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AXIOMATIC FOUNDATIONS OF MULTIPLIER PREFERENCES

By TOMASZ STRZALECKI"

This paper axiomatizes the robust control criterion of multiplier preferences intro-
duced by Hansen and Sargent (2001). The axiomatization relates multiplier preferences
to other classes of preferences studied in decision theory, in particular, the variational
preferences recently introduced by Maccheroni, Marinacci, and Rustichini (2006a).
This paper also establishes a link between the parameters of the multiplier criterion and
the observable behavior of the agent. This link enables measurement of the parameters
on the basis of observable choice data and provides a useful tool for applications.

KEYWORDS: Ambiguity aversion, model uncertainty, robustness.

1. INTRODUCTION

THE EXPECTED UTILITY CRITERION ranks payoff profiles f according to

O V= / u(f)dgq,

where u is a utility function and q is a subjective probability distribution on the
states of the world. A decision maker with such preferences behaves as if he is
certain that the state is distributed according to the probabilistic model gq.

To model situations where the decision maker does not have enough infor-
mation to formulate a single probabilistic model and have full confidence in it,
for example, when it is hard to statistically distinguish between similar proba-
bilistic models, Hansen and Sargent (2001) formulated the criterion

@ V()=min / u(F)dp + OR(p | @),

where 6 € (0, oo] is a parameter and the function R(p || q) is the relative entropy
of p with respect to g. Relative entropy, otherwise known as Kullback-Leibler
divergence, is a measure of “distance” between two probability distributions.

'T am indebted to my advisor, Eddie Dekel, for his continuous guidance, support, and en-
couragement. I am grateful to Peter Klibanoff and Marciano Siniscalchi for many discussions
which resulted in significant improvements of the paper. I would also like to thank Jeff Ely, Todd
Sarver, and seminar audiences at Berkeley, Bocconi, CEMFI, Chicago, Collegio Carlo Alberto,
Columbia, Duke (Fuqua), Harvard, Hebrew University, LSE, NYU (Econ and Stern), North-
western, Penn, Princeton, Stanford (Econ and GSB), UCL, University of Iowa, University of
Minnesota, Warwick, Washington University (Econ and Olin), Yale, and the Hansen—Sargent
conference for graduate students. This project started after a very stimulating conversation with
Tom Sargent and was further shaped by conversations with Lars Hansen. I am very grateful to the
co-editor and three anonymous referees for their insightful and helpful comments. All errors are
my own.

© 2011 The Econometric Society DOI: 10.3982/ECTA8155


http://www.econometricsociety.org/
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA8155

48 TOMASZ STRZALECKI

An interpretation of equation (2) is that the decision maker has some best
guess g of the true probability distribution, but does not fully trust it. Instead,
he considers many other probabilities p to be plausible, with plausibility di-
minishing proportionally to their “distance” from g. The role of the propor-
tionality parameter 6 is to measure the degree of trust of the decision maker
in the reference probability g or, in other words, the concern for model mis-
specification. Higher values of 6 correspond to more trust; in the limit, with
the convention that 0 - co = 0 when 6 = oo, the decision maker fully trusts his
reference probability g and uses the expected utility criterion (1).

Multiplier preferences (2) also belong to the more general class of varia-
tional preferences studied by Maccheroni, Marinacci, and Rustichini (2006a),
which have the representation

3) V(f)=mpinfu(f)dp+c(p)-

The interpretation of (3) is like that of (2), and multiplier preferences are a
special case of variational preferences with c(p) = OR(p || ¢). In general, the
conditions that the function c¢(p) in (3) has to satisfy are very weak, which
makes variational preferences a very broad class. In addition to expected util-
ity preferences and multiplier preferences, this class also nests the maxmin
expected utility preferences of Gilboa and Schmeidler (1989), as well as the
mean-variance preferences of Markowitz (1952) and Tobin (1958).

An important contribution of Maccheroni, Marinacci, and Rustichini
(2006a) was to provide an axiomatic characterization of variational prefer-
ences. Because variational preferences are a very broad class of preferences,
it is desirable to establish an observable distinction between multiplier prefer-
ences and other subclasses of variational preferences. This is, for example, the
case with the maxmin expected utility preferences of Gilboa and Schmeidler
(1989): a strengthening of the Maccheroni, Marinacci, and Rustichini (2006a)
axioms restricts the general function c(p) to be in the Gilboa and Schmeidler
(1989) class.

The main finding of this paper is that the sure-thing principle of Savage (im-
posed on the Anscombe—Aumann domain) characterizes the class of multiplier
preferences within the class of variational preferences. This is possible because,
as the main theorem shows, the class of multiplier preferences is precisely the
intersection of the class of variational preferences and the class of second-order
expected utility (SOEU) preferences with representation

@  V(hH= / (u(f))dq
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VP SOEU

=

EU

FIGURE 1.—Relations between classes of preferences: VP, variational preferences; MP, multi-
plier preferences; SOEU, second-order expected utility preferences; EU, expected utility prefer-
ences; MEU, maxmin expected utility preferences; CP, constraint preferences.

for some real-valued function ¢.? Figure 1 depicts the relationships between
these classes.® The sure thing principle axiom used in the characterization is
standard in the literature; in particular, it is not in any way related to the very
specific functional form of relative entropy—it is the interaction between the
axioms that delivers the representation.

The proposed axiomatic characterization is important for three reasons.
First, it provides a set of testable predictions of the model that allow for its
empirical verification. This will help evaluate whether multiplier preferences,
which have already proved useful in modeling behavior at the macro level,* are
an accurate model of individual behavior. Second, the axiomatization estab-
lishes a link between the parameters of the multiplier criterion and the observ-
able behavior of the agent. This link enables measurement of the parameters
on the basis of observable choice data alone, without relying on unverifiable
assumptions. Finally, the axiomatization is helpful in understanding the rela-
tion between the multiplier preferences and the axiomatic models of ambigu-
ity aversion motivated by the Ellsberg (1961) paradox, where people exhibit a
preference for choices involving objective rather than subjective probabilities.

2For axiomatic characterizations of such preferences, see Neilson (1993, 2010), Nau (2001,
2006), Ergin and Gul (2009), and Grant, Polak, and Strzalecki (2009).

SHansen and Sargent also introduced a closely related class of constraint preferences, repre-
sented by V' (f) = minyr(pigy=n f5 (@0 f) dp, which are a special case of Gilboa and Schmeidler’s
(1989) maxmin expected utility preferences; see Figure 1. Due to their greater analytical tractabil-
ity, multiplier—rather than constraint—preferences are used in applications.

4See Barillas, Hansen, and Sargent (2009), Benigno and Nisticd (2009), Hansen, Sargent, and
Tallarini (1999), Hansen, Sargent, and Wang (2002), Karantounias, Hansen, and Sargent (2009),
Kleshchelski and Vincent (2009), Li and Tornell (2008), Maenhout (2004), and Woodford (2006).
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The paper is organized as follows. Section 2 introduces some notation and
basic concepts, as well as the definition of multiplier preferences. Section 3
presents an axiomatic characterization of multiplier preferences within the
class of variational preferences in the classic setting of Anscombe and Aumann.
Section 4 studies another choice domain, introduced by Ergin and Gul (2009),
and presents a fully subjective axiomatization of multiplier preferences. Sec-
tion 5 concludes.

2. PRELIMINARIES
2.1. Setup

Decision problems considered in this paper involve a set S of states of the
world, which represents the possible contingencies that may occur. One of
the states, s € S, will be realized, but the decision maker has to choose the
course of action before learning s. Let ¥ denote a sigma-algebra of events in
S.°> The set of all finitely additive probability measures on (S, Y) is denoted
A(S) and endowed with the weak* topology, where a net {p,},.p converges to
pif ps(A) - p(A) for all A € 3; the set of all countably additive probability
measures is denoted A7(S); its subset that consists of all measures absolutely
continuous with respect to g € A7(S), is denoted 47(g).

The set Z denotes the possible consequences and A(Z) denotes simple
probability distributions on Z. An element of A(Z) is called a lottery. A lot-
tery paying off z € Z with probability 1 is denoted §,. For any two lotteries
7, w' € A(Z) and a number « € (0, 1), the lottery am + (1 — a) 7’ assigns prob-
ability am(z) + (1 — a)7'(z) to each prize z € Z.

The alternatives that the decision maker faces, called acts, are mappings
from S to A(Z).° Formally, an act is a finite-valued, 3-measurable function
f:§ = A(Z); the set of all such acts is denoted F(A(Z)). If f, g € F(A(Z))
and E € 3, then frg denotes an act with fzg(s) = f(s) if s € E and frg(s) =
g(s)ifs¢ E.If f, g € F(A(Z)) and « € [0, 1], then af + (1 — @)g denotes an
act that assigns the lottery af (s) + (1 — a)g(s) in each state s € S.

The choices of the decision maker are represented by a preference relation
7, where f 7~ g means that the act f is weakly preferred to the act g. A func-
tional V' : F(A(Z)) — R represents - if for all f, g € F(A(Z)),

frg ifandonlyif V(f)>V(g).

An important class of preferences are the expected utility (EU) preferences,
where the decision maker has a probability distribution g € A(S) and a utility
function that evaluates each consequence u: Z — R. A preference relation 77

5The set S may be infinite or finite. When S is finite, it is assumed that 3 = 25.
®This setting was introduced by Fishburn (1970). Settings of this type are usually named after
Anscombe and Aumann (1963), who were the first to work with them.
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has an EU representation (u, q) if a functional V' : F(A(Z)) — R represents -,
where

V()= / (Z u(z)f(s)(z)) dq(s).

zeZ

In each state of the world s, the decision maker computes the expected utility of
the lottery f(s) and then averages those values across states. By slightly abusing
notation, define the affine function u:A(Z) - R by u(w) =) _, u(z)m(z).
Using this definition, the expected utility criterion can be written as

) V(= / u(f(s))dg(s).
S

Risk aversion is the phenomenon where sure payoffs are preferred to payoffs
that are stochastic but have the same expected monetary value. If Z =R, that
is, lotteries have monetary payoffs, then risk averse EU preferences have con-
cave utility functions u. Likewise, one preference relation is more risk averse
than another if it has a “more concave” utility function. Formally, an EU pref-
erence represented by (uy, q;) is more risk averse than one represented by
(us, q») if and only if g; = g, and u; = ¢ o u,, where ¢p:R — R is a strictly
increasing concave transformation. A special role will be played by the class of
transformations ¢,, indexed by 6 € (0, co]:

_ ) —exp _u for 6 < oo,
(6) bo(u) = 0

u for 6 = occ.

Lower values of 6 correspond to more concave transformations, that is, more
risk aversion.

2.2. Sources of Uncertainty and the Ellsberg Paradox

Observe that every act f:5 — A(Z) involves two sources of uncertainty:
first, the payoff of f is contingent on the state of the world, for which there
is no objective probability given; second, given the state, f(s) is an objective
lottery.

The existence of two sources of uncertainty enables a distinction between
purely objective lotteries, that is, acts which pay the same lottery 7 € A(Z) irre-
spective of the state of the world, and purely subjective acts, that is, acts that
in each state of the world pay off a degenerate lottery 6, for some z € Z,
which possibly depends on s. With a slight abuse of notation, let A(Z) de-
note the set of purely objective lotteries. Note that given g € A(S), each
purely subjective act f induces a purely objective lottery 7, € A(Z) defined
by m;(2) =q(f'(z)) forall z € Z.
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An EU decision maker has the same attitude toward objective lotteries and
toward subjective acts. From the representation (5), it follows that for any two
purely objective lotteries =" - o if and only if

Y w2 (2) =Y u(z)m(a),

zeZ zeZ

and for any two purely subjective acts f’ 77 f if and only if

Y u@mp(2) =) u(z)mp(2).

zeZ zeZ

In particular, any purely subjective act f is indifferent to the objective lottery
s that it induces.

However, more general preferences need not have such a uniform decision
attitude and they may be source sensitive, that is, exhibit more aversion to one
source than the other. This is illustrated by the Ellsberg (1961) paradox, which
demonstrates that most people prefer choices involving risk (i.e., situations in
which the probability is well specified) to choices involving ambiguity (where
the probability is not specified).’

EXAMPLE 1—EllIsberg Paradox: Consider two urns containing colored balls.
The decision maker can bet on the color of the ball drawn from each urn. Urn I
contains 100 red and black balls in unknown proportion, while urn II contains
50 red and 50 black balls.

In this situation, most people are indifferent between betting on red from
urn I and on black from urn I; this reveals that, in the absence of evidence
against symmetry, they view those two contingencies as interchangeable. More-
over, most people are indifferent between betting on red from urn II and on
black from urn II; this preference is justified by their knowledge of the compo-
sition of urn II. However, most people strictly prefer betting on red from urn II
to betting on red from urn I, thereby displaying ambiguity aversion.

Ambiguity aversion cannot be reconciled with the EU model. To see that, let
the state space S = {R, B} represent the possible draws from urn 1.

Betting $100 on red from urn I corresponds to an act fzr = (8100, 89), While
betting $100 on black from urn I corresponds to an act fz = (89, 199). On the
other hand, betting $100 on red from urn II corresponds to a lottery mz =
18100 + 380, while betting $100 on black from urn IT corresponds to a lottery

T = %80 + %6100. These correspondences reflect the fact that betting on urn I

involves subjective uncertainty, while betting on urn II involves objective risks.
Note in particular that 7x = 3.

"Other experimental evidence on source sensitivity includes Abdellaoui, Baillon, Placido, and
Wakker (2010), Chipman (1960), Curley and Yates (1989), Einhorn and Hogarth (1985), Fox and
Tversky (1995), and Heath and Tversky (1991).



AXIOMATIC FOUNDATIONS OF MULTIPLIER PREFERENCES 53

Suppose that the subjective probability of drawing red from urn I is g and
drawing black from urn I is 1 — g. Observe that V' (mg) =V (7p) = %u(lOO) +
%u(O), whereas V' (fr) = qu(100) + (1 — q)u(0) and V' (fz) = (1 — q)u(100) +
qu(0). Because of the indifference V' (fz) = V' (f), it follows that g = %; hence,
V(fr) =V (fp) = 2u(100) + 1u(0). It follows that g ~ g ~ fg ~ fz, contra-
dicting the typical Ellsberg choices.

As the above example shows, the Ellsberg pattern of choices cannot be ex-
plained by a model with a unique probability measure and with uniform aver-
sion to both sources. In the literature there have been two main approaches
to this problem. The first one replaces the probability measure g with some
other measure of belief that captures the decision maker’s lack of informa-
tion about the source; see, for example, the Choquet model of Schmeidler
(1989), maxmin model of Gilboa and Schmeidler (1989), variational prefer-
ences of Maccheroni, Marinacci, and Rustichini (2006a), or smooth prefer-
ences of Klibanoff, Marinacci, and Mukherji (2005). The other approach is
to keep g but to introduce another parameter that captures the higher aver-
sion toward variability coming from one source than another, as in the SOEU
model (Ergin and Gul (2009), Grant, Polak, and Strzalecki (2009), Gul and Pe-
sendorfer (2010), Nau (2001, 2006), Neilson (1993, 2010)). As this paper shows
(see Section 3.3), the multiplier preferences have both representations and for
this reason they belong to both families of models.

2.3. Multiplier Preferences

Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova, and
Williams (2006) introduced the class of multiplier preferences where the de-
cision maker does not know the true probabilistic model p, but has a “best
guess” or approximating model g, also called the reference probability. The deci-
sion maker thinks that the true probability p is somewhere near the reference
probability g. The notion of distance used by Hansen and Sargent is relative
entropy.

DEFINITION 1: Let a reference measure g € A?(S) be fixed. The relative en-
tropy R(- || q) is a mapping from A(S) into [0, co] defined by

dp .
log— )dp, if A%(q),
R(plq)= L(Ogdc)p ihpediq)
00, otherwise.

A decision maker who is concerned with model misspecification computes
his expected utility according to all probabilities p, but he does not treat them
equally. Probabilities closer to his best guess have more weight in his decision.
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DEFINITION 2: A relation - has a multiplier representation if it is represented
by

V(f)= min /M(f(s))dp(s) +O0R(p Il 9),
PEA(S) Ky

where u:A(Z) — R is a nonconstant affine function, 6 € (0, 00], and g €
A?(S). In this case, - is called a multiplier preference.

The multiplier representation of 2~ may suggest the following interpretation.
First, the decision maker chooses an act without knowing the true distribution
p- Second, “Nature” chooses the probability p so as to minimize the decision
maker’s expected utility. Nature is not free to choose, but it incurs a “cost” for
using each p. Probabilities p that are farther from the reference measure g
have a larger potential for lowering the decision maker’s expected utility, but
Nature has to incur a larger cost to select them.

This interpretation suggests that a decision maker with such preferences is
concerned with model misspecification and makes decisions that are robust
to such misspecification. He is pessimistic about the outcome of his decision
which leads him to exercise caution in choosing the course of action. Such cau-
tious behavior is reminiscent of the Ellsberg paradox, as in Example 1 above.
In fact, as Example 2 in Section 3.4.2 shows, multiplier preferences can be used
to model such behavior.

3. AXIOMATIZATION WITH OBJECTIVE RISK
3.1. Variational Preferences

To capture ambiguity aversion, Maccheroni, Marinacci, and Rustichini
(2006a) (henceforth MMR) introduced the class of variational preferences,
with representation

7 V(f)=min / u(f())dp +c(p),
PEAS Jg

where c: AS — [0, oo] is a cost function.

Multiplier preferences are a special case of variational preferences where
c¢(p) = OR(p |l ). The variational criterion (7) can be given the same inter-
pretation as the multiplier criterion (2): Nature wants to reduce the decision
maker’s expected utility by choosing a probability distribution p, but she is not
entirely free to choose. Using different p’s leads to different values of the de-
cision maker’s expected utility f cu(f(s))dp, but comes at a cost c(p).

To characterize variational preferences behaviorally, MMR used the follow-
ing axioms.

AXIOM Al—Weak Order: The relation 7 is transitive and complete.
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AXI0M A2—Weak Certainty Independence: Forall f, g € F(A(Z)), m, 7' €
A(Z),and a € (0, 1),

of +(1l—a)ymZag+(1—a)m
= ao+l-a)y7 Zag+(1-a)7.

AXIOM A3—Continuity: Forany f, g, h € F(A(Z)),the sets {a € [0, 1] | af +
(1—a)g - htand {a €[0,1]| hZ af + (1 — ) g} are closed.

AXIOM A4—Monotonicity: If f, g € F(A(Z)) and f(s) - g(s) forall s€ S,
then f 77 g.

AXIOM A5—Uncertainty Aversion: If f, g € F(A(Z)) and a € (0, 1), then
f~8 = of+d-a)gZf

AXIOM A6—Nondegeneracy: f > g for some f, g € F(A(Z)).

AXIOM A8 —Weak Monotone Continuity: If f,g € F(A(Z)), m € A(Z),

{E}ps1€Xwith E\ D E,2---,and (., E, =, then f - g implies that there
exists nyg > 1 such that wE, f > g.

n>1

MMR showed that the preference - satisfies Axioms A1-A6 if and only
if 7~ is represented by (7) with an affine and nonconstant u : A(Z) — R and
¢ : AS — [0, oo] that is convex, lower semicontinuous, and grounded (achieves
value zero). Moreover, Axiom A8 guarantees that function c is concentrated
only on countably additive measures (observe, that Axiom A8 holds trivially
if § is finite).

The conditions that the cost function c satisfies are very general. For ex-
ample, if ¢(p) = oo for all measures p # g, then (7) reduces to (5), that is,
preferences are expected utility. Similarly, setting ¢(p) = 0 for all measures p
in a closed and convex set C and c(p) = oo otherwise, denoted ¢ = 8., reduces
(7) to the representation of the maxmin expected utility preferences of Gilboa
and Schmeidler (1989).

As mentioned before, multiplier preferences also are a special case of varia-
tional preferences. They can be obtained by setting c(p) = 0R(p || g). The next
section shows that pinning down this functional form is possible with Savage’s
P2 applied to all Anscombe-Aumann acts.®

81f the existence of certainty equivalents of lotteries is assumed, that is, for any 7 € A(Z) there
exists z € Z with z ~ ar, then P2 can be weakened and imposed only on purely subjective acts.
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3.2. Axiomatization of Multiplier Preferences

AXIOM P2—Savage’s Sure-Thing Principle: For all E € 3 and f,g,h, I €
F(A(Z)),

filli:'gE}l = féll,E:'gE]f.

DEFINITION 3: An event E € 3 is nonnull if there exist f, g, h € F(A(Z))
such that fEh > gEh.

THEOREM 1: If § has at least three disjoint nonnull events, then Axioms Al-
A6, A8, and P2, are necessary and sufficient for = to have a multiplier represen-
tation (2). Moreover, in this case, two triples (', u', q') and (0", u", q") represent
the same multiplier preference - if and only if ¢’ and q" are identical, and there
exist a > 0 and B € R such that u' = au” + B and 6 = af".

The two cases 6§ = oo (lack of concern for model misspecification) and
6 < oo (concern for model misspecification) can be distinguished on the ba-
sis of the independence axiom.’ In the case when @ is finite, its numerical value
is uniquely determined, given u. A positive affine transformation of u changes
the scale on which 6 operates, so 6 has to change accordingly. This is rem-
iniscent of the necessary adjustments of the constant absolute risk aversion
coefficient when units of account are changed.

In addition, it should be mentioned that there exists an axiomatization by
Wang (2003) of a class of preferences that includes multiplier preferences as a
special case. However, his result is formally unrelated and it assumes different
primitives: preferences are defined on triples (f, C, g), where f is an act with
monetary payoffs, C C A(S) is a set of probability measures, and g € A(S) is a
reference measure. In particular, his axioms impose consistency conditions as
the elements C and g are varied exogenously. In contrast, here C = A(S), and
q is fixed and derived from preferences.

3.3. Sketch of the Proof

The following variational formula (see, e.g., Proposition 1.4.2 of Dupuis and
Ellis (1997)) plays a critical role in the analysis of multiplier preferences. For
any bounded and 3-measurable function £:S — R and g € A7(S),

peAS

(8) minfsfderaR(p||q)=d>;1(/s¢eo§dq)-

9The weaker certainty independence axiom is also sufficient for making such a distinction.
Alternatively, Machina and Schmeidler’s (1995) axiom of horse/roulette replacement or Grant
and Polak’s (2006) axiom of betting neutrality could be used.
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This formula implies that the variational

(%) mm/udu»meR@nm
peas Jg

and the SOEU

(9b) t/1¢e(u(fKS)))dq(S)
S

representations are ordinally equivalent, establishing the necessity of the
MMR and the P2 axiom of Savage.!’

The sufficiency argument relies on the fact that the MMR axioms guarantee
the existence of an affine utility function u: A(Z) — R and a functional 7 that
maps utility-valued acts to reals, such that the functional f — I(u(f)) repre-
sents the preferences. For simplicity, assume that u(A(Z)) = R. MMR showed
that the functional I has the translation invariance property that I(uo f + k) =
I(uof)+k forany act f and any k£ € R. On the other hand, Axiom P2 together
with the MMR axioms implies that the preferences have a SOEU representa-
tion

(10) £¢wqmmdmm

for some strictly increasing function ¢.!! Moreover, Axioms A3 and A5 imply
that ¢ is continuous and concave, and Axiom A8 implies that g is countably
additive. This representation, together with translation invariance, implies that

/d)(u(f(S)))dCI(S) z/qb(u(g(s))) dq(s)
s S
if and only if (iff)

/¢WU@»+@dﬂnz/¢@@@»+@dmm
S S

which by uniqueness of the SOEU representation implies that there exist
a(k) > 0and B(k) e Rsuchthat p(x +k) = a(k)d(x)+ B(k) forall x, k e R.

0The fact that multiplier preferences rank purely subjective acts according to the EU crite-
rion has been observed before in various levels of generality by Jacobson (1973), Whittle (1981),
Skiadas (2003), and Maccheroni, Marinacci, and Rustichini (2006b). Because of this fact, it is
not possible to distinguish multiplier preferences from the EU preferences based on the prefer-
ences over purely subjective acts alone: a setting with multiple sources of uncertainty, like the
Anscombe-Aumann or Ergin—Gul ones, is needed.

Recall that Savage’s P2 axiom is imposed on F(A(Z)), not just the purely subjective acts, as
in Savage (1972). The fact that imposing all Savage’s axioms on F(A(Z)) implies SOEU was first
shown by Neilson (1993). I am grateful to Peter Klibanoff for this reference.
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This is a generalized Pexider equation, whose only solutions are ¢ = ¢, for
0 € (0, oco], which establishes the sufficiency of the axioms.

3.4. Discussion
3.4.1. Second-Order Expected Utility

It follows from the above proof that the class of multiplier preferences is
precisely the intersection of the class of variational preferences and the class
of SOEU preferences. When viewed as a SOEU preference, multiplier prefer-
ences impose the condition ¢ = ¢4. When viewed as a variational preference,
multiplier preferences impose the condition ¢(p) = OR(p || q). It is worthwhile
to notice that this means that no other variational preferences have a SOEU
representation, that is, assuming that c is a statistical distance other than the
relative entropy leads to models which do not have a SOEU representation for
any ¢. Conversely, no other SOEU preference has a variational representa-
tion, that is, assuming that ¢ is a function other than the negative exponential
leads to models which do not have a variational representation for any c.

3.4.2. Source Sensitivity of Multiplier Preferences

Focus on the case 6§ < co and notice that from the SOEU representation
(9b), it follows that, for any two purely objective lotteries, 7' 7 7 if and only if

Z u(z)w(z) > Z u(z)m(2).

zeZ zeZ

On the other hand, for any two purely subjective acts, f’ 77 f if and only if

> bew())mp(2) =D bo(u(z))my(2).

zeZ zeZ

This means that the decision maker has a different attitude toward objective
lotteries and toward subjective acts, while behaving according to EU in each
subdomain. In particular, he is more averse toward subjective uncertainty (as
captured by ¢, o u) than toward objective risk (as captured by u). This phe-
nomenon is called second-order risk aversion.'> What lead to the Ellsberg-type
behavior are violations of EU across those domains. The following example
shows that, because of this property, multiplier preferences can be useful for
modeling Ellsberg-type behavior.

EXAMPLE 2—Ellsberg’s Paradox Revisited: In the context of Example 1,
consider a multiplier preference with a parameter 6. Observe that V' (wg) =

2This notion was introduced by Ergin and Gul (2009) in a setting with two subjective sources
of uncertainty (see Section 5).
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V(1) = ¢p(3u(100) + 5u(0)), whereas V(fr) = q¢o(u(100)) + (1 — q) x
de(u(0)) and V(fp) = (1 — q@)po(u(100)) + gp4(u(0)). Because of the in-
difference V' (fzr) = V (fp), it follows that g = %; hence, V(fz) =V (fz) =
1o(u(100)) + 3 $4(u(0)). By Jensen’s inequality, s ~ 7 = fr ~ f3 for all
0 < oco. This means that the decision maker prefers objective risk to proba-
bilistically equivalent subjective uncertainty, displaying behavior typical in Ells-
berg’s experiments.

3.4.3. Measurement of Parameters

Ellsberg’s paradox provides a natural setting for the experimental measure-
ment of the parameters of the model because the intensity of the preference
for betting on the first versus the second urn, that is, the premium that the
decision maker is willing to pay to switch between these two bets, is directly
related to the value of the parameter 6.

EXAMPLE 3: In the context of Examples 1 and 2, consider a multiplier pref-
erence with a constant relative risk aversion utility function u(z) = (w+ z)'77,
where w is the initial level of wealth, and parameter 6. Observe that V' (mz) =
V(mg) = ¢po(Gw'™ + 1 (w 4 100)'77), whereas V (fr) =V (f5) = 3o(w' ™) +
%d)g((w +100)!-7). Let x denote the certainty equivalent of 7 and 7, that is,
the amount of money that, when received for sure, would be indifferent to 7
and 7rg. Formally, x solves

1 1
(11) (w+x)"7 = EwH +5w+ 100)'.

The observed value of the certainty equivalent x allows computation of the
curvature parameter y using Equation (11); let y(x) be the solution to this
equation.”

Similarly, let y be the certainty equivalent of fz and f3, that is, the amount
of money that, when received for sure, would be indifferent to fz and f3. For-
mally, y solves

(1) ulo+ 0 ) = 0w 4 Lt 1000,

The observed value of the certainty equivalent y makes it possible to compute
the parameter 6 using equation (12); let 6(x, y) be the solution to this equa-
tion.

The procedure described above suggests that simple choice experiments
could be used for empirical measurement of both u and 6. Such measurement

BIf the utility function u belongs to some higher-dimensional family of utility functions, more
certainty equivalents need to be elicited so as to infer all of its parameters.
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of parameters would be very useful in applied settings, where it is important
to know the numerical values of parameters. For example, the macro-finance
literature devotes a lot of attention to the discrepancy between the micro- and
macro-level estimates of the curvature of u. By analogy, it would be valuable
to know the micro-level estimate of 6 to be able to compare it to the value
calibrated from the macro-level data. The above procedure provides a sim-
ple “revealed-preference” method of comparison that is complementary to the
heuristic method of “detection error probabilities” developed by Anderson,
Hansen, and Sargent (2003) and Hansen and Sargent (2007).

4. AXIOMATIZATION WITH TWO SUBJECTIVE SOURCES

This section discusses a choice domain that does not rely on the assump-
tion of objective risk: instead, there are two sources of subjective uncertainty,
toward which the decision maker may have different attitudes. This type of en-
vironment was discussed by Chew and Sagi (2008), Ergin and Gul (2009), Gul
and Pesendorfer (2010), and Nau (2001, 2006).

4.1. Subjective Sources of Uncertainty

Assume that the state space has a product structure S = S, x Sj, where a
and b are two separate issues, or sources of uncertainty, toward which the de-
cision maker may have different attitudes. In comparison with the Anscombe—
Aumann framework, where objective risk is one of the sources, here both
sources are subjective. Let .4, be a sigma algebra of subsets of S, and let A, be
a sigma algebra of subsets of S,. Let 3, be the sigma algebra of sets of the form
A x S, forall 4 € A,,let 3, be the sigma algebra of sets of the form S, x B for
all B € A,, and let 3 be the sigma algebra generated by 3, U 3,. Let F(Z) be
the set of all simple 3-measurable acts f:S — Z; moreover, let F,(Z) be the
set of acts that are 3,-measurable, and likewise for F,(Z). Let I/ denote the
set u(Z).

Ergin and Gul (2009) axiomatized preferences which are general enough to
accommodate probabilistic sophistication and even second-order probabilistic
sophistication. An important subclass of those preferences are second-order
expected utility preferences represented by

(13) V(f)=/ d><f u(f(sa,sb))dqa(sa)>dqb(sb),
Sp

Sa

where the measures g, € A(S,) and g, € A(S,) are convex-ranged,* u: Z — R,
and ¢:Dy — R is a strictly increasing and continuous function with domain

1A measure ¢ is convex-ranged if for every E € 3 and every « € (0, 1) there exists 3> E' C E
with ¢(E") = aq(E). It is well known that this requirement is equivalent to nonatomicity for
q € A?(S). Any measure on R that has a density with respect to the Lebesgue measure has this
property; in applications of multiplier preferences, g is most often a Normal distribution.



AXIOMATIC FOUNDATIONS OF MULTIPLIER PREFERENCES 61

D, := {fsa u(f(s.,s,))dq.(s.) | f € F.(Z)}. To characterize preferences repre-
sented by (13), Ergin and Gul (2009) used the following axioms.

AXIOM P1—Weak Order: The preference - is complete and transitive.

AXIOM P2—Sure-Thing Principle: For all events E, € 3, and E, € 3, and
acts f, g, h, h/ € F.(Z) and f g, h,h' € F(Z), the following relationships exist:

(@) feuh = ge W iff fih' = g,

(b) fe,h ge,hiff fe,h 7 8, 1.

AxioM P3—Eventwise Monotonicity: For all z,z € Z, f € F(Z), and all
nonnull events E€ 3, zpf 7z . fiff z 72 2.

AXIOM P4—Weak Comparatlve Probability:

(a) Forallx = yand x' > y',and A, A’ € 34, x4y > x 2y iff x,y = x',y.

(b) Forall f,g,f,g € Fu(Z) such that f>gand f' > g,and B,B € 3,
f58 = o8 iff [58 >[5

AXIOM P5—Nondegeneracy: There exist x,y € Z such that x > y.

AXIOM P6—Small Event Continuity: Forall f, g € F(Z) with f > g, and all
z € Z, the following statements hold:

(a) There exists a partition E,, ..., E, € 3, of S such that for all i, zp.f > g
and f > zg,g.

(b) There exists a partition F\, ..., F,, € 3, of S such that for all j, zr.f > g
and f > zp,g.

There is a close relationship between representations (13) and (10). The
role of objective risk is now taken by a subjective source: issue a. For each sp,
the decision maker computes the expected utility of f(-, s,) and then averages
those values using function ¢.

4.2. Second-Order Risk Aversion

In the Anscombe—Aumann framework, the concavity of the function ¢ is re-
sponsible for second-order risk aversion, that is, higher aversion toward subjec-
tive uncertainty than toward objective risk. This property is a consequence of
the axiom of uncertainty aversion (Axiom AS5). Similarly, in the present setup,
the concavity of the function ¢ is responsible for higher aversion toward issue
b than toward issue a. This property was introduced by Ergin and Gul (2009),
who formally defined it in terms of mean-preserving spreads. However, this
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definition refers to the probability measures obtained from the representation
and hence is not expressed directly in terms of observables.!

In the presence of other axioms, the following purely behavioral axiom is
equivalent to Ergin and Gul’s (2009) definition.

AXIOM A5'—Second-Order Risk Aversion: For any f, g € F,(Z) and any
EeX,if f~g then frg Z f.

This axiom is a direct subjective analog of Schmeidler’s (1989) axiom of un-
certainty aversion (Axiom AS).

THEOREM 2: Suppose - satisfies Axioms P1'-P6’ and certainty equivalents ex-
ist, that is, for any f € F(Z), there exists z € Z with z ~ f. Then Axiom AS' is
satisfied if and only if the function ¢ in (13) is concave.'

4.3. Axiomatization of Multiplier Preferences

The additional axiom that delivers multiplier preferences in this framework
is weak F, independence, which is the direct subjective analog of the weak
certainty independence axiom (Axiom A2) of MMR.

AXIOM A2'—Weak F, Independence: For any event E € 3, for all f, g €
F(Z)yand h, W € F,(Z),

fEh i: gEh = fEh/ ,>\_J gEh/.
In addition, a technical axiom, similar to Axiom AS8, is needed.

AXIOM A8'—F,-Monotone Continuity: If f, g € F(Z), x € Z, {E,}p=1 € 3
with E; D E; D -+, and (., E. =0, then f > g implies that there exists N > 1
such that xg, f > g.

n>1

THEOREM 3: Axioms P1'-P6'; A2, AS', and A8’ are necessary and sufficient
for - to be represented by V', where

V(f)= min _/(f u(f(sa;sb))dqa(sa)> dpy(sy) + OR(py ||l g»)
Sb

PbEA(S) Sa

andu:Z — R, 0 € (0,00],and q, € A(S,), q» € A7 (S}) are convex-ranged mea-
sures.

Theorems 2 and 5 of Ergin and Gul (2009) characterize second-order risk aversion in terms
of induced preferences over induced Anscombe—Aumann acts and an analog of Axiom AS in
that induced setting. However, just as with mean-preserving spreads, those induced Anscombe-—
Aumann acts are constructed using the subjective probability measure derived from the repre-
sentation.

16The full analysis that does not rely on the existence of certainty equivalents is contained in
Appendix A.2.
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4.4. Sketch of the Proof

By Theorem 3 of Ergin and Gul (2009), Axioms P1'-P6’ are equivalent to
7~ being represented by (13). Assume for simplicity that certainty equivalents
exist and that u(Z) = R. By Theorem 2, Axiom A5’ is equivalent to ¢ : R — R
being concave. Moreover, it is easy to see that Axiom A8’ is equivalent to g,
being countably additive. A direct verification establishes that Axiom A2’ is
necessary.

To establish the sufficiency of Axiom A2’, observe that by the convex-
rangedness of g,, there exists an event E € 3, such that g,(E) = % For all
k eR and f', g € F,(Z), Axiom A2’ (applied to f, g, h, and A’ such that
u(f) =2u(f", u(g) =2u(g’), u(h) =0, and u(h’) = 2k) implies that

/@b(u(f,(sb)))de(Sh)Z/ & (/' (8(56))) dqp(sp)

Sp Sb
iff

/ S(u(F(50)) + k) dgy(s) = / (u(g (50)) + k) dan(sy),

Sp Sp

which, by the same argument as in the proof of Theorem 1, implies that ¢ = ¢.

5. CONCLUSION

One of the challenges in decision theory lies in finding decision models
that would do better than expected utility in describing individual choices, but
would at the same time be easy to incorporate into economic models of aggre-
gate behavior.

This paper studies the model of multiplier preferences which is known to
satisfy the latter requirement. By obtaining an axiomatic characterization of
this model, the paper studies its individual choice properties, which will help
to determine whether it also satisfies the first requirement mentioned above.

The axiomatization provides a set of testable implications of the model,
which will be helpful in its empirical verification. The axiomatization also en-
ables measurement of the parameters of the model on the basis of observable
choice data alone, thereby providing a useful tool for applications of the model.

APPENDIX: PROOFS

Let By(2) denote the set of all real-valued 3-measurable simple functions
and let By (2, K) be the set of all functions in By(2) that take values in a convex
set K C R.

In the course of the proof of Theorem 1, a result of Grant, Polak, and Strza-
lecki (2009) will be invoked that delivers a SOEU representation on each finite
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partition of S. The following theorem shows that these representations can be
“patched” together to obtain an overall SOEU representation on S.

Let 5 denote the set of all finite partitions of S that are composed of events
in 3; let 5% C & denote the set of all such partitions that contain at least three
nonnull events. For any G € =, let A(G) be the algebra generated by G. For any
G e 53, let F4(A(Z)) denote the set of acts in F(A(Z)) that are measurable
with respect to A(G).

DEFINITION 4—Z3-SOEU: A preference = on F(A(Z)) is 5°-SOEU iff
for any G € 5°, the restriction of = to F3(A(Z)) is represented by f +—
Y geg $aug(f(E))) pg(E) with a nonconstant affine function ug:A(Z) —
R with range Ug, a strictly increasing, continuous, and concave function
¢g:Us; — R and measure pg:A(G) — [0, 1] such that at least three events
in G have nonzero probability.

THEOREM 4: Suppose that 5° # (§ and that 7 satisfies Axioms Al, A4,
and P2. The preference 7, is 5°-SOEU if and only if there exists a measure
p € A(S) and a nonconstant affine function u:A(Z) — R with range U, and
a strictly increasing, concave, and continuous function ¢ :U — R such that 7 is

represented by f +— fs d(u(f(s)))dp(s).

PrOOF: The sufficiency of the representation is straightforward. For neces-
sity, let G, G’ € 5°. The restrictions of =~ to F;(A(Z)) and to Fg (A(Z)) coin-
cide on constant acts A(Z). Thus, from the uniqueness of the von Neumann—
Morgenstern utility, it follows that ug and ug are identical up to a positive
affine transformation. Fix any two prizes z > z' and for each G € 5°, normal-
ize ug so that ug(z) =1 and ug(z’) = 0. Define u to be the common utility
function for all G € Z°.

For any G, G’ € 5, define G > G’ iff G is finer than G/, that is, for every E € G
there exists F € G’ with E C F. For any G, G’ € 5, let G v G’ be their coarsest
common refinement and let G A G’ be their finest common coarsening.

LEMMA 1: If E € 3 is nonnull, then for any finite 3-measurable partition
{Fy,..., F,} of E, at least one of the sets Fy, ..., F, is nonnull.

PROOF:

CLAIM 1: For any nonnull E € 3, there exist , p, o € A(Z) such that ppo >
TEO.

PROOF: There exist f, g, h € F(A(Z)) such that fzh > ggh. By P2 choose h
to equal to some o € A(Z) different than any of the prizes given by f and g.
Let{Ei, ..., E,, E°} € 5 be a partition of S with respect to which both fro and
geo are measurable. Let p be the most preferred element among {f(E;) | i =
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1, ..., n} and let 7 be the least preferred element among {g(E;) | i=1,..., n}.
By A4, pro - fro and ggo 77 mpo. Thus ppo > mgo. Q.E.D.

CLAIM 2: For any nonnull E € 3 and any two-element 3-measurable partition
{F\, F»} of E, at least one of the sets F,, F, is nonnull.

PROOF: Suppose that there exists a two-element 3-measurable partition
{F,, F>,} of E such that both sets F, and F, are null. Then pg,h ~ 7 h for any
h e F(A(Z)) and all i =1, 2. In particular, pgo = pr, (pr,0) ~ 7r, (pr,0) =
pr,(mp 0) ~ g, (mF 0) = wgo. This is a contradiction with Claim 1.  Q.E.D.

CrLAIM 3—Inductive Step: If for any nonnull E' € 3 and any n-element 3-

measurable partition {F,, ..., F,} of E', at least one of the sets F\, ..., F, is non-
null, then for any nonnull E € 3 and any n + 1-element 3-measurable partition
{Fi,..., F. 1} of E, at least one of the sets Fy, ..., F,., is nonnull.

PROOF: By Claim 2, at least one of the sets F; U---UF, =: E’ and F,,, is
nonnull. If the latter is true, this concludes the proof. If £’ is nonnull, then
the premise of this claim applied to the set £’ and its partition {Fy,..., F,}
concludes the proof. Q.E.D.

LEMMA2: GV G e Z3 forany Ge E2and G' € 5.

PROOF: By assumption, there are at least three disjoint nonnull sets in G. By
Lemma 1 for any such set E € G, there is at least one nonnull member of {E N
F | F € G'}. Thus, there are at least three nonnull members of G v G'. Q.E.D.

LEMMA 3: The functions {¢g}ge=: and measures {pglge=s can be chosen in
such a way that there exists ¢ :U — R such that ¢g = ¢ for any G € F°, and for
any G, G’ € 53, the restrictions of measures pg and pg to A(G A G') coincide.

PROOF: For each G € 5°, normalize ¢g so that ¢g(u(z)) = 1 and
b (u(z')) =0.First, let G, H € =3 such that G > H. Observe, that 7, (A(Z)) C
Fc(A(Z)), so both (¢g, ps) and (¢4, py) represent preferences on
F(A(Z)). By the uniqueness of the expected utility representation, the re-
striction of p,, to G coincides with pg and the functions ¢,, and ¢4 are iden-
tical up to a positive affine transformation, which by the above normalization
assumption implies that they are equal.

Second, let G,G’ € 5°. By Lemma 2, G v G’ € Z°. Furthermore, G v G’ >
G and G v G’ > G'. From the above paragraph, it follows that ¢ = dgug =
¢g. Let ¢ be this common function. Also the restriction of pg.g to A(G)
coincides with pg; hence the restriction of pg.go to A(G A G') coincides with
the restriction of pg to A(G A G). Likewise, the restriction of pg,¢ to A(G')
coincides with pg; hence the restriction of pg.g to A(G A G) coincides with
the restriction of pg to A(G A G). Q.E.D.
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LEMMA 4: There exists p € A(S) such that p(E) = py(E) forany E € 3 and
any H € 5° with E € H.

PROOF: Let G € 5° be some fixed element of 5°. For any E € 3, define the
partition G := G Vv {E, E}; by Lemma 2, G; € 5°. Define the function p:3 —
[0,11by p(E) := pg,(E). Let E, F € Sbesuchthat ENF =@. Let Ggr:=G Vv
{E,F,(EUF)‘}. By Lemma 2, Ggr € Z° and by Lemma 3, pg, (E) = pg,, (E)
because E € A(Gg A Ger). Likewise, pg, (F) = pg,,(F) because F € A(Gr A
Ger). Also, pg, ,(EUF) = pg,.(EUF)because EUF € A(Ggur A Ggr). By
definition, p(EUF) = pg, ,(EUF) = pg,,(EUF) = pg,.(E) + pg..(F) =
Pap(E) + pg.(F) = p(E) + p(F). Hence, p € A(S).

Suppose H € Z° and E € H. Then E € A(H A Gg) and by Lemma 3,
pn(E) = pg,(E). Hence, by definition, p(E) = py(E). O.E.D.

CONCLUSION OF THE PROOF OF THEOREM 4: For any act f € F(A(Z)),
define V(f) := [ ¢(u(f(s))dp(s). To verify that V' represents 7, let f,g €
F(A(Z)). Let Gy, € 5 be a partition such that both f and g are mea-
surable with respect to A(Gy,). Let G € Z° be some fixed element of 5°
and let G := G;, v G; by Lemma 2, G € 5°. By assumption, f = g iff
Y peg Po(ug(f(E)) pg(E) =D pg bo(ug(g(E)) pg(E). Since ug =u, ¢g = ¢
(by Lemma 3), and p(E) = pg(E) for all E € G (by Lemma 4), it follows that
fRgity oo du(f(E))p(E) > ) pg d(u(g(E))p(E). Q.E.D.

A.1. Proof of Theorem 1

The necessity of the axioms was shown in the sketch of proof (Section 3.3);
this section focuses on sufficiency. Uniqueness follows from Corollary 5 of
MMR.

A.1.1. Niveloidal Representation

By Lemmas 25 and 28 of MMR and Lemma 22 in Maccheroni, Marinacci,
and Rustichini (2004), Axioms A1-A6 imply that there exists a nonconstant
affine function u:A(Z) — R and a concave functional I: By(3,U) — R such
that f - g iff I(uo f) > I(uo g), where U := u(A(Z)). Moreover, within this
class, u is unique up to positive affine transformations.

Without loss of generality (wlog), U/ € {R, R, R_, [0, 1]}; the inclusion of the
endpoints does not matter for further analysis. For any y € intl/, define /” :=
{x elU | x + y eU}. The functional I has the property that I(§+y) =1(&) +y
forall y e and & € By(3,U”).

A.1.2. Utility Acts

For each act f, define the wutility act associated with f as uo f € By(3,U).
The preference on acts induces a preference on utility acts: for any &, §” €
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By(3,U), define ¢ =, & iff f' = 7, for some & =uo f and & =uo f”. The

choice of particular versions of f' and f” is irrelevant, because of Axiom A4.
From Section A.1.1, it follows that & =, & iff I(&") > I(&") iff I(& + y) >

I(&+y)iff & +yr, & +yforall yeintlf and all &, &” € By(3,U”).

A.1.3. Second-Order Expected Utility

By Proposition 7 of MMR the preference - is ambiguity averse in the
sense of Ghirardato and Marinacci (2002). Observe that for any G € 53,
there is a natural bijection between F5(A(Z)) and (A(Z))'“' that preserves
Axioms A1-A6, P2, and the ambiguity aversion in the sense of Ghirardato
and Marinacci (2002). Thus, by Theorem 2 of Grant, Polak, and Strzalecki
(2009), for any G € 5°, the restriction of =~ to F;(A(Z)) has an additive repre-
sentation f > ), . dg(ug(f(E)))pg(E) with a nonconstant affine function
ug:A(Z) — R with range U, a strictly increasing, continuous, and concave
function ¢4 :U; — R, and measure pg: A(G) — [0, 1] such that at least three
events in G have nonzero probability. By Theorem 4 above, the preference -
on F(A(Z)) has an additive representation

fs (u(f(5))) dq(s),

where the measure g € A(S) and the function ¢ :U4 — R is strictly increasing,
concave, and continuous.

By Theorem 1 in Villegas (1964, Section 1), Axiom A8 implies that g €
A7(S).

A.1.4. Proof That ¢ = ¢y

For any y € intl/, define ¢?(x) := ¢(x + y) for all x € U’. It follows from
Sections A.1.2 and A.1.3 that [(¢? 0 &dq > [(¢* o £'dq iff [P o &dg >
fs ¢ o & dq for all €, ¢ € By(2,U”). Thus, (¢, q) and (¢, q) are EU rep-
resentations of the same preference on By(3,U”). By the uniqueness (up
to positive affine transformation) of the EU representation, it follows that
d(x+y)=a(y)d(x)+ B(y) for all y € int¥/ and all x € U*. This is a gener-
alization of Pexider’s equation (see equation (3) of Aczél (1966, Section 3.1.3,
p. 148)). If U is unbounded, then by Corollary 1 in Aczél (1966, Section 3.1.3),
up to positive affine transformations, the only strictly increasing concave solu-
tions are of the form ¢,, for 6 € (0, co]. If I/ is bounded, then wlog assume that
intl/ = (0, 1) and define the set R :={(x,y) e R? | x>0,y >0,x+y <1} and
functions m, I, n,k:(0,1) > Rby m:=a, | := 8, n:= ¢0,1y, and k := ¢,1).
The functional equation &(x + y) = m(y)n(x) + [(y) holds for all (x, y) € R.
It follows from the corollary in Aczél (2005) that either k(x) = Cx + B+ Pw
or k(x) = wde“* + B for some arbitrary parameters B, P, C, w, and § with
Cwd # 0. It follows that ¢ is an exponential function up to positive affine
transformations; by concavity, ¢ = ¢, in the interior of U/. By continuity of
¢, this extends to the whole set U.
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A.1.5. Conclusion of the Proof

Combining the results of Sections A.1.3 and A.1.4, f = g iff [(pgouo
fdq > [((¢gouog)dq. Because g € A%, by the variational formula (8), it
follows that f = g iff mincas [((uo f)dp+ OR(p || ¢) = min,eus [((uog)dp+
OR(p |l g). Q.E.D.

A.2. Proof of Theorem 2
To relax the assumption of existence of certainty equivalents, the following

definition will be used.

DEFINITION 5: Act f € F,(Z) is symmetric with respect to E € 3, if for all
zeZ,

fez~ zef.

Symmetric acts have the same expected utility on each “half” of the state
17
space.

AXIOM A5”"—Second-Order Risk Aversion: If acts f, g € F, are symmetric
with respect to E € 3, then for all F € 3,

frg~grf = [fegZ frg.

The proof of Theorem 2 follows from the proof of the following stronger
theorem.

THEOREM 5: Suppose -, satisfies Axioms P1'-P6'. Then Axiom AS" is satisfied
if and only if the function ¢ in (13) is concave.

PROOF: By Theorem 3 of Ergin and Gul (2009), Axioms P1'-P6’ are equiv-
alent to - being represented by (13). Q.E.D.

A.2.1. Necessity

Suppose f € F,(Z) is symmetric with respect to E € 3,. Let a = ¢,(E). Ax-
iom P5" and representation (13) imply that there exist z’, z” € Z with z' > 2.

Symmetric acts are acts that can be “subjectively mixed,” that is, mixed using states rather
than probabilities. Such subjective mixtures are different from subjective mixtures studied by
Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003), whose construction relies on range-
convexity of u. In the present setting, subjective mixtures are not needed under range-convexity
of u.
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Thus, fpz' ~ z..f and fgz” ~ zj.f imply that
14 [wopda+(-aue) =au)+ [ wos)da,
E E€

(15) / (o f)dg, + (1 — a)u(z) = au(z’) + / (wo f)dq,.
E E€
By subtracting (15) from (14),
(1 —a)[u(z) —u(z")]=alu(z') —u(z")];

thus, & = 1 and therefore

/(uof)dqazf (uof)dgq,.
E E¢

Let f, g € F,(Z). Denote U(f) = fsa(u of)dg, and U(g) = fsa(u 0g)dq,.
If f and g are symmetric with respect to E € 3, then

1
/(MOf)dqazf (wo f)dg. = ~U(f),
E EC¢ 2

1
/(uog)dqa =/ (uog)dg,==-U(g).
E EC¢ 2
Let F € 3, and B := q,(F). If frg ~ grf, then

BoU())+ A= PBdU()=BdU()+ (1—B)dWUf)).
Thus,

2B -1 U =2B—-DeU(g)).
If B # 1, then U(f) = U(g) and trivially

1 1 1 1
V(fe8) = BCb(EU(f) + QU(g)> +d —B)d)(EU(f) + EU(g))

=BoWU (N +A—-B)dU(©) =V (frg)-
If =1, then

1 1
V(fe8) = ¢<§U(f) + EU(g)>

1
SU) +54UE©)N=V(frg),

N =

=

where the inequality follows from concavity of ¢.
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A.2.2. Sufficiency

A2.2.1. Convexity of Dy. Suppose k,l e D, and a € (0, 1); wlog k <. Let
f,g € F,besuchthat k = U(f) and / = U(g). Define A = min,su(f(s)) and
B = max,.su(g(s)), and let x,y € Z be such that u(x) = 4 and u(y) = B.
By convex-rangedness of g,, there exists E € 3, with ¢q,(E) = (B — [ak +
(1—a)I])(B — A)~'. Verify that U (xgy) = ak + (1 —a)l. Hence, D, is a convex
set.

A.22.2. Convexity of ¢. Suppose k,l € D, and let f,g € F, be such
that k = U(f) and [ = U(g). Define k = min,es u(f(s)), k = max,cs u(f(s)),
I = min,su(g(s)), and [ = max,cs u(g(s)). Let x,x,y,y be such that u(x) =
k, u(x) =k, u(y) =1, and u(y) = I. Also, define k := (k — k)(k — k)~
and A := (I — (I — D~1. By convex-rangedness of g,, there exist partitions
{Ey, E5, Ef,Ef} and {E}, E}, E}, E;} of S, such that Ef U Ef = E}' U EJ,
?a(Ef UES) =q.(E} UE}) =1, qu(Ef) = q.(Ef) = 5, and q,(E}) = q.(E}) =

’ Define acts f':= xEfXEfxEfXEf and g’ := yE}yE}yE}yE,. Verify that f’
and g’ are symmetric with respect to E = EX U EX = E} U E}, and satisfy
U(f') =k and U(g') = l. By convex-rangedness of ¢,, there exists F € 3, with
'Qb(F,)A5= 1. Verify that V' (f.g") = 3¢ (k) + 3¢ (1) =V (g,f'). Hence, by Ax-
iom AY/,

1 1 1 1
¢>(§k + 51) =V(fi8) 2V (fig) = 56(K) + 56D,
As a consequence,
1 1 1 1
(16) ¢(§k+§l> 2§¢(k)+§¢(l)

for all k,/ € Dy. By Theorem 3 of Ergin and Gul (2009), the function ¢ is
continuous on D,; hence, by Theorem 86 of Hardy, Littlewood, and Polya
(1952), ¢ is concave. Q.E.D.

A.3. Proof of Theorem 3

By Theorem 3 of Ergin and Gul (2009), Axioms P1'-P6’ are equivalent
to 7 being represented by (13). Let E € 3, be such that g,(E) = ;. For
any v € D, define a preference 2’ on F as follows. Let & € F, be such
that [, u(h(s., s»))dq.(s,) = 3v and for any f, g € F(Z), define f " g iff
feh 72 geh. (Because of Axiom A2, the choice of particular # does not mat-
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ter.) Define ¢*(u) := ¢(%u + %v). From representation (13), it follows that ="
is represented by

/ ¢”<2/u(f(sa,sb))dqa(sa)) dqy(sp).
Sy E

By Axiom A2/, ="=7"for all v € D,. Hence, ¢" and ¢° are equal up to positive
affine transformations, that is, ¢ (u + v) = a(v)$(u) + B(v) for all u,v €
D,.1f D, is unbounded, then by Corollary 1 in Aczél (1966, Section 3.1.3), the
function ¢ belongs to the exponential class.

If D, is bounded, then wlog assume that intD, = (0, 1). Define the set
R := (0, 1)%. Define the functions k : (0, 2) — R by k(u) = cf)(%u) and functions
I,m,n:(0,1) > Rbyl:= B, m:=a, and n(u) = ¢ (3u). The functional equa-
tion k(u + v) = m(v)n(u) + I(v) holds for all (u,v) € R. It follows from the
corollary in Aczél (2005) that either k(u) = Cu+ B+ Pw or k(u) = w8e““ + B
for some arbitrary parameters a, B, P, C, w, and § with Cwé # 0. Because n
and k coincide on (0, 1), it follows that ¢ is an exponential function up to posi-
tive affine transformations in the interior of /. By continuity of ¢, this extends
to the whole set .

In both cases, ¢ belongs to the exponential class, that is, it is either linear,
strictly concave, or strictly convex. To eliminate the last possibility, observe
that Axiom A5’ applied to acts f = xry and g = yrx, and events E and F
with g,(F) = 1 and ¢,(E) = 5 implies that ¢ (Gu(x) + Ju(y)) = 1 (u(x)) +
1o (u(y)) forall x, y e U.

It follows from Theorem 1 of Villegas (1964, Section 1) that Axiom A8’ de-
livers countable additivity of g,. An application of the variational formula (8)
concludes the proof. Q.E.D.
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