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ABSTRACT 
 

The freezing of water can initiate at electrically-conducting electrodes kept at a high 

electric potential, or at charged electrically-insulating surfaces. The microscopic 

mechanisms of these phenomena are unknown, but they must involve interactions 

between water molecules and electric fields. This paper investigates the effect of uniform 

electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields 

were applied across drops of water immersed in a perfluorinated liquid using a parallel-

plate capacitor; the drops traveled in a microchannel and were supercooled until they 

froze due to the homogenous nucleation of ice. The distribution of freezing temperatures 

of drops depended on the rate of nucleation of ice, and the sensitivity of measurements 

allowed detection of changes by a factor of 1.5 in the rate of nucleation.  Sinusoidal 

alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions 

present in water from screening the electric field in the bulk of drops. Uniform electric 

fields in water with amplitudes up to 1.6±0.4×105 V/m neither enhanced nor suppressed 

the homogenous nucleation of ice. Estimations based on thermodynamic models suggest 

that fields in the range of 107–108 V/m might cause an observable increase in the rate of 

nucleation. 
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1. Introduction 

The nucleation of ice in water is ubiquitous in nature, and is relevant to phenomena 

ranging from the formation of atmospheric precipitation1,2, and ice accretion on the wings 

of airplanes3, to the cryopreservation of tissues4. Studying ice nucleation under new 

experimental conditions is relevant both to our fundamental understanding of water and 

nucleation, and to the discovery of new methods of controlling the nucleation of ice. 

Applied electric fields provide one basic experimental condition that we can use to 

study the nucleation of ice; water is subjected to external electric fields in many 

naturally-occurring situations. Atmospheric electric fields that exceed 105 V/m can be 

encountered during thunderstorms5,6 or near the surface of electrical conductors used in 

high voltage power transmission lines7. A change in the rate of nucleation of ice under 

these fields could affect the formation of precipitation during thunderstorms2, and the rate 

of accretion of ice on high-voltage cables in cold weather7. 

In this paper, we investigated the effect of external electric fields on the homogeneous 

nucleation of ice in drops of supercooled water. A continuous-flow microfluidic ice 

nucleation apparatus8 produced monodisperse drops of water in a carrier phase of liquid 

fluorocarbon, and transported the drops inside a microchannel through a cooling thermal 

gradient. While traveling along the channel, the drops supercooled until they froze due to 

the homogenous nucleation of ice. Across the drops of water, we applied sinusoidal 

alternating electric fields with frequencies from 3 to 100 kHz and a range of amplitudes. 

We did not observe changes in the freezing of drops up to field amplitudes of 

1.6±0.4×105 V/m. Electric fields with amplitudes above this value influenced the 

trajectory and the shape of the drops due to dielectrophoretic forces and made accurate 
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observations of freezing impossible. Based on these experiments, we conclude that the 

homogeneous nucleation of ice is neither enhanced nor suppressed by electric fields with 

amplitudes up to 1.6±0.4×105 V/m. 

We studied the effect of electric fields on the nucleation of ice for five reasons: (i) 

The interaction of molecules of water (which have a permanent electrical dipole) with 

electric fields is well understood; electric fields change the average orientation of water 

molecules and the free energy of water becomes dependent on the magnitude of the field. 

The application of electric fields might therefore provide a conceptually simple and well-

controlled way to study the influence of the structure and free energy of water on the 

nucleation of ice. (ii) Electric fields can be applied remotely and uniformly over the 

entire sample under investigation, and thus create a homogenous test system. (iii) 

Previous experimental investigations9-21 have provided only inconclusive evidence that 

electric fields affect the homogeneous nucleation of ice. (iv) A new electric-field-based 

method to control of the nucleation of ice could improve technological processes as 

freeze-drying22, cryopreservation23,24, food manufacture25, and cold-energy storage26. (v) 

Electric fields are often encountered in water near the surface of particles, molecules, and 

ions; they might play an important role in the heterogeneous nucleation of ice by impurity 

particles9,14,21,27.  

What is the magnitude of the electric field at which we might expect to observe an 

influence of the electric fields on the freezing of water? One hypothesis is that if electric 

fields become strong enough to align all water molecules along the applied field, the 

structure of water would change, and water might freeze. Molecular dynamics (MD) 

simulations investigated this hypothesis and found that the structure of water changed28,29  
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as the magnitude of the field reached approximately 2×109 V/m, but water remained 

liquid despite the change in its structure. At these fields, simulations predicted the onset 

of the saturation of the dielectric constant of water30,31 due to the alignment of water 

molecules.   In MD simulations29,32, freezing of water induced by electric fields was 

observed  at larger field intensities around 5×109 V/m. 

 The field-induced freezing predicted by simulations cannot be investigated in 

experiments with bulk samples of water, because the magnitude of the electric field 

exceeds the dielectric breakdown strength of pure water (~107 V/m in millimeter-scale 

samples33 and ~108 V/m in micron-scale samples34). Experimentally, electrically-induced 

freezing, or an enhanced tendency to nucleate ice, were claimed to be observed at the 

electrostatically-charged surfaces of conductors12,15,16,35, polar amino acid crystals14, and 

pyroelectric crystals21. Water freezing experiments carried on charged surfaces suggested 

that electric fields much smaller than the predictions of simulations influence the 

nucleation of ice; nevertheless, careful freezing experiments carried under external 

electric fields11-13,20 did not observe any effects of the electric field on the nucleation of 

ice. Therefore, experimental investigations conducted to date have not found conditions 

under which electric field is the sole cause for inducing the nucleation of ice. 

Here we describe an experiment to study the effects of electric fields on the freezing 

of water. We investigated the simplest case of such effects: pure water freezing by 

homogeneous nucleation of ice in the presence on an external, and uniform, electric field.  

Our experimental setup had high sensitivity and allowed us to determine a new 

experimental value for the highest electric field intensity that does not influence 

homogenous ice nucleation. We also used a version of the classical nucleation theory that 
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accounts for external electromagnetic fields36 to estimate the field intensity that might 

produce observable changes in the rate of nucleation. We interpret the results generated 

by this theory to indicate that such changes might occur in fields two orders of magnitude 

smaller than the fields that induce freezing in MD simulations. 

 

2. Experimental design 

2.1. Detection of the influence of electric fields through changes in the rate of 

nucleation. Although the conditions for field-induced freezing observed in MD 

simulations cannot be produced in bulk samples of water, the effects of electric fields on 

freezing might be experimentally observable at much lower fields if freezing can be 

quantified with high resolution and high accuracy. For example, the complete alignment 

of water molecules in an electrical field at ambient temperatures requires intensities on 

the order of 109 V/m30,31, but partial alignment can be observed in fields with intensities 

at ~107 V/m because such alignment causes a measurable change in the dielectric 

constant of water33. Therefore, the objective of our experiment was to detect changes in 

the probability of freezing of water in the presence of electric fields, rather than to induce 

freezing. 

2.2. Freezing drops of water though the homogenous nucleation of ice. Freezing 

in water that is not in contact with ice is initiated by nucleation of ice in supercooled 

water. If water is pure and held in a container whose walls do not induce ice nucleation, 

nucleation occurs homogenously due to thermodynamic fluctuations. The homogenous 

nucleation of ice is a stochastic process that can be characterized by a homogeneous ice 
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nucleation rate JN, which specifies the probability PF that a volume of water Vdrop freezes 

at a temperature T in a vanishingly small time interval δt (eq.1). 

     Eq. 1 

Conditions such as increased pressure, or the presence of a solute in water, change the 

rate of homogenous nucleation of ice37,38. Our objective was to establish the influence of 

external electric fields on the rate of nucleation. The experimental setup should, 

therefore, to be able to measure the nucleation rate precisely when supercooled water was 

subjected to external electric fields that were as large as possible. During these 

measurements, the measuring devices—especially the electrodes used for the generation 

of the field—should not contact the water to reduce the possibility of heterogeneous 

nucleation of ice. To achieve these design goals, we modified a microfluidic apparatus 

(which we have described previously8) made for the study of nucleation of ice in 

supercooled water; this apparatus can measure nucleation rates reliably and with high 

accuracy. The modification added a parallel-plate capacitor to generate strong uniform 

electric fields during measurements. 

Figure 1a shows the core of the experimental setup: a flow-focusing generator39  

produced spherical and monodisperse drops of water in liquid fluorocarbon; the drops 

flowed along the centerline of a microfluidic channel without touching the walls. We 

sandwiched the channel between two parallel plate electrodes made from thin films of 

platinum (bottom side, ~200 nm thick) and indium-tin oxide (ITO, top side, ~300 nm 

thick) deposited on glass slides. The channel, the drop generator, and the plates were part 

of a microfluidic device made from polydimethylsiloxane (PDMS). The device sat on top 

of a temperature-controlled plate that cooled a section of the channel to approximately –
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40 ºC while keeping the temperature of the rest of the device close to room temperature. 

The supporting information contains a description of the fabrication of the microfluidic 

device, and also pictures of the device. 

The liquid carrier phase was necessary for the operation of the microfluidic flow-

focusing nozzle that made the drops39, and for the generation of hydrodynamic forces that 

centered the drops as they traveled in the channel40,41; this setup would not function with 

a gaseous carrier phase. We used a fluorocarbon carrier liquid because fluorocarbons are 

electrically insulating and compatible with PDMS42, and they have freezing points lower 

than that of water. The carrier phase was a mixture of perfluoromethyldecalin (PFMD, 

98% purity, F2 Chemicals) with 2% v/v 1H,1H,2H,2H-perfluorooctanol (THPFO, 97% 

purity, Sigma-Aldrich) as a surfactant. PFMD and THPFO have solubilities in water 

(~10–12 and ~10–9 mol/L, respectively) that are much lower than the solute concentration 

(~10–3 mol/L) that would produce a measurable change in the rate of nucleation of ice38. 

During operation, the microfluidic flow-focusing generator produced drops at a rate 

of ~50 drops/s; the drops had a diameter on the order of 100 microns and traveled with a 

velocity of ~50 mm/s. We chose the rates of flow of water and fluorocarbon such that the 

separation between drops was ~1 mm during their travel in the channel.  This separation 

was sufficient to ensure that the freezing of one drop did not influence adjacent drops. 

The temperature of the drops equilibrated with that of the channel by thermal conduction 

as they traveled down the channel. We set the position of the device and the temperature 

of the plate such that that a monotonously decreasing temperature gradient formed along 

the long axis of the channel, and that the drops cooled sufficiently to freeze inside the 

channel.  The detection of freezing was optical, based on the darkening of the drops after 
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freezing due to increased scattering of light by ice crystals. During the experiments, we 

imaged the drops with a microscope and we recorded movies that contained the freezing 

events of up to tens of thousands of drops using a fast camera (Phantom V7.3, Vision 

Research). 

The position at which a drop froze indicated the temperature at which the drop froze 

because a predictable and decreasing thermal gradient existed along the channel. We 

extracted the distribution of freezing positions from movies of drops freezing using 

automated image processing. In the ice nucleation apparatus8, arrays of microfabricated 

thermometers measured the actual temperature along the channel, and from these 

temperatures we could calculate the temperature at which each drop froze. In the setup 

we describe here we could not use thermometers because we used high voltages in places 

where the thermometers would be placed; these high voltages could damage the sensitive 

temperature measurement instrument that was connected to the thermometers. We did not 

measure the freezing temperatures of drops directly in this paper. Instead, we used the 

distribution of freezing positions to detect changes in the rate of nucleation. Freezing 

positions have a reproducible distribution in the absence of the electric field. Any change 

in this distribution when electric fields were applied would indicate that the electric field 

might have influenced the nucleation of ice. 

Without means to measure the temperature at which drops froze, we could not verify 

that the freezing of drops was due to homogeneous nucleation of ice. Such freezing 

occurs near –37 ºC in a narrow range of temperatures (1–2 ºC) for drops investigated in 

our instrument. It was possible, in principle, that the nucleation of ice was initiated 

heterogeneously by either solid impurities in water, or by surfactant molecules at the 
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interface of drops. We, nevertheless, believe that heterogeneous nucleation was very 

unlikely because in independent measurements of freezing temperatures in drops of pure 

water8 we always recorded a distribution of freezing temperatures that was consistent 

with homogenous nucleation—and with independent ice nucleation measurements 

performed on drops of water levitated in air43. These freezing temperature measurements 

were performed in conditions (i.e. water purity, carrier phase composition, nozzle and 

channel geometry, and the materials used in the device) that were identical to those in 

experiments with electric fields. We could, therefore, assume safely that in the absence of 

electric field (i.e. when both electrodes were electrically grounded) all drops froze by 

homogeneous nucleation of ice. 

2.3. Applying electric fields in bulk water. In pure water, autoionization of water 

molecules produces a constant concentration of hydroxide and hydronium ions. These 

free ions can redistribute to form Debye space charge layers that screen electric fields. 

Even if all ions were instantaneously removed from water, autoionization would recreate 

the original concentration of free ions. To apply external electric fields in pure water, we 

applied temporally-variable electric fields that had a rate of change that is faster than the 

characteristic rate of charge creation due to autoionization44, ωauto, (eq. 2) and the rate of 

formation of the Debye layer, ωDebye (eq. 3): 

     Eq. 2 

     Eq. 3 

where ee is the electron’s electrical charge, n0 the equilibrium density of positive or 

negative ions, µi the electrical mobility of these ions, εw the dielectric constant of water, 
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and  ε0 the permittivity of vacuum. The minimum frequency, fAC, of an external 

sinusoidally-varying electric field that would not be screened is then given by eq. 4: 

     Eq. 4 

where ωscreen is the faster rate of ωauto and ωDebye. The numerical values in eqs. 2–4 were 

estimated at room temperature; since both the autoionization rate and the density of ions 

decrease as the temperature is lowered44, the minimum frequency, fAC, becomes smaller at 

lower temperatures. The supporting information contains further information on the 

derivation of eqs. 2–4. 

Time-varying electric fields are necessary to avoid electrostatic screening, but for the 

study of nucleation such fields can be regarded as static if nucleation happens faster than 

the rate at which the field varies. In MD simulations45, the nucleation of ice occurred in 

less than 100 ns; as long as the frequency of the electric field is less than approximately 1 

MHz, ice nucleation practically occurs in a static field.  In our experiments we used 

frequencies between 3 and 100 kHz. 

We generated electric fields by applying sinusoidal AC voltages on the top electrode. 

The electrical setup that produced the electrical field had to be capable of generating AC 

with variable amplitudes from zero to a high voltage (~1000 V) during an experiment. 

Such a setup would allow us to test, during a single experiment, different electric fields, 

and to compare the distribution of freezing positions in the presence of electric field with 

that in its absence. A high-voltage amplifier (Trek Inc. 30/20A) generated high voltage 

differences across the electrodes by amplifying the output of a signal generator (Keithley 

Instruments 3390). A digital oscilloscope (Tektronics TDS 3014) monitored the outputs 

of the signal generator and of the high-voltage amplifier; a scanning multimeter (Keithley 
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Instruments 2701) recorded the voltage across the electrodes. Figure S2 in the supporting 

information contains a schematic diagram of this electrical setup. 

Figure 1b displays the construction of the electrical capacitor embedded in the 

microfluidic device. Rather than putting the electrodes as close to the microfluidic 

channel as possible, we used dielectric spacers to increase the distance between the 

electrodes and the drops. The spacers reduced the electrostatic attraction between drops 

and electrodes, and increased the electric field inside drops; the discussion section 

contains further details on the design of the spacers. The maximum electrical potential 

difference that could be applied across the capacitor without electrical breakdown was 

~16 kV at a frequency of 1 kHz. For this maximum potential, the magnitude of electric 

field inside the dielectric spacers was smaller than the dielectric breakdown strength of 

soda-lime glass46. Inside PDMS and the carrier fluid the field was 3–4 times larger than 

the manufacturer-specified breakdown strength, however47. 

 

3. Results 

3.1. The freezing of drops in the presence of applied electric fields. Figure 2a 

shows the freezing positions of 20 600 drops of pure water with a diameter of 70 

microns, recorded during an experiment that lasted 420 s. The freezing position was 

relative to the beginning of the channel. We applied to the top electrode sinusoidal AC 

voltages with a frequency of 100 kHz and peak voltages from 0 and 800 V, and we 

modulated the amplitude of the AC voltage with a period of 5 s and 100% modulation 

depth48. The period of the modulation was sufficiently long that the amplitude of the 

voltage was constant during the freezing of a drop, but much shorter than the period of 
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the small temperature oscillations in the channel that were responsible for the slow drift 

of freezing positions. We could therefore monitor the presence or absence of any 

influence of the electric field on freezing by looking for changes in the distribution of 

freezing positions when the magnitude of the electric field varied. The supporting 

information (Figure S3) contains the results of three additional measurements made at 

frequencies of 3, 10, and 30 kHz. 

Figure 2 indicates that the voltage had an influence on the freezing of the drops when 

it crossed a threshold located at approximately 700 V. Figure 2b shows this phenomenon 

in more detail: when the peak AC voltages during modulation exceeded this threshold, 

water drops started to freeze significantly earlier (i.e. closer to the beginning of the 

channel) during their travel. We will refer to this freezing behavior as ‘premature 

freezing’ from now on. 

During normal operation of the instrument, premature freezing corresponds to higher 

freezing temperatures. The data shown in figure 2 seem to suggest that electric fields 

higher than that corresponding to an applied voltage of 700 V make ice nucleation more 

probable. Despite this apparent correlation, and the suggestion that high voltages catalyze 

freezing, we will show that these changes in the freezing positions were caused by 

changes in the hydrodynamic conditions in the channel rather than by a change in the rate 

of homogenous nucleation due to electric fields. 

3.2. ‘Premature freezing’ due to destabilization of the flow of drops by electric 

fields. We applied high voltages to the drops when the microfluidic device was at room 

temperature to test the behavior of the microfluidic system under large voltages. Voltages 

larger than ~700 V destabilized the ordered flow of drops by slowing down the drops, 
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making them collapse with each other, or making them collide with the electrodes and 

stick to them. The onset of this destabilization was marked by drops moving closer to the 

walls. At room temperature this change in the position of drops in the channel also 

resulted in the drops moving more slowly (the velocity of the fluorocarbon carrier was 

the highest in the center of the channel because the flow of liquid was viscous and 

pressure-driven49). Drops that traveled closer to the walls froze earlier than drops that 

were centered, because the temperature of the carrier fluid near the walls was lower than 

that in the center of the channel (Figure 3a); drops therefore cooled faster near the walls. 

Figure 3 also illustrates the types of forces that acted on the drops, and the strategies 

that we used to reduce the effect of electric fields on the movement of the drops. In the 

absence of external forces, liquid drops migrate to the center of the channel because a 

hydrodynamic lift force (Figure 3b) develops when they travel off-center40,41. For the 

flow conditions that we used in our experiments, this lift force was strong enough to 

center drops despite the buoyant force acting on drops of water (ρ = 1 g/cm3) immersed in 

fluorocarbon liquid (ρ = 2 g/cm3). If the lift force is also larger than electrostatic forces, 

the movement of drops is not affected by electric fields and the experiment can produce 

meaningful data. 

Figure 3c illustrates one electrostatic force mechanism that we encountered. External 

electric fields polarize the drops of water electrically, and the drops develop an induced 

dipole moment. This induced dipole interacts with a conducting electrode, and this 

interaction can be modeled as the interaction between the dipole and an ‘image’ dipole of 

equal moment located behind the electrode. The interaction between the dipole and its 

image is attractive, therefore polarized drops will be attracted by a conducting electrode. 
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As long as the drops is equally far from both electrodes in the system, the attractive 

forces towards each electrode cancel, but if the drop is not centered, it will be attracted 

towards the electrode that is closer to the drop. If the intensity of the electrical field 

exceeds a certain threshold, the electrostatic force becomes larger than the hydrodynamic 

centering force and the drops collide with the walls of the channel.  This electrostatic 

force is a second-order effect; because we used alternating electric fields, first-order 

electrostatic forces due to a possible net charge on the drops averaged to zero. The 

attractive force between the drop and the electrode decreases approximately as the fifth 

power of the distance between drops and electrode. We had initially investigated the 

effect of electric fields on ice nucleation using devices that did not have dielectric 

spacers, and we observed that the drops migrated to the walls of the channel as soon as 

the electric field became larger than a threshold. We therefore used dielectric spacers, and 

we chose their thickness such that the electrostatic force between polarized drops and 

electrodes became negligible compared to the hydrodynamic lift force. 

Drops of an electrically-polarizable fluid deform in uniform external electrical fields 

because the drops develop surface charges and these charges interact with external fields 

to elongate the drops, as shown in Figure 3d. We can define the deformation of a drop, D, 

as the ratio between the difference between the lengths of the drop along and 

perpendicular to the field, and the sum of these lengths. In the case of a dielectric drop 

immersed in a dielectric medium, D is given50 by Eq. 5: 

     (Eq.5) 

where r is the radius of the un-deformed drop, ε0 is the permittivity of vacuum, ε and εdrop 

the dielectric constants of the medium and the drop, E the intensity of the field in the 
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dielectric medium, and σ the interfacial surface tension between drops and their 

surrounding fluid. For a given external field, drops deform less if they are smaller, and if 

their surface tension is larger. 

The electrostatic deformation of drops vanishes if the dielectric constants of the drop 

and of the surrounding fluid are equal; for drops of water, however, we could not find an 

electrically insulating carrier fluid that had the same dielectric constant as water and be 

insoluble in water.  The maximum electric field that we could investigate was therefore 

limited by the onset of electrostatic deformation. 

Equation 5 predicts that the maximum fields before deformation occurs are larger for 

smaller drops. We varied the size of the drops by changing the rate of flow of the 

continuous phase and by adjusting the temperature of the drop generator51. As predicted, 

we were able to apply larger fields when we froze smaller drops. The data shown in 

Figure 2 was recorded using the smallest drops (70 microns in diameter) that we could 

freeze reliably. 

Near the threshold field for premature freezing (EPFMD = 2.9×106 V/m for r = 35 µm) 

we estimated D ~0.16; this value of D corresponds to drop whose polar radius is 

elongated from 35 µm to 39 µm. For the estimation of D, we used εdrop, –40ºC = 110 from 

literature52  and we extrapolated measurements that we made near room temperature to 

determine ε ~2.1 and σ  ~0.014 N/m at –40 ºC. 

3.3. Calculation of the electric field in bulk water.  In most of the previous work 

that investigated the freezing of water in the presence of electric fields9-21, the magnitude 

of electric field was calculated by dividing the electrical potential difference between 

electrodes and the distance between electrodes. We will refer to this field as the ‘external’ 
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electric field. The electric field that is most relevant to homogenous nucleation is the 

electric field that develops in bulk water – the ‘internal’ electric field. The relation 

between the intensities of external and internal electric fields depends on the 

experimental geometry and can vary considerably from case to case. Bulk supercooled 

water has a high dielectric constant (~100) and the intensity of the internal field could be 

up to two orders of magnitude smaller than the intensity of the external field. From now 

on we will use the internal field, Ein, to characterize the results of our experiments. 

The relation between internal and external fields can be calculated analytically for the 

case of a drop of water immersed in a surrounding medium that fills all space. If a 

spherical drop of water is placed in a uniform electric field Eout and is surrounded by a 

dielectric material with a dielectric constant εout, the field inside the drop is given by 

Equation 6, where εw is the dielectric constant of water53: 

       Eq. 6 

Eq. 6 predicts that molecules in a drop of water surrounded by air (εout =1) experience 

only a small fraction (0.027) of the electric field outside the drop; this prediction 

illustrates the difficulty of creating large electric fields inside water without contact with 

electrodes. 

The inner geometry of the parallel-plate capacitor (Fig. 1a) that we used to generate 

electrical fields is more complicated than that of a drop in an infinite dielectric medium. 

Therefore, we calculated the electric field inside drops by modeling the electric fields in 

our system numerically; the supporting information contains a description of the 

numerical modeling procedure and detailed results. For the data shown in Figure 2, the 

maximum voltage amplitude for which we did not observe an influence on freezing was 
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700 V. According to numerical modeling, this potential difference generates a nearly-

uniform electrical field Ein of 1.6×105 V/m; the uncertainty in the calculation of Ein is 

±0.4×105 V/m. This magnitude of electric fields represents the principal result of this 

work: electrical fields with intensities up to 1.6±0.4×105 V/m do not influence the 

homogenous nucleation of ice in supercooled water. 

 

4. Discussion 

4.1. Comparison with previous work. To our knowledge, previous work that 

reported effects of electric fields on freezing of water9-21 used systems in which freezing 

was initiated by the heterogeneous nucleation of ice. In the absence of electric fields, the 

freezing temperatures reported in these experiments were always higher than the 

temperatures at which homogenous nucleation occurs. In these experiments the systems 

contained potential ice-nucleating components (solid water containers, exposed 

electrodes, impurities) which might have been influenced by electric fields themselves. 

These experiments cannot, therefore, investigate the effect of electric fields on 

homogenous ice nucleation in bulk water. In contrast, our system is one in which 

homogenous nucleation occurred reliably in the absence of external fields, therefore 

providing the necessary conditions for the investigation of the effect of electric fields on 

homogenous ice nucleation. 

For experiments in which there was no direct contact between water and electrodes, 

the reported magnitude of electric fields must be adjusted before a direct comparison with 

our results. For example, experiments conducted on drops that fall within the air gap of a 

capacitor11,12 could reach maximum external fields on the order of 3×106 V/m, which is 
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the dielectric breakdown strength of  air54. According to Eq. 6, however, this external 

field corresponds to a maximum internal field of 8×104 V/m. In an experiment reported 

by Orlowska et al.19, enhanced ice nucleation was observed in external fields up to 

6.6×106 V/m; we calculated that these external fields correspond to internal fields up to 

1.1×105 V/m. The maximum field that we have investigated, 1.6×105 V/m, is thus higher 

than that investigated in previous experiments. 

4.2. Thermodynamic estimate of the field that should produce a measurable 

change in the rate of nucleation. In the presence of electric fields, the free energy of a 

substance has an additional electrostatic component. The electrostatic contribution to free 

energy is different in water and in ice. The free energy barrier for nucleation, ΔG, 

therefore changes when electric fields are present: 

   (Eq. 7) 

where ΔG(n) and ΔG0(n) are the free energy required to form a nucleus of n molecules in 

the presence, or absence, of the field. GE,ice(n) and GE,water(n) are the electrostatic free 

energies of the water sample with and without an ice nucleus. Kashchiev evaluated the 

change in the rate of nucleation due to electric fields, JN, for nucleation in a spherical 

drop of metastable material36: 

     (Eq. 8) 

    (Eq. 9) 

 where  is the nucleation rate in the absence of the field, and ΔGE is the difference in 

electrostatic free energies between a critical cluster of ice and a cluster of water 

molecules, ncrit is the number of molecules in the critical cluster, kB is Boltzmann’s 
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constant, and T the absolute temperature. According to Kashchiev, ΔGE is given by eq. 

10, 

   (Eq. 10) 

where ε0 is the permittivity of vacuum, εwater and εice the dielectric constants of ice and 

water, Vcrit is the volume of the critical nucleus, and Ein is the intensity of the internal 

electrical field in water. At the homogeneous freezing temperature (~235 ºK) and a 

frequency of 100 kHz, the values of the dielectric constants are52,55 εwater = 110, and εice  = 

3.2.  

Our experiment can detect very small changes in the rate of nucleation. We evaluated 

that the minimum change that we could observe is a factor of 1.5 in the rate of nucleation, 

factor that is equivalent to a shift of 0.1 ºC in nucleation temperature; the supporting 

information contains a description of the procedure that we used to evaluate the 

sensitivity of our measurements. We then calculated the magnitude of the electric field 

that would produce the same change in the rates of nucleation: 

     (Eq. 11) 

Combining Eq. 10 with Eq. 11, and using an estimated radius of the spherical critical 

nucleus56 of 1.4 nm at 236 ºK, we estimated that an internal electric field, Eint, of 

approximately 1.8×107 V/m would produce an observable change in the rate of 

nucleation. 

The electric fields that we could apply, though having the largest intensities used in 

homogenous ice nucleation experiments, are still two orders of magnitude too small to 

observe a change in the rate of nucleation - assuming that Kashchiev’s theory of 
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nucleation in electric fields is applicable to the homogeneous nucleation of ice. The main 

limiting factor that prevented us from applying larger fields was the deformation of 

drops. Assuming that we could operate the ice nucleation apparatus with surfactant-free 

drops that have a diameter of one micron or less, Eq. 5 predicts that we could apply fields 

that are larger by one and a half orders of magnitude than our current limit. Another 

possibility for reducing the gap between experiment and theory is to improve the 

sensitivity of our measurements. We estimate that using larger data sets and more 

sophisticated data processing we might observe changes in the rate of nucleation by a 

factor of 1.05, corresponding to a minimum observable ΔGE nine times smaller than our 

current sensitivity, and to an internal field of 6×106 V/m. A microfluidic ice nucleation 

experiment that uses submicron drops and has higher sensitivity in measuring rates of 

nucleation could be capable to test Kashchiev’s theory. 

4.3. Formation of ferroelectric ice nuclei is unlikely. The orientations of molecules 

of water in normal ice (hexagonal ice, ice Ih) are disordered near the melting temperature 

of ice. Because water molecules are polar, the most stable crystal structure of ice at very 

low temperature (close to 0 ºK) should be electrically ordered, either ferroelectrically or 

antiferroelectrically. Pure hexagonal ice remains disordered upon cooling down to 0 ºK 

because the rate of relaxation of ice is too slow to observe electric ordering 

experimentally57. Impurities such as potassium hydroxide increase the rate of relaxation, 

however, and KOH-doped ice Ih transforms into ferroelectric ice (ice XI) at 72 ºK58-60. 

 Ice XI is unstable in the temperature range in which the nucleation of ice occurs in 

supercooled water (235–273 ºK), but it might nevertheless play a role in the nucleation of 

ice. Gavish et al. and Croteau et al. proposed that ferroelectric ice stabilized by strong 



 

 22 

electric fields present inside nanocracks in crystals of amino acid14 and kaolinite27 cause 

the heterogeneous nucleation of ice by these crystals. Ferroelectric ice might also play a 

role in the nucleation of ice in external electric fields. In an increasing electric field, the 

free energy of a ferroelectric phase aligned with the field decreases faster than that of a 

disordered phase; therefore, in an external field that is large enough, supercooled water 

might nucleate to ice XI. 

The electric field in which ice XI might nucleate homogenously from supercooled 

water is at least equal to the field Eferro that lowers the field-dependent free energy of ice 

IX below the free energy of ice Ih. We estimated Eferro using Equation 12, in which Tnucl 

is the temperature at which ice nucleates homogeneously (235 ºK), TXI-Ih the temperature 

of the ferroelectric transition (72 ºK),  the configurational entropy of 

ice per molecule61, and pwater the electric dipole moment of water (6.2×10–30 C·m); the 

supporting information contains the derivation of Eq. 12.  

    Eq. 12 

Equation 12 predicts that fields larger than Eferro = 1.5×108 V/m are necessary for the 

nucleation of ice XI. Such fields are three orders of magnitude larger than the maximum 

field that we applied, therefore in our experiments ice probably nucleated to an 

electrically disordered phase. Even if we could subject water to arbitrarily large fields, we 

might still not form ice XI because according Eqs. 10 and 11 ice might nucleate to a 

normal phase in fields that are one order of magnitude smaller than Eferro.     

4.4. Implications of our results for the freezing of water in the presence of 

electric fields. Our experiments show that the homogenous nucleation of ice in drops of 

water cannot be influenced by external electric fields in air at ambient pressure; upon 
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increasing the strength of the applied field, dielectric breakdown of air will occur before 

any changes in the rate of nucleation can be observed. Therefore, electric fields in clouds 

cannot induce the freezing of drops of supercooled water through homogenous nucleation 

of ice, nor can supercooled raindrops nucleate ice homogenously as they fall through the 

intense electric field near high-voltage power transmission lines. 

In our setup we used large droplets (relative to the size of water molecules) and only a 

small fraction of water molecules in the droplets were present at the water/fluorocarbon-

fluorosurfactant interface. While we expect that water at this interface would have 

different molecular structure than water in the bulk, the interface did not play a role in the 

nucleation of ice; we inferred from measurements of the rate of homogenous nucleation 

of ice in drops of supercooled water8 that ice does not nucleate at the water-fluorocarbon 

interface in the absence of electric field. Since the interface was also subjected to external 

electric fields, our experiment provided a limit for the magnitude below which electric 

fields do not induce the nucleation of ice at the interface. We could not calculate 

accurately the magnitude of the electrical field at the interface because the dielectric 

constant of water at the interface is not known. For the limiting cases in which the 

dielectric constant is equal to 80 (bulk water) and 2 (surrounding fluid) the magnitude of 

the electric field is 1.6×105 V/m, respectively 3×106 V/m. These magnitudes are at least 

one order of magnitude smaller than the calculated field inside interfacial water in 

experiments that observed electrically-enhanced nucleation of ice15,21. 
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5. Conclusions 

We investigated the freezing of water in the presence of electric fields for three 

reasons. i) Previous experiments suggested that electrical phenomena (fields, currents, or 

discharges) can cause freezing, but the exact mechanism in which electric field might 

influence the nucleation of ice remains unclear. We therefore focused on the case of 

homogenous nucleation in external fields—a case that can be modeled theoretically and 

numerically. ii) We saw the opportunity to use a microscale system to apply electric 

fields using relatively small electrical potentials. While we succeeded in applying larger 

fields than in many other electrofreezing experiments, we were only partially successful 

in generating large fields inside the drops of water because of its large dielectric constant. 

iii) We could set up this experiment using a very reliable and ice nucleation instrument 

with high accuracy. We took advantage of these qualities to produce a useful quantitative 

conclusion: electrical fields with amplitudes up to 1.6±0.4×105 V/m change the rate of 

homogeneous nucleation of ice by less than a factor of 1.5. 

Given that the electric fields that induce freezing in pure water in MD simulations 

(~109 V/m) is larger than the dielectric breakdown of water, it is important to investigate 

whether there are other ice nucleation mechanisms or models that might be sensitive to 

smaller electric fields. We used a thermodynamic model (a version of the classical 

nucleation theory that takes into account the electrostatic free energy) to arrive at an 

estimate suggesting that an enhancement of the ice nucleation rate might be observable 

for field intensities on the order of 107 V/m. Larger intensities on the order of 108 V/m 

might enhance the nucleation of ice through a mechanism that involves the nucleation of 

ferroelectric ice XI. Although we could not test these predictions using our setup, we also 
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estimated that running a higher-sensitivity experiment with micron-sized drops might be 

sufficient to observe the effect of electric fields on the order of 106 V/m on the nucleation 

of ice. 
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Figure 1. Setup for the investigation of the effects of electric fields on the nucleation of 

ice in supercooled water. a) Experiment schematic. Small drops of water traveled in a 

microfluidic channel where they cooled until they froze. Two parallel plate electrodes 

produced uniform electric fields in the channel. b) The structure of the microfluidic 

device in the volume between electrodes, and the room-temperature electrical 

permittivities of its materials. Two dielectric spacers made from glass enhanced the 

electric fields inside drops and increased the dielectric strength of the device. 

Figure 1. 

200 µmTop electrode:indium-tin oxide, ~300 nmBonding layer:Epoxy resin (er~=4), 20 µmBonding layer:Epoxy resin (er~=4), 20 µmBottom electrode:platinum, ~200 nmDielectric spacer:glass coverslip (er=6.7), 150 µmDielectric spacer:glass coverslip (er=6.7), 150 µmMicrofluidic device:PDMS (er=2.65), 125 µmDrop: water(er~=110)Structure width: 4 mmCarrier fluid:PFMD+2%PFO (er=2.13)a)b)Top electrode,  transparentBottom electrode,electrical groundLiquid dropFrozen dropThermally insulatingplate (Torlon)Cold zone(copper, ~ -40 ºC)Microfluidic channel 125 (h) x 200 (w) µm(in PDMS)Flow ofliquids  
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Figure 2. Homogeneous freezing of water in the presence of electric fields. The freezing 

positions of large numbers of drops were recorded while AC voltages of varying 

amplitude were applied on the electrodes. a) Freezing positions and voltage amplitudes 

during a full experiment. The distribution of freezing positions was not affected by 

electric fields when their amplitude was low, but drops froze closer to the beginning of 

the channel once a threshold amplitude was exceeded. b) Selection of the data showing 

the influence of the electric field for field ramps that cross or do not cross the threshold. 

The running average was calculated by averaging the freezing positions of 100 drops. 

Figure 2. 
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Figure 3. ‘Premature freezing’ mechanism due to electrostatic forces acting on drops. a) 

Typical distribution of temperatures inside the channel in the plane that is perpendicular 

to the direction of flow of drops. The dashed-line circle indicates the position of drops in 

the absence of electric fields. Hydrodynamic lift forces (b) center the drops in the 

channel, while electrostatic interactions (c) push drops towards the walls of the channel. 

By applying alternating fields and by incorporating dielectric layers, the wall-directed 

force becomes negligible; however we could not avoid the electrostatic deformation of 

drops (d). 

Figure 3. 

 

 


