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ABSTRACT Recent investigations of semiconductor nanowires have provided strong evidence 

for enhanced light absorption, which has been attributed to nanowire structures functioning as 

optical cavities. Precise synthetic control of nanowire parameters including chemical 

composition and morphology has also led to dramatic modulation of absorption properties. Here 

we report finite-difference time-domain (FDTD) simulations for silicon (Si) nanowire cavities to 

elucidate the key factors that determine enhanced light absorption. The FDTD simulations 

revealed that a crystalline Si nanowire with an embedded 20-nm-thick amorphous Si shell yields 

40% enhancement of absorption as compared to a homogeneous crystalline Si nanowire, under 

air-mass 1.5 global solar spectrum for wavelengths between 280 and 1000 nm. Such a large 
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enhancement in absorption results from localization of several resonant modes within the 

amorphous Si shell. A nanowire with a rectangular cross section exhibited enhanced absorption 

at specific wavelengths with respect to a hexagonal nanowire. The pronounced absorption peaks 

were assigned to resonant modes with a high symmetry that red-shifted with increasing size of 

the rectangular nanowire. We extended our studies to investigate the optical properties of single- 

and multi-layer arrays of these horizontally-oriented nanowire building blocks. The absorption 

efficiency of a nanowire stack increases with the number of nanowire layers, and was found to 

be greater than that of a bulk structure or even a single nanowire of equivalent thickness. Lastly, 

we found that a single-layer nanowire array preserves the structured absorption spectrum of a 

single nanowire and ascribed this result to a diffraction effect of the periodic nanowire array. The 

results from these provide insight to the design of nanowire optical cavities with tunable and 

enhanced light absorption, and thus could help enable the development of ultra-thin solar cells 

and other nanoscale optoelectronic devices. 

  

The small mode volume, localized resonant modes and long photon lifetimes of 

subwavelength nanowire (NW) cavities have enabled diverse optoelectronic applications, 

including ultrasmall light sources,1–5 dielectric or plasmonic waveguides,6–9 and highly sensitive 

optical probes.10–11 In addition, semiconductor NW photovoltaics (PV) are emerging as a 

promising platform for the next generation solar cells that require a high efficiency at costs 

approaching grid parity.12–19 In particular, p/i/n core-shell NWs demonstrate electrical and 

optical properties distinct from conventional planar materials: radial minority carrier separation 

with short diffusion lengths, and enhanced light absorption resulting from the cavities’ 

subwavelength size.12–14 Recently, crystalline Si NW PVs have been successfully demonstrated, 
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exhibiting good electrical characteristics as represented by an open-circuit voltage of ~0.5V and 

very low leakage current of 1 fA.13 Nevertheless, their relatively low reported current density 

(JSC) of ~7 mA/cm2 motivates further investigation into strategies for significantly enhancing 

absorption and corresponding JSC.   

 Several groups have investigated the interaction of light with individual NWs.12–14,17,20–27 

For example, absorption or scattering cross sections have been estimated qualitatively,17,20–23 

while in other works wavelength-dependent photocurrent measurements performed on single 

NW PV devices were used to assign quantitatively the resonances of NW optical cavities.13–15 

Concurrent with experiments, numerical and analytical calculations of the resonant modes and 

key optical figures of merit (e.g. absorption efficiency and scattering cross section) for NW 

optical cavities have been reported.13,14,20,21,24–27 However, systematic studies of design rules for 

enhancing and tuning light absorption at broad-range wavelengths in NWs and their assembled 

structures have not been reported. In this study, we address these issues in Si NWs with 

modulated material compositions and cross-sectional geometries using numerical simulations, 

and moreover, elucidate the optical properties of single- and multi-layer arrays assembled the 

NW building blocks.  

 To accurately describe the optical resonances of NW cavities, we performed three-

dimensional (3D) finite-difference time-domain (FDTD) calculations. Simulations based on 

analytical Lorentz-Mie theory and numerical full-field electromagnetic methods have verified 

experiments and enabled detailed understanding of light-matter interaction in nanoscale optical 

systems.13,14,20,21 Lorentz-Mie theory provides fast and asymptotic solutions of NW optical cavity 

properties, but is restricted to symmetric structures bounded by a homogeneous medium.20,28 In 

contrast, full-field electromagnetic simulations such as FDTD are not restricted by any 
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geometrical constraints and can therefore simulate an experimental NW system with greater 

accuracy.13,14,21,29 

 In our FDTD simulations, a plane wave with a specific wavelength and polarization 

(transverse-electric (TE) or transverse-magnetic (TM)) is normally incident to a NW or bulk 

structure, as shown in Fig. 1 (Methods). The size of NWs used in this study is between 150 to 

400 nm. Such subwavelength cavities are characterized by two distinct optical features: highly-

confined resonant modes and an optical antenna effect (Fig. 1a). In contrast, bulk cavities sustain 

only one-dimensional (1D) Fabry-Perot modes with progressively increasing number of anti-

nodes through the material (Fig. 1b). In this study, we reveal how the distinct optical properties 

of Si NWs can be harnessed to improve absorption efficiency.  

 

Figure 1. Schematic illustrations showing the interaction between a normally incident plane 

wave and (a) a NW or (b) a bulk structure. 

 

RESULTS AND DISCUSSION 

 Light absorption in core-shell Si NWs. Figure 2a is a representative schematic of the 

core-shell p/i/n Si NW PV devices studied previously.12–14 During illumination by normally 

incident plane wave, photons couple to specific resonant modes in the NW cavity. These photons 

are subsequently absorbed by the Si and converted to charge carriers within the embedded p-n 
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junction (inset, Fig. 2a). To understand the resonance behavior of NW cavities as a function of 

the wavelength of incident light, absorption spectra were obtained from FDTD simulations. We 

examined core-shell NWs homogeneously composed of either crystalline Si (c-Si) or amorphous 

Si (a-Si).30 Comparing the absorption spectrum of the c-Si NW to that of the a-Si NW with a c-Si 

core (d=80 nm) reveals several key features that identify how material absorption influences 

optical resonances in NWs (Fig. 2b). First, the a-Si NW with a c-Si core (solid red, Fig. 2b) has 

greater absorption efficiency than the c-Si NW (solid black, Fig. 2b) over the entire spectral 

range except for wavelengths below 450 nm. Second, the spectrum of the a-Si NW with a c-Si 

core is less structured than that of the c-Si NW. To explain this distinction, we obtained the 

absorption profiles for both NW structures at a wavelength of 460 nm (Fig. 2c). The results show 

that while the c-Si NW sustains a well-defined Fabry-Perot resonance (left, Fig. 2c), the a-Si NW 

with a c-Si core (right, Fig. 2c) exhibits an attenuation of absorption that decays exponentially 

from the NW’s top surface. The higher optical absorption of a-Si over c-Si leads not only to 

enhanced absorption efficiency over a broad spectral range, but also to reduced optical feedback 

within an a-Si, which manifests as reduced peak contrast for corresponding resonant modes.  
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Figure 2. (a) Schematic of a core-shell p/i/n Si NW device converting vertically incident photons 

into electron-hole pairs. (b) Absorption spectra of a c-Si NW (solid black) and an a-Si NW (solid 

red) with a NW height (h) of 260 nm. In the a-Si NW, a central p-type core with a height (d) of 

80 nm is treated as c-Si. The inset shows a schematic of the core-shell p/i/n Si NW. (c) TE 

absorption mode profiles of the c-Si NW (left) and the a-Si NW with a c-Si core of d=80 nm 

(right) at a wavelength of 460 nm. The inner boundary in the a-Si NW (right) represents the 

interface of c-Si core and a-Si shell. The scale bars are 50 nm. (d) Calculated absorption of a-Si 

NWs with a c-Si core, as a function of the thickness of a-Si shell, h-d, where h is fixed to be 260 

nm. The value is normalized by the absorption of a c-Si NW with the same height of 260 nm. 

 

 Next, we calculated the total absorption of a NW composed of a c-Si core and an a-Si 

shell by integrating its absorption efficiency over air-mass 1.5 global (AM 1.5 G) solar spectrum 



 

7

(280 – 1000 nm), while varying the thickness of the a-Si shell, h-d (Fig. 2d) (Methods). The 

absorption of this NW increases monotonically as the volume fraction of a-Si increases. The 

relative enhancement at an a-Si shell thickness of 160 nm is ~2.6, which explains well the 

difference of current density (JSC) of previously reported c-Si and nanocrystalline Si (nc-Si) 

devices.12,13 For this comparison, we postulate that the absorption dispersion of nc-Si is similar to 

that of a-Si. It is important to note that although an nc-Si NW yields higher JSC than a c-Si NW, 

the nc-Si material may preclude further enhancement of JSC through tuning of resonant modes. 

Furthermore, the grain-boundaries intrinsic to nc-Si is detrimental to the electrical performance 

and power conversion efficiency of reported NW PV devices.12 Indeed, the poor VOC of nc-Si 

devices compensates for their overall higher absorption. 

 Multi-shell Si NW with an a-Si inner shell. To minimize electrical degradation due to 

nc-Si while taking advantage of its high absorption, we designed a multi-shell NW composed of 

c-Si with a thin embedded nc-Si layer.26,31 For these calculations, we treat nc-Si in the thin 

embedded layer as a-Si. In the multi-shell NW, we introduced a 20-nm-thick a-Si layer at a 

height position of h’=105 nm within a c-Si NW with a total height of h=220 nm (inset, Fig. 3a). 

The absorption spectrum of the multi-shell NW (solid red, Fig. 3a) reveals several important 

features when compared to a homogeneous c-Si NW of equivalent height (solid black, Fig. 3a). 

First, both spectra show similar peak amplitudes at ultraviolet to blue wavelengths, but at 

wavelengths longer than 450 nm the multi-shell NW yields significantly enhanced absorption 

efficiency. Second, the multi-shell NW still exhibits a structured spectrum with many distinct 

absorption peaks. The wavelength of each resonant peak is nearly the same as that of the c-Si 

NW. To better understand the absorption features of a multi-shell NW, we calculated absorption 

(Fig. 3b) and electric-field intensity profiles (Fig. 3c). At 380 nm (left, Fig. 3b), no absorption 
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takes place in the a-Si layer, because most of the incident light is absorbed in the top c-Si layer. 

In contrast, at 530 nm (right, Fig. 3b), significant absorption is observed in the a-Si layer giving 

rise to the absorption enhancement witnessed for longer wavelengths (Fig. 3a). Notably, the 

electric field intensity profile for the given mode is preserved (left, Fig. 3c) as compared to a c-Si 

NW (right, Fig. 3c), accounting for the preservation of resonant wavelengths (Fig. 3a).  

 

Figure 3. (a) Absorption spectrum of the multi-shell NW (h=220 nm) with an a-Si inner shell 

(t=20 nm) (solid red). The height position of a-Si shell (h’) is 105 nm. For a reference, the 

absorption spectrum of a c-NW with h=220 nm is plotted together (solid black). (b) TM 

absorption mode profiles of the multi-shell NW of (a) at =380 nm (left) and =470 nm (right). 

The scale bars are 30 nm. (c) TM electric field intensity profiles of the multi-shell NW (left) and 

the c-Si NW (right) at =730 nm. The scale bars are 50 nm. (d) Calculated absorption of the 

multi-shell NW with h=220 nm as a function of the position of an a-Si inner shell, h’. The value 
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is normalized by the absorption of a c-Si NW with the same height of 220 nm. (e) Calculated 

absorption per unit volume generated from every 10-nm-thick inner shell while increasing the 

height of the inner shell, H. The inset shows a 2D representation of the spatial absorption 

distribution. For this calculation, a c-Si NW with h=220 nm is used.  

  

Next, we calculated the absorption of a multi-shell NW while moving the position of the 

a-Si layer (Fig. 3d) from core to shell. For these calculations, the thickness of the a-Si layer was 

adjusted to preserve area. The result showed that the absorption of a multi-shell NW is enhanced 

steadily as the embedded a-Si layer is shifted to the core. The maximum enhancement in 

absorption can be as large as 1.8 compared to a homogeneous c-Si NW. To understand the 

absorption behavior depending on the position of a-Si layer, we calculated the internal absorption 

distribution of the NW (Fig. 3e) (Methods). Distinct from a bulk structure, a NW exhibits highly 

localized absorption in the core (H~50 nm) and this effect, when paired with a thin highly 

absorptive layer such as a-Si, leads to a large enhancement of absorption and also the observed 

trend in Fig. 3d. Notably, the thin a-Si layer contributes to significantly enhanced absorption at 

long wavelengths (600 − 800 nm) where c-Si has small absorption coefficient (Fig. 3a and 

Supplementary Fig. S1). Taken together, manipulation of the internal absorption modes in a NW 

cavity provides a new route to enhance light absorption and to enable more efficient photon 

absorbers. For an actual c-Si/a-Si NW PV device, a transparent conductive oxide layer composed 

of ITO or ZnO:Al surrounding the outer shell of the NW may be necessary to improve carrier 

collection efficiency due to enhanced recombination in the a-Si shell.32 We note that addition of 

such transparent layers could also function as antireflective coatings for increased light 

absorption.32 
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 NWs with hexagonal and rectangular cross sections. We also investigated the 

absorption properties of Si NWs with different cross-sectional geometries.14,20 Chemical vapor 

deposition (CVD) can yield crystalline Si NWs with various cross-sectional geometries by 

controlling several growth parameters.14,33 Recently, it was reported that n-type Si shell growth 

at elevated temperatures leads to accelerated growth rates over specific facets of crystalline Si 

NWs to transform hexagonal cross section into rectangular one.14 In our study, we considered 

hexagonal and rectangular NWs with the same aspect ratio (height-to-width ratio) of 0.87 (Fig. 

4a).   
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Figure 4. (a) Schematics of p/i/n Si NWs with hexagonal (left) and rectangular (right) cross-

sectional geometry. (b) TE absorption spectra of hexagonal (solid black) and rectangular (solid 

red) NWs with heights of 160 (top), 240 (middle) and 320 nm (bottom). The inset shows 

absorption profile of the peak marked by * in each spectrum. 

 

 We calculated the TE absorption spectra of hexagonal and rectangular NWs with heights 

of 160 nm (top, Fig. 4b), 240 nm (middle, Fig. 4b) and 320 nm (bottom, Fig. 4b). Comparison of 
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both structures with the same heights reveals that rectangular NWs have enhanced absorption 

peaks at specific wavelengths: for example, 465 nm from the smallest NW, 595 nm from the 

intermediate NW and 560 nm from the largest NW. The pronounced absorption peaks are 

assigned to highly symmetric resonant modes (inset, Fig. 4b) that are not excited in a hexagonal 

NW due to symmetry mismatch. The highly symmetric modes in rectangular NWs exhibit a 

larger quality factor14 and mode volume that ultimately leads to higher-amplitude absorption 

peaks at specific wavelengths. Despite the relatively thin Si absorber in a rectangular NW, a peak 

at ~600 nm exhibits amplitude over unity. We conclude that tuning of high absorption peaks 

from a rectangular NW may enable an efficient wavelength-specific photodetector.            

 Vertical NW stacks. We have proposed several strategies and design rules to improve 

light absorption by single NWs over a broad range of wavelengths. However, to produce 

significant electrical power outputs comparable to those of large area solar panels, it is necessary 

to scale up a vast number of NWs in vertical and/or horizontal planes. Therefore, we have also 

investigated the optical properties of periodic arrays of NW elements and calculated their JSC’s to 

examine the potential of NWs in future photovoltaics.  

 First, we consider layered vertical stacks of NWs and compare their efficiency to bulk 

structures or single NWs with equivalent Si thicknesses (Fig. 5a).13 Figure 5b shows the 

calculated JSC of bulk Si (solid black), a single NW (solid red) and a vertical NW stack (solid 

blue) under AM 1.5 G 1-sun (100 mW/cm2) illumination as a function of increasing Si thickness, 

assuming unity internal quantum efficiency. Comparison of the JSC produced by each structure 

highlights several key features. First, a vertical NW stack yields a higher JSC than either bulk Si 

or a single NW of the same thickness. In particular, an approximately 1-m-thick vertical NW 

stack composed of four identical NWs produces a JSC of ~18.3 mA/cm2, which is ~120% (~15%) 
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larger than bulk Si (a single NW) of the same thickness. Second, the JSC of a vertical NW stack 

increases linearly up to a Si thickness of 1 m while bulk structures and a single NW show 

relatively sub-linear increases in JSC over the same Si thickness. In other words, the enhancement 

in JSC from a vertical NW stack compared to the other structures becomes more noticeable as Si 

thickness increases. 

 

Figure 5. (a) Schematics of a bulk structure (left), a single NW (middle), and a vertical NW 

stack consisting of two identical NWs (right). (b) Calculated current densities of a bulk structure 

(solid black), a single NW (solid red), and a vertical NW stack consisting of NWs with a height 

of 240 nm (solid blue) under 1-sun illumination as a function of the Si thickness, assuming unity 

internal quantum efficiency. For the vertical NW stack, the current densities of one to five NW 
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stacks are plotted. All simulated NW structures consist of homogeneous crystalline Si. (c) 

Absorption spectra of a bulk structure (solid black), a single NW (solid red), and a vertical NW 

stack consisting of NWs with a height of 240 nm (solid blue). The total Si thickness is 480 nm 

(left) and 960 nm (right). 

 

 To better understand the physical origins of the trend of JSC as a function of Si thickness, 

we considered the absorption spectra of bulk Si, a single NW, and a vertical NW stack at Si 

thicknesses of 480 nm (left, Fig. 5c) and 960 nm (right, Fig. 5c). For a vertical NW stack, peak 

amplitude is enhanced with a nearly constant factor over the range of wavelengths considered 

and this accounts for the large JSC and also the linear increase of JSC with increasing Si thickness. 

This broadband enhancement stems from reduced screening of NWs by their nearest neighbors 

due to the optical antenna effect experienced by every NW in the stack.13 Taken together, a 

vertical NW stack represents a new building block for assembly of efficient NW solar cells. Such 

stacks surpass the light absorption of a single bulk structure or a single NW, and further 

enhancements may be possible by employing appropriate combinatorial sets of NWs composed 

of different materials, sizes, or cross-sectional geometries. 

 Close-packed NW array. Next, we investigated the properties of a close-packed 

horizontal NW array (inset, Fig. 6a). We calculated the JSC of a single NW (solid black, Fig. 6a) 

and NW array (red point, Fig. 6a) under 1-sun illumination as a function of Si thickness, 

assuming unity internal quantum efficiency. The results show that the JSC of a single NW with a 

Si thickness of 150 – 400 nm is nearly preserved even when scaled up to a NW array. We note 

that the NW optical antenna effect is suppressed in an array. To illustrate what causes the NW 

array and single NW to have very similar JSC, we calculated the absorption spectra for both 
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structures with a Si thickness of 240 nm (Fig. 6b). The result shows that every absorption peak 

within the NW array spectrum has the similar wavelength and amplitude to that within the single 

NW spectrum. On the other hand, polarization-resolved absorption spectra of a NW array are 

distinct from those of a single NW (Supplementary Fig. S2). Specifically, light absorption within 

the NW array is enhanced for TE-polarized incident light (electric-field oscillation direction 

parallel to the surface modulation of the NW array). We conclude that the optical antenna effect 

experienced by a single NW is attenuated but compensated for by a diffraction effect caused by 

the periodic surface modulation of the NW array.20,34 
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Figure 6. (a) Calculated current densities of a single NW (solid black) and a close-packed NW 

array (red point) under 1-sun illumination as a function of the height of a NW, assuming unity 

internal quantum efficiency. All simulated NW structures consist of homogeneous crystalline Si. 

The inset shows a schematic of a close-packed NW array. (b) Absorption spectra of a single NW 

(solid black) and a close-packed NW array (solid red) with a Si thickness of 240 nm. (c) 
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Calculated current density of a NW array as a function of the filling fraction, 1-(d/a) (inset). The 

current density of the NW array is normalized by the current density of a single NW. 

 

 To predict the performance of more realistic NW array structures, we calculated the 

absorption efficiency of a NW array depending on its filling fraction. The ratio of the JSC of a 

NW array to that of a single NW was plotted while varying the filling fraction of the NW array 

(Fig. 6c). The filling fraction is defined as 1-(d/a), where a is the pitch size and d is the distance 

between each NW (inset, Fig. 6c). For purposes of calculating JSC, we define the area of a NW 

array as its total projected area including Si projected area and air space. Notably, the JSC of a 

NW array is reduced only by ~10% even at a filling fraction of 75%. Interestingly, if we consider 

only the Si projected area, the JSC of a NW array (at 75% filling fraction) is 20% higher than that 

of a single NW. We infer that the diffraction effect of the NW array is enhanced at specific pitch 

sizes.20,34 We conclude that the absorption efficiency of a single NW is nearly preserved in NW 

arrays and even in those with sizeable void spaces. These observations shed light on 

implementation of large area arrays of NW PVs for next generation solar cells.35 

 

CONCLUSIONS 

 In summary, we investigated and provided design rules for enhancement of optical 

absorption by Si NW cavities through the changes in morphology and core/shell composition. Si 

NWs with modulated material composition (c-Si and a-Si polymorphic structures) and cross-

sectional geometry show substantial enhancements in absorption efficiency over a broad range of 

wavelengths. Our studies reveal that the increased light absorption can be attributed to localized 

resonant modes and optical antenna effects of NW cavities. In addition, these investigations have 
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shown that vertically-stacked NWs have larger absorption efficiency than both a single NW and 

a bulk structure of equivalent thickness. The absorption efficiency of a single NW is nearly 

preserved when it is extended to a horizontal NW array, because a diffraction effect of the array 

compensates for attenuation of the optical antenna effect. These findings will be useful to design 

NW structures and arrays with improved absorption properties, and thus will help in 

experimental evaluations of these materials as possible next generation solar cells and efficient 

nanophotonic components.  

 

METHODS 

 Numerical FDTD calculations. We used our in-house FDTD code for all NW optical 

simulations.36 First, while a plane wave with TE or TM polarization is normally incident to a 

NW, the absorption cross section of the NW is calculated by integrating J·E at each grid point 

over one optical cycle, where J and E are the polarization current density and electric field, 

respectively. Then, the absorption cross section was divided by the projected area of the NW to 

yield the absorption efficiency. For calculating JSC, internal quantum efficiency (IQE) is assumed 

to be unity. To describe NWs with a hexagonal (rectangular) cross section, a spatial resolution of 

5 / 3  (5), 5, and 5 nm is used along x-, y- and z-axes, respectively, where y-axis lies along the 

NW axis and z-axis lies along the propagation direction of the incident plane wave. For 

calculations on single NWs, periodic boundary condition is applied along y-axis and additionally, 

total-field scattered-field method is used. For calculations on NW array structures, periodic 

boundary condition is applied along x- and y-axes. The total JSC is calculated by integrating 

JSC() over the wavelength range of 280 – 1000 nm, where JSC() = absorption efficiency() × 
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IQE × (spectral irradiance of AM 1.5G spectrum at 1-sun solar intensity) × /1.24. For 

calculating spatial absorption distribution of the hexagonal NW (h=220 nm), absorption is 

calculated within a hexagonal shell with a thickness of 10 nm while the height of the hexagonal 

shell increase from 10 to 220 nm.  

 

ASSOCIATED CONTENT 

Supporting Information  

Additional figures. This material is available free of charge via the Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 

*E-mail: cml@cmliris.harvard.edu, hgpark@korea.ac.kr  

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

ACKNOWLEDGMENT 

H.-G.P. acknowledges support of this work by the National Research Foundation of Korea 

(NRF) grant funded by the Korea government (MSIP) (No. 2009-0081565). C.M.L. 

acknowledges support of this work by the National Science Foundation under NSF award no. 

ECS-0335765. S.-K.K. acknowledges support of this work by Basic Science Research Program 

through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, 

ICT & Future Planning (NRF-2013R1A1A1059423). T.J.K. acknowledges the support of a 



 

20

National Science Foundation Graduate Research Fellowship. R.W.D. acknowledges a NSF 

Graduate Research Fellowship. 

ABBREVIATIONS 

NW, nanowire; FDTD, finite-difference time-domain; PV, photovoltaic; TE, transverse-electric; 

TM, transverse-magnetic; a-Si, amorphous Si; c-Si, crystalline Si; EQE, external quantum 

efficiency; IQE, internal quantum efficiency 

REFERENCES AND NOTES 

(1) Qian, F.; Li, Y.;  Gradecak, S.; Park, H.-G.;  Dong, Y.; Ding, Y.; Wang, Z. L.; Lieber, C. M. 

Multi-Quantum-Well Nanowire Heterostructures for Wavelength-Controlled Lasers. Nat. Mater. 

2008, 7, 701–706. 

(2) Chu, S.; Wang, G.; Zhou, W.; Lin, Y.; Chernyak, L.; Zhao, J.; Kong, J.; Li, L.; Ren, J.; Liu, 

J. Electrically Pumped Waveguide Lasing from ZnO Nanowires. Nat. Nanotech. 2011, 6, 506–

510.  

(3) Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal. G.; Zhang, 

X. Plasmon Lasers at Deep Subwavelength Scale. Nature 2009, 461, 629–632. 

(4) Barrelet, C. J.; Ee, H.-S.; Kwon, S.-H.; Park, H.-G. Nonlinear Mixing in Nanowire 

Subwavelength Waveguides. Nano Lett. 2011, 11, 3022–3025. 

(5) Cao, L. Y.; Park, J. S.; Fan, P. Y.; Clemens, B.; Brongersma, M. L. Epitaxial Growth of 

InGaN Nanowire Arrays for Light Emitting Diodes. ACS Nano 2011, 5, 3970–3976. 

(6) Pyayt, A. L.; Wiley, B.; Xia, Y.; Chen, A.; Dalton. L. Integration of Photonic and Silver 

Nanowire Plasmonic Waveguides. Nat. Nanotech. 2008, 3, 660–665. 



 

21

(7) Park, H.-G.; Barrelet, C. J.; Wu, Y.; Tian, B.; Qian, F.; Lieber, C. M. A Wavelength-

Selective Photonic-Crystal Waveguide Coupled to a Nanowire Light Source. Nat. Photon. 2008, 

2, 622–626. 

(8) Barrelet, C. J.; Bao, J.; Loncar, M.; Park, H.-G.; Capasso, F.; Lieber, C. M. Hybrid Single-

Nanowire Photonic Crystal and Microresonator Structures. Nano Lett. 2006, 6, 11–15. 

(9) Zhao, Y. S.; Zhan, P.; Kim. J.; Sun, C.; Huang. J. Patterned Growth of  Vertically Aligned 

Organic Nanowire Waveguide Arrays. ACS Nano. 2010, 4, 1630–1636. 

(10) Nakayama, Y.; Pauzauskie, P. J.; Radenovic, A.; Onorato, R. M.; Saykally, R. J.; Liphardt, 

J.; Yang, P. Tunable Nanowire Nonlinear Optical Probe. Nature 2007, 447, 1098–1101.   

(11) Gu, F.; Zhang, L.; Yin, X.; Tong, L. Polymer Single-Nanowire Optical Sensors. Nano Lett.  

2008, 8, 2757–2761.  

(12) Tian, B. Z.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. 

Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature 2007, 449, 

885–889. 

(13) Kempa, T. J.; Cahoon, J. F.; Kim, S.-K.; Day, R. W.; Bell, D. C.; Park. H.-G.; Lieber, C. 

M. Coaxial Multishell Nanowires with High-Quality Electronic Interfaces and Tunable Optical 

Cavities for Ultrathin Photovoltaics. Proc. Natl. Acad. Sci. USA. 2012, 109, 1409–1412. 

(14) Kim, S.-K.; Day, R. W.; Cahoon, J. F.; Kempa, T. J.; Song, K.-D.; Park, H.-G.; Lieber, C. 

M. Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through 

Morphological Design. Nano Lett. 2012, 12, 4971–4976. 

(15) Tang, J.;  Huo, Z.; Brittman, S.; Yang, P. Solution-Processed Core-Shell Nanowires for 

Efficient Photovoltaic Cells. Nat. Nanotech. 2011, 6, 568–572. 



 

22

(16) Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; 

Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP Nanowire Array Solar Cells 

Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science 2013, 339, 1057–1060. 

(17) Kelzenberg, M. D.; Turner-Evans, D. B.; Putnam, M. C.; Boettcher, S. W.; Briggs, R. M.; 

Baek, J. Y.; Lewis, N. S.; Atwater, H. A. High-Performance Si Microwire Photovoltaics. Energy 

Environ. Sci. 2011, 4, 866–871.  

(18) Mariani, G.; Wong, P-S.; Katzenmeyer, A. M.; Leonard, F.; Shapiro, J.; Huffaker, D. L.; 

Patterned Radial GaAs Nanopillar Solar Cells. Nano Lett. 2011, 11, 2490–2494. 

(19) Fan, Z.; Razavi, H.; Do, J.-W.; Moriwaki, A.; Ergen, O.; Chueh, Y-L.; Leu, P. W.; Ho, J. 

C.; Takahashi, T.; Reichertz, L. A.; et al. Three-Dimensional Nanopillar-Array Photovoltaics on 

Low-Cost and Flexible Substrates. Nat. Mater. 2009, 8, 648–653.  

(20) Cao, L.; Fan, P.; Vasudev, A. P.; White, J. S.; Yu, Z.; Cai, W.; Schuller, J. A.; Fan, S.; 

Brongersma, M. L. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Lett. 2010, 

10, 439–445. 

(21) Barnard, E. S.; Pala, R. A.; Brongersma, M. L. Photocurrent Mapping of Near-Field 

Optical Antenna Resonances. Nat. Nanotech. 2011, 6, 588–593.  

(22) Giblin, J.; Syed, M.; Banning, M. T.; Kuno, M.; Hartland, G. Experimental Determination 

of Single CdSe Nanowire Absorption Cross Sections through Photothermal Imaging. ACS Nano 

2010, 4, 358–364. 

(23) Bronstrup, G.; Leiterer, C.; Jahr, N.; Gutsche, C.; Lysov, A.; Regolin, T.; Prost, W.; 

Tegude, F. J.; Fritzsche, W.; Christiansen, S. A Precise Optical Determination of Nanoscale 

Diameters of Semiconductor Nanowires. Nanotechnology 2011, 22, 382501/1–9.  



 

23

(24) Bronstrup, G.; Jahr, N.; Leiterer, C.; Csaki, A.; Fritzsche, W.; Christiansen, S. Optical 

Properties of Individual Silicon Nanowires for Photonic Devices. ACS Nano 2010, 4, 7113–

7122.  

(25) Liu, W. F.; Oh, J. I.; Shen, W. Z. Light Trapping in Single Coaxial Nanowires for 

Photovoltaic Applications. IEEE Electron Device Lett. 2011, 32, 45–47. 

(26) Liu, W. F.; Oh, J. I.; Shen, W. Z. Light Absorption Mechanism in Single c-Si (core)/a-Si 

(shell) Coaxial Nanowires. Nanotechnology 2011, 22, 125705–125708. 

(27) Yu, Y.; Ferry, V. E.; Alivisatos, A. P.; Cao, L. Dielectric Core-Shell Optical Antennas for 

Strong Solar Absorption Enhancement. Nano Lett. 2012, 12, 3674–3681. 

(28) Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles. New 

York: Wiley 1998. 

(29) Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-

Domain Method. Artech House: Norwood, MA 2005. 

(30) Lide, D. R. CRC handbook of chemistry and physics: a ready-reference book of chemical 

and physical data. CRC Press, Boca Raton 2008. 

(31) Adachi, M. M.; Anantram, M. P.; Karim, K. S. Optical Properties of Crystalline 

Amorphous Core-Shell Silicon Nanowires. Nano Lett. 2010, 10, 4093–4098. 

(32) Deceglie, M. G.; Ferry, V. E.; Alivisatos, A. P.; Atwater, H. A. Design of Nanostructured 

Solar Cells Using Coupled Optical and Electrical Modeling. Nano Lett. 2012, 12, 2894–2900. 

(33) Cho, B.; Bareno, J.; Foo, Y. L.; Hong, S.; Spila, T.; Petrov, I.; Greene, J. E. Phosphorus 

Incorporation during Si(001): P Gas-source Molecular Beam Epitaxy: Effects on Growth 

Kinetics and Surface Morphology. J. Appl. Phys. 2008, 103, 123530/1–10 . 



 

24

(34) Yu, Z.; Raman, A.; Fan, S. Fundamental Limit of Nanophotonic Light Trapping in Solar 

Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 17491–17496. 

(35) Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-Layer Assembly of 

Nanowires for Three-Dimensional, Multifunctional Electronics. Nano Lett. 2007, 7, 773–777. 

(36) Ee, H.-S.; Song, K.-D.; Kim, S.-K.; Park, H.-G. Finite-Difference Time-Domain 

Algorithm for Quantifying Light Absorption in Silicon Nanowires. Isr. J. Chem. 2012, 52, 1027–

1036. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25

 

 

ToC graphic 

 

 



 

26

Supporting Information for: 
 
 

Design of Nanowire Optical Cavities as Efficient Photon 

Absorbers 

Sun-Kyung Kim, Kyung-Deok Song, Thomas J. Kempa, Robert W. Day, Charles M. Lieber, and 

Hong-Gyu Park 

 
 
 
 
 
 

 

This file includes: 

Supplementary Figures S1 and S2  

 

 

 

 

 

 



 

27

 

Figure S1. Dispersion relations of c-Si and a-Si, used in Si NW simulations. 

 

 

 

 

 

 

 

 

Figure S2. Calculated TE-polarized (a) and TM-polarized (b) absorption spectra of a 
single NW and a NW array with an equivalent NW height of 240 nm. 

 

 

 

  
 


