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ABSTRACT

We present Brut, an algorithm to identify bubbles in infrared images of the Galactic
midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by
> 35, 000 citizen scientists from the Milky Way Project to discover the identifying charac-
teristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut’s
ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess
the bubbles in the Milky Way Project catalog, and find that 10− 30% of the objects in this
catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles
are more confined to the mid plane, and display a stronger excess of Young Stellar Objects
along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by pre-
vious searches – particularly bubbles near bright sources which have low contrast relative
to their surroundings. Brut demonstrates the synergies that exist between citizen scientists,
professional scientists, and machine learning techniques. In cases where “untrained” citi-
zens can identify patterns that machines cannot detect without training, machine learning
algorithms like Brut can use the output of citizen science projects as input training sets,
offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model
of machine learning combined with crowdsourced training data from citizen scientists can
not only classify large quantities of data, but also address the weakness of each approach if
deployed alone.

1. INTRODUCTION

Stellar feedback has an important influence on
the dynamics and energy balance of the Interstellar
Medium (ISM) (Zinnecker & Yorke 2007). Winds
and radiation fields from massive young stars can
reshape nearby molecular clouds. This interaction
can replenish energy dissipated by turbulence, trig-
ger star formation by compressing and collecting
gas, and even chemically dissociate or physically dis-
perse molecular clouds (Matzner 2002).
Interstellar “bubbles” are a primary manifesta-

tion of stellar feedback. Young OB stars have suf-
ficient stellar winds and ionizing photon luminosity
to sculpt spherical or ring-like cavities in their sur-
rounding molecular clouds. Bubbles in particular
are relevant because, compared to collimated out-
flows, they affect a larger volume of ambient molec-
ular clouds and, compared to supernovae, occur
around a larger proportion of stars and persist for
a longer period of time (Matzner 2002; Arce et al.
2011).
Unfortunately, due to their complex morpholo-

gies, bubbles – like many features of the inter-
stellar medium – are difficult to identify and an-
alyze. Existing catalogs of spatially extended bub-
bles have typically been identified visually (Hu 1981;
Marston 1996; Kiss et al. 2004; Helfand et al. 2006;
Churchwell et al. 2006, 2007; Könyves et al. 2007;
Simpson et al. 2012). This has two main disadvan-
tages. First, it is cumbersome and increasingly in-
feasible as datasets grow ever larger. Second, man-
ual classification is inherently subjective and non-
repeatable; humans are susceptible to fatigue, bore-
dom, and subtle selection biases whose impact on
the resulting catalog is difficult to calibrate. The
problems associated with manual bubble detection
are germane to many analyses with a subjective
component.
Machine learning techniques represent a promis-

ing solution to these problems. These techniques
aim to construct models that can distinguish be-
tween different classes of objects, without domain-
specific knowledge of what such objects represent –
in other words, they identify purely statistical differ-
ences between different populations of data. While
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such models are not typically useful as scientific
models, they can be very effective as computational
models to perform tasks like classification.
Our goal in this work is to apply machine learn-

ing techniques to the task of bubble detection, and
to evaluate the potential of this approach. Using a
catalog of known bubbles identified by the citizen
scientists of the Milky Way Project (Simpson et al.
2012), we “teach” an algorithm to identify bubbles
in image data from the Spitzer Space Telescope. We
describe the design of this algorithm, which we call
Brut, in Section 2. In Section 3, we use a set of ex-
pert classifications to measure Brut’s performance
at bubble detection. In Section 4, we demonstrate
that this detector produces useful probabilistic es-
timates for whether any particular image contains
a bubble – these probabilities correlate well with
how astronomers classify similar regions. We use
this detector to look for biases and incompleteness
in existing bubble catalogs. This analysis yields a
new catalog of high-probability bubbles, and we ex-
plore how the ensemble properties of this catalog
differ from the old catalog. In Section 5, we ap-
ply Brut to the task of discovering bubbles missing
from current catalogs. In Section 6, we consider how
this approach applies more generally to future data
analysis problems in astronomy.

1.1. Previous Work

Generally speaking, a bubble is a shell-like, 1-30
parsec-scale cavity in the ISM, cleared by a com-
bination of thermal overpressure, radiation pres-
sure, and stellar winds. The basic structure of a
bubble is shown in Figure 1. Strömgren (1939)
first derived the ionization structure around OBA
stars in the ISM. Stellar radiation both ionizes and
heats gas up to ∼ 104K, creating a strong over-
pressure that drives expansion into the surround-
ing medium. This expansion creates an overdense
shell of gas along the expansion front. Castor et al.
(1975) and Weaver et al. (1977) extended this anal-
ysis to include the effects of strong stellar winds
from O and early B stars. The main effect of a stel-
lar wind is to create a shocked, high-temperature
(106K) region within the 104K ionization region.
This shock sweeps up additional material within
the ionization region, potentially creating a sec-
ond shell. Though the term “bubble” originally
referred to cavities cleared by stellar winds, mod-
ern observational studies of “bubbles” tend to in-
clude both these objects and classical H ii regions.
Furthermore, Beaumont & Williams (2010) demon-
strated that many bubbles are embedded in rela-
tively thin clouds, and more closely resemble rings
than spheres. Throughout this paper, we use the
term “bubble” broadly to refer to any ring- or shell-
like cavity cleared by a young or main sequence star.
The Spitzer Space Telescope and its surveys of

the Galactic midplane – glimpse (Benjamin et al.
2003) and mipsgal (Carey et al. 2009) – enabled
comprehensive, statistical studies of bubbles in the
Galaxy. Mid-infrared wavelengths are well-suited
for bubble observations, as they penetrate deeper
into the Galactic disk and match bubble emission
features. Figure 1 schematically depicts the ob-
servational signature of a bubble in Spitzer data.
The interface between bubble shells and the am-
bient ISM excites polycyclic aromatic hydrocarbon
(PAH) emission features, several of which fall within
Spitzer ’s 8µm bandpass. Bubble interiors often
emit at 24µm, due to emission from hot dust grains
(Everett & Churchwell 2010).
Churchwell et al. (2006) and Churchwell et al.

(2007) carried out the first search for bubbles in
Spitzer images of the Galactic plane, yielding a
catalog of some 600 bubbles located at |ℓ| < 65◦,
|b| < 1◦. These objects were identified by four as-
tronomers manually searching through 3.5-8.0 µm
images (they did not have access to 24 µm im-
ages). Churchwell et al. (2006) noted that each as-
tronomer possessed different selection biases, and
cautioned that their catalog was likely incomplete.
In an attempt to overcome the inherent bias in

manual classification, the web-based Milky Way
Project (Simpson et al. 2012) enlisted over 35,000
citizen scientists to search for bubbles in Spitzer
data. The Milky Way Project (hereafter MWP)
presented color-composite Spitzer images at 4.5µm,
8µm, and 24µm, and asked citizen scientists to draw
ellipses around potential bubbles. Figure 2 shows
two typical images presented to the public. Each
image in the MWP was 800x400 pixels, with a pixel
scale ranging between 1.35′′ and 6.75′′ per pixel.
The citizen science effort produced a dramatically
larger catalog of ∼ 5000 objects, nearly 10 times the
number in the catalog of ∼ 600 shells cataloged by
the four astronomers of the Churchwell et al. (2006,
2007) surveys. The organizers of the MWP at-
tribute this large increase to the 10,000-fold increase
in human classifiers and the use of 24µm data to fur-
ther emphasize bubble interiors. They estimate the
MWP catalog to be 95% complete, based on the
falloff rate at which new objects were discovered.
Still, they cautioned that this catalog is heteroge-
nous, and probably affected by hard-to-measure se-
lection biases.

1.2. Manual and Automatic Classification in
Astronomy

In terms of accuracy, humans still outperform
computers in most image-based pattern recognition
tasks (e.g., Zhang & Zhang 2010). Because of this,
morphologically complex structures in the ISM (in-
cluding supernova remnants, outflows, bubbles, H ii
regions, molecular and infrared dark clouds, and
planetary nebulae) are still traditionally cataloged
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ambient interstellar gas

shocked stellar wind

shocked interstellar gas

stellar wind

shocked H II gas

photoionized H II region

Fig. 1.— Schematic structure of a bubble, adapted from
(Freyer et al. 2003). The red and green colors encode the
typical morphology seen in Spitzer images, where green is
assigned to 8 µm emission – dominated by PAH fluorescence
– and red is assigned to 24 µm emission – dominated by hot
dust.

ℓ=43.93 ◦   b=0.06 ◦

0.2 ◦

ℓ=41.06 ◦   b=0.17 ◦

0.2 ◦

Fig. 2.— Example images presented to Milky Way Project
citizen scientists to identify bubbles. The images show 4.5µm
emission in blue, 8µm emission in green, and 24µm emission
in red.

manually. Human classification has several disad-
vantages, however.
First, human classification is time consuming, and

people-hours are a limited resource. Even by enlist-
ing large communities of citizen scientists, data from
next generation surveys will be too large to search

exhaustively. For example, the > 35,000 citizen sci-
entists of the MWP classified roughly 45 GB of im-
age data from Spitzer. Current and next-generation
astronomical datasets are many thousands of times
larger than this, suggesting tens of millions of citi-
zen scientists would be needed for similar exhaustive
searches through tera- and petabyte datasets.
Second, many scientifically important tasks are

not suitable for enlisting the public. Part of the ap-
peal of the MWP is due to the fact that the Spitzer
images are beautiful, contain many bubbles, and are
compelling to browse through. Searches for very
rare objects, or tasks where the scientific justifi-
cation is less apparent to a citizen scientist, may
be less likely to entice large volunteer communities.
Raddick et al. (2013) considers the motivations of
citizen scientists in greater detail.
Finally, manual classification is not easily repeat-

able, and hard to calibrate statistically. For exam-
ple, it is unknown how well the consensus opinion
among citizen scientists corresponds to consensus
among astronomers. The MWP catalog does not
include any estimate of the probability that each
object is a real bubble, as opposed to another struc-
ture in the ISM.
Automatic classifications driven by machine

learning techniques nicely complement human clas-
sification. Such an approach easily scales to large
data volumes and is immune to some of the fac-
tors that affect humans, like boredom and fatigue.
Furthermore, because algorithmic classifications are
systematic and repeatable, they are easier to in-
terpret and statistically characterize. Despite the
structural complexity of the ISM, Beaumont et al.
(2011) demonstrated that automatic classification
algorithms can discriminate between different ISM
structures based upon morphology.
There have been a few previous attempts

to detect shell-like structures in the ISM us-
ing automated techniques. One approach in-
volves correlating observational data with tem-
plates, to look for characteristic morphologies.
Thilker et al. (1998), for example, used position-
position-velocity templates of expanding shells to
search for bubbles in H i data. This tech-
nique is also used by Mashchenko & Silich (1995);
Mashchenko & St-Louis (2002). Ehlerová & Palouš
(2005, 2013) pursued a more generic approach –
they looked for the cavities interior to H i shells
by identifying extended regions of low emission.
Daigle et al. (2003, 2007) searched for H i shells by
training a neural network to classify spectra as con-
taining outflow signatures, based on a training set
of spectra from known shells. They pass spectral
cubes through this classifier, and look for connected
regions of outflow signatures.
It is difficult to robustly classify ISM structures

using templates, due to the heterogeneity and ir-
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a b c

Fig. 3.— Different astrophysical objects in the MWP catalog. a) “Canonical” wind-blown bubbles and H ii regions. b) shells
without 8 µm PAH emission (likely supernovae or bubbles around evolved massive stars). c) generic ISM structures of unclear
astrophysical origin.

regularity of the ISM – simple shapes like expand-
ing spheres are often poor approximations to the
true ISM. The method pursued by Ehlerová et al.
is more robust in this respect but, as Daigle et al.
(2007) noted, is only sensitive to fully-enclosed bub-
bles. Real bubbles are often broken or arc-like.
In this respect the neural network approach that
Daigle et al. pursue is an improvement, since neu-
ral networks make fewer hard-coded assumptions
about the defining characteristics of a bubble, and
instead use the data to discover discriminating fea-
tures. There are a few drawbacks to this approach.
First, Daigle et al.’s neural network classifies a sin-
gle spectrum at a time, with no complementary in-
formation about the spatial structure of emission on
the sky. Second, the neural networks in Daigle et al.
(2007) are trained on data from 11 bubbles from the
Canadian Galactic Plane Survey, and thus poten-
tially biased towards the peculiarities of this small
sample. Finally, neural networks have a large num-
ber of tunable parameters related to the topology
of the network, and the optimal topology has a rep-
utation for being difficult to optimize.
Compared to these efforts, the approach we pur-

sue here is similar to the work of Daigle et al.
(2007). However, our methodology differs in a few
key respects. First, the MWP catalog provides

a two orders-of-magnitude larger sample of known
bubbles with which to train an automatic classifier.
Second, we use the more recent random forest algo-
rithm (Breiman 2001), which has a smaller number
of tunable parameters that are easier to optimize.
Finally, we focus on detecting morphological signa-
tures of shells in Spitzer data – infrared bubbles are
visually more prominent than H i shells, and thus
potentially easier to classify.
There are several reasons to do build a bubble

classifier based on MWP data:

1. The automatic classifier is capable of produc-
ing quantitative reliability estimates for each
bubble in the MWP catalog, potentially flag-
ging non-bubble interlopers and leading to a
cleaner catalog (Section 4).

2. We can search for bubbles not detected by
MWP citizen scientists (Section 5).

3. We can treat this task as a case study for
complex classification tasks in future datasets,
where exhaustive manual classification will
not be feasible (Section 6).

2. CLASSIFICATION METHOD
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Our goal is to use the set of citizen-scientist-
identified bubbles to build an automatic detector
that, when presented with a region of the sky in
the Spitzer glimpse and mipsgal surveys, accu-
rately determines whether or not the image contains
a bubble. Our approach, which we name Brut1, is
an example of a supervised learning problem. Here
is a brief overview of the task:

1. Build a representative training set of examples
of bubble and non-bubble images. This will be
derived from the MWP dataset.

2. Convert each example to a numerical feature
vector that describes each object, and cap-
tures the difference between bubbles and non-
bubbles.

3. Feed the training data to a learning algorithm
to build a model.

4. Use a subset of the examples not used dur-
ing training to optimize the tunable parame-
ters (so-called hyper-parameters) of the learn-
ing algorithm.

2.1. Random Forest Classification

Brut uses the Random Forest classification algo-
rithm (Breiman 2001) to discriminate between im-
ages of bubbles and non-bubbles. Random Forests
are aggregates of a simpler learning algorithm called
a decision tree. A decision tree is a data structure
which classifies feature vectors by computing a se-
ries of constraints, and propagating vectors down
the tree based on whether these constraints are sat-
isfied. For example, Figure 4 shows a simple deci-
sion tree for classifying animals as cats or not. Here,
the feature vectors are four properties of each an-
imal observed: number of legs, tails, height, and
mass. Two example feature vectors are shown, and
propagate to the outlined classification nodes. In
the context of Brut, each classification object is a
square region in the glimpse survey. Each feature
vector is a set of morphological properties extracted
from one such region, and the decision tree predicts
whether each region is filled by a bubble.
Decision trees are constructed using an input

training set of pre-classified feature vectors. Dur-
ing tree construction, a quality heuristic is used to
rate the tree. A few heuristics are common, which
consider both the classification accuracy and the
complexity of the tree itself – highly complex trees
are more prone to over fitting, and thus disfavored
(Ivezić et al. 2014). We treat the choice of specific
heuristic as a hyper-parameter, which we discuss be-
low. Decision trees are constructed one node at a
time, in a “greedy” fashion. That is, at each step

1 http://github.com/ChrisBeaumont/brut

Cat:   [legs: 4, tails: 1, height: 20cm, mass: 2kg]

Tails > 1?

Not CatLegs > 2?

Mass < 10kg?

Mass > 1kg?

Not Cat

Not Cat

Not Cat Cat

Wolf: [legs: 4, tails: 1, height: 150cm, mass: 80kg]

Fig. 4.— Schematic example of a decision tree, to classify
observations of animals as cats or not. Two feature vectors
are shown at the top, and their classifications are shown as
the red and blue outlined nodes of the decision tree.

in the learning process, a new boolean constraint is
added to the tree, to maximally increase the score
of the quality heuristic. This process repeats until
the quality heuristic reaches a local maximum.
On their own, decision trees are prone to over-

fitting the training data by adding too many nodes.
In a more traditional fitting context, this is analo-
gous to adding too many terms to a polynomial fit of
noisy data – in both situations, the model describes
the input data very well, but does not generalize
to new predictions. Random Forests were designed
to overcome this problem (Breiman 2001). Ran-
dom forests are ensembles of many decision trees,
built using different random subsets of the training
data. The final classification of a Random Forest
is simply the majority classification of the individ-
ual trees. Since over-fitting is sensitive to the ex-
act input data used, each individual tree in a Ran-
dom Forest over-fits in a different way. By aver-
aging the classifications of each tree, the Random
Forest mitigates over-fitting. Random Forests have
proven effective in many machine learning contexts
(Kuhn & Johnson 2013).
In addition to good performance and robustness

against over fitting, the Random Forest algorithm
has several other advantageous properties: it is pos-
sible to interpret how important each element in the
feature vector is to the classification (Section 2.7),
the algorithm naturally ignores irrelevant elements
of the feature vector, and it is conceptually and com-
putationally simple.
It is worthwhile to compare the properties of

learning algorithms like the Random Forest classi-
fier to more traditional, “parametric” models com-

5
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monly used in astronomy. Parametric models are
often constructed by hand, and derived from an un-
derlying astrophysical model – the fit to the power
spectrum of the Cosmic Microwave Background is a
quintessential example of such a model. The struc-
ture of a Random Forest model, on the other hand,
is set by the clustering properties of the data them-
selves. The main advantage of the Random Forest
approach is that the complexity of the model is to a
large extent driven by the complexity of the train-
ing data. That is, Random Forests can model com-
plex morphological differences between bubble and
non-bubble images, which would otherwise be diffi-
cult to express in a manually-constructed model of
bubble structure. This is a crucial property when
considering the irregularity of the ISM.

2.2. Feature Extraction

The individual “objects” that Brut classifies are
square regions of the sky, and the goal of the clas-
sifier is to determine whether each region is filled
by a bubble. Each field is identified by 3 numbers:
the latitude and longitude of the center of the field,
and the size of the field. We decompose the glimpse
survey coverage into fields of 18 different sizes, loga-
rithmically spaced from 0.02◦ to 0.95◦. At each size
scale, we define and classify an overlapping grid of
fields. Neighboring tiles in this grid are separated
by 1/5 of the tile size.
As a preprocessing step, we extracted two-color

postage stamps for each field (at 8 µm and 24 µm),
and resampled these postage stamps to (40x40) pix-
els. Following a scheme similar to Simpson et al.
(2012), these images were intensity clipped at the 1
and 97th percentile, normalized to maximum inten-
sity of 1, and passed through a square root transfer
function. The intensity scaling tends to do a good
job of emphasizing ISM structure, making bubbles
more visible to the eye. Likewise, the (40x40) pixel
resolution was chosen because it is reasonably small,
yet has enough resolution that postage stamps of
known bubbles are still recognizable as such by hu-
mans. Figure 5 shows four preprocessed fields to-
wards known bubbles2. The goal of preprocessing is
to standardize the appearance of bubbles as much
as possible, across different size scales and ambi-
ent intensities. All subsequent stages of Brut work
exclusively with these images, as opposed to the un-
scaled pixel data.
The input to a Random Forest classifier is a nu-

merical feature vector that describes the properties
of each region. The ideal feature vector captures
the differences between each class of objects, so that
objects from different classes occupy different sub-
regions of feature space. Designing an effective fea-

2 other figures in this paper use the same intensity scaling
scheme, but use a (200x200) pixel resolution for presentation
purposes

Fig. 5.— Examples of preprocessed images for fields to-
wards four known bubbles.

ture vector is often the most important determinant
of classification performance.
The most obvious choice for a feature vector is

simply the numerical value of the pixels in each pre-
processed postage stamp. This turns out to be a
poor choice, because extended objects like bubbles
are characterized by correlations between hundreds
or thousands of pixels, and any individual pixel is
virtually irrelevant to the classification task. Ma-
chine learning algorithms generally perform better
when individual elements of the feature vector are
more important to the classification, and less depen-
dent on the value of other feature vector elements.
Our feature vectors have been designed based on

insights in the automated face detection literature
(Viola & Jones 2001). The basic strategy is to
encode a very large number (∼40,000) of generic
statistics about image structures at various posi-
tions and scales. This strategy seems to be more
effective than trying to tune a feature vector to
the specific object being identified. While most el-
ements in the feature vector will have no predictive
power in the classification, the Random Forest clas-
sifier is capable of ignoring this information, and
finding the elements in the feature vector with the
most predictive power.
The following quantities are extracted from each

postage stamp, and concatenated to form a feature
vector.

1. The wavelet coefficients from the Dis-
crete Cosine and Daub4 wavelet transforms
(Press et al. 2007). These coefficients repre-
sent the weights used in representing an im-
age as a linear combination of basis func-
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tions. The basis functions in the Discrete Co-
sine transform are cosine functions, and thus
encode information about power at different
spatial frequencies. By contrast, the Daub4
wavelets are spatially compact, and thus bet-
ter encode spatially-isolated structures in an
image. These wavelet-derived features resem-
ble the features employed for face detection
(Viola & Jones 2001).

2. The image dot product3 of each image with 49
template images of circular rings of different
size and thickness. Bubbles are morphologi-
cally similar to these templates, and tend to
have larger dot products than a random inten-
sity distribution. All ring templates are cen-
tered within the postage stamp. They span
seven radius values ranging from 1-20 pixels,
and seven thicknesses (2, 4, 6, 8, 10, 15, and
20 pixels).

3. The byte size of each compressed postage
stamp image – images substantially more or
less smooth than a bubble compress to smaller
and larger files, respectively.

4. The DAISY features of the image (Tola et al.
2010). DAISY features are derived from mea-
surements of local intensity gradients, and en-
code information about simple shapes in im-
ages; they are conceptually similar to edge de-
tection filters.

We arrived at these specific feature vectors
through experimentation, because they empirically
yield effective classifications. Feature vector design
is often the most subjective component of many ma-
chine learning tasks, and other features may bet-
ter model the differences between bubbles and non-
bubbles.

2.3. Edge-of-field limitations

We found that classification performance im-
proved if, in addition to extracting feature vectors
at a single (ℓ, b, d) field, we also extracted features
at (ℓ, b, 2× d), (ℓ, b, d/2) and (ℓ, b+ d/2, d) – here, d
is the bubble diameter. This ensemble of fields gives
the classifier context about the region surrounding
a bubble.
Thus, in our approach, Brut extracts feature vec-

tor information from a region of the sky twice as
large as the field it is classifying. This imposes a
latitutde-dependent limit on the largest field Brut
is able to classify. Because the glimpse coverage
is limited to |b| < 1◦, fields where |b| + d > 1◦

partially fall outside the survey area. We cannot
derive proper feature vectors for these regions, and

3 i.e., the sum of the pixel-by-pixel product of two images

thus bubbles like this are undetectable by Brut. We
return to this fact in Section 4.

2.4. Training Data

Building a Random Forest requires providing a
set of pre-classified feature vectors. The MWP cat-
alog is a natural choice for building such a training
set. However, as shown in Figure 3, the catalog
as a whole contains many examples of objects that
are not bubbles, and can compromise the training
process. Thus, we manually curated a list of 468
objects in the MWP catalog which were clear exam-
ples of bubbles. We focus our attention on objects in
the large bubble catalog, which contains 3744 out of
5106 total bubbles, with semimajor axes a ≥ 13.5′′

(Simpson et al. 2012). We focus on the large bub-
ble catalog since the web interface used to build the
small catalog was different, and may have different
selection biases. The largest bubble in the MWP
catalog has a semi major axis a = 10.3′. This upper
limit is set by the widest-field images presented to
citizen scientists – we discuss an implication of this
cutoff in Section 4. The full training set of positive
examples is obtained by extracting a field centered
on each of these 468 clean bubbles, with a size equal
to the major axis of each bubble.
Training also requires an example set of non-

bubbles. In principle, any random region of the sky
that doesn’t overlap an object in the MWP cata-
log is a candidate negative example – while some
of these fields actually contain bubbles not in the
MWP catalog, they are rare enough that they don’t
impact the training. However, we found that select-
ing negative examples at random was sub-optimal.
The reason for this is that most random fields are
nearly empty, and easily distinguished from fields
with bubbles. Classifiers generated from such a
dataset incorrectly labeled nearly any field contain-
ing ISM structure as a bubble.
A better set of negative examples includes more

fields containing structure (Figure 6). We built such
a collection in a bootstrapped fashion. We began
with a random set of negative fields, distributed uni-
formly in latitude and longitude, with sizes drawn
from the size distribution of the positive training
set. We trained a classifier with these examples
and used it to scan 20,000 bubble-free regions. We
then discarded half of the initial negative examples
(those classified most confidently as not containing
bubbles), and replaced them with a random sam-
ple of the mis-classified examples. We repeated this
process several times, but found that one iteration
was usually sufficient to build a good set of training
data.
Our final training set consists of 468 examples of

bubbles identified by the Milky Way Project, and
2289 examples of non-bubble fields. We found that
an approximate five-fold excess of negative exam-
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ples yielded a more discriminating classifier with
lower false positive rates, compared to a training
set with equal number of positive and negative ex-
amples. Likewise, using dramatically more nega-
tive examples compromised the classifier’s ability to
positively identify known bubbles. The number of
positive examples was set by the number of clear
bubbles in the Milky Way Project catalog itself (as
judged by the lead author).

Random

Random

Hard

Hard

Negative Training Examples

Fig. 6.— Examples of typical randomly selected negative
examples (left), and “hard” examples (right). Including more
hard examples produces more discriminating classifiers.

2.5. Partitioning the Classifier

Instead of building a single Random Forest clas-
sifier, we trained three forests on different subsets
of the sky. Each forest was trained using exam-
ples from 2/3 of the glimpse survey area, and used
to classify the remaining 1/3. The motivation for
doing this is to minimize the chance of over-fitting,
by ensuring that the regions of the sky used to train
each classifier do not overlap the regions of sky used
for final classification.
The training zones used to classify each forest are

interleaved across all longitudes. For example, Fig-
ure 7 depicts how the 0◦ < ℓ < 10◦ region is par-
titioned – the shaded regions denote the portion of
the sky used to train each forest, and the white re-
gion shows the zone each forest is responsible for
classifying.

2.6. Hyperparameter Optimization

0 2 4 6 8 10
Longitude

Forest 1

Forest 2

Forest 3

Fig. 7.— Illustration of the zones used to train each Ran-
dom Forest. Each forest is trained using the data from the
shaded regions in its zone, and used to classify the light re-
gions.

The Random Forest algorithm has a small number
of tunable parameters:

1. The heuristic used to measure classification
quality when building a decision tree. We
considered three heuristics: the Gini impu-
rity, information gain, and gain ratio criteria.
All of these provide similar measurements of
how well a Decision tree partitions a training
dataset – (Ivezić et al. 2014) discuss these cri-
teria in greater detail.

2. The number of individual decision trees to in-
clude in the Random Forest. We considered
forests with 200, 400, 800, and 1600 trees.

3. A stopping criterion, when building individ-
ual decision trees. If this criteria is set to one,
new nodes will always be added to a tree, un-
til the quality heuristic reaches a local maxi-
mum. If this number is set to a value c > 1,
then it prevents a subtree from being added
to a given node in the decision tree unless at
least c training examples propagate to that
node. This criteria can suppress over-fitting
in individual trees, though it seems to be less
important in the context of Random Forests.
We considered values of 1, 2, and 4.

We explored the impact of these hyperparameter
settings via cross validation. During cross valida-
tion, we split the training examples into two groups:
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TABLE 1
Feature importances

Feature Category Mean Importance Total Importance

ring 0.945 1.000
compression 1.000 0.014
wavelet 0.010 0.292
daisy 0.007 0.085

a primary set with 154 bubble examples and 1462
non-bubble examples, and a validation set of 157
bubble and 10000 non-bubble examples. We trained
a Random Forest with a particular choice of hyper
parameters, and measured the accuracy and false-
positive rate of the classifier on the validation set.
We found that a forest using the Information Gain
heuristic, 800 trees, and c = 4 yielded the best per-
formance. The quality heuristic and forest size are
stronger determinants of classification performance
than c. Classifier performance largely converged at
800 trees. While forests with 1600 trees did no worse
than 800-tree forests, classification time was twice
as slow. Once we converged on an optimal set of hy-
perparameters, we trained the final three Random
Forest classifiers using the scheme discussed above.

2.7. Feature Importance

The Random Forest algorithm measures the im-
portance of each element in the feature vector dur-
ing training. Intuitively, elements in the feature
vector which appear in a large number of nodes
(see Figure 4) are more important to the classifi-
cation. Likewise, elements which appear closer to
the root of the tree are more important, since a
larger fraction of examples propagate through those
nodes. More formally, feature importance is defined
by the average improvement in the quality heuris-
tic for all nodes associated with a feature, weighted
by the number of training examples which propa-
gate through those nodes. Feature importance is
more meaningful in a relative sense than an abso-
lute sense – features with higher importance scores
have a greater impact on the behavior of the deci-
sion tree.
Table 1 summarizes the importance of each cate-

gory of features used in Brut – it shows the average
and sum of the importances for all feature elements
in each category. Both columns are normalized by
the maximum importance value. The features de-
rived from ring templates have the highest total im-
portance – this is further evidenced by the fact that
19 out of the 20 most important single features are
ring features (the 15th most important feature is a
wavelet feature). While the average importance of
the compression feature is slightly greater, there are
far fewer compression features than ring features.

2.8. Using the classifier

To classify a region after training, we compute
the feature vector and dispatch it to one of the
three random forests (depending on longitude, as
discussed in Section 2.5). The forest produces a
classification score between -1 and 1. This num-
ber is equal to the fraction of trees in the forest
which predict the feature vector is a bubble, minus
the fraction of trees which predict it is not. This
score provides more information than a simple bi-
nary classification, as it gives some sense of the con-
fidence of the classification. Furthermore, one can
adjust the threshold that defines when an object is
considered to be a bubble. When building a set
of bubbles detected by Brut, increasing this thresh-
old removes bubbles with lower classification scores.
Ideally this increases the reliability of the catalog –
since the remaining bubbles have higher scores and
judged by the classifier to be clearer bubbles – at
the cost of completeness.
One standard way to summarize the performance

of a classifier is to plot the false positive rate (frac-
tion of negative examples incorrectly classified) ver-
sus the true positive rate (fraction of bubbles cor-
rectly classified) as the threshold varies. This is
called the Receiver Operating Characteristic, and is
shown for the three classifiers in Figure 8. The false
positive rate is measured by classifying ∼ 50, 000
random negative fields, and the true positive rate
is measured using the 468 known bubbles in the
training set – note however that, given our parti-
tioning strategy, each of these bubbles is classified
by a forest that has not seen this example before.
Also recall that the set of bubbles in this test set
were selected because they are very well defined.
Thus, Figure 8 overestimates the true positive rate
when presented with more ambiguous bubbles. We
compare the performance of the classifier on more
representative bubbles in Section 3.
The second forest has a slightly worse perfor-

mance curve – at a true positive rate of 80%, the
forest that classifies zone 2 has a false positive rate
about twice that of the other forests. In absolute
terms, this false positive rate of 0.0005 corresponds
to six false positives out of the 13,000 test examples
classified by this forest.

2.9. Building a Catalog

Using our automatic bubble classifier to conduct a
full search for bubbles in Spitzer data is straightfor-
ward. The main task involves scanning the classifier
across the glimpse survey footprint at different size
scales, as described in Section 2.2. The classifier as-
signs a score to each field of view, as discussed in the
previous Section. To convert this continuous score
into a binary “bubble/not-bubble” classification, we
can choose a numerical threshold, and consider any
score above this threshold to be a bubble detection.
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Fig. 8.— The tradeoff between false positive rate and true
positive rate, for the three Random Forests in Brut. Each
classifier is trained using a different zone, depicted in Figure
7.

From Figure 8, the choice of this threshold sets the
tradeoff between completeness (high true positive
rate) and reliability (low false positive rate). Be-
cause different scientific applications have different
requirements on completeness and reliability, it’s
useful to set this threshold on a per-analysis ba-
sis. As we also discuss shortly, we can turn these
confidence scores into probabilistic estimates that
an expert would consider the region to be a bubble,
by calibrating against expert classifications.
Note that Brut only attempts to determine the

location and size of bubbles. Citizen scientists, on
the other hand, were able to constrain the aspect
ratio, position angle, and thickness of each object.
In practice, the classifier is insensitive to small ad-

justments to the size or location of the field. As a
result, bubbles are usually associated with a cluster
of fields that rise above the detection threshold (the
white circles in Figure 9). We follow a simple pro-
cedure to merge these individual detections. Given
a collection of raw detections, this procedure identi-
fies the two nearest locations at similar scales, and
discards the location assigned a lower score by the
classifier. This process repeats until no two fields
are close enough to discard. Two fields are close
enough to merge if they are separated by less than
the radius of either field, and have sizes that differ
by less than 50%. The red circle in Figure 9 shows
the result of merging detections.
This practice works well for isolated bubbles, but

34.7034.7234.7434.7634.78
ℓ ( ◦ )

−0.36

−0.34

−0.32

−0.30

−0.28

b 
(◦

)

Raw
Merged

Fig. 9.— An illustration of how Brut merges multiple bub-
ble detections. Each white circle is a location with a high
Brut score. The red circle is the region with the highest brut
score, and is used as the final detection.

occasionally fails for bubble complexes with mul-
tiple, overlapping bubbles. A more sophisticated
clustering analysis may well perform better in this
situation.

3. EXPERT VALIDATION

To evaluate the performance of Brut, we need a
set of “ground truth” classifications. However, to
some extent identifying bubbles in Spitzer images is
inherently subjective. While the objects in Figure
3a are unambiguously associated with star forma-
tion, other sources are not. In some cases – partic-
ularly irregular bubbles, or those with faint or no
24 µm emission – it is unclear whether cavities seen
in 8 µm data are actively sculpted by young stars,
or merely coincidentally ring-like structures in the
ISM.
The subjectivity of bubble identification has re-

ceived only limited attention. The MWP catalog in-
cludes a “hit rate” measurement that lists the frac-
tion of citizen scientists who identify a specific bub-
ble, relative to the total number of users who viewed
an image containing that bubble. However, as dis-
cussed above, the MWP catalog contains many ob-
jects besides bubbles. Thus, while the hit rate com-
municates how visually salient a particular ISM fea-
ture appears to MWP users, it does not directly con-
vey how much consensus astronomers have about
the astrophysical nature of that feature.
To better measure the level of expert consensus in
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bubble identification, we conducted a small online
survey. The astronomer participants of this sur-
vey were presented with a sequence of 92 Spitzer
images at three zoom levels and two contrast set-
tings. They were asked to assign each image to one
of three categories: clear examples of bubbles orH ii
regions, ambiguous or irregular bubbles, or Non-
bubbles. Appendix A discusses the survey setup
in more detail. We chose approximately 100 test
images to keep the exercise short, and minimize fa-
tigue. We further minimized the effects of fatigue
by presenting examples to each expert in random
order.

3.1. Validation of the Milky Way Project Catalog

Of the 92 images in the expert survey, 45 were a
random subset of objects in the MWP catalog (the
remaining fields are discussed in the next section).
Figure 10 shows the voting breakdown for these ob-
jects. Each row corresponds to a single image, and
the red, orange, and blue bars show the fraction of
experts who classified the image in each category.
We call attention to several aspects of this distribu-
tion:

1. Only 15% of these objects – 7 out of 45 – were
unanimously classified as clear bubbles – this
number increases to about 50% if all irregu-
lar and ambiguous objects are optimistically
treated as bubbles.

2. About 25% of the objects – 12 out of 45 –
are judged by a plurality of experts to be ir-
regular, ambiguous, or non-bubbles – that is,
objects which are less likely to be the result of
a young star sculpting the surrounding ISM.
While some of these regions might be other in-
teresting astrophysical objects like supernova
remnants, most appear to be coincidental arc-
like structure in the ISM, not convincingly
sculpted by young stars.

3. The most popular category for each object is
chosen by 70% of experts on average. In other
words, when using Spitzer images, determin-
ing the “true” nature of a typical object in
the MWP catalog is subjective at the 30%
level. Citizen scientists, by comparison, ex-
hibit much lower levels of agreement; the av-
erage hit-rate for these objects is 20%.

Is it possible to determine which of the remain-
ing objects in the MWP catalog would likely be re-
jected as interlopers by experts? The hit rate of
each object in the catalog might correlate with ex-
pert opinion, and be a useful filter. Likewise, the
confidence score computed by Brut might identify
interlopers. Figure 11 plots the citizen’s hit rate and
Brut’s confidence score compared to the expert clas-
sification. The Y position of each point denotes the

0.25 0.50 0.75
Fraction of votes
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Bubble
Irregular/
Ambiguous
Non-Bubble

Fig. 10.— The distribution of expert classifications for 41
objects in the MWP bubble catalog. Each row corresponds
to an image, and the colored bars in that row indicate the
fraction of experts who categorized the image as a Bubble
(blue), Irregular or Ambiguous Bubble (orange), and Non-
Bubble (red).

level of consensus for each object – the percentage
of experts who chose the plurality category. Both
metrics partially separate bubbles from the other
categories. The hit rate is more effective at penal-
izing orange and red objects, which are confined to
hit rate < 0.2 in panel a. On the other hand, the
hit rate is ineffective at isolating bubbles with high
expert consensus. The Brut score is more effective
at identifying these high-consensus bubbles, which
is apparent by the cluster of blue points in the upper
right corner of panel b. We also plot in Figure 11c a
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joint score – the sum of the normalized and mean-
subtracted Brut score and hit rate. This combines
the strengths of the individual metrics, and achieves
the best separation.
The expert reclassifications of this sample of

MWP objects can be used to convert a raw score
like the joint score to a calibrated probability that
an expert would classify an object as a bubble, given
that score. To achieve this, we perform a logistic re-
gression against each of the three scores (hit rate,
Brut score, and joint score). The logistic regres-
sion only considers whether the plurality category
for each object is a bubble – the consensus infor-
mation is not used. The grey curves in Figure 11
trace this curve, and show the predicted probability
that an object is a bubble given the score on the
X axis. We reiterate that this is not a fit through
the (X, Y) cloud of points in the plot; rather, it is
(informally) a fit to the fraction of circles which are
blue at each X location of the plot. The title of each
panel reports the quality of each fit, as defined by
the log-likelihood:

L =
∑

Bubbles

log (P (Bubble|Score))+

∑

Non−Bubbles

log (1− P (Bubble|Score)) (1)

Panel d in Figure 11 shows the ideal situa-
tion, where a scoring metric perfectly separates two
classes of unanimously-categorized objects. The
joint score combines the information from citizen
scientists and Brut, and comes closest to this ideal.
While the logistic curves for the hit rate and joint
score look similar, the latter curve is a better fit to
the data as judged by the higher likelihood of the
data under this model.

3.2. Uniform Classification

The remaining 47 regions in the expert survey
were selected randomly from the full set of fields
analyzed during Brut’s full scan of the Spitzer im-
ages. A fully random sample from this collection is
uninteresting, since the majority of fields are blank
areas of the sky. Instead, these 47 images are ap-
proximately uniformly distributed in the Brut con-
fidence score. We refer to these images as the “uni-
form” sample.
The expert vote distribution for these images is

shown in Figure 13. There are more non-bubble
fields in this sample, but the overall properties are
otherwise similar. The average field is classified
with a 72% consensus.
Figure 14 shows the Brut score for each field in the

uniform sample, compared to the plurality category
(color) and level of consensus (Y axis). The Brut
score does a good job of separating the high con-
sensus objects. Overall, however, the classes over-

lap more for the uniform sample than for the MWP
sample. This is also expected, since all objects in
the MWP sample have been previously identified by
citizen scientists as potential bubble sites. The uni-
form sample does not benefit from this information,
and is representative of the harder, “blind” classifi-
cation task. As before, a logistic fit can be used to
estimate, for objects identified in a blind search, the
probability of being a bubble given the Brut score.
We intend to use the logistic fits in Figure 11

and 14 to convert Brut’s score into a probabilis-
tic estimate that an expert would judge an image
to contain a bubble. A necessary condition for this
is that the model be calibrated to the data – that
P (Bubble|Score) is consistent with the empirical
bubble fraction as a function of score, for the ob-
jects in the expert survey. Figure 3.2 confirms this
to be the case – it divides the MWP and uniform
samples into bins of probability (given by the logis-
tic model), and shows the empirical bubble fraction
for each bin on the Y axis. Here, bubbles are de-
fined to be objects voted as bubbles by a plurality
of experts. The 25-75% posterior probability band
is also shown, derived from the finite sample size
assuming a binomial distribution (note that the em-
pirical averages can fall outside this interval). The
dotted one-to-one line is the expected performance
of a calibrated model, with which these models are
broadly consistent.

4. A PROBABILISTIC BUBBLE CATALOG

Section 3.1 outlines a strategy to combine hit
rates with Brut’s own confidence score to predict
whether or not an expert would classify each ob-
ject in the original MWP catalog as a bubble. We
have assigned a bubble probability to each object
in MWP catalog based on this analysis (Table 2).
The high-probability subsample of this catalog dis-
plays several interesting differences compared to the
unfiltered catalog.
To explore the differences between the high and

low reliability portions of the MWP catalog, we have
split the catalog into three roughly equally-sized
groups: those where Pbubble < 0.5, 0.5 < Pbubble <
0.9, and Pbubble > 0.9. Figure 15 shows the lon-
gitude distribution for each of these groups. The
distributions are mostly similar, except at the three
longitudes marked with vertical lines. These longi-
tudes exhibit an excess of low-probability bubbles
relative to the other groups. All three fields are in
fact sites of large, degree-scale giant H ii regions –
two are shown in Figure 16.
The excess of low-probability objects towards

ℓ = −43◦ coincides with a large bubble complex,
containing bubbles S108-S111 in Churchwell et al.
(2006). The region at ℓ = −55◦ coincides with
the Dragonfish nebula, studied by Rahman et al.
(2011). Finally, the ℓ = −62◦ region con-
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Fig. 11.— The ability for the MWP hit rate and Brut score to predict expert classifications for objects in the MWP catalog.
Each circle represents one of the 41 objects in the MWP catalog shown to experts. Color depicts the most popular classification,
and the y-position indicates the fraction of experts who chose this category. The curves estimate the bubble probability (right
Y axis), obtained via logistic regression to the object category. The Joint metric, which combines the Hit Rate and Brut score,
is best able to predict expert classifications. The title reports the log-likelihood of each logistic fit, according to Equation 1.
Panel d depicts the ideal situation, where classes are unambiguous.

tains the G305 star forming complex studied by
Hindson et al. (2012).
To determine whether the overabundance of low-

probability sources near giant H ii regions indicates
a failure of the probabilistic scoring or a bias in citi-
zen scientist annotations, the lead author manually
inspected the objects in the ℓ = −61◦ bin. The
sum of bubble probabilities for the 25 MWP ob-
jects in this bin is 8.09, and implies that an expert
would identify ∼ 8 of these objects as real bubbles
if the probabilistic score is correct. Roughly 5-6
of these objects are compelling bubble candidates,
which suggests that the excess of low-probability
bubbles is not due to an overly conservative scoring
strategy. Instead, this points to a real citizen sci-
entist bias towards over-identification of bubbles in
active regions like this. The central source in each
of these regions creates a large, complex cavity in
the ISM, and fluoresces much of the surrounding
material as well. This leads to an abundance of co-
incidental, arc-like features misidentified as bubbles.

The scores provided by Brut are able to identify this
problem, and exclude the interlopers.
While citizen scientists are prone to over-identify

bubbles towards giantH ii regions, they are unlikely
to identify these large regions themselves. This
might be because such objects are too irregular, or
simply too big to see well in any single image served
during the MWP. The widest zoom levels at which
Brut scans through image data is wider than the
widest images seen by citizen scientists, and it re-
covers some of these regions. For example, Figure
16 shows in magenta the new regions which Brut
scores > 0.2 on a blind search, that have no match
in the MWP catalog. Each panel includes a new
detection that is bigger than the biggest previously-
cataloged objects.
Still, Brut does not identify the large H ii regions

themselves as bubbles. This is due to the fact that
these large regions lie close to the b = ±1◦ boundary
of glimpse coverage, and Brut is unable to extract
proper feature vectors at large scales (see Section
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Fig. 12.— Calibration plots for the logistic fit to the expert
votes in the MWP sample (left) and Uniform sample (right).
Each point represents a collection of samples binned by pre-
dicted bubble probability (X axis). The empirical bubble
fraction is shown by the datapoint, and the error bars give
the 25-75% posterior probability interval given the finite sam-
ple size.

2.3). For example, the dotted white circles in Fig-
ure 16 show plausible definitions for the large H ii
regions. Both of these fields are undetectable, be-
cause they reside too close to the edge of latitude
coverage. Thus, Brut converges on smaller detec-
tions. A feature extraction method that did not
rely on pixels above and below a bubble might well
be able to recover large bubbles close to latitude
boundaries.
In discussing the longitude distribution of bub-
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Fig. 13.— The same as Figure 10, for the Uniform sample.

bles, Simpson et al. (2012) noted a dip in bubble
counts at |ℓ| < 10◦. They postulated that this might
be because confusion in this busier region makes
identification more difficult. However, this dip is
most apparent for low-probability objects. In other
words, the dip in the longitude distribution is not
driven by a decrease in completeness, but rather by
an increase in reliability. Perhaps, due to the com-
plex background of emission towards the Galactic
center, citizen scientists were less likely to notice
subtle, coincidentally arc-like structures in the ISM.
Figure 17 shows the latitude distribution for each

subsample. The lowest-probability objects display
a slightly broader distribution, particularly evident
at |b| > 0.5◦. Because the ambient intensity field
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Fig. 14.— The same as Figure 14, for the Uniform sample.

falls off quickly away from the mid-plane, we suspect
random arc-like ISM structures are more likely to
catch the eye in these regions.
Of the 3661 objects with bubble probability

scores, 126 coincide spatially with H ii regions from
Anderson et al. (2011). As Figure 18 shows, ob-
jects associated with these H ii regions are strongly
skewed towards higher bubble probabilities. This
correlation strengthens the argument that the prob-
ability score successfully identifies dynamical ob-
jects.
Anderson et al. (2012a) reports disambiguated

kinematic distances for the H ii regions in their
catalog. Figure 19 shows the position and sizes
of the bubbles associated with H ii regions with
known distances, overlaid on a schematic map of
the Galaxy’s spiral structure. Four of the low-
probability objects associated with H ii regions
have large angular and linear diameters. However,
from manual inspection none of these regions are
compellingly associated with a real bubble in the
image data. Thus, their match toH ii regions seems
to be coincidental and arbitrary.
Uncertainties on these kinematic distances were

calculated by Anderson et al. (2012a), by consider-
ing uncertainties in the rotation curve model, large-
scale non-circular motions, and standard parame-
ters in the distance calculations, such as the Sun’s
distance to the Galactic Centre and the solar or-

bital speed. The mean uncertainty on the full
HRDS sample is 0.5 kpc; they find that 90% of loci
in their sample have ≤ 20% combined uncertainty
from these three effects. Furthermore, they do not
find the uncertainties to have a significant effect on
the galactic distribution of their sample.
While bubbles cluster around the Sagittarius arm,

there are two clusters of bubbles in inter-arm regions
– one beyond the outer arm, and another apparent
stream of bubbles around 5kpc, from 30◦ < ℓ < 60◦.
A bubble is a broad observational definition that
covers several astrophysical phenomena, including
H ii regions, non-ionized cavities from B star winds,
and supernova remnants. Bubbles located on or be-
tween spiral arms may well correspond to different
astrophysical classes or evolutionary stages. Fur-
thermore, the detectability of bubbles is a compli-
cated mixture of an object’s size and brightness as
a function of time, as well as the amount of unre-
lated structure along the line of sight to each ob-
ject. Population synthesis studies which simulate
realistic galactic environments and predict distribu-
tions akin to Figure 19 might be able to constrain
the relative mixture – and dynamical importance
– of different classes of bubbles (Robin et al. 2003;
Robitaille et al. 2012).

4.1. Evidence for Triggering
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Fig. 15.— The longitude distribution for the MWP catalog, partitioned according to the bubble probability score. Vertical
black lines identify three degree-scale emission complexes with an overabundance of low-probability objects.
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Fig. 16.— Two fields with overabundances of low-probability bubbles in the MWP catalog.
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Fig. 17.— The latitude distribution for the MWP catalog,
partitioned according to the bubble probability score. Low-
probability objects have a slightly wider distribution.

0.0 0.2 0.4 0.6 0.8 1.0
P(Bubble | Score)

No
rm

ali
ze

d 
Fr

ac
tio

n

HII Region
No HII Region

Fig. 18.— The bubble probability distribution for
sources with and without H ii region counterparts in the
Anderson et al. (2011) catalog.

Bubbles are frequently studied in the context of
triggered star formation. The material excavated by
bubble-blowing stars might induce subsequent gen-
erations of star formation. Two main mechanisms

P < 0.5
0.5 < P < 0.9
P > 0.9

10 pc

Fig. 19.— Positions and sizes of bubbles with kine-
matic distance measurements from Anderson et al. (2011).
The background image is an artist’s schematic rendition of
the Galaxy’s spiral structure (credit NASA/JPL-Caltech/R.
Hurt)

for triggered star formation have been proposed:
in the collect and collapse model (Whitworth et al.
1994; Dale et al. 2007), material gathered along
bubble rims eventually passes a critical density and
undergoes gravitational fragmentation and collapse.
In the radiatively-driven implosion model, the wind
or ionization shock front collides with pre-existing
but stable cores, and the resulting compression trig-
gers collapse (Bertoldi 1989).
In any particular region, finding clear evidence

for triggered star formation is difficult. The
typical approach is to identify an overdensity of
young stars within or on a bubble rim, and/or to
look for an inverse age gradient with bubble ra-
dius (Deharveng et al. 2005; Zavagno et al. 2006;
Koenig et al. 2008). Such an analysis is often con-
founded by small numbers of YSOs and ambigu-
ous line-of-sight distances and stellar ages. Further-
more, it is often unclear whether spatial correlations
between bubbles and YSOs imply a triggered rela-
tionship between the two, since star formation is a
naturally clustered process (Lada & Lada 2003).
Such problems can partially be addressed by

correlating YSOs with large bubble catalogs like
the MWP catalog – this does not disambiguate
correlation from causation, but it can over-
come problems related to small-number statistics.
Thompson et al. (2012) first applied such an anal-
ysis using the Churchwell et al. (2006) catalog, and
Kendrew et al. (2012) later repeated this on the
MWP catalog. This analysis computes an an-
gular correlation function (Landy & Szalay 1993;
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Bradshaw et al. 2011), defined by

w(θ) =
NBY −NBRY

−NRBY +NRBRY

NRBRY

(2)

where Nαβ represents the number of pairs of objects
from catalogs α and β with a separation of θ, B is a
bubble catalog, Y is a YSO catalog, and RB and RY

are randomly-distributed bubble and YSO catalogs.
These random locations are chosen to preserve the
approximate latitude and longitude distribution of
each class of objects, but are otherwise uniformly
distributed. Informally, w(θ) represents the excess
likelihood of finding a YSO at a particular distance
θ from a bubble, relative to what is expected from
a random distribution of bubbles and YSOs. We
normalize the angular offset θ by the radius of each
bubble, such that w(θ) traces the excess YSOs as a
function of offset in bubble radii. An ideal signature
of triggered star formation, then, would be a local
maximum of w(θ) at θ = 1.
We reproduce the Figure 15 of Kendrew et al.

(2012) in Figure20a. This shows the angular cor-
relation function between the MWP Large catalog
and RMS catalog of YSOs and compact H ii re-
gions (Mottram et al. 2007), as a function of nor-
malized bubble radius. The main signal is a decay-
ing correlation, indicative of the fact that star for-
mation occurs in clustered environments. The pre-
diction from triggered star formation is that there
should be an additional peak at θ ∼ 1 bubble ra-
dius. Such a signal is not obvious in this figure,
though Kendrew et al. (2012) report evidence for a
peak for the largest bubbles in the MWP catalog.
Likewise, Thompson et al. (2012) report a clearer
peak when considering the expert-selected bubbles
in Churchwell et al. (2006).
In Section 3, we demonstrated that roughly 30%

of objects in the MWP catalog are interlopers –
random ISM structures incorrectly tagged as bub-
bles. Furthermore, the relative false positive rate in-
creases towards giant H ii regions – precisely the re-
gions where one might expect triggered star forma-
tion to be most apparent. Interlopers might signifi-
cantly dilute bubble/YSO correlations in the MWP
catalog. Fortunately, our bubble probability scores
allow us to identify many of these interlopers, yield-
ing a higher reliability catalog that still has 3x as
many bubbles as used by Thompson et al. (2012).
Figure 20b shows the same correlation function,

for the subsamples partitioned by bubble probabil-
ity. This reveals an additional excess from 0.5 <
θ < 1 bubble radius, whose strength increases with
bubble probability. This is similar to the trend with
bubble size that Kendrew et al. (2012) reported,
but the signal here is both stronger and due to a
different subsample of bubbles – the size distribu-
tion of bubbles does not vary significantly between

the three probability bins.
Star formation is a naturally clustered process.

The curves in Figure 20 trace the excess of RMS
YSOs near bubbles relative to a purely random dis-
tribution of objects – they do not measure the ex-
cess density of YSOs relative to other star forma-
tion regions. The red “Control” curve in Figure 20
addresses this. This curve was obtained by repo-
sitioning each bubble to the location of a random
RMS YSO, and re-running the analysis. In other
words, the curve shows the natural clustering of
YSOs relative to each other. The left-most point
of the curve is very large, which is an artifact of the
fact that each bubble lines up exactly with the YSO
it was repositioned to – this creates a strong over-
density at very small θ. Beyond this point, however,
the curve resembles the P < 0.5 subset. The fact
that the P > 0.9 bubbles fall significantly above
the control curve indicates that YSOs are clustered
around high-probability bubbles even more strongly
than they cluster around one another on average.
However, this clustering analysis cannot determine
whether the overdensity around P > 0.9 bubbles
is the result of bubble-triggered star formation, or
rather an indication that bubbles form in particu-
larly active star forming regions.

5. BLIND SEARCH

The previous section focused on using Brut to re-
assess bubbles previously identified by citizen scien-
tists. We’ve demonstrated that Brut is successful at
identifying the high-reliability subset of the MWP
catalog and, conversely, at flagging probable inter-
lopers in the catalog. The result is a purer statistical
sample of bubbles in the Milky Way.
Now we consider the possibility of finding bub-

bles missing from the MWP catalog. By scanning
through all glimpse/mipsgal data, Brut can be
used to conduct a blind search for new bubbles.
Discovering bubbles without knowing the citizen-
science hit-rate at each location is a harder task;
Brut does not benefit from complementary informa-
tion about how citizen scientists classify a particu-
lar region. However, this task is relevant to future
projects where machine learning techniques assist
manual search. For applications where exhaustive
human search is infeasible, machine learning algo-
rithms can conduct exhaustive searches and flag in-
teresting candidate objects for human attention or
followup observation.
We performed a blind search with Brut as fol-

lows: starting at a minimum field of view of 80”, we
scanned the entire glimpse/mipsgal survey area
of |ℓ| < 65◦, |b| < 1◦. Each field was offset from
its neighbor by 20% of the field size. At each loca-
tion, we computed the Brut score. After scanning
the entire survey area, we increased the field of view
by 25%, and re-scanned the Galactic plane at this
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Fig. 20.— Angular correlation function (Equation 2) be-
tween bubbles and sources in the RMS catalog of YSOs.
Error estimates (shading) are derived via bootstrap resam-
pling from the bubble catalog. Top: the correlation function
for all bubbles. Bottom: the correlation function for the
low (black), medium (orange), and high-reliability bubbles
(blue). The red control curve is obtained by repositioning
each bubble to coincide with a random YSO – it measures
the general clustering of YSOs.

larger scale. This process was repeated up to a max-
imum field of view of 1 degree. In total, this pro-
duced approximately 35 million classifications. Of
these, we extracted 58,294 fields with Brut scores
greater than 0.2, and merged these following the
procedure in Section 2.9.
This process yielded a list of 2407 distinct bubble

candidates. According to Figure 14, an Expert is
about 50% likely to judge a region with a Brut score
of 0.2 as a bubble. Thus, this candidate sample is
very generous, and probably includes a substantial
interloper population. Using the fit to Figure 14,
the summed probability for all objects – and hence
the expected number of genuine bubbles in this sam-
ple – is 1243. 1500 objects in the blind search have
counterparts in the MWP catalog, and 907 do not.
Figure 21 shoes the Brut score distribution for ob-

jects with and without MWP counterparts. Note
that objects with no MWP counterpart are skewed
towards lower scores, and the majority of these are
interlopers. Brut’s blind search does not reveal any
significant statistical incompleteness in the MWP
catalog.
Still, Brut does recover a handful of genuine bub-

bles missing from the MWP catalog. The easiest
way to find these is to sort the 907 unmatched bub-
ble candidates by Brut score, and manually exam-
ine the highest-scoring regions. Figure 22 presents
8 of the most compelling bubble candidates with no
MWP counterparts – these bubbles are among the
70 highest-scoring regions with no MWPmatch. We
have examined the original MWP images associated
with each region and find that, in most cases, these
bubbles are sufficiently close to a bright source that
they are hard to see. Because Brut locally adjusts
the contrast of each field when building feature vec-
tors, it overcomes this difficulty. At the same time,
these eight objects represent ∼ 10% of the high-
scoring candidates we examined. The remaining
objects are false positives – many of them smaller
substructures of larger bubbles in the MWP cata-
log, or ambiguous sources of 24µm nebulosity. Brut
is not discriminating enough to find bubbles missed
by the MWP on its own. However, it is effective at
generating promising candidates to followup on.
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Fig. 21.— The distribution of Brut Scores for bubble can-
didates identified during the blind search.

We can’t rule out the possibility of bubbles missed
by both Brut and the MWP – it is possible, for
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example, that Brut could have learned a selec-
tion bias present in the training data. However,
we conclude from this exercise that Brut’s abil-
ity to identify bubble candidates in a blind search
is comparable to citizen scientists, and such tech-
niques can be useful as a way to pre-process large
datasets. Furthermore, we note that the combined
efforts of Brut and the MWP yield a much larger
catalog of high-reliability bubbles than the previ-
ous catalogs curated by professional astronomers
(Churchwell et al. 2006, 2007).

6. NEXT STEPS

The success of Brut demonstrates the potential
synergies that exist between machine learning, pro-
fessional scientists, and citizen scientists. Note the
complementary strengths and weaknesses of each re-
source:

1. Professional scientists are best-suited to per-
form nuanced classification tasks that require
domain-specific knowledge. They are also the
most resource-limited.

2. Citizen scientists outnumber professional sci-
entists by orders of magnitude (in the case
of Bubble detection, the factor is nearly
10,000:1). They are equally capable with the
generic aspects of pattern recognition, but do
not possess the domain expertise of profes-
sionals. Furthermore, curious citizen scien-
tists are well-situated for serendipitous dis-
covery of unusual objects (Lintott et al. 2009;
Cardamone et al. 2009).

3. Supervised machine learning algorithms have
no a-priori pattern recognition ability, and re-
quire external training. However, once sup-
plied with this information, computer-driven
analyses are reproducible and extremely scal-
able.

Brut leverages the information provided by as-
tronomers and citizen scientists alike. Citizen sci-
entist input was used for training, and a smaller
dataset of high-quality expert information set was
used to convert Brut’s classifications into calibrated
bubble probabilities. The result is a classifier that
is both more precise than the raw citizen scientist
catalog, and more complete than the best expert-
assembled catalog.
Searching Spitzer images for bubbles is a small

enough task that citizen scientists were able to per-
form an exhaustive search. Consequently, the MWP
catalog appears to contain most of the bubbles that
one can hope to identify from these images. Brut’s
main benefit is in providing an independent, proba-
bilistic assessment of the MWP catalog, identifying

interlopers in the catalog, and adding a small num-
ber of bubbles missed by citizen scientists – partic-
ularly bubbles near bright objects.
However, one can hypothetically envision tools

like Brut assisting professional and citizen scien-
tists in real time. For searches for rarer objects in
larger datasets, exhaustive human search is infea-
sible – both due to boredom and prohibitive data
sizes. Had Brut been trained at the start of the
MWP, it would quickly have been able to eliminate
many regions as devoid of bubbles. Citizen scien-
tists could have spent more time classifying more
ambiguous regions, which is where their input is
most valuable (and where the task is most inter-
esting). These ideas are explored in more depth by
Kamar et al. (2012), and will become increasingly
important as data continues to grow.
Similarly, Brut could easily incorporate additional

sources of information. For example, far-infrared
observations from Herschel constrain the column
density and temperature of dust in the vicinity of
bubbles (Anderson et al. 2012b). This additional
information can further disambiguate real bubbles
from other cavities in the ISM. A followup investi-
gation could supplement Brut’s feature vectors with
features extracted from Herschel data, and retrain
the classifiers. This is a promising approach to
search for bubbles in the outer galaxy, since Spitzer
did not systematically survey the outer Galaxy at 8
or 24 µm and citizen scientists have not (yet) sur-
veyed this region.

7. CONCLUSION

We have developed an automatic bubble detector,
Brut, using the Random Forest classification algo-
rithm in tandem with a catalog of citizen scientist-
identified bubbles in our galaxy. This algorithm is
effective at detecting bubbles in Spitzer images. By
comparing the confidence scores that Brut computes
with expert classifications of a small set of images,
we are able to estimate the probability that any
given region in Spitzer glimpse and mipsgal data
contains a bubble. We have used Brut to re-assess
the objects in the MWP catalog, and also to perform
a full search over glimpse and mipsgal images for
new bubbles. Several insights have emerged from
this analysis:

1. Roughly 30% of the objects in the MWP cata-
log are interlopers – structures which a major-
ity of experts would not consider to be likely
H ii regions or wind blown bubbles.

2. Brut is able to identify which objects are
probable interlopers, and likewise to identify
highly probable bubbles. Compared to the
MWP catalog as a whole, high-probability
bubbles have a narrower latitude distribu-
tion, and are nearly 5 times more likely to
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Fig. 22.— Eight bubbles not present in the Milky Way Project catalog, discovered by Brut during a blind search.

be associated with H ii regions identified by
Anderson et al. (2011).

3. The MWP catalog has a higher concentration
of low-probability bubbles near giant H ii re-
gions, which fluoresce the surrounding ISM
and reveal more coincidental circular struc-
tures. Citizen scientists are prone to identify
these regions as bubbles, whereas experts and
Brut do not.

4. High probability bubbles exhibit stronger ex-
cesses of YSOs and compactH ii regions along
and interior to bubble rims – a prediction of
triggered star formation theories.

Image classification remains a difficult problem in
many contexts, and techniques like Brut are not

yet as good as expert human analysis. However,
Brut demonstrates that automated techniques are a
valuable complement to manual search. Combining
human and machine searches is the most promis-
ing avenue for scaling tasks like astrophysical image
classification to very large datasets.
This research made use of the Scikit-

Learn (Pedregosa et al. 2011), Astropy
(Astropy Collaboration et al. 2013), and Wis-
eRF software packages. WsieRF is a product of
wise.io, Inc., and we thank them for making an
academic license freely available. JPW acknowl-
edges support from NSF-AST1108907. This work is
based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion
Laboratory, California Institute of Technology
under a contract with NASA.
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APPENDIX

EXPERT SURVEY

Figure 23 shows the interface experts used to provide classifications for the expert survey. Each object is
shown 6 times, at 3 zoom levels (columns) and two contrast settings (rows). Experts were asked to click one
of the three buttons to classify the object as a non-bubble, ambiguous/irregular bubble, or clear bubble. To
minimize the effects of fatigue, each user classified objects in a different, random order.
Figure 24 shows the objects in the survey that were drawn randomly from the MWP catalog. Each image

corresponds to the upper-left image of the survey form. Similarly, Figure 25 shows the objects in the uniform
sample. Recall that these were selected to be uniformly distributed in Brut’s confidence score.
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Fig. 23.— A page from the expert survey, showing a possible bubble at 3 zoom levels and 2 contrast settings.
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Fig. 24.— The objects in the expert survey selected from the MWP catalog. Objects are sorted by Brut’s confidence score.
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Fig. 25.— The same as Figure 24, but for objects from the uniform sample.
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