

βNaive = λ′β

The naive coefficients αE,Naive and βNaive are attenuated toward the null by a factor of λ′.

We note that 0 < λ′ < 1, and λ′ corresponds to the usual attenuation factor found in linear

models with classical measurement error.

Inference. Calculations in the Appendix show that under the null,

V ar(θ̂Naive|W) = σ2
Naive(W

TW)−1 = σ2 + λ′σ2
Uα

2
E

Hence, for this scenario the conditions needed to preserve Type I error rates are met, so

the naive test is a valid test. In our simulation study in Section 1.6, we show that the Type

I error rates are preserved.

10



Scenario (b) Linear dependence between G and E.

Suppose that the dependence between E and G is linear, satisfying Ei = γ1Gi + δi where

δi ∼ Normal(0, σ2
δ ) for i = 1, . . . , n. We do not assume any particular distribution for Gi.

Bias. We observed previously that βNaive = λ2β only when λ1 = 0 or αE = 0. The

condition for λ1 = 0 is that (ρ1ρ2 − ρ3) = 0. Calculations in the Appendix show that

under this linear dependence model, ρ1ρ2 = ρ3 and thus βNaive = λ2β. These calculations

use the linear relationship for E|G, but do not make any assumptions about the particular

distribution of G. Hence, this result holds for any distribution of G, including binary, SNP

coding, or continuous distributions.

Figure 1.1 shows the λj’s as a function of Corr(E,G) under G binary, Normal, and SNP.

We can see that the λj’s vary by the distribution of G. We can also see the independent case

represented at the point of Corr(E,G)=0, so this plot shows how independent and dependent

cases relate. When G is binary, λ2 ≤ λ, where the degree of attenuation in the independent

case is the minimum attenuation in the dependent case, and the attenuation becomes more

severe as the dependence between G and E increases.

Inference. Next we consider inference in the linear G-E dependence model. We first

show that Type I error rates are preserved under this dependence model.

Result 3. In the special case when E|G depends linearly on G and V ar[E|G]

does not depend on G, then the resulting direction of bias of βNaive is attenu-

ation toward the null and Type I error rates are preserved.

Under linear dependence between E and G, we can use the particular model for E|G,

and the properties of multivariate Normality to derive the particular form of the expression

for the variance of the naive MLE’s. Calculations in the Appendix show that in this special

11
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Figure 1.1: Lambdas for each scenario of interest, showing varying degrees of dependence
between E and G when variances of G, E, and U are fixed such that E has twice the variance
of G and the measurement error variance is fixed to be 20% of the variance of E.
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case, equation (1.8) simplifies to

V ar
{
θ̂Naive

∣∣∣W}
=

(
σ2 + α2

E ·
σ2
δσ

2
U

σ2
δ + σ2

U

)
(WTW)−1 (1.11)

Next, we derive a simplified expression for equation (1.7), the naive model variance, for

this scenario to demonstrate that these variances are equal. Under H0 and linear dependence

between E and G, we can simplify this expression, using the properties that β = 0, λ1 = 0,

λ4 = 0. Then equation (1.7) can be expressed as

σ2
Naive = σ2 + α2

E

[
− λ5ρ1σGσE + (1− λ3)σ2

E

]
+ αGαE

[
− λ5σ2

G + (1− λ3)ρ1σGσE
]

(1.12)

Calculations in the Appendix show that the second term can be simplified and the last term

is equal to zero. Hence, using these simplified expressions, equation (1.7) simplifies to

σ2
Naive =

(
σ2 + α2

E ·
σ2
δσ

2
U

σ2
δ + σ2

U

)
(1.13)

Thus, we have our result

σ2
Naive(W

TW)−1 =

(
σ2 + α2

E ·
σ2
δσ

2
U

σ2
δ + σ2

U

)
(WTW)−1 (1.14)

Hence, we have shown that for the case of linear dependence between E and G, we have

V ar(θ̂Naive|W) = σ2
Naive(W

TW)−1.

Scenario (c) G binary, variance of E depends on G.

Suppose that G is binary and that the dependence between E and G is structured so that the

variance of E depends on G rather than the mean of E. Specifically, let Ei|Gi = 0 ∼ N (0, σ2
δ )

and Ei|Gi = 1 ∼ N (0, σ2
δ + σ2

τ ) for i = 1, . . . , n.
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Bias. Under this linear dependence model, ρ1ρ2 6= ρ3 and thus λ1 6= 0 and βNaive =

λ1αE + λ2β cannot be simplified. Thus, when αE and β are in the same direction and when

αE is sufficiently large, the direction of bias will be away from the null. Figure 1 shows the

λj’s as a function of the ratio (σ2
δ + σ2

τ )/σ
2
δ .

Inference. Based on the results for bias, we know that condition (i) for preserving the

Type I error rate is violated.

Scenario (d) G SNP coding, mean of E depends on G2.

Suppose that G has SNP coding {0, 1, 2} and that E|G depends on G2. Specifically, let

Ei = γ1G
2
i + δi where δi ∼ Normal(0, σ2

δ ) for i = 1, . . . , n.

Bias. Under this linear dependence model, ρ1ρ2 6= ρ3 and thus βNaive = λ1αE + λ2β

cannot be simplified. Thus, when αE and β are in the same direction and when αE is

sufficiently large, the direction of bias will be away from the null. Figure 1 shows the λj’s as

a function of Corr(E,G.

Inference. Based on the results for bias, we know that condition (i) for preserving the

Type I error rate is violated.

1.4.1 Implications of Not Centering Covariates.

A key assumption worth highlighting is the assumption that covariates either had mean

zero or were centered to have mean zero, which was assumed from equation (1.6) onward.

Derivations for the versions of (1.6) and the particular algebraic expressions for the nonzero

terms of the matrix Λ can be found in the Appendix. Overall, the form of the expressions are

similar, but the bias coefficients involve more terms. We now briefly explain the implications

of not centering covariates based on these differences in the derived expressions of bias.

In the case of G-E independence, the biases of the naive coefficients αE,Naive and βNaive

remain the same, but the genetic effect is now biased. Specifically, αG,Naive = αG + µE(1−

λ′)β, where µE is the mean of the environmental covariate. Thus, the direction of bias of
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the genetic effect depends on the signs of µE and β. Centering E will eliminate this bias;

centering G is not required.

1.5 Corrected Test

1.5.1 Regression Calibration.

Regression calibration is a widely-used method which operated by replacing the mismeasured

Ẽ by an unbiased estimate of E[E|Ẽ, G].(Carroll et al., 2006) This expectation must correctly

specify the relationship between E and G to ensure that the resulting health model coefficient

estimates are unbiased. In other words, we require that the true G-E dependence relationship

is known and used for the calibration step.

The Appendix outlines the derivations needed for regression calibration to work in our

model setup. Regression calibration will work for Scenarios (b) and (d) where the E-G

dependence relates the mean of E|G and the variance does not depend on G. Regression

calibration will not work for Scenario (c) because regression calibration is a correction of the

mean model and in this scenario the mean has no G-E dependence.

1.5.2 SIMEX.

SIMEX is a method for measurement error correction baed on resampling. A description of

SIMEX and its asymptotic properties are given in Carroll et al. (2006) and Cook and Stefan-

ski (1994). Briefly, SIMEX has two steps. The first step is a simulation step where simulated

measurement error is added to the mismeasured exposures Ẽ in increasing amounts. The

outcome model is refit for the increasing measurement error to determine the trend in the

bias of the naive model parameters. The second step is the extrapolation step where a

trend is fit to the distribution of parameter estimates over the increasing error levels and

extrapolated back to the case of no error. A typical default for the extrapolation function is
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quadratic which is what we used throughout our simulations and data example.

1.6 Simulation Study

We conducted a simulation study to assess the finite-sample performance of the naive model

and the regression calibration and SIMEX correction methods compared to the true model.

We investigated the Type I error rates of the test for β = 0 and the bias in the parameters

αG, αE, β for each of the scenarios of G-E dependence discussed in Section 1.4.

A total of n = 400 iid observations were generated for each simulation. The continuous

health outcome Yi for i = 1, . . . , n was generated from the true model given in equation

(1). We set the total variance of E as σ2
E = 0.5 and the measurement error variance as

σU = 0.1 so that the ratio of measurement error variance to variability in the true exposure

was 20%. For scenario (a), we modeled G as binary. For scenario (b), E was generated as

Ei = γ0 + γ1Gi + δi, δi ∼ N(0, σ2
δ ), where we considered several distributions for G: binary,

continuous and categorical (0,1,2). For scenario (c), we modeled G as binary and E was

generated as Ei|(Gi = 0) ∼ N(0, σ2
δ ) and Ei|(Gi = 1) ∼ N(0, σ2

δ + τ 2). For scenario (d), E

was generated as Ei = γ0 + γ1G
2
i + δi, δi ∼ N(0, σ2

δ ), with G categorical (0,1,2).

For the simulations of bias, we set the parameters to αG = 1.0, αE = 3.5, β = 3.0 and

σ2 = 1.0 and we ran 5,000 simulations for each setting. For the simulations of Type I error

rates, we set the parameters to αG = 1, αE = 2, β = 0 and σ2 = 1 and we ran 10,000

simulations for each setting to obtain an accurate estimate of the rate of false positives.

1.6.1 Type I Error Rates.

The results of the simulations for Type I error rates are shown in Tables 1.1-1.3. Table 1.1

shows that the Type I error rates are preserved for scenarios (a) and (b), which was shown

theoretically in Section 1.4. Table 1.2 illustrates the inflated Type I error rates in scenario

(c), where the degree of inflation increases with the ratio of the E|G variances, illustrating
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the impact of the degree of G-E dependence. The SIMEX correction improves the Type I

error rate, although it is still slightly inflated when the ratio of variances is large. Even in

those cases the SIMEX method provides substantial improvement. Regression calibration

was not attempted in scenario (c) because regression calibration is a correction of the mean

model and in this scenario the mean has no G-E dependence.

Table 1.3 illustrates the inflated Type I error rate in scenario (d), and illustrates correc-

tions by both SIMEX and regression calibration. We considered three models for regression

calibration: the correct model regressing on Ẽ and G2, an incorrect model regressing only on

Ẽ, and an incorrect model regressing on Ẽ and G. The correct regression model successfully

obtains a 0.05 Type I error rate, while incorrectly specifying the regression calibration model

yields approximately the same degree of inflation in Type I error rate as the naive model.

This underscores the importance of knowing the correct regression calibration model when

using this approach. The SIMEX correction of scenario (d) improves the Type I error rate

but it is still slightly inflated.

Table 1.1: Type I error rates for test of β = 0 in true model and naive model are preserved
under Scenario (a) G-E independence and under Scenario (b) G-E dependence where the
mean of E|G depends linearly on G but the variance does not depend on G.

Scenario (a)
Model G Theoretical value Mean estimate β empirical SE size

True model Independent 0.0 0.002 0.212 0.0474
Naive model Independent 0.0 0.003 0.208 0.0478

Scenario (b)
Model G Theoretical value Mean estimate β empirical SE size

True model Binary 0.000 0.002 0.155 0.0496
Naive model Binary 0.000 0.004 0.161 0.0489

True model Normal 0.000 -0.000 0.066 0.0508
Naive model Normal 0.000 0.000 0.071 0.0492

True model SNP 0.000 -0.001 0.099 0.0518
Naive model SNP -0.000 -0.000 0.103 0.0477
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Table 1.2: Type I error rates for test of β = 0 in true model and naive model and correction
by SIMEX under Scenario (c) G-E dependence where only the variance of E|G depends on
G but the mean of E|G does not depend on G.

Variance Ratio Model Theoretical Mean β empirical SE size

1.5 True model 0.0 0.000 0.154 0.0478
Naive model 0.117 0.119 0.160 0.1124
SIMEX 0.033 0.215 0.0504

2.0 True model 0.0 -0.000 0.164 0.0468
Naive model 0.21 0.210 0.167 0.2326
SIMEX 0.065 0.215 0.0666

3.0 True model 0.0 -0.000 0.184 0.0467
Naive model 0.35 0.353 0.179 0.4943
SIMEX 0.131 0.215 0.1067

Table 1.3: Type I error rates for test of β = 0 in true model and naive model and correction
by SIMEX and Regression Calibration under Scenario (d) G-E dependence where G has SNP
coding and the mean of E|G depends on G2 but the variance does not depend on G.

Model Theoretical Mean model SE empirical SE size

True model 0 -0.001 0.096 0.097 0.0480
Naive model 0.106 0.107 0.102 0.102 0.1742
RC correct E,G2 -0.002 0.118 0.118 0.0479
RC only E 0.128 0.122 0.123 0.1833
RC only E,G 0.139 0.120 0.121 0.2100
SIMEX 0.034 0.116 0.121 0.0572

1.6.2 Bias of naive model parameters and correction by Regres-

sion Calibration and SIMEX.

The results of the simulations for parameter bias are shown in Tables 1.4 and 1.5. An

independent validation dataset with 200 observations was generated in each simulation, and

the parameters for the regression calibration and the SIMEX corrections were estimated

using that validation set. Table 1.4 shows the bias in the parameter estimates for scenario

(b). The parameter for the main effect of the gene is biased upward, the parameter for the

main effect of the environmental exposure is biased toward the null, and the parameter for the
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gene-environment interaction effect is also biased toward the null. The averages of the naive

parameter estimates over the simulations closely match the theoretical asymptotic values.

SIMEX and regression calibration using the correct model both worked well in correcting

bias, while regression calibration on Ẽ only corrected some of the bias. In particular, the

upward bias in main effect of the gene remained when regression calibration on Ẽ was

performed.

Table 1.5 shows the bias in the parameter estimates for scenarios (c) and (d). Again, the

averages of the naive parameter estimates over the simulations closely match the theoretical

asymptotic values. In scenario (c), SIMEX works well in correcting the bias of the parameter

estimates, while regression calibration was ineffective in correcting any parameter bias, as

expected. In scenario (d), SIMEX and regression calibration using the correct model both

worked well in correcting bias, while the misspecified regression calibration models only

corrected some of the bias.

1.7 Data Example

The apolipoprotein E (APOE) gene makes the apolipoprotein E which controls lipid pro-

tein metabolism and transport. In humans, the two SNPs rs429358 and rs7412 define the

APOE gene epsilon alleles which are functional polymorphisms. The most common is the

APOE-ε3 allele, rs429358(T) + rs7412(C), found in approximately 78% of the general pop-

ulation.(Farrer et al., 1997) The APOE-ε2 allele is defined by the rs7412(T) mutation while

the APOE-ε4 allele is defined by the rs429358(C) mutation, with frequencies of 8% and 14%,

respectively in the general population.(Farrer et al., 1997)

Epidemiologic studies and meta-analyses have demonstrated that the presence of at least

one APOE-ε4 allele is associated with a greater risk of coronary artery disease.(Wilson et al.,

1996; Bennet et al., 2007) This increased risk is largely attributed to elevated cholesterol, a

well-established risk factor for coronary disease. Associations have been reported between
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Table 1.5: Bias of naive model parameters in linear health effect model for Scenarios (c), (d)
and correction by Regression Calibration and SIMEX.

Scenario (c) Scenario (d)

Parameter Method Theoretical Mean SE Theoretical Mean SE

αG True 1.0 0.998 0.144 1.0 1.007 0.144
Naive 1.00 0.999 0.172 1.62 1.616 0.192
RC on E,G2 0.997 0.208 1.007 0.221
RC on E only 0.999 0.173 1.615 0.191
SIMEX 0.998 0.179 1.088 0.210

αE True 3.5 3.501 0.104 3.5 3.501 0.134
Naive 2.94 2.942 0.115 2.70 2.697 0.140
RC on E,G2 3.540 0.184 3.509 0.221
RC on E only 3.540 0.183 3.246 0.199
SIMEX 3.451 0.151 3.361 0.194

β True 3.0 3.001 0.154 3.0 3.000 0.097
Naive 2.66 2.656 0.183 2.78 2.789 0.157
RC on E,G2 3.189 0.247 3.003 0.212
RC on E only 3.189 0.247 3.354 0.218
SIMEX 2.990 0.234 3.029 0.201

APOE polymorphisms and both total plasma cholesterol and low-density lipoprotein (LDL)

cholesterol, where APOE-ε2 is associated with lower cholesterol levels and APOE-ε4 is as-

sociated with higher levels of cholesterol compared to APOE-ε3.(Bennet et al., 2007) The

APOE genotypes are reported to have an approximately linear relationship (ordered ε2, ε3,

ε4) with LDL cholesterol.(Bennet et al., 2007)

In addition, several studies have reported a gene-environment interaction between APOE

and BMI on total cholesterol and LDL cholesterol.(Boer et al., 1997; Marques-Vidal et al.,

2003; Srinivasan et al., 2001; Pardo Silva et al., 2008) These studies show that those with

both the ε2 allele and low BMI had the lowest total cholesterol and LDL cholesterol levels,

while the highest total cholesterol and LDL cholesterol levels were seen in those with both

the ε4 allele and high BMI.

Despite APOE-ε4 carriers having the highest levels of cholesterol and the highest risk of

coronary disease, APOE-ε4 is also associated with a lower body mass index compared with

other APOE alleles; specifically, apoE isoforms are associated with increasing body mass
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index in the order: APOE-ε4 (lowest), APOE-ε3, APOE-ε2 (highest).(Volcik et al., 2006;

Pardo Silva et al., 2008)

BMI is a widely-used surrogate for the measurement of body fat storage because of its

low cost and convenience. However, BMI is considered an error-prone surrogate of body

composition because it can not distinguish fat mass from lean mass.(Allison and Saunders,

2000). Several papers have examined the relationship between body fat and BMI, illustrating

that for a given body fat percentage, BMI is still quite variable. (Jackson et al., 2002; Shah

and Braverman, 2012)

We examined the associations between APOE, BMI, and their interactions on plasma

cholesterol in a cross-sectional subset of 812 men who participated in the Normative Ag-

ing Study during 1992 to 1995. Details on the characteristics of the study participants in

the Normative Aging Study have been previously published.(Kawachi et al., 1994) Three

APOE genotype groups were defined: APOE-ε2 (including ε2/ε2, ε3/ε2 genotypes), APOE-

ε3 (ε3/ε3), and APOE-ε4 (including ε4/ε3, ε4/ε4 genotypes), and we modeled the APOE

associations linearly, as in other published studies. We implemented SIMEX because of its

good performance theoretically and in simulations, and because there is no need to specify

the true model underlying G-E dependence. In the absence of validation data, we considered

a range of reasonable measurement error variances (equal to 10%, 20%, and 30% of the total

variance of BMI) to illustrate the potential sensitivity of this association to measurement

error.

The median age of study subjects was 65 years, and the mean BMI of study subjects was

27.9, which is considered overweight. To assess G-E dependence in our data, we examined the

linear association between BMI and APOE. Covariates were centered for the analyses, so the

effects estimates represent deviations from a subject with APOE-ε3 genotype and average

BMI. The direction of a estimated association was consistent with published studies, but

the association was not statistically significant. There was also no evidence of heterogeneity

of variance of BMI by APOE group. The naive estimates for the effects of and the SIMEX
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corrections are given in Table 1.6. We see that all naive coefficients are corrected upward by

SIMEX, with the most notable increases in the effect estimate of the interaction.

Table 1.6: Naive associations and confidence intervals for data example. Associations be-
tween BMI, APOE gene, and interaction on outcomes total cholesterol and LDL cholesterol.

Total Cholesterol LDL Cholesterol
Parameter Method Mean 95% C.I. Mean 95% C.I.
αG Naive model 6.93 2.58, 11.27 7.04 2.65, 11.43

SIMEX, 10% 6.94 5.65, 8.23 7.15 5.79, 8.51
SIMEX, 20% 7.00 5.63, 8.36 7.19 5.75, 8.64
SIMEX, 30% 6.96 5.50, 8.43 7.33 5.69, 8.96

αE Naive model 0.06 -0.66, 0.77 0.81 0.08, 1.53
SIMEX, 10% 0.07 -1.22, 1.36 0.94 -0.42, 2.29
SIMEX, 20% 0.13 -1.24, 1.50 0.94 -0.50, 2.39
SIMEX, 30% 0.11 -1.35, 1.57 1.11 -0.52, 2.75

β Naive model 1.17 0.02, 2.33 1.69 0.47, 2.91
SIMEX, 10% 1.23 -0.06, 2.52 1.87 0.51, 3.23
SIMEX, 20% 1.46 0.09, 2.82 2.06 0.62, 3.51
SIMEX, 30% 1.60 0.13, 3.06 2.19 0.56, 3.83

1.8 Discussion

In this paper, we examined how tests for gene-environment interactions can be affected

by measurement error in the environmental exposure and gene-environment dependence.

We showed that in general under G-E dependence, the direction of bias of βNaive could be

toward or away from the null. We provided closed-form expressions for bias of coefficients

in the linear model. Specific examples where this bias may be away from the null include

the scenario where G is binary and the variance of E depends G and the scenario when G

has SNP coding and the mean of E depends on G2. We identified a special case of G-E

dependence where the direction of bias in the coefficient for interaction is attenuation, which

is the case when the mean of E depends linearly on G.

We also showed that in the naive model ignoring measurement error, G-E dependence
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may lead to inflated Type I error rates of the test for gene-environment interaction. This

problem arises from both the bias of the parameter estimates and the non-constant variance

which is not reflected in the naive standard error estimate. In the special case of G-E

dependence where the mean of the environmental exposure depends linearly on the gene, we

showed that the Type I error rate is preserved.

There is much discussion of the impact of measurement error on detecting gene-environment

interactions when G and E are independent. It is well-known that in that case, non-

differential measurement error will cause attenuation toward the null in the coefficient of

the interaction, and there is much concern for the loss of power.(Thomas, 2010; Bookman

et al., 2011)

Only one recent study has investigated the role of G-E dependence in tests for gene-

environment interactions.(Lindstrom et al., 2009) In that study, the only setting considered

is a logistic regression model when the exposure and gene are both binary. Tests for gene-

environment interactions under exposure measurement error are investigated via simulation.

The authors find that the test for gene-environment interaction does not have inflated Type

I error rates, but tests for the effect of gene and joint tests for gene and interaction have

highly inflated Type I error rates. Although that paper considers a logistic health model

while our paper considers a linear health model, their results are intuitively consistent with

our findings in the special case of linear dependence between G and E because of the upward

bias we observed in the estimate for G. Our work considers more general G-E dependence

models and provides the theoretical justification for how and when the parameter biases and

Type I error violations will occur.

The issue of G-E dependence and its impact on the modeling of health effects has re-

ceived increasing attention. The question of what types of models may best reflect true G-E

dependence is still largely unknown, especially because it is not clear how many studies have

tested for non-linear effects of genes on environmental factors. One example of the variance

of E depending on G is seen in a recent study in Nature, where the FTO SNP rs7202116
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was associated with the variability of BMI.(Yang et al., 2012)

In this paper, we consider two functional measurement error correction methods: re-

gression calibration and SIMEX. These methods are called functional because they do not

assume any particular distribution for the covariate measured with error. However, for re-

gression calibration the correct regression calibration model must be used, including the

correct G-E dependence structure. Our simulation results demonstrate that regression cali-

bration is very sensitive to using the correct model, making this a key assumption. Since the

appeal of functional measurement error models is making fewer distributional assumptions,

SIMEX is the preferred method here. SIMEX is also preferred here because there are no

gains in efficiency when using regression calibration, despite the added assumptions. Many

other measurement error correction techniques could also be applied to this situation; Car-

roll et al. (2006) discusses a number of different measurement error correction methodologies

and their assumptions.
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1.A Derivations

1.A.1 Derivation of equation (1.5)

Starting from equation the score equations, we have

(1.3) ⇔ E
{
W1WT

1

}
θNaive = E

{
W1Y1

}
⇔ E

{
W1WT

1

}
θNaive = E

{
E [W1Y1|G1, E1]

}
⇔ E

{
W1WT

1

}
θNaive = E

{
W1E [Y1|G1, E1]

}
⇔ E

{
W1WT

1

}
θNaive = E

{
W1X T

1 θ
}

⇔ E
{
W1WT

1

}
θNaive = E

{
(X1 + U1)X T

1

}
θ

⇔ E
{
W1WT

1

}
θNaive = E

{
X1X T

1

}
θ (1.15)

Then by properties of random vectors we can rewrite each expecation as

E
{
X1X T

1

}
= Var(X1) + µXµ

T
X and E

{
W1WT

1

}
= Var(W1) + µWµ

T
W

Substituting these expressions gives us a system of equations that we can solve algebraically

for θNaive. Note that the solution to the system of equations depends on the covariance

matrix of the covariates, Cov(X1) and Cov(W1). Thus,

[
Cov(W1)

]
θNaive =

[
Cov(X1)

]
θ
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1.A.2 Derivation of equation (1.7)

σ2
Naive = E

[
Y1 −WT

1 θNaive
]2

= E
[
X T

1 θ + ε1 −WT
1 θNaive

]2
= σ2 + E

[
X T

1 θ −WT
1 θNaive

]2
= σ2 + E

[
X T

1 θ −WT
1 θNaive

]2
= σ2 + E

[
X T

1 θ −WT
1 Λθ

]2
= σ2 + E

[ (
X T

1 −WT
1 Λ
)
θ
]2

= σ2 + θTE
[ (
X T

1 −WT
1 Λ
)T (X T

1 −WT
1 Λ
) ]

θ

= σ2 + θT
[
ΣX − ΣXΛ− ΣXΛT + ΛΣWΛT

]
θ

= σ2 + θT
[ (

I−ΛT
)
Cov(X1)

]
θ

All the cross-terms involving U1 have expectation 0.

1.A.3 Derivation of entires of Λ under G-E dependence

The covariance matrix for the true covariates is given by

Var(X1) =



0 0 0 0 0

0 σ2
X 0 0 0

0 0 σ2
G ρ1σEσG ρ2σGσEG

0 0 ρ1σEσG σ2
E ρ3σEσEG

0 0 ρ2σGσEG ρ3σEσEG σ2
EG


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And the covariance matrix for the covariates measured with error W1 = (1, Ẽ1, G1, Ẽ1G1),

is given by,

Var(W1) =



0 0 0 0 0

0 σ2
X 0 0 0

0 0 σ2
G ρ1σEσG ρ2σGσEG

0 0 ρ1σEσG σ2
E + σ2

U ρ3σEσEG

0 0 ρ2σGσEG ρ3σEσEG σ2
EG + σ2

Uσ
2
G



1.A.4 Derivation of equation (1.9)

To calculate the conditional variance for any observation i, we use the property of iterated

expectations,

V ar {Yi|Wi} =E
{
V ar[Yi|Xi,Wi]

∣∣∣Wi

}
+ V ar

{
E[Yi|Xi,Wi]

∣∣∣Wi

}
=E
{
σ2
∣∣∣Wi

}
+ V ar

{
θXi

∣∣∣Wi

}
=σ2 + V ar

{
α0 + αGGi + αEEi + βEiGi

∣∣∣(Gi, Ẽi)
}

=σ2 + V ar
{
αEEi

∣∣∣(Gi, Ẽi)
}

+ V ar
{
βEiGi

∣∣∣(Gi, Ẽi)
}

+ 2Cov
{
αEEi, βEiGi

∣∣∣(Gi, Ẽi)
}

=σ2 + α2
EV ar

{
Ei

∣∣∣(Gi, Ẽi)
}

+ β2G2
iV ar

{
Ei

∣∣∣(Gi, Ẽi)
}

+ 2αEβGiCov
{
Ei, Ei

∣∣∣(Gi, Ẽi)
}

=σ2 +
(
α2
E + β2G2

i + 2αEβGi

)
V ar

{
Ei

∣∣∣(Gi, Ẽi)
}

1.A.5 Derivation of variance of naive model MLE’s in Scenario (a)

To show that

V ar(θ̂Naive|W) = σ2
Naive(W

TW)−1 = σ2 + λ′σ2
Uα

2
E,
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we derive V ar
{
Ei

∣∣∣(Gi, Ẽi)
}

and substitute into equation (1.10). Using independence and

multivariate Normality and λ′ = σ2
E(σ2

E + σ2
U)−1,

V ar
{
Ei

∣∣∣(Gi, Ẽi)
}

= V ar
{
Ei

∣∣∣Ẽi}
= σ2

E − σ2
E(σ2

E + σ2
U)−1σ2

δ

= σ2
E

(
1− σ2

E(σ2
E + σ2

U)−1
)

= σ2
Eσ

2
U(σ2

E + σ2
U)−1

= λ′σ2
U .

1.A.6 Derivation of variance of naive model MLE’s in Scenario

(b)

In Scenario (b), the G-E dependence relationship is modeled as Ei = γ0 + γ1Gi + δi, and

δi ∼ Normal(0, σ2
δ ). Then,

 Ei|Gi

Ẽi|Gi

 ∼MVN


 γ0 + γ1Gi

γ0 + γ1Gi

 ,
 σ2

δ σ2
δ

σ2
δ σ2

δ + σ2
U




By the properties of the multivariate Normal distribution, the conditional distribution Ei|(Gi, Ẽi)

is Normal with variance

V ar
{
Ei

∣∣∣(Gi, Ẽi)
}

= σ2
δ − σ2

δ (σ
2
δ + σ2

U)−1σ2
δ

= σ2
δ

(
1− σ2

δ (σ
2
δ + σ2

U)−1
)

= σ2
δσ

2
U(σ2

δ + σ2
U)−1

which simplifies the expression for equation (1.10) in this case to

V ar {Yi|Wi} = σ2 + α2
E ·

σ2
δσ

2
U

σ2
δ + σ2

U

(1.16)
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1.A.7 Derivation of naive model variance in Scenario (b)

Here we derive our simplified expression for naive model variance, σ2
Naive, in Scenario (b).

Starting from equation (1.12), we will show that the second term can be simplified and the

last term is equal to zero.

First consider the expression for λ5σ
2
G. Using algebra and using the result that ρ3 = ρ1ρ2

which we know holds when Ei = γ0 + γ1Gi + δi, we have

λ5σ
2
G =

1

det[Cov(W1)]
·
[
(ρ1 − ρ2ρ3)σ2

EG + ρ1σ
2
Gσ

2
U

]
σEσGσ

2
Uσ

2
G

=
1

det[Cov(W1)]
·
[
(ρ1 − ρ2ρ1ρ2)σ2

EG + ρ1σ
2
Gσ

2
U

]
σEσGσ

2
Uσ

2
G

=
1

det[Cov(W1)]
·
[
ρ1(1− ρ22)σ2

EG + ρ1σ
2
Gσ

2
U

]
σEσGσ

2
Uσ

2
G

= ρ1σGσE ·
1

det[Cov(W1)]
·
[
(1− ρ22)σ2

EG + σ2
Gσ

2
U

]
σ2
Gσ

2
U

= (1− λ3)ρ1σGσE

Thus, the last term in equation (1.12) is equal to zero,

αGαE

[
− λ5σ2

G + (1− λ3)ρ1σGσE
]

= 0.

Using this result and the results from the linear dependence that ρ1 = γ1σG/σE and σ2
E =
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γ21σ
2
G + σ2

δ to simplify the expression for the second term of equation (1.12) ,

α2
E

[
− λ5ρ1σGσE + (1− λ3)σ2

E

]
= α2

E

[
−λ5ρ1σGσE +

(
λ5σ

2
G

ρ1σGσE

)
σ2
E

]
= α2

E

[
−λ5

(
γ1
σG
σE

)
σGσE +

(
σE
γ1σG

· λ5σ
2
G

σGσE

)
σ2
E

]
= α2

Eλ5

[
−γ1σ2

G +

(
1

γ1

)
σ2
E

]
= α2

Eλ5

[
−γ1σ2

G +
1

γ1

(
γ21σ

2
G + σ2

δ

)]
= α2

Eλ5

[
1

γ1
σ2
δ

]

Then, using the result that σ2
E(1− ρ21) = σ2

δ , we can further simplify this expression,

λ5

[
1

γ1
σ2
δ

]
=

1

det[Cov(W1)]
·
[
(ρ1 − ρ2ρ3)σ2

EG + ρ1σ
2
Gσ

2
U

]
σEσGσ

2
U

[
1

γ1
σ2
δ

]
= σ2

Uσ
2
δ ·

1

γ1
· 1

det[Cov(W1)]
· ρ1
[
(1− ρ22)σ2

EG + σ2
Gσ

2
U

]
σEσG

= σ2
Uσ

2
δ ·

[(1− ρ22)σ2
EG + σ2

Gσ
2
U ]

σ2
U [σ2

Gσ
2
U + (1− ρ22)σ2

EG] + (1− ρ21)σ2
E [σ2

Gσ
2
U + (1− ρ22)σ2

EG]

= σ2
Uσ

2
δ ·

1

σ2
U + (1− ρ21)σ2

E

=
σ2
δσ

2
U

σ2
δ + σ2

U

Finally,

σ2
Naive = σ2 + α2

E

[
− λ5ρ1σGσE + (1− λ3)σ2

E

]
+ αGαE

[
− λ5σ2

G + (1− λ3)ρ1σGσE
]

= σ2 + α2
E ·

σ2
δσ

2
U

σ2
δ + σ2

U

36



1.A.8 Regression calibration derivations in Scenarios (b) and (d)

First consider Scenario (d) where the true G-E dependence relationship is modeled as Ei =

γ0 + γ1G
2
i + δi, and δi ∼ Normal(0, σ2

δ ). Then,

 Ei|Gi

Ẽi|Gi

 ∼MVN


 γ0 + γ1G

2
i

γ0 + γ1G
2
i

 ,
 σ2

δ σ2
δ

σ2
δ σ2

δ + σ2
U




By the properties of the multivariate Normal distribution, the conditional distribution Ei|(Gi, Ẽi)

is Normal with expectation

E
{
Ei

∣∣∣(Gi, Ẽi)
}

= (γ0 + γ1G
2
i ) + σ2

δ (σ
2
δ + σ2

U)−1
[
Ẽi − (γ0 + γ1G

2
i )
]

= γ0
[
1− σ2

δ (σ
2
δ + σ2

U)−1
]︸ ︷︷ ︸

η0

+
[
σ2
δ (σ

2
δ + σ2

U)−1
]︸ ︷︷ ︸

ηE

Ẽi + γ1
[
1− σ2

δ (σ
2
δ + σ2

U)−1
]︸ ︷︷ ︸

ηG

G2
i

and variance

V ar
{
Ei

∣∣∣(Gi, Ẽi)
}

= σ2
δ − σ2

δ (σ
2
δ + σ2

U)−1σ2
δ

= σ2
δ

(
1− σ2

δ (σ
2
δ + σ2

U)−1
)

= σ2
δσ

2
U(σ2

δ + σ2
U)−1

Thus, η0, ηG, ηE define the true regression calibration parameters for Scendrio (d).

Following the derivations used to compute the biases in the naive model, we start with

the score equations and fine that the regression model coefficients θRC satisfy

E
{
W1WT

1

}
θRC = E

{
W1X T

1

}
θ (1.17)

Comparison of terms show that each entry j, l of these matrices are equal, E
{
W1WT

1

}
j,l

=

37



E
{
W1X T

1

}
j,l

. Thus, θRC = θ.

The derivations for Scenario (b) follow the same steps with the slight change to the G-E

dependence model.

1.A.9 Bias Derivations for Non Centered Covariates in Section

1.4

Starting from the score equations and following the derivation of equation (1.5), equation

(1.3) can be written as

E
{
W1WT

1

}
θNaive = E

{
X1X T

1

}
θ (1.18)

By properties of random vectors, each expecation can be rewritten as

E
{
X1X T

1

}
= Var(X1) + µXµ

T
X and E

{
W1WT

1

}
= Var(W1) + µWµ

T
W

Then, allowing µX and µW to have nonzero means, this can be solved for to get a more

general version of equations (1.5) and (1.6).

Suppose that E and G are correlated and have nonzero means µE and µG respectively.

Let the correlations be parameterized as ρ1 ≡ Corr(E1, G1), ρ2 ≡ Corr(G1, E1G1), ρ3 ≡

Corr(E1, E1G1).

Under this general parameterization, allowing E and G to have nonzero means and not

yet assuming any particular model for E|G, the solutions to equation (1.5) can be written

as

α0,Naive = α0 + [−µGλ5 + µE(1− λ3)− µEGλ1]αE + [−µGλ6 − µEλ4 + µEG(1− λ2)]β

αG,Naive = αG + λ5αE + λ6β

αE,Naive = λ3αE + λ4β

βNaive = λ1αE + λ2β
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where

λ1 =
1

det[Cov(W1)]
·
[
(ρ3 − ρ1ρ2)σEσEG −

(
1− ρ21

)
σ2EµG

]
σ2Gσ

2
U

λ2 =
1

det[Cov(W1)]
·
[ (

1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23
)
σ2Eσ

2
EG +

(
1− ρ22

)
σ2EGσ

2
U

+ (ρ1ρ2 − ρ3)σEσEGσ2UµG
]
σ2G

λ3 =
1

det[Cov(W1)]
·
[ (

1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23
)
σ2Eσ

2
EG +

(
1− ρ21

)
(σ2G + µ2G)σ

2
Eσ

2
U

+ (ρ1ρ2 − ρ3)σEσEGσ2UµG
]
σ2G

λ4 =
1

det[Cov(W1)]
·
[
(ρ3 − ρ1ρ2)σEσEG(σ2G + µ2G)− (1− ρ22)σ2EGµG

]
σ2Gσ

2
U

λ5 =
1

det[Cov(W1)]
·
[
(ρ1 − ρ2ρ3)σ2EG + ρ1σ

2
Gσ

2
U + (ρ2 − ρ1ρ3)σEσEGµG

]
σEσGσ

2
U

λ6 =
1

det[Cov(W1)]
·
[
(ρ2 − ρ1ρ3)σ2E(σ2G + µ2G) + ρ2σ

2
Gσ

2
U + (ρ1 − ρ2ρ3)σEσEGµG

]
σEGσGσ

2
U

and

det[Cov(W1)] =
[
σ2Gσ

2
U +

(
1− ρ22

)
σ2EG +

(
1− ρ21

)
σ2E(σ

2
G + µ2G)

]
σ2Gσ

2
U

+
(
1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23

)
σ2Eσ

2
Gσ

2
EG + 2 (ρ1ρ2 − ρ3)σEσEGσ2Uσ2GµG.
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2.1 Introduction

To improve exposure assessment in air pollution epidemiology research, spatial modeling

of air-pollution levels is now commonplace. However, the implications of including these

predicted exposures on the estimates of the health effects of air pollution is still not well-

understood. Levels of PM2.5 are typically measured only at a small number of stationary

monitoring sites which may only capture a small part of the overall regional heterogeneity.

Ambient levels of PM2.5 often vary within a given city region, in part due to traffic sources,

(Brauer et al., 2003; Clougherty et al., 2008)

It is not usually feasible to obtain exposure recordings at each study subject’s residence

over an entire study period, researchers often set up pollution monitoring networks to gather

data on the variability in traffic pollution levels over space, and then build prediction models

based on these data that can be used to estimate location-specific exposures throughout the

study region. Oftentimes, we are interested in the level of air pollution at the homes of

each subject in a study, but instead of directly monitoring every home we have measure-

ments collected from a set of monitors throughout the region. This setting where the set of

exposure locations of interest in the health model does not match the set of measured expo-

sure locations is called spatial misalignment. Because of this spatial misalignment, exposure

prediction models are used to predict the exposure level at the location of interest.

The most common use of predicted exposures in a health effects analysis is the direct

plug-in of the individual-specific exposure estimates. This approach treats the exposures as

known, without acknowledgement of the uncertainty in the prediction process. Ignoring this

measurement error can lead to biased health effect estimates and overstated confidence in the

resulting risk assessments.(Carroll et al., 2006; Gryparis et al., 2009) In the current literature,

authors have found in simulation studies that using the plug-in estimator often induces little

to no bias.(Szpiro et al., 2011; Madsen et al., 2008; Lopiano et al., 2011; Gryparis et al.,

2009) However, those papers investigate bias in simulation studies only by fitting the correct
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exposure model used to generate the data. Madsen et al. (2008) and Szpiro et al. (2011)

assume smooth exposure surfaces that can be fit well using kriging methods, finding no

need for bias correction, thus the papers focus on ways to estimate standard errors instead.

However, in real data scenarios, the actual performance of the naive plug-in estimator, the

degree to which bias and variance adjustments need to be made, and the performance of the

current adjustment methods is largely unknown. It is important to identify situations where

the plug-in estimator may be unbiased versus situations where both a bias and variance

adjustment may be necessary.

This article investigates two factors of exposure estimation that may affect resulting

health effect estimates: estimation error and model misspecification. In practice, the under-

lying exposure model that generates air pollution levels in any given region is not known

exactly and is fit with sparse monitoring data. Since air pollution monitors are often some-

what sparse throughout any given region, we wanted to examine the effect of estimation error

given this sparse data setup. In addition, since the true underlying exposure surfaces are not

exactly known, model misspecification is important to investigate as well. The impact on

biases in the health effect model due to model misspecification in the exposure model also

has not been investigated previously.

The simulation extrapolation method (SIMEX) has been developed as a flexible method

to correct for bias in the case of classical measurement error.(Cook and Stefanski, 1994)

SIMEX is a functional method which uses resampling techniques and has several attractive

properties, including placing minimal assumptions on the underlying distribution of the

exposures. In addition, it has been suggested that SIMEX may be suitable for several

exposures with correlated classical errors.(Carroll et al., 2006) Thus, we were interested in

adapting SIMEX procedure for use in correcting air pollution exposure prediction, where

we expect that the classical error variance would be spatially correlated across all exposure

estimates in the health effect study.

The remainder of this paper is arranged as follows. In Section 2 we introduce our modeling
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framework and the specific exposure models of interest under universal kriging: (i) constant

mean, (ii) land-use covariates, and (iii) land-use covariates with model mis-specification. In

Section 3 we examine the bias analytically for each of the exposure models of interest and

we derive the probability limits of the misspecified parameters and the resulting classical

error variance. In Section 4 we propose a new correlated-error SIMEX correction method

for Berkson and classical error mixtures where correlated classical error is added to the

exposure predictions to correct for bias. In Section 5 we present a simulation study to

investigate the degree of bias induced by each of the exposure models of interest and to

demonstrate the performance of our spatial SIMEX correction method. We then illustrate

the a SIMEX correction in a study of air pollution and birthweight in the greater Boston

area with a kriging model including for air pollution exposure levels in Section 6. We end

with a concluding discussion in Section 7.

2.2 Exposure Models in Air Pollution and Health Stud-

ies

2.2.1 Model Framework

Consider the health effects model of interest to be a linear regression model for each subject

i = 1, . . . , n,

Yi = β0 + β1Xi + β2Z2,i + · · ·+ βjZj,i + εi

where Yi is a continuous health outcome, Xi is the exposure of interest, Z2,i, . . . , Zj,i are other

covariates related to the health outcome, and εi are independent and identically distributed

(i.i.d.) with mean 0 and variance σ2
ε . The goal of the analysis is to estimate β1, the parameter

measuring the association between the health outcome and the exposure of interest.

Let X∗ denote the measured air pollution levels at monitor sites and let X denote the true

unmeasured air pollution exposures corresponding to the health locations. We assume that
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each subject’s exposure Xi is not measured directly at the subject’s address location, but

exposures X∗ are measured at m monitor locations spread throughout the same geographic

region. We assume the setting of spatial misalignment, where the set of n exposure locations

needed for the health model does not match the set of m << n measured exposure locations

where monitors are stationed. Because of this spatial misalignment, exposure prediction

models are used to predict the exposure level at the location of interest.

Generally, we consider a universal kriging model for the exposure which may include land

use covariates as part of the mean model. Suppose the true pollution process in a given region

is generated by a Gaussian Process, which generates X = (X,X∗), all the pollution levels of

interest. Suppose that the realizations of this process take a parametric form. Specifically,

let θ = (θ1,θ2) be the k× 1 vector of exposure model parameters where θ1 = (θ11, . . . , θ1k1)

are the parameters for the mean model and θ2 = (θ21, . . . , θ2k2) are the parameters for the

variance model. Then a realization of one surface follows a Multivariate Normal distribution,

 X

X∗

 ∼MVN


 µX(θ1)

µX∗(θ1)

 ,
 ΣXX(θ2) ΣXX∗(θ2)

ΣX∗X(θ2) ΣX∗X∗(θ2)


 (2.1)

By the properties of the Multivariate Normal distribution,

E[X|X∗] = µX(θ1) + ΣXX∗(θ2)Σ
−1
X∗X∗(θ2)

{
X∗ − µX∗(θ1)

}
(2.2)

Then the function that we are interested in estimating by Kriging to model our exposure

is given by

g(θ; X∗) = µX(θ1) + ΣXX∗(θ2)Σ
−1
X∗X∗(θ2)

{
X∗ − µX∗(θ1)

}
(2.3)

We now consider the specific exposure models of interest.
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2.2.2 Specific exposure models of interest

We consider three common exposure model scenarios for the single-pollutant, spatial case to

be of interest in this study.

Scenario I: Constant mean (ordinary kriging)

Universal kriging is simplified to ordinary kriging when the mean model is assumed to be

constant. Specifically, assume that the mean model is µX (θ1) = α1 and we assume that

ΣX (θ2) follows a Matern family with θ2 = (φ, σ2) where φ is the range parameter and σ2 is

the variance parameter. Then we can write equation (3) for this scenario as

g(α, φ, σ2; X∗) = α1 + ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)
(
X∗ − α1

)
.

The Matern family also has a third parameter, κ, which controls the level of smoothness of

the Matern function. This parameter is typically chosen and fixed rather than estimated via

maximum likelihood.(Moller, 2003) We assume that κ is fixed and known.

Scenario II: Land-use regression with universal kriging

Universal kriging allows the mean model to contain land-use regression covariates, and allows

the residuals to have a spatial correlation structure. The mean and variance parameters

can be estimated jointly via maximum likelihood. For this scenario, we assume that the

mean model depends linearly on an intercept and two spatially-varying covariates, S1, S2

via the parameters θ1 = (α0, α1, α2). Again we assume that ΣX (θ2) follows a Matern

family with θ2 = (φ, σ2) where φ is the range parameter and σ2 is the variance parameter.

Then we can write equation (3) for this scenario as g(α, φ, σ2; X∗) = α01 + α1S1 + α2S2 +

ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)
(
X∗ −

(
α01 + α1S1 + α2S2

))
.

We assume that κ, the level of smoothness, is fixed and known, as described above.
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Scenario III: Land-use regression with universal kriging, misspecified

Here we assume that the true model is the same as Scenario II, but we consider a potentially

common form of model misspecification where the model is fit without S2. This could happen

if data were not collected on all key predictors, and hence the prediction model that is fit

is an imperfect model. We assume that S2 and S1 are each spatially correlated, but that

their distributions are independent of one another. In other words, we assume that S2 is a

missing covariate but not a confounder of S1. Thus, the misspecified model that we fit is

g
(
θN ; X∗

)
= µX

(
θN1
)

+ ΣXX∗
(
θN2
)

Σ−1X∗X∗

(
θN2
) (

X∗ − µX∗
(
θN1
) )

= αN0 1 + αN1 S1 + ΣXX∗
(
φ, σ2

)
Σ−1X∗X∗

(
φ, σ2

) (
X∗ −

(
αN0 1 + αN1 S1

) )

We now show how the error can be decomposed into Berkson and Classical components

for each of these three scenarios.

2.2.3 Decomposition into Berkson and Classical error components

Let θ̂ be the vector of maximum likelihood estimates of θ. We are interested in the difference

between the true unknown exposures X and the predicted exposures X̂ = g(θ̂; X∗). Since

the predicted exposures are surrogates for the unknown true exposures, we can view this

difference under a general measurement error framework. This decomposition of errors into

Berkson and classical type measurement error components follows in the same spirit as

Gryparis et al. (2009) and Szpiro et al. (2011), where Gryparis et al. (2009) considers a

Bayesian Gaussian Process model with constant mean and Szpiro et al. (2011) considers a

linear regression model. We now extend this viewpoint to our particular models of interest

defined in Section 2.2.
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Berkson and Classical error components for Scenarios I and II

For scenarios I and II, the predicted exposures are generated by fitting the true model given

the collected monitoring data X∗, so the predictions have the form

X̂ = g(θ̂; X∗) = µX

(
θ̂1

)
+ ΣXX∗

(
θ̂2

)
Σ−1X∗X∗

(
θ̂2

) (
X∗ − µX∗(θ̂1)

)

By adding and subtracting the underlying true model g
(
θ; X∗

)
, we can decompose the error

into Berkson and classical components,

X− g
(
θ̂; X∗

)
= X− g

(
θ; X∗

)︸ ︷︷ ︸
Ub

+ g
(
θ; X∗

)
− g
(
θ̂; X∗

)︸ ︷︷ ︸
Uc

The first term, Ub, is the Berkson error, which represents the difference between the true

measurements and the true model. The second term, Uc, is the classical error, which rep-

resents the difference between the true model and the estimated model. Thus, we can call

this classical error estimation error.

Berkson and Classical error components for Scenario III

For scenario III, the predicted exposures are generated from a misspecified model which left

out a key predictor, so

X̂ = g
(
θ̂N ; X∗

)
= µX

(
θ̂N1
)

+ ΣXX∗
(
θ̂N2
)
Σ−1X∗X∗

(
θ̂N2
) (

X∗ − µX∗(θ̂N1 )
)

By adding and subtracting the underlying true model g
(
θ; X∗

)
, we can decompose the error

into Berkson and classical components,

X− g
(
θ̂N ; X∗

)
= X− g

(
θ; X∗

)︸ ︷︷ ︸
Ub

+ g
(
θ; X∗

)
− g
(
θ̂N ; X∗

)︸ ︷︷ ︸
Uc
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Conceptually, we can think of further decomposing this classical error as

Uc = g
(
θ; X∗

)
− g
(
θN ; X∗

)︸ ︷︷ ︸
model misspecification

+ g
(
θN ; X∗

)
− g
(
θ̂N ; X∗

)︸ ︷︷ ︸
estimation error

where one component of error is due purely to estimation error of the parameters θ̂N and

the other component of error is attributed to choosing the incorrect model g
(
θN ;X∗

)
.

2.3 Analysis of bias in health effect estimates induced

by exposure models

Now that we have established the connection to the measurement error framework, it is of

interest to study the impact of measurement error in the predicted exposures on bias of

the coefficient βx representing the association between air pollution exposure and the health

outcome. First we investigate bias in the case of estimation error only in Scenarios I and II

by analytically studying the form of the bias by using Taylor expansions. Next, we study

the bias in the case of misspecification error in Scenario III by deriving the probability limits

of the MLEs in the misspecified model and deriving the particular form of the classical error

variance. Later, in Section 5, we conduct simulations to investigate the degree of bias in

small samples.

2.3.1 Bias Analysis for Scenarios I and II

First, we note that the Berkson error component does not induce any bias in the estimate

of βx. To see this, let β̂x,ideal denote the least squares estimate of βx if we were able to

use predicted exposures from the true model g(θ; X∗) where we know the true parameters

exactly. Without loss of generality we assume centered variables. Specifically, let gi(θ; X∗)
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be the exposure for subject i and define

β̂X,ideal ≡
n−1
∑n

i=1Yigi(θ; X∗)

n−1
∑n

i=1

[
gi(θ; X∗)

]2 .
Define β̂x,actual to be the estimator using the actual exposure predictions, which are estimated

by g(θ̂; X∗). Specifically, define

β̂x,actual ≡
1
n

∑n
i=1Yigi(Si, θ̂; X∗)

1
n

∑n
i=1

[
gi(Si, θ̂; X∗)

]2 .
Then, since the true model has the property E[X|X∗] = g(θ; X∗), taking iterated expec-

tation of β̂X,ideal conditional on X∗ shows that the bias of β̂X,ideal is 0. Hence, any bias in

our actual estimator comes from the classical error component.

Now consider the bias of our actual estimator. We have already established that

E
[
β̂x,actual − βx

]
= E

[
β̂x,actual − β̂X,ideal,

]

since

E
[
β̂x,actual − βx

]
= E

[
β̂x,actual − β̂x,ideal + β̂x,ideal − βx

]
= E

[
β̂x,ideal − βx

]
+E

[
β̂x,ideal − βx

]

and E
[
β̂x,ideal − βx

]
= 0. Thus, to compute the bias we need to study the term

E
[
β̂x,actual − β̂x,ideal

]
.

To derive the bias of β̂x,actual, we use a Taylor expansion. We write β̂x,ideal as a function

of Y,S,θ, and X∗, which we denote by M(Y,S,θ; X∗), and β̂x,ideal = M(Y,S, θ̂; X∗).

Now, a second order Taylor expansion of M(Y,S, θ̂; X∗) around M(Y,S,θ; X∗) is,

M(Y,S,θ; X∗)−M(Y,S, θ̂; X∗)

≈
[
∂

∂θ
M(Y,S,θ; X∗)

]T (
θ̂ − θ

)
+

1

2

(
θ̂ − θ

)T
[

∂2

∂θ∂θT
M(Y,S,θ; X∗)

] (
θ̂ − θ

)
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Then the approximate bias of β̂x,actual is

E
{
β̂x,ideal − β̂x,actual

}
= E

{
M(Y,S,θ; X∗)−M(Y,S, θ̂; X∗)

}
≈ E

{[
∂

∂θ
M(Y,S,θ; X∗)

]T (
θ̂ − θ

)
+

1

2

(
θ̂ − θ

)T
[

∂2

∂θ∂θT
M(Y,S,θ; X∗)

] (
θ̂ − θ

)}

≈ γE
(
θ̂ − θ

)
+

1

2
trace

{
ΛVar

(
θ̂ − θ

)}
+

1

2
E
(
θ̂ − θ

)T
ΛE
(
θ̂ − θ

)
(2.4)

where

γ = E

[
∂

∂θ
M(Y,S,θ; X∗)

]T

and Λ = E

[
∂2

∂θ∂θT
M(Y,S,θ; X∗)

]
.

Examining equation (4), we see that there are terms involving E
(
θ̂−θ

)
and Var

(
θ̂−θ

)
.

We note that the mean model parameters will be unbiased, E[θ̂1] = θ1, however, the variance

parameters will have a small-sample bias factor when fit under maximum likelihood, E[θ̂2] 6=

θ2. We also note that γ and Λ are both functions of several random variables, Y,S,X∗, and

thus are complicated functions of vectors and matrices involving the particular distributions

of those random variables. In particular, the magnitude of this bias will depend on the

relative magnitudes of E
(
θ̂ − θ

)
and Var

(
θ̂ − θ

)
, as well as the distributions of the other

random variables.

2.3.2 Bias Analysis for Scenario III

Derivation of the naive model coefficients, θN

First, we study the model misspecification component, g
(
θ;X∗

)
− gN

(
θN ;X∗

)
. We need to

understand what the naive model coefficients converge to, θN , since they will converge to

something different from the true model coefficients θ.

First, we derive the probability limits of the naive model coefficients by using the same

general techniques as in Wang et al. (1998).
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The naive model score equations for the exposure model fit using X∗ have probability

limits

E
[
STV−1N (X∗ − Sθ1,N)

]
= 0 (2.5)

1

2

(
E
{[

X∗ − SθN
]T

V−1N
∂VN

∂θ2,l,N
V−1N

[
X∗ − SθN

]T
}
− tr

{
V−1N

∂VN

∂θ2,l,N

})
= 0 (2.6)

where V−1N = Σ−1X∗X∗(θ2,N) and l = 1, 2 indexes the two variance parameters.

First we derive the naive model mean parameters θ1,N = (α1,N , α2,N , α3,N). To do that,

we can solve eqn (5) for α1,N , α2,N , α3,N . Details for solving this equation are listed in the

Appendix. For the mean model parameters, it is possible to derive closed-form solutions.

Following the calculations given in the Appendix, the naive model mean parameters are

α0,N = α0 + µS2α2

α1,N = α1

Next we derive the naive model variance parameters θ2,N = (φN , σ
2
N) by solving equation

(2) for φN , σ
2
N . Here, we cannot derive closed-form solutions, but we can derive equations

which can be solved numerically (see Appendix).

Now, we compare our derived naive model coefficients to the observed naive model coef-

ficients to make sure that matches up.

2.3.3 Error due to model misspecification, Uc,model mis

Then, once we know the form of θN , we can study the model misspecification difference

Uc,model mis = g
(
θ;X∗

)
− gN

(
θN ;X∗

)
,
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which we now show follows a particular form

Uc,model mis ∼MVN(µUc,ΣUc),

which we can then use for SIMEX.

To derive µUc and ΣUc, the mean and variance of the classical error due to model mis-

specification, we first derive a simpler expression for Uc,model mis as follows.

Uc,model mis = g
(
θ;X∗

)
− gN

(
θN ;X∗

)
= α01 + α1S1 + α2S2 + ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)

(
X∗ −

(
α01 + α1S1 + α2S2

))
−
[
αN0 1 + αN1 S1 + ΣXX∗

(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

) (
X∗ −

(
αN0 1 + αN1 S1

) )]
= α01 + α1S1 + α2S2 −

[
αN0 1 + αN1 S1

]
+ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)

(
X∗ −

(
α01 + α1S1 + α2S2

))
−ΣXX∗

(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

) (
X∗ −

(
αN0 1 + αN1 S1

) )
= α2 (S2 − µS21) + ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)ε∗

−ΣXX∗
(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

) (
ε∗ + α2 (S2 − µS21)

)
= α2 (S2 − µS21)−ΣXX∗

(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

) (
α2 (S2 − µS21)

)
+
[
ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)−ΣXX∗

(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

) ]
ε∗

Now using this expression, Uc,model mis is a function of two random vectors, (S2,S2
∗) and

ε∗. First, µUc = 0 because E[(S2 − µS21)] = 0 and E[ε∗] = 0. Then, the variance of

Uc,model mis is

ΣUc = α2
2ΣS2S2 − α2ΣS2S∗

2
AT − α2AΣS∗

2S2 + BΣX∗X∗BT + AΣS∗
2S

∗
2
AT

where

A =
[
ΣXX∗(φ, σ2)Σ−1X∗X∗(φ, σ2)−ΣXX∗

(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

) ]
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and

B = ΣXX∗
(
φN , σ2,N

)
Σ−1X∗X∗

(
φN , σ2,N

)
.

Now that we have Uc,model mis ∼MVN(0,ΣUc), we can simulate remeasurement from this

distribution for SIMEX.

2.4 SIMEX for correlated Berkson and Classical Er-

rors

The SIMEX method was introduced by Cook and Stefanski (1994) and the method pro-

vides an approximate general correction for the effect of classical measurement errors on

the estimation of a parameter of interest. SIMEX has two steps: a simulation step (SIM)

where simulated error is added to the mismeasured exposures in increasing amounts, and an

extrapolation step (EX) where a trend is fit to the distribution of parameter estimates over

the increasing error levels and extrapolated back to the case of no error.

Briefly, suppose we observe an exposure with classical measurement error, Wi = Xi+Uc,i

where

Uc,i
iid∼ N (0, σ2

c ). Then in the simulation step, for each λ we can generate psuedo-datasets

r = 1, . . . , R, such that

W
(r)
i (λ) = Wi +

√
λU (r)

c,i , where U
(r)
c,i

iid∼ N(0, σ2
u)

Thus,

E
[
W

(r)
i (λ)|Xi

]
= E[Wi|Xi] +

√
λE[Uc,i] = Xi

and

V ar
[
W

(r)
i (λ)|Xi

]
= V ar[Wi|Xi] + λV ar[Uc,i] = (1 + λ)σ2

u

The key requirement of SIMEX is that the mean squared errorMSE[W(λ)|X] = E[W(λ)|X]→
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0 as λ → −1, which enables us to extrapolate to the case of no error. The conditions that

V ar[W
(r)
i (λ)|Xi]→ 0 and E[W

(r)
i (λ)|Xi]→ Xi ensure the condition that the MSE converges

to 0.

Once we have simulated the B remeasured pseudo-datasets for each λ, we estimate the

parameter of interest for each dataset and average over the B simulations to get an estimate

θ̂(λ). We then fit a trend to θ̂(λ) versus λ, typically using a linear or quadratic model.

The predicted value of this trend at λ = −1 is our estimate of the parameter θ under no

measurement error.

Mixtures of Berkson and classical errors in the independent identically distributed case

are introduced briefly in Carroll et al. (2006), and have also been considered in several

papers under a Bayesian framework.(Mallick et al., 2002; Li et al., 2007) In the uncorrelated

case, both the Berkson errors and the Classical errors are assumed to be independent and

identically distributed by the Normal distribution, with variances σ2
Ub and σ2

Uc respectively.

One could assume that the error variances of σ2
b , σ

2
c are known, but typically in measure-

ment error problems, external validation data with measurements of both the true exposure

and the mismeasured exposure are used to estimate measurement error variances. One key

issue which has been discussed in this setup is the nonidentifiability of the amount of uncer-

tainty that is Berkson versus classical.(Mallick et al., 2002; Li et al., 2007) While external

validation data would allow the estimation of the to total error variance, the relative pro-

portions of Berkson and classical errors cannot be determined. In those studies, the authors

perform sensitivity analyses regarding the percentage of variance assumed to be classical

versus Berkson to deal with the identifiability issue. A SIMEX approach to the iid Normal

verson of this shared uncertainty problem is briefly introduced in Carroll et al. (2006), but

has not been well-studied. Schafer et al. (1999) considers SIMEX for this uncorrelated case,

but mainly focus on separately considering the cases of classical errors and Berkson errors.

We now present an approach to extend the current SIMEX methodology to the case when

the exposures are correlated over space, and the Berkson and classical errors are correlated
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over space as well.

2.4.1 SIMEX for mixtures of correlated classical and Berkson er-

rors

Suppose we consider the latent variable L to be a suitable surrogate for X, since using L

would provide an unbiased estimate of X by Berkson error properties. Then we can require

that as λ→ −1, E[W
(r)
i (λ)|Li]→ Li and V ar[W

(r)
i (λ)|Li]→ 0. Under this scenario, we can

simplify the re-measurement simulation as follows,

W
(r)
i (λ) = Wi +

√
λU (r)

c,i

where Uc ∼ MVN
(
0,Σc

)
. This allows the classical errors to be correlated or uncorrelated

and assumes as usual that Σc is known. This approach is thus analogous to the classical-only

error SIMEX approach.

2.5 Simulation Study

2.5.1 Bias Simulations for Scenario I and II

We conducted a simulation study to explore the degree of bias for different numbers of

monitors. In scenario I, we assume a constant mean model, so all of the exposure variability

comes from the spatially correlated residuals. First, we consider a smooth surface which

would satisfy the smoothness conditions needed in our Taylor expansion. For our Matern

covariance function, we chose a smoothness of κ = 3, and we chose covariance parameters

φ = 0.2 for the range and σ2 = 0.5 for the variance. An example of a surface is shown in

Figure 2.1. The results for this smooth exposure surface for Scenario I are given in Table

2.1. Even for small numbers of monitors, we see no bias.

Next, we consider a rough surface which would not satisfy the smoothness conditions
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Figure 2.1: Example of smooth surface and rough exposure surface with Matern covariance.
This realization is on a (0,1) grid with range φ = 0.2 and variance σ2 = 0.5. The smoother
surface (left) has κ = 3 and the rougher surface (right) has κ = 1.

needed in our Taylor expansion. For our Matern covariance function, we chose a smoothness

of κ = 1, and we chose covariance parameters φ = 0.2 for the range and σ2 = 0.5 for the

variance. An example of a surface is shown in Figure 2.1. The results for this rough exposure

surface for Scenario I are given in Table 2.2.

This is a particularly difficult case to estimate, because we use a small number of monitors

and we have a rough surface. We see a small amount of bias, particularly in the case of only

20 or 30 monitors. Interestingly, the direction of this bias here is upward. This may be

an interesting artifact of using a particularly sparse dataset and a rough surface which is

difficult to estimate.

In Scenario II, we consider a scenario where the spatial covariates have rougher surfaces

and the residual variation is smoother. For our Matern covariance function of the residuals,

we chose a smoothness of κ = 3, and we chose covariance parameters φ = 0.2 for the range

and σ2 = 0.5 for the variance. The results for this smooth exposure surface for Scenario I

are given in Table 2.3.
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Table 2.2: Simulation results for for Scenario III, misspecified model and correction by spatial
SIMEX with different number of monitors m

Scenario m Exposure Bias SD modelSE MSE Coverage

III 50 True 0.000 0.036 0.034 0.001 93.6
III 50 g(θ;X) 0.000 0.036 0.034 0.001 93.6

III 50 g(θ̂N ;X) -0.203 0.182 0.039 0.074 22.2
III 50 spatial SIMEX, linear -0.072 0.211 0.241 0.050 90.6
III 50 spatial SIMEX, quad 0.026 0.254 0.285 0.065 91.9

2.5.2 Simulations for Bias in Scenario III and spatial SIMEX cor-

rection

We conducted a simulation study to evaluate performance of the SIMEX correction method

for correlated Berkson and classical errors. We see that the bias was approximately corrected.

In the supplementary material, we show in Table 2.1 that the naive model parameters in the

exposure model converged approximately to the derivations in Section 3.

Examples of the SIMEX extrapolations for several simulations are shown in a Figure 2.1

in the Supplementary material.

Standard Error estimation when Σc is known

Using the true Σc classical variance from our derivations, we implemented our spatial SIMEX

procedure with a bootstrap standard error estimate. To implement the bootstrap standard

error, for each simulation i, start by implementing SIMEX and extrapolate to β̂SIMEX,i. Then,

for k = 1, ..., 200 bootstrap samples: (1) resample monitor data, (2) fit the initial exposure

model to the monitoring data (3) then repeat the entire SIMEX procedure using these new

predictions. The s.e. estimate for β̂SIMEX,i, is then computed by the standard deviation of

the 200 bootstrap estimates β̂
(k)
SIMEX,i. Table 2.2 shows the results of the implementation

using this standard error estimation.
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Table 2.3: Simulation results for for Scenario III, misspecified model and correction by spatial
SIMEX with crude Σc estimation

Scenario p Exposure Bias SD modelSE MSE Coverage
Misspec I 1.00 beta.x.truex 0.001 0.036 0.034 0.001 93.600
Misspec I 1.00 beta.x.g 0.001 0.036 0.034 0.001 93.600
Misspec I 1.00 beta.x.gNhat -0.200 0.180 0.039 0.072 22.400
Misspec I 1.00 beta.x.SIMEX.linear -0.068 0.213 0.228 0.050 91.260
Misspec I 1.00 beta.x.SIMEX.quad 0.067 0.322 0.336 0.108 87.195
Misspec I 0.90 beta.x.SIMEX.linear -0.075 0.211 0.228 0.050 91.057
Misspec I 0.90 beta.x.SIMEX.quad 0.044 0.308 0.331 0.097 87.805
Misspec I 0.80 beta.x.SIMEX.linear -0.076 0.208 0.227 0.049 91.572
Misspec I 0.80 beta.x.SIMEX.quad 0.028 0.294 0.324 0.087 89.066
Misspec I 0.50 beta.x.SIMEX.linear -0.112 0.200 0.225 0.053 89.634
Misspec I 0.50 beta.x.SIMEX.quad -0.058 0.247 0.304 0.064 91.260

Simulations using crude Σc estimation

We conducted a simulation study to evaluate performance of the SIMEX correction method

when Σc is estimated by cross-validation on held-out monitors. For a set of held-out monitors,

we used the remaining monitors to fit the same misspecified spatial model, and then predicted

the measurement at the held-out monitors. We then fit a spatial model to the set of m held-

out residuals and used that estimate as our Σ̂total. We then used this estimate for Σ̂c in

SIMEX, either directly or by multiplying Σ̂c = pΣ̂total for different proportions of Classical

to Berkson error. We implemented 1-fold, 2-fold, 5-fold, and leave-one-out CV. Increasing

the fold of the CV seemed to make the spatial component of the residuals hard to estimate,

hence we used 1-fold CV.
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2.6 Data Example: Association between air pollution

and low birthweight

We applied our spatial SIMEX method to a study of birthweight and particulate matter ex-

posure during pregnancy in Massachusetts. The objective of the study was to estimate the

association between birthweight and PM2.5 exposure during the second and third trimesters.

The study population included all singleton live births in Massachusetts from the Mas-

sachusetts Birth Registry during 2008 (January 1 to December 31), a total of 70,340 births.

The residential address of each mother at time of birth was geocoded as described in Kloog

et al. (2012).

PM2.5 measurements during 2007 and 2008 were obtained from 40 monitoring sites in

Massachusetts as part of the EPA (Environmental Protection Agency) and IMPROVE (In-

teragency Monitoring of Protected Visual Environments) monitoring networks.(Kloog et al.,

2011)

Individual-level data on the mother and baby were obtained through the Massachusetts

Birth Registry. Confounders included in the health model were maternal age, gestational age,

number of cigarettes smoked during and before pregnancy, chronic conditions of mother or

conditions of pregnancy (lung disease, hypertension, gestational diabetes and non-gestational

diabetes), and socioeconomic measures (mother’s race, mother’s years of education, and the

Kotelchuck index of adequacy of prenatal care utilization (APNCU). Area-level socioeco-

nomic status was controlled by census-tract median household income using data from the

United States Census Bureau of 2000 for each census tract in Massachusetts.

A universal kriging model was assumed, with a Matern covariance structure for the

residuals. The mean function for the kriging model included a linear trend for land use

covariates: distance to level A1 road (primary highway with limited access), distance to

known particulate matter emission source, and average traffic density. Details of these land

use covariates have been described previously.(Kloog et al., 2011) These kriging models
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were fit to the monthly average PM2.5 concentrations at the monitoring sites during 2007

and 2008 and kriging predictions were estimated at the address of each birth. Exposure

during the third trimester of pregnancy was estimated by averaging the monthly PM2.5

concentrations over the 90 days prior to the delivery date. Exposure during the second

trimester of pregnancy was estimated by averaging the monthly PM2.5 concentrations over

the days 91 to 180 prior to the delivery date.

We fit separate linear health effect models using predicted exposure to PM2.5 for the

second trimester and third trimester adjusting for confounders. Without correcting for mea-

surement error, we found negative associations between birthweight and second trimester

exposure to PM2.5 and third trimester exposure to PM2.5. The estimated association with

birthweight, without correcting for measurement error, was -5.04 grams per 1 ug/m3 for

predicted second trimester PM2.5 exposure, 95% confidence interval (−8.02,−2.05). The

estimated association with birthweight was -3.49 grams for a 1 ug/m3 increase in average

PM2.5 exposure during the third trimester, 95%CI : (−6.08,−0.89).

We applied our proposed spatial SIMEX correction method to this data, using 50 SIMEX

remeasurement steps and 50 bootstrap resampling steps (within which 50 SIMEX remea-

surement steps were needed). We used a quadratic extrapolation function and assumed that

80% of the correlated error was classical.

The estimated association between PM2.5 and birthweight when corrected by spatial

SIMEX was -8.06 grams per 1 ug/m3 for predicted second trimester PM2.5 exposure with

95% confidence interval (−8.66,−7.45). The estimated association between PM2.5 and birth-

weight when corrected by spatial SIMEX was -5.07 grams for a 1 ug/m3 increase in average

PM2.5 exposure during the third trimester, 95%CI : (−6.54,−3.61). Figure 2.3 in the Supple-

ment shows both the quadratic and linear extrapolations for the second trimester birthweight

exposure.
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2.7 Discussion and Conclusions

In this paper, we have conducted a bias analysis of several key scenarios in exposure modeling

of air pollution. We have shown that when the exposure model is misspecified by omitting

an important covariate, that can induce notable downward bias. We have proposed a new

spatial SIMEX approach to adjust for bias in the presence of model misspecification. We

demonstrated that this bias due to exposure model misspecification can be approximately

corrected by this spatial SIMEX procedure. We have also shown that in the case of a

correctly specified exposure model, the degree of bias is typically negligible. Hence, this

work has demonstrated that with respect to bias, model misspecification is a much bigger

problem than parameter estimation.

Previous research in this area has suggested that using the plug-in estimator typically

induces little bias, and authors have advocated for using the plug-in estimator to estimate

the effect size and then adjusting the standard errors to account for the additional variability

in using the exposure predictions.(Szpiro et al., 2011; Madsen et al., 2008; Lopiano et al.,

2011; Gryparis et al., 2009) However, those papers investigate bias in simulation studies only

by fitting the correct exposure model used to generate the data. Our findings in Section 3

for the bias of exposure model scenarios I and II are consistent with these previous studies,

as we also found in simulations that the degree of bias is small when the correct exposure

model is specified. In practice, however, the underlying exposure model that generates air

pollution levels in any given region is not exactly known. In addition, current approaches

for correcting the standard errors of estimates also rely on the assumption that the exposure

model is correctly specified.(Szpiro et al., 2011; Madsen et al., 2008) We have approached

this problem using both analytical methods and simulation studies, and we have presented

a much more thorough bias analysis than what has been considered in previous work. In

particular, we have extended to the case of model misspecification, which is important since

exposure models are not believed to be perfect.
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This work also points to a few practical considerations which are important in order to

help with the implementation of this spatial SIMEX method in a realistic setting. As in

other SIMEX procedures, the classical error variance is needed to generate the simulated re-

measurements for the bias correction, and that variance is assumed to be known. In Section

3, we derived the particular form of the classical error variance for scenario III, but in

practice the exact classical error variance would not be known and finding a way to estimate

that variance may be difficult. The other key practical consideration in the estimation of

the classical error variance is the nonidentifiability issue created by the mixture of Berkson

and classical errors. Typically in measurement error problems, external validation data

with measurements of both the true exposure and the mismeasured exposure are used to

estimate the measurement error variance. However, previous studies looking at mixtures

of independent and identically distributed Berkson and classical errors have noted that the

amount of uncertainty that is Berkson versus classical is not identifiable.(Mallick et al., 2002;

Li et al., 2007) While external validation data would allow the estimation of the total error

variance, the relative proportions of Berkson and classical errors cannot be determined. In Li

et al. (2007), the authors perform sensitivity analyses by considering a range of values for the

percentage of variance assumed to be classical versus Berkson to deal with the identifiability

issue.

Our work in this paper points to a number of areas of future research which would

be of interest to advance the understanding of the impacts of model uncertainty in air

pollution exposure estimation and enable straightforward implementation of measurement

error correction methods in epidemiological studies of air pollution and health. First, our

work suggests a need to further examine issues of model misspecification in land use regression

and kriging models for air pollution exposure. We have considered one scenario of how model

misspecification could arise, and we saw that notable bias was induced in that case. Many

other scenarios of model misspecification may also arise, and thus it is important to consider

the sources of model uncertainty and study how those scenarios may induce bias. Second, it
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would be helpful to study the practical issues of the implementation, including methods for

estimating the classical error variance given the issue of identifiability, as mentioned above,

as well as the robustness of spatial SIMEX to incorrect estimation of the classical error

variance.

This work examines aspects of exposure modeling of air pollution for health effect studies

and provides some insight into what are the key sources of model uncertainty which may in-

duce bias in the estimation of health effects. Understanding the impacts of model uncertainty

when constructing land use regression and kriging models is of fundamental importance to

studies of air pollution and health. In particular, these land use regression and kriging mod-

els are becoming widely used in the area of air pollution exposure modeling, and the results

of these epidemiology studies are evaluated by regulatory agencies and ultimately used to

inform policy decisions. If air pollution epidemiology studies employ procedures which bias

the effect estimates in a particular direction, then it is important to correct these biases to

inform correct scientific conclusions about the effects of air pollution.
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2.A Appendix. Details of naive model parameter deriva-

tions

2.A.1 Derivation of naive model mean parameters in scenario III

Here are the details to solve equation (5) for the naive model mean parameters θ1,N =

(α0,N , α1,N). We first rewrite equation (5) as

E
[
ST
NV−1N (X∗ − SNθ1,N)

]
= 0

⇔ E
[
ST
NV−1N X∗

]
= E

[
ST
NV−1N SNθ1,N

]
⇔ E

[
E
{
ST
NV−1N X∗

∣∣S}] = E
[
ST
NV−1N SNθ1,N

]
⇔ E

[
ST
NV−1N S

]
θ1 = E

[
ST
NV−1N SN

]
θ1,N

Written in matrix notation, the last line is

E

 1T
{
V−1N

}
1 1T

{
V−1N

}
S1 1T

{
V−1N

}
S2

ST
1
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V−1N

}
1 ST

1

{
V−1N

}
S1 ST

1

{
V−1N

}
S2




α0

α1

α2



= E

 1T
{
V−1N

}
1 1T

{
V−1N

}
S1

ST
1

{
V−1N

}
1 ST

1

{
V−1N

}
S1


 α0,N

α1,N


Now this is a set of two equations and two unknowns,

aα0 + bα1 + cα2 = aα0,N + bα1,N

bα0 + dα1 + eα2 = bα0,N + dα1,N
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where a, b, c, d, e are defined to be the following expectations

a = E[1T
{
V−1N

}
1] = tr

{
V−1N

}
b = E[1T

{
V−1N

}
S1] = µS1tr

{
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}
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{
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}
S2] = µS2tr
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}
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1
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}
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}
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}
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E
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S2|S2
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= µS11
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}
S2

]
= µS1µS2tr

{
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}
(Note that for term e, we use the property that S1 and S2 are independent. Thus, if S2 were

actually a confounder, this step would be different because we would need the conditional

expecation E[S1|S2]. )

Rearranging terms to solve for α0,N and α1,N ,

α0,N = α0 +
cd− be
ad− b2

· α2

α1,N = α1 +
bc− ae
b2 − ad
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These terms reduce
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Hence, the naive model mean parameters are

α0,N = α0 + µS2α2

α1,N = α1

2.A.2 Derivation of naive variance model parameters in scenario

III

We want to derive the naive model variance parameters θ2,N = (φN , σ
2
N). We solve eqn (6)

for the variance model parameters φN , σ
2
N . Here, we cannot derive closed-form solutions, but

we can derive equations which can be solved numerically.

Using the identity for the expectation of a quadratic form for the random vector [X∗ −

SθN ], We can rewrite the first term of eqn (2) as

E
{[

X∗ − SθN
]T

V−1N
∂VN

∂θ2,l,N
V−1N

[
X∗ − SθN

]}
= E

[
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]T
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V−1N E
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]
+ trace

{
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V−1N Var

[
X∗ − SθN

]}

Computing the expectation and covariance of the random vector [X∗ − SθN ], we have

E
[
X∗ − SθN

]
= E

[
E
[
X∗ − SθN

∣∣S]]
= 0

and

Var
[
X∗ − SθN

]
= ΣX∗X∗(θ2) + θ21µ

2
S1

11T

Then we can plug in those expressions to eqn (6) and compute the iterated expectation to
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get a set of two equations and two unknowns which can be solved numerically.
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3.1 Introduction

There is strong epidemiological evidence that both short-term and long-term exposures to

air pollution are related to cardiovascular morbidity and mortality.(Brook et al., 2010) In

particular, much of the air pollution research shows that exposure to ambient particulate

matter (PM) with aerodynamic diameter≤ 2.5µ/m3 (PM2.5) is associated with many adverse

cardiovascular outcomes. Within a given city region, ambient levels of PM2.5 often vary,

and traffic sources may contribute to this variation.(Brauer et al., 2003; Clougherty et al.,

2008) However, levels of PM2.5 are typically measured only at a small number of stationary

monitoring sites which may only capture a small part of the overall regional heterogeneity.

Because it is not usually feasible to obtain exposure recordings at each study subject’s

residence over an entire study period, researchers often use existing pollution monitoring

networks to gather data on the variability in PM2.5 levels over space, and then build pre-

diction models based on these data that can be used to estimate location-specific exposures

throughout the study region. Thus, spatial modeling of air-pollution levels is becoming

widespread in air pollution epidemiology research. Ordinary kriging (with a constant mean)

and universal kriging (with a mean function that depends on spatial covariates) have been

used to predict PM2.5 exposures and study relationships with health, such as the assessment

of the short-term relationship between PM2.5 and cardiac responses(Liao et al., 2006) and

chronic health effects between PM2.5 and cancer mortality.(Jerrett et al., 2005)

The use of predicted exposures in a health effects analysis is an example of measurement

error because the predicted exposures represent an imperfect surrogate of the true exposure.

The most common use of predicted exposures in a health effects analysis is the direct plug-in

of the individual-specific exposure estimates. This approach treats the exposures as known,

without acknowledgement of the uncertainty in the prediction process. In general, ignoring

this exposure measurement error can lead to biased health effect estimates and overstated

confidence in the resulting risk assessments.(Carroll et al., 2006; Gryparis et al., 2009)
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The degree to which this exposure measurement error may be affecting health effect

analyses is largely unknown because of inherent lack of validation data to study such an

issue. In particular, a complete spatial picture has not been available. Cross-validation

methods can be used to assess model prediction performance only at the small number

of locations where monitoring data is available. These assessments of prediction error in

the exposure modeling stage do not necessarily translate into knowledge of the impact of

measurement error on the health effect estimates.

In the statistical literature, simulation studies have been primarily used to assess the

degree of bias and variance corrections needed, and to evaluate the performance of statistical

measurement error correction strategies. A number of papers have found in simulation

studies that direct use of the predicted exposures often induces little to no bias.(Szpiro

et al., 2011b; Madsen et al., 2008; Lopiano et al., 2011; Gryparis et al., 2009) However, those

simulation studies only use known exposure surfaces and fit the correct exposure model used

to generate the data. In real data scenarios, the actual performance of the naive plug-in

estimator, the degree to which bias and variance adjustments need to be made, and the

performance of the current adjustment methods is largely unknown. It is important to

identify situations where the plug-in estimator may be unbiased versus situations where

both a bias and variance adjustment may be necessary.

A gold standard for the fine-scale spatial distribution of air pollution throughout an entire

region has never previously been available. Satellite data on aerosol optical depth (AOD)

is now readily available and can be calibrated to reflect PM2.5 concentrations.(Kloog et al.,

2011, 2012b) We propose that calibrated high-resolution satellite data could be viewed as a

“silver standard” of comparison to evaluate the use of spatial air pollution predictions.

In this study, we investigate the practical implications for what happens when modeling

real air pollution surfaces. We study the effects of measurement error on health effect

estimates via a simulation study based on high resolution satellite data, where the true

exposure surface is represented by calibrated satellite AOD data.
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3.2 Materials and Methods

3.2.1 Satellite AOD Data.

Daily spectral AOD data was obtained from the Moderate Resolution Imaging Spectrora-

diometer (MODIS) on the Terra and Aqua satellites for the year 2003. Further details about

MODIS satellite aerosol data retrieval and validation have been published previously.(Remer

et al., 2005; Levy et al., 2007) The daily data are freely available online through the NASA

Web site.(NASA, 2012)

For this study, MODIS level 2 files from the Terra and Aqua satellites were obtained at

the spatial resolution of 1 km × 1 km at nadir. Daily values of AOD were assigned to the

grid cell where the AOD retrieval centroid was located. One feature of the AOD data is that

some of the grid-specific AOD values are missing on some days due to cloud cover or snow

cover.(Kloog et al., 2011) Thus, the spatial coverage of the AOD data varies considerably by

day.

3.2.2 Air Pollution Monitors.

Data for daily PM2.5 mass concentrations across New England (see Figure 3.1) for the year

2003 were obtained from the U.S. Environmental Protection Agency (EPA) Air Quality

System (AQS) database as well as the IMPROVE (Interagency Monitoring of Protected

Visual Environments) network. IMPROVE monitor sites are located in national parks and

wilderness areas while EPA monitoring sites are located across New England including urban

areas such as downtown Boston. There were 72 monitors with unique locations operating in

New England during the study period.
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3.2.3 Spatial and Temporal Covariates.

Spatial covariates included major roads, point emissions and area emissions. Data on the

density of major roads was based on A1 roads (hard surface highways including Interstate

and U.S. numbered highways, primary State routes, and all controlled access highways)

data obtained through the US census 2000 topologically integrated geographic encoding and

referencing system. Because the distributions of major roads were highly right-skewed, they

were log transformed.

Temporal covariates included wind speed, humidity, visibility, height of the planetary

boundary layer. All meteorological variables (temperature, wind speed, humidity, visibility)

were obtained through the national climatic data center (NCDC). Further details on spatial

and temporal covariates are given in Kloog et al. (2011) and Kloog et al. (2012b).

3.2.4 Calibration of AOD.

A description of the method used to calibrate the AOD values to represent PM2.5 concen-

trations is given in Kloog et al. (2011) and Kloog et al. (2012b). Briefly, the relationship

between PM2.5 and AOD at the monitoring sites was modeled using a mixed-effects regres-

sion model where PM2.5 was the dependent variable and AOD was a predictor. The model

included spatial covariates for major roads, point emissions and area emissions, and temporal

covariates for wind speed, visibility, height of the planetary boundary layer, with interactions

between AOD and random intercepts for each day.

Kloog et al. (2011) also includes a third stage of modeling which imputes PM2.5 at the

missing AOD locations. In this study, we restricted to only days with ample AOD present to

leverage the observed spatial variability in the data and minimize the use of known land-use

regression models.
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3.2.5 Simulation setup.

A simulation study was conducted to assess the performance of kriging and land use regres-

sion methods on a realistic representation of an air pollution surface. Separate simulation

studies were conducted to consider studies of chronic health effects due to long-term air

pollution exposures and acute health effects due to short-term air pollution exposures.

We considered two types of health effect models: a binary health outcome and a continu-

ous health outcome. A linear regression health model was assumed for the continuous health

outcome, where the outcome depends linearly on the exposure. For the binary health out-

come, a logistic regression health model was assumed, where the outcome depends linearly

on the exposure through a logit link function. No other confounding variables were included

in the health model. We explored exposure models with four different covariance models

(Matern function with different levels of smoothness, indexed by κ). We also contrasted

two settings for the number of monitors where m = 100 is the realistic setting (although

still higher than the actual number of monitors in this region during the study period), and

m = 500 to represent a unrealistic “best case scenario” with much more spatial coverage to

help highlight the problems due to sample size vs the problems due to model misspecification.

We restricted our simulation studies to the 32 days such that at least 50,000 grid-cells of

AOD data were available from the satellite.

Chronic Effects Simulation

To emulate the setting of a health study of the chronic effects of particulate matter, we

generated a chronic exposure surface by averaging the calibrated PM2.5 data at each grid-

cell over the 32 days of exposure. In this scenario, all subjects’ exposures were sampled from

this one common exposure surface. Thus, the spatial variability of the surface provided the

only variability in the exposures of different subjects.

For each simulation, we generated 500 subjects’ exposure and outcome measurements.

76



To assign the exposure, we first generated each subjects’ residential location by population

density. Population density sampling was approximated by using the geocoded locations

of births during 2003 from a previous study.(Kloog et al., 2012a) We then assigned the

corresponding calibrated PM2.5 value at the subjects’ residential location as the exposure.

The health outcome was generated to depend on the assigned exposure using the chosen

health model type with no confounders. The monitor locations were chosen by a random

uniform distribution across the exposure surface, and the corresponding calibrated PM2.5

value at the monitor location was used as the observed exposure. Using the measured

exposure at the monitor locations, the kriging or land use model was fit to the data and

chronic exposure predictions were generated at the residential locations of the subjects. The

predicted exposures were then fit to the health outcomes to estimate the association.

Acute Effects Simulation

We designed our acute effects simulation to mimic the setting of a health study of the short-

term effects of particulate matter. Using the 32 days of calibrated PM2.5, we considered

the exposure period of interest to be one day of PM2.5 exposure. For each simulation, we

generated 1,000 subjects’ residential location by randomly sampling the day of the exposure

and then sampling the health locations by population density, as in the chronic simulation.

Once the date and grid-cell were randomly chosen, we assigned the corresponding calibrated

PM2.5 exposure at the grid-cell. The health outcomes were generated to depend on the

assigned exposure using the chosen health model type with no confounders. We simulated

1000 subjects per simulation so that there were approximately 30 subjects sampled from each

of the 32 days. The monitor locations were chosen by a random uniform distribution across

the exposure surface, and the corresponding daily calibrated PM2.5 value at the monitor

location was used as the observed exposure for each day. Using the measured exposure at

the monitor locations, the kriging or land use model was fit to the data by day and exposure

predictions were generated for each day at the residential locations of the subjects. The
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predicted exposures were then fit to the health outcomes to estimate the association.

3.3 Results

The average daily PM2.5 levels from the calibrated AOD data ranged from 1.98µg/m3 to

16.82µg/m3, with a mean of 7.47µg/m3. The PM2.5 levels on all days at all locations ranged

from 0.002µg/m3 to 20.0µg/m3. Between-day variability accounted for 92% of the total

variation in PM2.5 while the within-day variability accounted for 8% of the total variation

in PM2.5 levels. A table summarizing the daily mean, SD, and number of grid-cells for the

PM2.5 concentrations for each of the 32 days used in the study is given in the Supplementary

Material section. Figure 3.1 shows the PM2.5 levels for one date, Sept 10, 2003, and the

PM2.5 levels for the chronic average surface.

Figure 3.1: PM2.5 concentrations with satellite grid-cells at 1km x 1km resolution for (a) one
day September 10, 2003, (b) chronic average surface.

The results for the simulations of chronic effects of air pollution are shown in Tables 3.1

and 3.2, where Table 3.1 shows the results for a a linear model relating chronic air pollution

exposure to a continuous health outcome, and Table 3.2 shows the results for a logistic model

relating chronic air pollution exposure to a binary health outcome.
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Table 3.1: Linear regression health effects with chronic exposure to air pollution, fit using
(i) the true exposure, (ii) the predicted exposures using kriging model with constant mean,
and (iii) a kriging model with land use terms.

Scenario κ m mean β empir SE model SE MSE Coverage
Chronic, True X 1.001 0.029 0.030 0.001 95.1
Chronic, 0.5 100 1.602 0.871 0.181 1.121 31.0
Kriging only 1.0 100 1.541 0.846 0.163 1.008 31.8

2.0 100 1.530 0.763 0.555 0.863 32.5
3.0 100 1.533 0.775 0.529 0.885 32.7
0.5 500 1.240 0.202 0.084 0.098 35.0
1.0 500 1.232 0.204 0.086 0.096 37.9
2.0 500 1.221 0.208 0.088 0.092 40.9
3.0 500 1.213 0.208 0.088 0.089 42.3

Chronic, 0.5 100 1.051 0.141 0.047 0.023 47.4
land use 1.0 100 1.045 0.143 0.047 0.022 47.6

2.0 100 1.042 0.144 0.047 0.022 48.0
3.0 100 1.042 0.144 0.048 0.022 47.4
0.5 500 1.014 0.077 0.038 0.006 67.9
1.0 500 1.013 0.078 0.038 0.006 68.0
2.0 500 1.013 0.079 0.038 0.006 68.0
3.0 500 1.012 0.079 0.038 0.006 68.3

Compared to using the true chronic exposure, the kriging only models have notable

upward bias and highly inflated empirical standard errors. We see this pattern in both the

linear and logistic health effects models. The magnitude of the bias does not seem to vary

by κ, the degree of smoothness of the assumed surface, yet the bias does diminish some

when the number of monitors, m, increases. There is substantial under-coverage by the

naive confidence intervals in the linear model, due to both the bias and the discrepancy

between the naive model-based standard error and the empirical standard error. The naive

standard error in the logistic model better reflects the empirical standard error, and despite

the problems with bias in the logistic model, there is only slight under-coverage by the 95%

confidence intervals when m = 100.

In both the linear and logistic health effect models, there was notable improvement in

terms of both bias and standard errors in the universal kriging model which included two
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Table 3.2: Logistic regression health effects with chronic exposure to air pollution, fit using
(i) the true exposure, (ii) the predicted exposures using kriging model with constant mean,
and (iii) a kriging model with land use terms.

Scenario κ m OR empir SE (β) model SE (β) MSE (β) Coverage
Chronic, true X 2.028 0.167 0.165 0.028 95.2
Chronic, 0.5 100 2.573 0.770 0.514 0.656 89.3
Kriging only 1.0 100 2.526 0.955 0.469 0.966 89.8

2.0 100 2.503 0.696 1.380 0.534 90.6
3.0 100 2.492 0.671 1.415 0.498 90.0
0.5 500 2.170 0.293 0.284 0.092 94.8
1.0 500 2.148 0.296 0.287 0.092 95.2
2.0 500 2.119 0.298 0.289 0.092 94.9
3.0 500 2.104 0.299 0.289 0.092 95.2

Chronic, 0.5 100 2.111 0.270 0.228 0.076 91.0
land use 1.0 100 2.093 0.267 0.226 0.073 90.9

2.0 100 2.088 0.263 0.226 0.071 91.4
3.0 100 2.086 0.266 0.226 0.072 91.2
0.5 500 2.076 0.215 0.196 0.047 93.8
1.0 500 2.073 0.216 0.196 0.048 93.8
2.0 500 2.072 0.216 0.196 0.048 93.7
3.0 500 2.071 0.216 0.196 0.048 93.7

land use terms. These models exhibited only slight upward bias in the health effect estimates,

although there was still significant under-coverage in the linear health effect model.

The results for the simulations of acute effects of air pollution are shown in Tables 3.3

and 3.4, where Table 3.3 shows the results for a linear model relating acute air pollution

exposure to a continuous health outcome, and Table 3.4 shows the results for a logistic model

relating acute air pollution exposure to a binary health outcome.

In the linear health effects setting, the kriging only models show no bias and only slightly

inflated empirical standard errors compared to using the true acute exposure. Similarly, in

the logistic health effects setting, the kriging only models show slight downward bias and no

inflation of the empirical standard errors compared to using the true acute exposure.

In contrast, there was considerable downward bias and inflation of empirical standard

errors in both the linear and logistic health effect setting for the spatial-temporal model with
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Table 3.3: Linear regression health effects with acute exposure to air pollution, fit using (i)
the true exposure, (ii) the predicted exposures using kriging model with constant mean, and
(iii) a kriging model with land use terms.

Scenario κ m mean β empir SE model SE MSE Coverage
Acute, True X 1.000 0.006 0.006 0.000 95.2
Acute, kriging only 0.5 100 1.021 0.016 0.013 0.001 61.2

1.0 100 1.020 0.017 0.013 0.001 61.6
2.0 100 1.020 0.017 0.013 0.001 62.0
3.0 100 1.020 0.017 0.013 0.001 63.6
0.5 500 1.024 0.012 0.011 0.001 41.8
1.0 500 1.024 0.013 0.011 0.001 43.2
2.0 500 1.024 0.013 0.011 0.001 44.3
3.0 500 1.023 0.012 0.011 0.001 46.4

Acute, land use 0.5 100 0.451 0.068 0.023 0.307 0.0
1.0 100 0.411 0.074 0.023 0.353 0.0
2.0 100 0.365 0.078 0.023 0.410 0.0
3.0 100 0.343 0.080 0.023 0.438 0.0
0.5 500 0.641 0.036 0.021 0.130 0.0
1.0 500 0.629 0.035 0.021 0.139 0.0
2.0 500 0.607 0.035 0.022 0.155 0.0
3.0 500 0.592 0.039 0.022 0.168 0.0

universal kriging which included both temporal and spatial land use terms. In addition, there

was no coverage of the true effect by the naive confidence intervals in either the linear or

the logistic setting, due to both the bias and the discrepancy between the naive model-based

standard error and the empirical standard error.

3.4 Discussion

In this study, we found that there may be substantial bias of health effect estimates in models

using exposures predicted by kriging or land use regression. We found that the direction of

bias may be either toward or away from the null, and the degree of bias varies by the type

of study, with some exposure predictions working well in certain situations. We also found

substantial under-coverage where the true effect was often not included in the naive 95%
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Table 3.4: Logistic regression health effects with acute exposure to air pollution, fit using
(i) the true exposure, (ii) the predicted exposures using kriging model with constant mean,
and (iii) a kriging model with land use terms.

Scenario κ m OR empir SE (β) model SE (β) MSE (β) Coverage
Acute, True X 2.000 0.050 0.050 0.002 95.2
Acute, kriging 0.5 100 1.884 0.045 0.045 0.006 70.6

1.0 100 1.885 0.047 0.046 0.006 69.2
2.0 100 1.888 0.048 0.046 0.006 68.8
3.0 100 1.889 0.048 0.046 0.006 70.4
0.5 500 1.926 0.047 0.047 0.004 83.8
1.0 500 1.923 0.047 0.046 0.004 82.6
2.0 500 1.924 0.045 0.046 0.004 84.4
3.0 500 1.920 0.046 0.046 0.004 82.3

Acute, land use 0.5 100 1.261 0.041 0.020 0.214 0.0
1.0 100 1.234 0.042 0.019 0.235 0.0
2.0 100 1.204 0.042 0.018 0.260 0.0
3.0 100 1.190 0.042 0.017 0.271 0.0
0.5 500 1.435 0.039 0.027 0.112 0.0
1.0 500 1.414 0.037 0.026 0.122 0.0
2.0 500 1.414 0.037 0.025 0.122 0.0
3.0 500 1.376 0.038 0.025 0.141 0.0

confidence interval. We gained these insights into the spatial variability of PM2.5 predictions

by using high-resolution satellite data on aerosol optical depth, which were calibrated to

reflect PM2.5 concentrations.

In the chronic simulations where spatial variability provided the only source of variation

in the exposures, kriging alone was insufficient to model and predict exposures. However,

when only two land-use regression terms were added, the degree of bias was substantially

decreased. This demonstrates that not all types of model misspecification lead to substantial

bias in health effect estimates; we know that the chronic land use model with two land use

terms and spatial covariance is not the true model, yet it performs relatively well. On the

other hand, we still observe 4−5% upward bias in when using these chronic land use exposure

models in the realistic setting of m = 100 monitors.

The most surprising result is that in the acute setting, the daily kriging model worked
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well yet the model incorporating spatial and temporal covariates performed very poorly.

The success of the kriging models in this setting is most likely related to the aforementioned

fact that in the acute model, 92% of the variability of the true exposure is temporal, while

only 8% of the variability is spatial. A recent brief report suggests that predicted exposures

with higher R2 in the exposure model may not always improve the quality of health effect

estimates.(Szpiro et al., 2011a)

Interestingly, the overall performance of simulations did not vary by the covariance model

chosen, as evidenced by similar results in each setting across varying κ. Note that κ = 0.5

corresponds to the exponential covariance structure. Hence, the choice of spatial covariance

model may not play a strong role in the effectiveness of using exposure predictions in health

effect analyses.

Other statistical studies assessing performance of kriging and land use regression models

have not considered real surfaces which may not behave like smooth surfaces. In the current

literature, authors have found in simulation studies that direct use of exposure predictions

in health effects models often induces little to no bias.(Szpiro et al., 2011b; Madsen et al.,

2008; Lopiano et al., 2011; Gryparis et al., 2009) However, those papers investigate bias

in simulation studies only by fitting the correct exposure model used to generate the data.

Madsen et al. (2008) and Szpiro et al. (2011b) assume smooth exposure surfaces that can be

fit well using kriging methods, finding no need for bias correction, thus the papers focus on

ways to estimate standard errors instead.

The issue of model misspecification in spatial exposure models has not been a focus of

previous statistical research in the area of measurement error in air pollution epidemiology.

The results of this simulation study suggest a direction of future statistical research needed

to understand the implications of mis-specifying exposure models, to provide appropriate

diagnostic procedures, and to implement effective measurement error correction strategies.
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Limitations

Any simulation study of this nature will need to make some decisions about how to setup

the simulations. Thus, there will always be some limitation of not considering every possible

scenario one might think of. However, we have attempted to provide a range of simulations

with varying degrees of temporal and spatial variability.

There are many other potential sources of measurement error in air pollution epidemiol-

ogy studies not considered here. Zeger et al. (2000) provides a framework for considering a

number of sources of exposure measurement error in air pollution research. We also assumed

no confounding to fully distinguish the problems stemming from the measurement error in-

herent in exposure modeling from the issue of confounding. The combination of misspecified

exposure models and incomplete control for confounding variables may introduce different

problems and is not yet known.

The days in which AOD measurements are more complete represent days which are more

sunny and the ground has less snow cover. Hence these days are not a representative sample

of all days throughout the year. Thus, other days which are more cloudy may have a different

spatial distribution due to differences in the height of the planetary boundary layer and other

factors.

This study does not suggest that satellite calibrated AOD measurements are a perfect

measure of true air pollution exposure. Rather, this study uses the daily satellite calibrated

AOD measurements as representations of spatial variability in daily exposure surfaces of

PM2.5 to better understand how kriging may perform in a real life setting. Without the

availability of considerably more spatial coverage of air pollution monitoring data, the ques-

tion of how well satellite calibrated AOD measurement reflect true spatial variation in PM2.5

exposures may be difficult to evaluate.

There remains no gold standard for the entire fine-scale spatial distribution of particulate

matter throughout a region. While this study can lend insight into potential performance of

kriging, land use regression, and spatio-temporal modeling by using a more realistic repre-
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sentation of a regional PM2.5 surface, it is not generalizable to all possible true air pollution

surfaces. Rather, these simulations serve as examples of potential impacts kriging and land

use regression may perform better or worse.

Overall, this simulation study uses high-resolution satellite data to provide several set-

tings with realistic exposure surfaces, and suggests that (i) kriging and land use regression

models sometimes work well in health effect models but sometimes introduce substantial bi-

ases, (ii) the success in using modeled exposures varies by the spatial and temporal properties

of the underlying data, and (iii) future statistical research is needed to better understand

and deal with these issues.
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Supplementary Figures and Tables.

Table 4.5: Exposure parameters in naive misspecified model.

Parameter True value True model Naive model, Naive model
Mean empirical SE theoretical Mean empirical SE

α0 2.0 1.992 0.390 1.5 1.460 0.556
α1 1.0 0.999 0.016 1.0 1.002 0.181
α2 1.0 1.000 0.006 0.0 0.0 0.0
φ 0.2 0.194 0.026 0.14 0.100 0.058
σ2 0.5 0.457 0.270 0.56 0.602 0.531
κ 3.0 3.0 0.0 3.0 3.0 0.0

Table 4.6: Mean and Standard Deviation of PM2.5 concentration and number of 1km satellite
gridpoints for each day in simulations.

Date Mean SD n Date Mean SD n

01/01/03 10.38 1.53 57,414 09/10/03 5.08 1.07 66,861
04/17/03 5.45 0.85 54,198 09/11/03 5.48 1.25 52,165
04/25/03 5.1 0.85 61,725 09/17/03 6.38 1.22 57,939
04/28/03 10.04 1.19 63,447 10/03/03 2.6 0.79 63,958
05/03/03 3.89 0.97 63,476 10/07/03 8.74 0.99 62,323
05/17/03 5.73 1.13 66,254 10/08/03 16.82 1.29 51,517
05/18/03 6.57 1.25 58,435 10/11/03 15.58 1.72 52,055
05/19/03 8.18 1.22 68,243 10/13/03 4.78 1.06 66,377
06/17/03 3.51 1.26 60,201 10/30/03 6.55 0.94 50,036
06/23/03 8.25 1.54 51,392 11/08/03 3.74 0.75 61,573
06/24/03 16.34 2.08 59,135 11/09/03 5.99 0.87 66,142
08/20/03 14.07 1.21 54,960 11/10/03 10.88 1.22 60,781
08/23/03 4.45 0.97 66,140 11/14/03 2.36 1 50,385
08/24/03 1.98 0.86 64,550 11/15/03 3.64 0.85 62,221
09/07/03 5.66 1.12 61,196 11/24/03 10.67 1.71 56,299
09/08/03 4.61 1.43 50,006 11/27/03 15.73 1.59 60,641

89



-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sim  1

Lambda

M
ea

n 
B

et
a 

bo
ot

st
ra

p

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sim  2

Lambda

M
ea

n 
B

et
a 

bo
ot

st
ra

p

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sim  3

Lambda

M
ea

n 
B

et
a 

bo
ot

st
ra

p

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sim  4

Lambda

M
ea

n 
B

et
a 

bo
ot

st
ra

p

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sim  5

Lambda

M
ea

n 
B

et
a 

bo
ot

st
ra

p

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sim  6

Lambda

M
ea

n 
B

et
a 

bo
ot

st
ra

p

Figure 4.2: Examples of spatial SIMEX Extrapolations for six simulations.

Table 4.7: Results for sensitivity analysis in linear regression health effects with acute expo-
sure to air pollution, fit using a kriging model with land use terms.

Scenario k m Beta empirical SE model SE MSE Coverage
True X 1.000 0.005 0.006 0.000 95.6
Acute, land use 0.5 100 1.081 0.034 0.010 0.008 0.8
Acute, land use 1.0 100 1.110 0.047 0.011 0.014 0.6
Acute, land use 2.0 100 1.134 0.056 0.011 0.021 0.4
Acute, land use 3.0 100 1.145 0.060 0.012 0.025 0.4

Table 4.8: Results for sensitivity analysis in logistic regression health effects with acute
exposure to air pollution, fit using a kriging model with land use terms.

Scenario k m OR empirical SE model SE MSE Coverage
True X 2.000 0.050 0.050 0.002 95.2
Acute, land use 0.5 100 2.078 0.057 0.053 0.005 90.2
Acute, land use 1.0 100 2.124 0.065 0.054 0.008 82.0
Acute, land use 2.0 100 2.165 0.073 0.056 0.012 72.4
Acute, land use 3.0 100 2.184 0.077 0.057 0.014 68.4
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Figure 4.3: Spatial SIMEX Extrapolation for birthweight data.
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