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Abstract 
Do higher wages elicit reciprocity and lead to increased productivity? In a field 
experiment with 266 employees, we find that paying higher wages, per se, does not have 
a discernible effect on productivity in a context with no future employment opportunities. 
However, structuring a portion of the wage as a clear and unexpected gift—by offering 
an unconditional raise after the employee has accepted the contract—leads to higher 
productivity for the duration of the job. Gifts are roughly as efficient as hiring more 
workers.  
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1. Introduction 

Economists have long recognized that employees are often paid more than the market 

clearing wage, and that unemployed workers do not bid wages down to the point where 

supply equals demand. The neoclassical explanation for this phenomenon comes in the 

form of efficiency wage theories, which generally argue that employees will work harder 

when they receive high wages because they do not want to lose a high-paying job (Katz 

1986). This type of mechanism relies on repeated interactions between employers and 

employees. In one-time jobs without any consideration for future employment, the 

neoclassical model would argue that efficiency wages do not increase productivity. 

At the same time, a robust literature based in psychology and behavioral economics 

demonstrates that people care about fairness, and that fairness considerations may create 

incentives for reciprocation. If you give a gift to someone, that person might reciprocate – 

even in a one-shot game with no potential for future interaction (Gouldner, 1960; 

Cialdini, 1993; Berg et al. 1995, Fehr and Gächter 2000, Pillutla et al. 2003, Falk et al. 

2008). This principle has been implemented in field settings as well. For example, Falk 

(2007) shows that including a small gift in a fundraising letter leads to higher donation 

levels.  

In the context of labor economics, fairness concerns and reciprocity have been 

offered as an explanation for efficiency wages (Akerlof 1982, Akerlof and Yellen 1990, 

Fehr et al. 2009). If employees view high wages as a gift, then they may reciprocate by 

working harder, even though there is no financial incentive to do so. The thrust of this 

argument is that the market wage serves as a reference point, and employees will reward 

positive deviations from this reference point—even in a one-shot employment contract 

with no career concerns. 

Do employees work harder when they are paid more? Laboratory experiments have 

mostly shown that paying an unconditional bonus before the work starts causes workers 

to reciprocate by working harder (e.g. Fehr et al. 1993, Fehr and Gächter 2000, Hannan et 

al. 2002, Charness 2004). In seminal work in the field, Gneezy and List (2006) look at 

two field settings, hiring roughly 40 workers to test whether paying higher-than market-

wages increases output in a library data entry task and in door-to-door fundraising. 

Specifically, Gneezy and List compare the output of workers assigned to a “gift” 
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treatment, (in which workers are hired at a low wage and then offered a raise immediately 

before starting work), with the output of workers assigned to a “non-gift” treatment, (in 

which workers are hired at and paid the low wage). They find that workers who receive 

the “gift” (i.e., the additional money) exert higher productivity for the first few hours of 

the task; in their setting, the temporary increase in productivity does not justify its cost.  

Since then, there has been mixed evidence on the relevance of gift exchange in 

different contexts. Hennig-Schmidt et al. (2010), Kube et al. (2012, 2013), Al-Ubaydli et 

al. (2015), and concurrent but independent work by Esteves-Sorenson and Macera (2013) 

all find that gifts have mild to no effects when hiring undergraduate students for field 

experiments. However, looking at a tree-planting firm, Bellemare and Shearer (2009) find 

that a one-day, unexpected gift leads to an increase in productivity. Cohn et al. 

(forthcoming) also find evidence in favor of gift exchange—but only when employees 

view the initial wage as being unfairly low. Looking at managers in a large multinational, 

Ockenfels et al. (forthcoming) find that bonuses that fall behind natural reference points 

lead to lower job satisfaction and performance. There is an open question about the extent 

to which all of these effects persist. 

However, because this prior research has not varied the base wage, the set-up cannot 

identify whether reciprocity is triggered because the higher wages are above the market 

rate  or because the higher wages are salient to workers who unexpectedly receive the gift 

after having already agreed to a job. In other words, wage amount (high vs. low) is 

confounded with wage structure (salient gift vs. no gift) in the prior literature. In this 

paper, we offer a large-scale gift exchange experiment in a field setting where we vary 

both whether or not a worker receives an unexpected raise before starting work, as well 

as the base wage offered to potential hires. This subtle difference allows us to 

differentiate between the impact of salient “gifts” on performance and the impact of 

above-market wages on performance.  

Our results show that the way in which a wage is structured (and not simply its level) 

may be essential to generating reciprocity. In our study, hiring at and paying workers a 

high wage ($4) leads to no increase in productivity; i.e. it results in an economically 

identical and statistically indistinguishable amount of productivity relative to hiring at 

and paying workers a lower wage ($3). However, hiring workers at a lower wage and 
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then offering them an unexpected raise ($3+$1) significantly increases performance. 

Common models of reciprocity in labor markets (e.g., Akerlof 1982, Akerlof and Yellen 

1990) assume that high wages alone are the determinant of reciprocation, but these 

models do not differentiate between our 3+1 and 4 offers. To our knowledge, field 

experiments have similarly not differentiated between these two treatments.   

Our experiment takes place on oDesk, an online labor market with several million 

registered contractors. Using the oDesk platform allows us to vary wages and gifts in a 

setting where workers are accustomed to tasks like ours. Because we conduct a natural 

field experiment, the employees do not know that they are part of an experiment. Indeed, 

the oDesk platform is a powerful setting for an experiment like ours because using it 

allows us to compare and control for the entire oDesk work histories of our employees. 

Furthermore, the oDesk marketplace allows us to conduct targeted hiring by directly 

inviting workers to take up our job instead of simply posting a job publicly and waiting 

for applications. This means we are able to hire workers at different base wages (without 

individuals knowing how much others have been paid) so that we can test whether it is 

the base wage amount or the salience of the gift that affects performance. Normally, 

selection would be a concern when hiring at different wages, but we are able to address 

the potential for selection through the combination of high take up rates (the take up rate 

in our study is 95% among workers with prior experience), comparison of characteristics 

across treatments for job takers (they are not significantly different), and a conservative 

robustness test which we will discuss later.  

Our experimental design, which we describe in more detail in the next section, 

proceeds by hiring three groups of oDesk workers for a data entry task, all of whom have 

requested wages of less than $3 per hour according to their oDesk profiles. We are clear 

in our recruitment messages that this is a one-time job. The first group is hired at $3 per 

hour (i.e., the “3” condition). The second group is also hired at $3 per hour, but before 

starting work, workers in this group are told that we unexpectedly have extra money in 

the budget and will pay an extra $1 per hour, so that the total they will receive is $4 per 

hour (“3+1”). The third group is hired directly at $4 per hour, so the fact that we are 

paying them the higher (above-market) wage does not signal a “gift” in a salient way 

(“4”). To increase the validity of the results, we choose a data entry task (entering 
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CAPTCHAs, to be described in more detail later) that is fairly common in online labor 

markets, and we only recruit workers who self-report data entry as a specialty on their 

oDesk profiles.  

Consistent with the notion of reciprocity, we find that higher wages that include a 

salient gift (3+1) lead to higher and more persistent productivity across our task relative 

to the other two groups (3 and 4). Specifically, paying $3+$1 yields a 20% increase in 

productivity compared to paying $4, with no additional cost. Compared to paying $3, 

paying $3+$1 results in a 20% increase in productivity with a 33% increase in cost. 

Notably, we find that varying the base wage from $3 to $4 in the original contract has no 

statistically distinguishable effect on productivity—in fact, the point estimate of the effect 

is 0. To our knowledge, our experiment is the first to include the high base wage (4) 

condition, allowing us to better understand the extent to which salience of (vs. merely 

offering) a gift drives reciprocity. 

In addition to our main results, we also find suggestive (i.e., economically large but 

not statistically significant) evidence that the effect is largest for those workers for whom 

the +1 gift may have been most salient (e.g., experienced employees, who are familiar 

with the typical wage structure on oDesk). These effects remain for the duration of the 

task. 

Altogether, our results suggest that unexpected gifts (3+1) can increase productivity, 

even relative to offering the same above-market wages (4) at the time of hiring. One 

possible explanation for our results is the model of Hart and Moore (2008), which argues 

that contracts (in this case, for $3 or $4) set a strong reference point for employees—and 

that deviations from this reference point are viewed as fair or unfair, thus triggering 

reciprocity. The extent to which these effects persist is an empirical question that requires 

further study.  

Our paper proceeds as follows. In Section 2, we outline our experimental design. In 

Section 3, we present our findings, and in Section 4 we conclude. 

 

2. Experimental Design 

Our experimental methodology proceeded in two steps. First, we selected a sample of 

oDesk workers, randomized those workers across treatments, and invited the treated 
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workers to accept our job. Second, treated workers who responded were sent a link to a 

website where they could complete our data entry task. For workers in the 3+1 condition, 

this message also provided notification of a change—a $1 per hour increase—in their 

wages. This section describes the sample, the treatment conditions, and the task itself in 

more detail. 

 

2.1 Sample 

We began our sample selection by restricting the universe of oDesk workers to those 

who claim to specialize in data entry. In particular, we required that (a) worker profiles 

are returned by a keyword search for “data entry” and (b) workers classify themselves as 

Administrative Support workers with a Data Entry specialty.4 Next, we further restricted 

the sample to workers that list a requested hourly wage of between $2.22 and $3.33. 

Since oDesk charges workers a 10% fee on gross earnings, this restriction amounts to 

requiring that workers request net wages between $2 and $3 per hour.  

It is relatively easy for someone to create an oDesk profile, regardless of whether they 

actually plan to seek work on oDesk, so in an attempt to select only serious candidates we 

further restricted the sample by requiring that workers had (1) logged into oDesk within 

the last 30 days and (2) were listed as “oDesk ready,” which means they had passed a 

multiple choice exam that tested their knowledge of the oDesk interface. Finally, to 

ensure workers were autonomous and not making decisions within a larger organization, 

we required that workers were listed as independent contractors, meaning they were 

unaffiliated with a company.  

A total of 17,482 workers satisfied these joint criteria at the time of data collection. 

From this set of workers, we randomly selected 540 workers and allocated them 

randomly across our 3 treatments.5 Panel A of Figure 1 presents the initial recruitment 

messages with which we invited selected workers to take up our task. Of the 540 workers 

we invited to take up our task, 266 accepted our job offers. We exclude 36 of these 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 We note that oDesk specialties are self-reported, so neither of these two restrictions required a worker to 
actually have any experience in data entry on the oDesk platform (or elsewhere). 
5 We oversampled the $3 per hour treatment because those workers participated in a separate exercise, 
independent of this experiment, which took place after this experiment was completed. 
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workers due to a technical glitch described below, so our final sample is comprised of 

230 workers. Notably, among workers with prior experience, our take up rate was 95%.  

 

2.2 Treatments 

 As we discussed above, we randomized workers into three treatment groups. 

Workers in two of the treatment groups were initially offered $3 per hour, while workers 

in the third group were initially offered $4 per hour. (Technically, we would pay $3.33 

and $4.44, respectively, because 10% of gross wages go to oDesk. For simplicity, we 

refer to wages in net terms throughout the paper.)  

We refer to the two groups of workers who had been offered $3 per hour as the 

“no gift” (3) and “salient gift” (3+1) treatments, and we call the $4 per hour treatment the 

“gift” condition. After accepting our job offer, workers in all treatments were reminded 

of the task instructions and presented with a link to a webpage where the task was 

located. Workers in the salient gift treatment (3+1) were additionally notified in the same 

message that we “have a bigger budget than expected … [and that] we will pay … $4 per 

hour instead of $3 per hour.” 6 Panel B of Figure 1 presents the messages we sent to 

workers to let them know we had agreed to hire them, and Figure 2 summarizes the 

experimental set up. 

Before proceeding, we note that although it is difficult to ascertain what 

constitutes the market wage for a specific task at a particular point in time, even our 

lowest offer of $3 per hour appears generous compared with wages paid to our workers in 

their prior roles on oDesk. Figure 3 presents a histogram of the average prior wage earned 

by experienced workers invited to take up our task.7 The graph shows that prior wages 

are roughly normally distributed, with a peak in the density just below the median of 

$1.52 per hour. For 97% of workers, average prior wages fall below $3 per hour. Since 

looking only to each worker’s average prior wage might disguise variance in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This message was phrased so as not to emphasize any sacrifice the firm was making in paying a higher 
wage, nor to emphasize our desire that a worker reciprocate. However, our design does not allow us to 
analyze the impact of the specific wording of this message. 
7 The picture is nearly identical for the subset of workers who accept our job: as we show below, only 5% 
of experienced workers do not accept our offer of employment. Our focus on prior wages instead of 
requested wages is motivated primarily by the fact that requested wages are self-reported and thus difficult 
to interpret. Moreover, there is little variation in the distribution of requested wages: requested wages in our 
sample are essentially bimodal, with 79% of workers requesting either $2 or $3 per hour. 
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underlying wages, we also compute the average percentage of prior jobs held which paid, 

respectively, at least $3 and $4 per hour. After weighting jobs by hours worked, on 

average, only 5.3% of prior jobs paid at least $3 per hour, and only 1.7% of prior jobs 

paid at least $4 per hour.8 We infer that our task was likely highly desirable even at our 

lowest wage of $3 per hour; this is consistent with our high take up rates (particularly 

among experienced workers), discussed below. 

 

2.3 Task 

As we explained in our initial recruitment messages, the task we presented to 

workers asked them to correctly enter as many CAPTCHAs as possible in the four hours 

allotted. Figure 4 presents a screenshot of the task itself, as seen by workers. CAPTCHA 

is an acronym for “Completely Automated Public Turing test to tell Computers and 

Humans Apart,” which is a system that asks you to transcribe a word or phrase that is 

presented to you as a picture. Many online companies use CAPTCHAs to prevent 

automated software from easily accessing information or making decisions without a 

human being involved. For example, Ticketmaster® requires potential buyers to enter a 

CAPTCHA before purchasing tickets in order to stop a person from using a program that 

repeatedly buys tickets (which is something that a scalper might otherwise do). In online 

labor markets such as oDesk, there is a high level of demand for people to do data entry 

(and in fact, even specifically to enter CAPTCHAs), which means that our task would 

come across as a reasonably natural request. Importantly, CAPTCHA entry requires 

effort, but has a straightforward and simple output (correctly entered CAPTCHAs), 

giving employees sufficient opportunity to “repay the gift”, all factors that Englmaier and 

Leider (2012) and Kessler (2013) find are crucial for gift exchange to occur. 

 

2.4 Experimental Validity 

Before proceeding to our main findings, we analyze how worker characteristics 

are related to treatment and job take up.9 Throughout, we exclude results from 12 workers 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 These percentages decrease slightly to 3.8% and 1.6%, respectively, if we compute the overall percentage 
of prior jobs held that pay at least $3 or $4 per hour as opposed to the within-worker statistics being 
averaged across workers. 
9 We remind the reader that we did not stratify the sample on any characteristics. 
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who did not complete the 4 hours of work, as well as 24 workers in the initial wave who 

were able to complete more than 4 hours of work due to a technical glitch that allowed 

them to exceed the time limit.10 Thus, of the 540 workers invited to take up our task, we 

are left with 230, all of whom are included in our analysis.  

Table 1 presents the results. In Panel A, we first present a base set of statistics for 

all workers, and then in Panel B we present an extended set of statistics which are 

available only for the subsample of experienced workers (i.e., those with at least one 

prior job). We separately focus on experienced workers because they exhibit much higher 

take up rates, provide more data for analyses, and have greater familiarity with tasks and 

wages on oDesk relative to inexperienced workers. Within each panel, the first set of 

three columns presents statistics on key characteristics (e.g., number of prior jobs), 

separated by treatment group, for those who did not accept our job offer. The second set 

of three columns in each panel presents analogous statistics for those who did accept. The 

statistics presented are the mean of a characteristic by subgroup, and then below, in 

parentheses, the p-value from a T-test comparing the values of a subgroup’s covariate 

with the same covariate of the analogous “3” subgroup. Our main empirical analysis 

focuses on the productivity of employees who accepted our job offers, so our objective in 

this analysis is to verify both that the treatment groups are balanced, and that there is no 

apparent selection among employees who accepted our job offers.  

Although our overall take up rate is 46%, job acceptance rates and other worker 

characteristics are similar across treatment groups. Overall, about two thirds of job takers 

are experienced, and the take up rate is 95% among workers with prior experience and 

22% among inexperienced workers.11 The only notable difference across the three groups 

of job takers (which is still not statistically significant) is that the number of prior jobs is 

lower in the 4 group than in the 3+1 and 3 groups. Probing more closely, we see that this 

is due in combination to the fact that an (insignificantly) larger percentage of takers in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 There was no statistically distinguishable difference across the three treatment groups in the likelihood of 
an employee working for more or less than 4 hours; we exclude these workers because allowing employees 
to work for different lengths of time makes it harder to compare total productivity across employees. 
However, including results for these workers does not change our baseline results; see Appendix 1. 
11 In an oDesk experiment that uses a similar pool of data entry workers to analyze the impact of reviews on 
future hiring, Pallais (2014) also finds that experienced workers are more likely to take up jobs. However, 
the divergence is less extreme in her context: she respectively finds that 54% and 33% of experienced and 
inexperienced workers accept her job offers. 
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4 group are inexperienced and also to the fact that experienced takers in the 4 group 

themselves have (insignificantly) fewer prior jobs. The former could be a cause for 

concern but, as we show below, our results are actually most pronounced for experienced 

workers – and are robust to only analyzing experienced workers.  Moreover, it seems 

unlikely that the latter feature (insignificantly fewer prior jobs among experienced 

workers in the 4 group) is biasing our results, given that the difference is relatively small 

and that take up rates among experienced workers are all close to 100%. Thus, in 

aggregate, the data support the validity of our experimental design.12 Finally, to further 

ensure that selection is not driving results, we show below that our main results are robust 

to a conservative test where we code all non-takers as having completed 0 CAPTCHAs.  

 

3. Results 

This section presents the results of our experiment. We first discuss the main 

effect and its persistence, and then analyze how the effect varies with worker 

characteristics. 

 

3.1 Main Effect: 3+1 > 4 

The gift exchange literature has posited that high wages elicit reciprocity, which 

could in turn rationalize above-market wages even in the context of unrepeated 

employment. This suggests that market wages might be a reference point and that paying 

more would elicit higher productivity. In this case, our 4 and 3+1 conditions should elicit 

the same response, which would be higher than the 3 condition. To our knowledge, we 

are the first to include something akin to our “4” treatment, which allows us to shed light 

on the conditions under which we should expect workers to reciprocate high wages.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 We note that two characteristics in the sample of “experienced workers who did not take up the job” are 
actually statistically significantly different across treatment groups. However, we believe this is not a cause 
for concern, given this subgroup’s exceptionally small sample size—each treatment in this subgroup is 
composed of three or fewer workers. Nevertheless, as an additional robustness check against selective take 
up, we repeat the analysis in Table 1 (in which we compare characteristics across treatments) but this time 
pool the 3 and 3+1 treatments since these treatments were hired at the same wage. For brevity, we exclude 
the results here, but none of the differences between the pooled treatments hired at $3 per hour and the 
treatment hired at $4 per hour are statistically significant at the 10% level. 
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Figure 5 presents the main effect graphically, and column (1) of Table 2 presents 

it in regression form. In particular, column (1) of Table 2 presents results from a 

regression of the total number of correctly completed CAPTCHAs on a constant and 

dummies for treatments 3+1 and 4, respectively (so all estimates are relative to the 3 

group). The figure and the table both show that the respective numbers of CAPTCHAs 

correctly completed by the 3 and 4 groups are nearly identical, and we cannot reject the 

hypothesis that they are the same. There are two potential explanations for this result. 

One possible explanation is that, as modeled by Hart and Moore (2008), contracts (in this 

case 3 or 4) determine the reference point, which is viewed as neither fair nor unfair and 

hence does not elicit reciprocity. An alternative possibility is that because both wages are 

generously above the prior wages of employees, both elicit extra effort relative to the 

amount an employee would have worked at an even lower wage. In this interpretation, 

there is reciprocity—but it diminishes with the size of the gift, so that the fourth dollar 

does not increase it any further.  

Our main finding is that the 3+1 group correctly entered 146 more CAPTCHAs 

relative to both groups over the course of the task (a 20% increase), and this result is 

statistically significant at the 5% level. Column (2) shows the results are unchanged if the 

number of completed correct CAPTCHAs is specified in log form, while in column (3), 

we show that the treatment effect measured in number of correct CAPTCHAs entered is 

not due to a change in the ratio of correct to incorrect entries. Overall, high wages elicit 

more effort when the wage is structured such that the gift component is made salient 

(e.g., by presenting it separately, as in this study). Paying $4 elicits the same amount of 

productivity as paying $3, but not the same as $3+$1. 

Although our sample is balanced on observables and take up rates were similar 

across all treatments (see Table 1), we conduct an additional robustness check to verify 

that our “3+1 > 4” result is not driven by selection induced by the fact that different 

treatments are hired at different wages. That is, a potential explanation for 4’s worse 

performance relative to 3+1 is that negative-sorting led less-able workers to refuse the job 

invitation for $3 per hour (into the 3+1 treatment), but those same kinds of workers did 

accept the job invitation for $4 per hour. Such a scenario could lead us to falsely 

conclude that 3+1>4, when really selection was driving the result. To test whether 
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negative selective take up is driving our result, we run a regression where all non-takers 

are coded as having completed 0 CAPTCHAs and all takers are coded normally. If the 

differential yield is driving our result, and the incentive provided by 4 is actually 

equivalent to that provided by 3+1, then 4 should perform at least as well as 3+1 in this 

regression. This should be the case because this new specification estimates the average 

treatment effect conditional on job invitation, instead of the average treatment effect 

conditional on job take up. The results are reported in column (2) of Appendix Table 1. 

The 3+1 treatment still performs better than 4, and the difference remains statistically 

significant at the 10% level. We conclude that our results are not driven by selection.   

Aside from the fact that we observe 3+1>4, the extent to which our salient gift 

treatment outperforms the no-gift treatment (3+1>3) contrasts with Gneezy and List 

(2006), Hennig-Schmidt et al. (2010), Kube et al. (2012), and concurrent but independent 

work by Esteves-Sorenson and Macera (2013), all of whom find that gifts have mild to no 

effects when hiring undergraduate students for field experiments (although, Kube et al. 

(2012) find that nonfinancial gifts do have a significant effect). Our result is consistent 

with Paarsch and Shearer (2009) and Cohn et al. (forthcoming), who find that raises in 

pay lead to higher effort. As we mentioned above, one possible factor contributing to this 

difference is the fact that in all of these settings, workers presumably had little or no 

experience with the task they were assigned. As a consequence, they likely had weak 

prior beliefs about the task, typical wage levels, and how wages would be presented, 

which may have reduced the salience—and hence, influence—of any gifts received.  

Overall, these results suggest that the extent to which a gift is salient—i.e., not 

just “what you pay,” but “how you pay”—could have important implications for the 

extent to which gift exchange occurs. We next examine the persistence of the main effect, 

and then in Section 3.3, we explore how the impact of the salient gift interacts with 

worker characteristics, which might further accentuate the salience of the “salient gift” 

condition.  

 

3.2 Persistence of the Effect 

 The final column in Table 2 examines how the treatments impacted worker 

performance over the course of the 4-hour task. Our database recorded the timestamp of 
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every CAPTCHA entry, allowing us to examine the time series of responses. We gave 

workers one week to complete the task, and workers were not required to complete the 4-

hour task in a single (uninterrupted) session.13 In order to analyze the persistence of 

performance, we break the time series of entries into four quarters by first truncating any 

gaps between CAPTCHA entry that are longer than 10 minutes to just 10 minutes, and 

then breaking the total time between the first and the last CAPTCHA entry (with 

truncated breaks) into four equal blocks of time.14 Thus, each block of time represents 

one quarter of the time a worker spent working on our task, or roughly one hour, although 

the sum of the four quarters is not exactly four hours because of the way we truncate 

large gaps between CAPTCHA entries. The dependent variable in this regression, then, is 

the number of correct CAPTCHAs entered in each quarter by each worker (so 

observations are at the worker-quarter level; we cluster standard errors by worker).  

The interacted treatment-quarter coefficients show that that the workers in the 3+1 

salient gift treatment completed an average of 30 to 40 more correct CAPTCHAs in each 

quarter of the task relative to the 3 group, and three of the four coefficients are significant 

at the 5% level. Meanwhile, output for workers in the 4 group is not statistically 

distinguishable from output for workers in the 3 group for any of the quarters. To 

examine the effect of 3+1 relative to 4 over the course of the experiment, we present in 

the bottom panel of Table 2 the difference of the treatment-quarter estimates. The salient 

gift treatment consistently outperforms the 4 treatment in all quarters by 30 to 40 

CAPTCHAs.  

We infer from these results that the salient gift treatment increased productivity 

across the length of the task—i.e., four hours of work spread over as much as a week. 

While our results do not speak to the longer-run persistence of the effects of a single gift, 

they do show that the impact of a gift is not always as ephemeral as some of the previous 

evidence has suggested.  

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 oDesk’s platform logged and billed employers for the hours a worker was logged into oDesk’s task-
specific interface. Employers were given the option of specifying a time limit, which, in our case, was set 
to 4 hours. 
14 We chose 10 minutes as a natural length of time to use for truncation because the oDesk platform verifies 
its workers’ focus by taking randomly-timed screenshots, and 10 minutes is the stated approximate time 
between screenshots. Thus, a break longer than 10 minutes is likely to represent true time away from the 
task. 
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3.3 Supplementary Analysis: Exploring the Role of Worker Characteristics 

 Our main results show that high wages increase productivity only when it is 

salient that the wage is high. In this section, we explore how the impact of the salient gift 

varies with worker characteristics. One might expect that the impact of the salient gift 

would be higher for workers who have more familiarity with how wages are typically 

structured (i.e., without gifts) in this context. For example, workers with prior oDesk 

experience may be more influenced than those who have not used oDesk before. Before 

turning to the results, we note that the sample sizes analyzed in this section are relatively 

small, so while the results are suggestive, the differences-in-differences across 

demographic cuts are not statistically significant at conventional levels.  

 Table 3 shows the mean number of correctly completed CAPTCHAs and its 

standard error, organized horizontally by treatment (3, 3+1, and 4) and demographic 

category (e.g., experienced vs. inexperienced), and vertically by different demographic 

sub-groups (e.g., different levels of experience). Panel A presents results for all workers 

while Panel B presents results for experienced workers only, and stars denote 

significance of treatments 3 and 4 relative to the relevant 3+1 group. The table shows that 

the estimated effect is indeed most pronounced for employees with characteristics 

associated with strong priors: it is strongest for experienced employees and, among 

experienced employees, those with more prior jobs, and those who have worked most 

recently. The implications of these results differ from (but are not inconsistent with) the 

findings of Cohn et al. (forthcoming), who find that gifts can have real effects on 

productivity, but they are most effective for workers who perceive the base wage as 

unfair. Since our wages are all well above historical wages (as discussed in Section 2.2), 

it seems unlikely that any of our workers feel like they are being unfairly underpaid. At 

the same time, judgments of fairness are still relevant to our results in that a strictly 

selfish worker would not be expected to work harder in the 3+1 group. 

The final set of estimates suggests the salient gift’s generosity appears to play a 

role as well: the estimated effect is largest for workers with the lowest prior wages (but 

the difference in effect size is not statistically significant). An effect of this magnitude 

actually suggests that for the workers who previously earned wages below the median of 

our sample, the 3+1 treatment is more efficient than the 3 treatment in terms of 
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CAPTCHA completions per dollar expenditure. The $1 per hour gift (3+1) increased 

average CAPTCHA completion from 723 to 1,112 for this group, a 54% increase in 

productivity, at a cost increase of only 33%. In other words, for a subset of (targetable) 

employees, the 3+1 wage structure is more efficient than both the 3 and the 4 wage 

structures. (Our main results had earlier shown that 3+1 is efficient relative to 4.) 

 

4. Discussion 

We find that providing employees with an unexpected pay increase can increase 

productivity—even when there is no prospect for future employment. However, high 

wages that actually look like the types of efficiency wages we usually see in the field had 

no discernable effect. In other words, employees exhibit more reciprocity when the gift is 

more salient. Taken in aggregate, this suggests that “how you pay” can be as important as 

“what you pay.” In this section, we further discuss the managerial implications of our 

results, as well as limitations of our work and areas for future research. 

Overall, our findings demonstrate that managers face a tradeoff in deciding 

whether to increase output by hiring more employees or by giving gifts to existing 

employees. The elasticity that we measure implies that a company that cares only about 

productivity would approximately break even between hiring more employees and giving 

gifts to a smaller set of employees. This raises the possibility that targeted gifts may be 

efficient in some environments and not in others.  

In thinking through the design of gifts in compensation packages, managers may 

want to consider which types of employees that are most responsive to gifts, and the 

contexts in which gifts are most likely to be salient. To this end,	  Englmaier and Leider 

(2012) and Kessler (2013) explore factors that predict when reciprocity in labor markets 

is likely to occur (e.g., how much a manager benefits from worker effort, and the 

complexity of the task). 

Managers should also consider the characteristics of a gift that will make it most 

salient (e.g. the gift’s unexpected nature, its being labeled more conspicuously, or the 

amount of publicity it will garner). For example, our findings suggest that firms that are 

looking to be more generous to employees might benefit from “labeling” the high wages 

and other gifts that they give to employees, rather than simply assuming that employees 
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are correctly inferring the intention behind a wage. To see how an organization might go 

about labeling gifts, consider the recent decision by the popular clothing store Gap® to 

raise its minimum wage offered to U.S. employees to a rate that exceeds local and 

national standards. 15  Many employees are now earning a wage that is above the 

minimum, and above that offered by neighboring stores. When an employee is hired, Gap 

could simply state the starting wage in an offer letter, and assume that the employee 

knows that this is generous. Alternatively, Gap could include a few lines in the letter 

explaining to the employee that the offered wage is in fact higher than a competitor 

analysis would dictate, but that the company wants to treat its employees well and pay a 

fair living wage. Our findings suggest that this type of discussion could increase 

performance.  

Our findings additionally suggest that the timing of a gift factors into gift salience. 

In an organizational context, firms might find that a bonus that is given independently 

may be more powerful than one that is included in a standard paycheck. Likewise, our 

findings suggest the same gift may be more or less salient to certain types of employees 

based on their prior expectations: a gift that is quite unprecedented in size or type may 

have a greater effect on employees with greater tenure than on those who are new to the 

organization. Meanwhile, the impact on productivity may erode over time for gifts that 

show up each year at the same time (e.g., a holiday bonus). 

 Altogether, our results provide new evidence that “how” employers pay affects 

productivity. Consistent with Roth (2002)’s description of the “economist as engineer,” 

understanding how to structure wages more effectively—in particular, beyond the 

teachings of the neoclassical model—presents a promising direction for continued future 

research.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 http://www.nytimes.com/2014/02/20/business/gap-to-raise-minimum-hourly-pay.html?_r=0 
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Figure 1: Job offer messages 
Panel A. Recruitment messages 

All treatments 
We are currently looking to hire a group of people to help with simple data entry. The job 
consists of looking at a photograph of a word, and typing that word into the space 
provided. This is a four-hour job, with the goal of entering as much data as possible while 
minimizing the number of mistakes. Specifically, we need as many correctly entered 
words as possible in four hours because we need the data for a future task and only 
correct entries can be used. You will have seven days to complete the task. 
 
You will be paid $3 ($4) per hour. Therefore, your total payment for the four hours will 
be $12 ($16). We hope you will accept this job. 
 
 
 

Panel B. Acceptance messages 
Treatments: 3 & 4 
Great, you are hired.  
 
By the way, we want you to know that this is a one time job; we do not expect to have 
more work in the future. 
 
Below, you will find a link to a page where you will do the data entry. As we mentioned, 
the job consists of looking at a photograph of a word, and typing that word into the space 
provided. Please enter words for four hours, after which you will be ineligible to receive 
further pay. Finally, please take no more than a week. We will not accept work done 
more than seven days after you receive this assignment. 
 
Link to job: here 
 
 
Treatment: 3+1 
Great, you are hired. As it turns out, we have a bigger budget than expected. Therefore, 
we will pay you $4 per hour instead of $3 per hour, so the total you can earn is $16.  
 
By the way, we want you to know that this is a one time job; we do not expect to have 
more work in the future. 
 
Below, you will find a link to a page where you will do the data entry. As we mentioned, 
the job consists of looking at a photograph of a word, and typing that word into the space 
provided. Please enter words for four hours, after which you will be ineligible to receive 
further pay. Finally, please take no more than a week. We will not accept work done 
more than seven days after you receive this assignment. 
 
Link to job: here 
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Figure 2: Experimental design 

 
 

 
 
 

 
Figure 3: Distribution of prior wages 

 
Notes: This figure presents a histogram of average prior wages. The sample is all invited workers, restricted 
(by necessity) to those with prior experience. 
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Figure 4: CAPTCHA task 
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Figure 5: The gift leads to higher productivity than either high or low base wages 

 
Notes: This figure shows our main result. Thick bars present means and confidence bands present one 
standard error relative to the mean.  
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Table 1: Comparing worker characteristics across treatments 

 
Notes: This table presents characteristics of workers invited to take up our job, split into workers that did 
not take up the job (first set of three columns) and workers that did take up the job (second set of three 
columns). Panel A analyzes characteristics for all workers, while Panel B examines experienced workers 
only. Means are presented in the first row, while the second row presents p-values from T-tests comparing 
respective characteristics in a given sub-sample with those of the analogous 3 treatment. The sample sizes 
in the calculation of average prior wage for takers in the 3, 4, and 3+1 treatments are respectively 66, 30, 
and 33, because some experienced workers had only fixed-price prior jobs. Similarly, the sample sizes in 
the calculation of average prior rating for takers in the 3, 4, and 3+1 treatments are respectively 72, 38, and 
37, because some experienced workers’ first and only contract was ongoing at the time of the experiment. 
 
  

3 3+1 4 3 3+1 4

Experienced 0.021 0.048 0.029 0.691 0.69 0.629
(0.301) (0.752) (0.987) (0.409)

Number of prior jobs 0.162 0.238 1 8.082 7.397 4.548
(0.881) (0.0901) (0.719) (0.0593)

Wage requested 2.646 2.678 2.666 2.741 2.738 2.815
(0.675) (0.795) (0.972) (0.343)

N 142 63 69 110 58 62
N taker / N invited - - - 44% 48% 47%

3 3+1 4 3 3+1 4

Number of prior jobs 7.667 5 34.50 11.70 10.72 7.231
(0.757) (0.0322) (0.703) (0.0842)

Wage requested 3.053 2.777 2.775 2.761 2.750 2.882
(0.585) (0.623) (0.909) (0.212)

Average prior wage 1.769 1.494 2.233 1.706 1.957 1.908
(0.716) (0.586) (0.191) (0.308)

Average prior rating 4.957 4.503 4.615 4.565 4.548 4.495
(0.285) (0.456) (0.913) (0.646)

Worked in last 30 days 0.333 0 1 0.447 0.525 0.410
(0.314) (0.102) (0.429) (0.708)

N 3 3 2 76 40 39
N taker / N invited - - - 96% 93% 95%

Panel A. All workers

Panel B. Experienced workers

Did not take up the job Took up the job

Did not take up the job Took up the job
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Table 2: Performance 

 
Notes: This table presents our main results. Column 1 analyzes the number of correct CAPTCHAs by 
treatment, and column 2 does the same but where the outcome is in logs instead of levels. The outcome in 
column 3 is the percentage of CAPTCHAs that were correct, and column 4 presents results from a panel 
regression where the outcome is the number of correct CAPTCHAs completed by each worker in each 
quarter of their work. For ease of interpretation, the bottom panel presents treatment effects of 3+1 relative 
to 4. All standard errors are robust, and standard errors for column 4 are clustered at the worker level. *** 
p<0.01, ** p<0.05, * p<0.1.   

(1) (2) (3) (4)
Correct Log correct Percentage correct Correct per quarter

Wage = 3 omitted omitted omitted omitted

Wage = 3 + 1 146.4** 0.286*** 1.224 omitted
(67.93) (0.100) (1.433)

Wage = 4 -0.397 0.0726 0.427 omitted
(58.03) (0.116) (1.384)

Quarter = 1 omitted

Quarter = 2 18.28***
(5.108)

Quarter = 3 12.15*
(6.946)

Quarter = 4 10.12
(6.408)

Wage = 3 + 1 x Quarter 1 32.97**
(16.23)

Wage = 3 + 1 x Quarter 2 30.81
(18.94)

Wage = 3 + 1 x Quarter 3 39.15**
(19.77)

Wage = 3 + 1 x Quarter 4 43.49**
(19.15)

Wage = 4 x Quarter 1 0.528
(14.33)

Wage = 4 x Quarter 2 -9.318
(15.32)

Wage = 4 x Quarter 3 -1.359
(16.14)

Wage = 4 x Quarter 4 9.168
(16.06)

Constant 792.1*** 6.467*** 84.11*** 186.9***
(39.82) (0.0830) (1.045) (9.884)

N 230 230 230 920
Adjusted R-squared 0.017 0.017 -0.006 0.0014

Effect of 3+1 relative to 4: 146.8** 0.214** 0.797
[Wage = 3 + 1] - [Wage = 4] (69.36) (0.990) (1.335)

Effect of 3+1 relative to 4 by quarter:
[Wage = 3 + 1 x Quarter 1] - [Wage = 4 x Quarter 1] 32.44*

(16.54)
[Wage = 3 + 1 x Quarter 2] - [Wage = 4 x Quarter 2] 40.13**

(18.56)
[Wage = 3 + 1 x Quarter 3] - [Wage = 4 x Quarter 3] 40.51**

(20.22)
[Wage = 3 + 1 x Quarter 4] - [Wage = 4 x Quarter 4] 34.32*

(20.50)
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Table 3: Performance and worker characteristics 

 
Notes: This table analyzes how the number of correct CAPTCHAs varies with worker characteristics. Each 
set of statistics presents means and standard errors by treatment (listed at the top of the table) and sub-
sample. Panel A presents results for all workers while Panel B restricts the sample to experienced workers 
only. The median number of prior jobs is 6 and the median prior wage is $1.50 per hour. ** and * 
respectively denote statistical significance at the 5% and 10% levels of the 3+1 and 4 treatments relative to 
the 3 treatment (in the same sub-sample). 
 	  

Treatment 3 3+1 4 3 3+1 4

Mean 834.4 861.8 734 773.1 973.0** 825.7
Std. error (73.74) (76.39) (74.58) (47.29) (72.13) (50.81)

N 34 18 23 76 40 39

Mean 693.9 891.0 841.2 827.7 1055.1* 807.7
Std. error (75.58) (93.73) (60.36) (59.91) (108.9) (86.40)

N 31 20 21 45 20 18

Mean 807.7 928.6 862.7 730.5 1013.2** 772.7
Std. error (66.35) (76.13) (70.93) (67.13) (120.2) (70.80)

N 42 19 23 34 21 16

Mean 722.9 1111.6** 700.8 869.5 952.3 816.7
Std. error (65.85) (147.9) (84.06) (72.59) (78.76) (83.02)

N 35 16 12 31 17 18

Panel A. All workers

No experience Experience

Did not work in last 30 days Worked in last 30 days

Panel B. Experienced workers

Average prior wage < median Average prior wage ≥ median

Number of prior jobs < median Number of prior jobs ≥ median
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Appendix 1: Robustness 

 
Notes: This table analyzes the potential for selection in our analysis. Column 1 repeats the baseline analysis 
presented in the first column of Table 2, but includes results for the 36 workers who did not complete 
exactly 4 hours of work due to a technical glitch. Column 2 does the same but additionally includes the 274 
workers who did not accept our job offer (these workers are coded as having completed 0 CAPTCHAs). 
Robust standard errors are presented in parentheses, ** p<0.05, * p<0.1.   

(1) (2)
Correct Correct

Wage = 3 omitted omitted

Wage = 3 + 1 161.6** 133.4**
(64.20) (56.98)

Wage = 4 4.724 18.16
(55.56) (48.83)

Constant 771.3*** 364.1***
(37.57) (29.45)

Sample taker                      
+ excluded         

taker                      
+ excluded            
+ non-taker

156.9** 115.2*
(66.22) ( 62.43)

N 266 540
Adjusted R-squared 0.022 0.009

Effect of 3+1 relative to 4:                    
[Wage = 3 + 1] - [Wage = 4]


