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Abstract

Background

Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease,

yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined.

Here, we define more completely monocyte phenotype both prior to ART initiation and dur-

ing 48 weeks of ART.

Methods

Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained at baseline

(prior to ART initiation) and at weeks 12, 24, and 48 of treatment from 29 patients participat-

ing in ACTG clinical trial A5248, an open label study of raltegravir/emtricitibine/tenofovir

administration. For comparison, cryopreserved PBMCs were obtained from 15 HIV-1 unin-

fected donors, each of whom had at least two cardiovascular risk factors. Thawed samples

were stained for monocyte subset markers (CD14 and CD16), HLA-DR, CCR2, CX3CR1,

CD86, CD83, CD40, CD38, CD36, CD13, and CD163 and examined using flow cytometry.

Results

In untreated HIV-1 infection there were perturbations in monocyte subset phenotypes,

chiefly a higher frequency and density (mean fluorescence intensity–MFI) of HLA-DR

(%-p = 0.004, MFI-p = .0005) and CD86 (%-p = 0.012, MFI-p = 0.005) expression and lower

frequency of CCR2 (p = 0.0002) expression on all monocytes, lower CCR2 density on

inflammatory monocytes (p = 0.045) when compared to the expression and density of these

markers in controls’monocytes. We also report lower expression of CX3CR1 (p = 0.014) on

patrolling monocytes at baseline, compared to levels seen in controls. After ART, these
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perturbations tended to improve, with decreasing expression and density of HLA-DR and

CD86, increasing CCR2 density on inflammatory monocytes, and increasing expression

and density of CX3CR1 on patrolling monocytes.

Conclusions

In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR,

CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on

monocyte populations. Circulating monocyte phenotypes are altered in untreated infection

and tend to normalize with ART; the role of these cells in the inflammatory environment of

HIV-1 infection warrants further study.

Introduction
Monocytes are increasingly recognized as contributors to inflammation and coagulation in
HIV-1 infection [1–3]. These antigen-presenting cells can be segregated into three functionally
distinct populations based on CD14 and CD16 expression [4, 5]. “Traditional”monocytes
express high levels of CD14, are lacking CD16 (CD14+CD16-), and produce pro-inflammatory
cytokines in response to microbial elements, though to a lesser degree than do “inflammatory”
monocytes (CD14+CD16+) [6]. “Patrolling”monocytes (CD14dimCD16+) produce IL6 and
IL8 in response to viral elements, and patrol the vascular endothelium [6]. Increased propor-
tions of both the inflammatory and patrolling monocytes have been reported previously in
untreated HIV-1 infected patients when compared to the proportions in a healthy control pop-
ulation[1]. This nomenclature describes the function of these monocytes; others have charac-
terized these cells as classical, intermediate and non-classical monocyte subsets respectively[5].

Since monocyte phenotype perturbations in HIV-1 infection and changes in monocyte phe-
notype with antiretroviral therapy (ART) are incompletely defined, we implemented a flow
cytometry panel for cryopreserved cells that explored the expression and density of: activation
and maturation markers, HLA-DR, CD38, CD13, and CD83; the co-stimulatory molecules
CD40 and CD86; chemokine receptors CCR2 and CX3CR1; and the scavenger receptors CD36
and CD163. Using this monocyte phenotyping panel we found that in untreated HIV-1 infection
there is lower density of CCR2 on inflammatory monocytes and lower expression of CX3CR1 on
patrolling monocytes. We also found that untreated HIV-1-infected individuals had higher
expression of HLA-DR and CD86 on total blood monocytes, and on most subsets, reflective of
increased activation. Finally, we reported that many, but not all indices, normalized after ART.

Methods

Ethics Statement
This study was approved by institutional review boards at all participating sites: Brigham and
Women's Hospital Clinical Research Site (CRS), Johns Hopkins Adult AIDS CRS, UCSD,
AVRC CRS, University of Rochester ACTG CRS, AIDS Care CRS, Washington University
CRS, The Ohio State University AIDS CRS, MetroHealth CRS, Northwestern University CRS,
The Miriam Hospital ACTG CRS, Vanderbilt Therapeutics CRS, IHV Baltimore Treatment
CRS, University of Colorado Hospital CRS, Houston AIDS Research Team CRS, and the Har-
lem ACTG CRS. Participants provided their written consent to participate in this study. This
trial is registered with Clinicaltrials.gov # NCT00660972.
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Study Design
The study design has been more completely described in [7, 8], but briefly, A5248 was a prospec-
tive, open-label, multicenter, pilot study performed in the United States of America. Recruitment
began June 2008 and ended January 2009; follow-up ended April 2010. A5248 was a single arm
study of raltegravir (RAL, 400 mg twice daily) and emtricitabine/tenofovir disproxil fumarate
(FTC/TDF, 200mg/300mg once daily) in HIV-1 infected ART-naïve patients who were enrolled
if plasma HIV-1 RNA levels were>10,000 and<300,000 copies/mL. Patients were excluded
from this analysis if they experienced virologic failure (plasma HIV-1 RNA level� 1000 copies/
mL between week 16 and week 24, or� 200 copies/mL at or after 24 weeks) or clinical rebound
(plasma HIV-1 RNA>0.3 log10 c/mL above the previous measurement).

Sample Collection
Blood samples collected pre-entry and at study entry, week 12, week 24, and week 48 after ART
initiation were utilized for analysis. Peripheral blood mononuclear cell (PBMC) samples were
prepared by Ficoll density sedimentation and cryopreserved in 90% Fetal Bovine Serum (FBS)
and 10% dimethyl sulfoxide (DMSO) until analyzed in batch. Cryopreserved samples available
from patients who experienced virologic response to therapy, as described above, were used for
these analyses. Baseline samples were pre-entry or entry samples according to availability.
Patient characteristics are described in Table 1. Healthy control cryopreserved samples were
obtained from a cohort of HIV uninfected persons without cardiovascular disease, but who
had at least two cardiovascular risks including age> 50 years old, male gender, cigarette smok-
ing, high blood pressure, high blood cholesterol, low HDL, Type II diabetes, or a history of car-
diovascular disease in a first degree relative.

Flow Cytometry
Cryopreserved PBMCs were thawed and immediately stained for viability (LIVE/DEAD fixable
Yellow Dead Cell Stain-Life Technologies, Grand Island, NY). All samples from the same
patient were thawed and examined on the same day, and all patient and control samples were

Table 1. Patient characteristics.

HIV(+) HIV(-)
n = 29 n = 15

Gender Female (%) 14 20

Male (%) 86 80

Age (years) Median 46 48

Range 25–58 36–65

Demographics White Non-Hispanic (%) 48 67

Black Non-Hispanic (%) 24 16

Hispanic (%) 24 0

Asian or Pacific Islander (%) 0 7

Other (%) 0 13

Not Reported (%) 1 0

HIV Status HIV-1 RNA Median: 34469 ——

(copies/mL) Range: 6644–264210 ——

CD4+ T cell Count Median: 283 ——

(cells/uL) Range: 10.5–547.5 ——

HIV-1-infected patients are from the A5248 cohort and controls were taken from a cohort of uninfected persons with at least two cardiovascular disease

risk factors.

doi:10.1371/journal.pone.0139474.t001
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examined during a two month period. PBMCs were then washed twice with complete medium
(RPMI- 10% FBS, 1% Pen/Strep, 1% Hepes, 1% L-glutamine) and stained for 30 minutes using
a panel that excluded T cells, B cells, NK cells, and neutrophils (anti-CD3-Phycoerythrin-Cy7
(PE-Cy7) (557581-Becton Dickinson (BD), San Jose, CA), anti-CD15-PE-Cy7 (323030-Biole-
gend, San Diego, CA), anti-CD19-PE-Cy7 (302216-Biolegend), anti-CD56-PE-Cy7
(557747-BD)), and stained for monocyte markers using anti-CD14-Pacific Blue (558121-BD)
and anti-CD16-Phycoerythrin (PE) (555407-BD), as well as for anti-HLA-DR-Peridinin chlo-
rophyll protein (PerCP) (307628-Biolegend), anti-CD13- Allophycocyanin-Cy7 (APC-Cy7)
(301710-Biolegend), anti-CD163-PE-CF594(562670-BD), anti-CD38-AF700 (560676-BD),
anti-CCR2- PerCP-Cy5.5 (357203-Biolegend), anti-CX3CR1-APC (341610 Biolegend), anti-
CD86-PerCP-Cy5.5 (305420-BD), anti-CD36-APC (550956-BD), CD40- AF700 (561208-BD).
Cells were then fixed with 4% paraformaldehyde and examined using an LSRII flow cytometer
(BD), which is calibrated daily by a dedicated technician using standard CS&T set up beads
(BD Biosciences) to assure consistency of fluorescence detection.

Gates to identify positive expression of surface markers were determined using isotype control
antibodies: MsIgG2a-Pacific Blue (558118-BD), MsIgG1- PE (555749-BD), MsIgG2a-PerCP
(400250-Biolegend), MsIgG1-APC-Cy7 (400128-Biolegend), MsIgG1-PE-CF594 (562292-BD),
MsIgG1-AF700 (557882-BD), MsIgG2a-PerCP-Cy5.5 (400252-Biolegend), Rat IgG2b-APC
(400612-Biolegend), MsIgG2b-PerCP-Cy5.5 (400338-Biolegend), MsIgM-APC (555585-BD).

Data were analyzed using FACSDiva software (Version 6.2 BD Bioscience, San Diego CA).
Monocytes were identified based on singlets, exclusion of viability dye, forward and side scatter
characteristics, exclusion of cells with a high density of CD3, CD15, CD19, CD56, and were divided
into the three subsets based on CD14 and CD16 expression. The CD14 and CD16 monocyte sub-
set gates were based on the staining of their respective isotypes[1]. A “total monocyte” gate was
also drawn around all three monocyte subsets. Total monocytes and monocyte subsets were char-
acterized further by expression of HLA-DR, CD13, CD163, CD38, CCR2, CX3CR1, CD86, CD36,
and CD40. Between 100,000 and 300,000 events were collected in the Forward/Side Scatter gate.

Statistics
Comparisons between baseline findings in patients and among controls were performed using
two-tailed MannWhitney U tests. Comparisons among treatment time points were performed
using both the generalized estimating equation (GEE) and two-tailed signed rank tests. Whereas
the signed rank tests considered each pre- and post-ART comparison separately, the GEE
allowed all the data to be considered together, and more fully considered repeated measures for
each individual. Specifically, expression and density on monocytes prior to beginning ART was
compared to the levels seen after ART initiation at week 12, week 24, and week 48 (Tables 2 and
3). GEE is best suited for studies with longitudinal data with correlated results [9]. Rather than
using a repeated measures ANOVA, which requires a full dataset, we used GEE which does not
require this approach. While our total HIV (+) patient population is 29, our final dataset includes
17 patients at baseline, 21 patients at week 12, 18 patients at week 24, and 23 patients at week 48,
necessitating the GEE approach. Significance was defined as p� 0.05. All graphs and analyses
were performed using RStudio [10, 11] or Graphpad Prism Software (Version 5.04). Specifically,
GEE was performed using the GEE function in RStudio[12].

Results

Patient and Control Samples
HIV-1 infected patients were 86%male, with a median age of 46, and fewer than half wereWhite
non-Hispanic (Table 1). Before ART initiation, the median plasma HIV-1 RNA and CD4+ T cell
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Table 2. Alterations in frequencies of surface marker expression on total monocytes andmonocyte subsets of HIV-1-infected patients before and
after initiation of ART.

GEE GEE Signed Rank test

Proportion Robust z Robust P p value

0–12 0–24 0–48 0–12 0–24 0–48 0–12 0–24 0–48

Total HLADR 0.74 0.99 -0.92 0.459 0.322 0.358 0.328 0.839 0.255

CCR2 0.48 0.48 1 0.631 0.631 0.317 0.000 0.001 0.004

CX3CR1 1.8 -0.62 0.56 0.072 0.535 0.575 0.194 0.831 1.000

CD38 -0.15 0.61 -0.04 0.881 0.542 0.968 0.572 0.831 0.003

CD13 0.76 0.51 0.16 0.447 0.610 0.873 0.414 0.898 0.021

CD40 -0.53 -1.95 -0.59 0.596 0.051 0.555 0.296 0.014 0.040

CD86 -0.65 -1.93 -0.69 0.516 0.054 0.490 0.952 0.148 0.636

CD36 -0.11 -0.57 -0.85 0.912 0.569 0.395 0.610 0.520 0.109

CD163 0.18 0.48 0.53 0.857 0.631 0.596 0.903 0.898 0.701

CD83 1.22 1.78 1.95 0.222 0.075 0.051 1.000 0.174 0.100

Traditional HLADR 1.23 1.08 -1.26 0.219 0.280 0.208 0.117 0.824 0.272

CCR2 2.11 1.45 2.37 0.035 0.147 0.018 0.012 0.102 0.039

CX3CR1 3.21 0.46 0.92 0.001 0.646 0.358 0.009 0.123 0.784

CD38 -0.27 0.05 -0.27 0.787 0.960 0.787 0.294 0.359 0.080

CD13 1.06 1.01 0.99 0.289 0.312 0.322 0.217 0.898 0.305

CD40 0.12 -0.98 0.25 0.904 0.327 0.803 0.730 0.148 0.045

CD86 -0.31 -2.06 -0.8 0.757 0.039 0.424 0.761 0.123 0.636

CD36 -0.19 -0.7 -0.75 0.849 0.484 0.453 0.754 0.765 0.327

CD163 0.47 0.15 0.36 0.638 0.881 0.719 0.808 0.859 0.497

CD83 1.44 1.73 1.85 0.150 0.084 0.064 0.423 1.000 0.181

Inflammatory HLADR -0.65 -1.82 -2.7 0.516 0.069 0.007 0.826 0.042 0.036

CCR2 2.38 2.59 2.14 0.017 0.010 0.032 0.049 0.067 0.340

CX3CR1 3.21 0.03 0.85 0.001 0.976 0.395 0.013 0.859 0.497

CD38 -0.45 -0.28 -0.64 0.653 0.779 0.522 0.808 0.240 0.004

CD13 0.31 0.48 -0.2 0.757 0.631 0.841 0.780 0.756 0.110

CD40 -0.22 -1.62 -0.55 0.826 0.105 0.582 0.834 0.083 0.094

CD86 -0.46 -2.13 -0.86 0.646 0.033 0.390 0.952 0.067 0.588

CD36 0.4 -0.15 -0.61 0.689 0.881 0.542 0.706 0.520 0.224

CD163 0.21 -0.03 0.15 0.834 0.976 0.881 0.583 0.700 0.946

CD83 1.38 2.02 2.34 0.168 0.043 0.019 0.162 0.363 0.154

Patrolling HLADR -0.18 -0.13 -2.13 0.857 0.897 0.033 0.761 0.610 0.127

CCR2 0.64 0.6 1.64 0.522 0.549 0.101 0.855 0.520 0.839

CX3CR1 3.34 1.7 2.3 0.001 0.089 0.021 0.001 0.067 0.152

CD38 -1.87 -2.43 -2.53 0.061 0.015 0.011 0.191 0.010 0.001

CD13 0.11 0.45 -0.41 0.912 0.653 0.682 0.414 0.831 0.255

CD40 -1.5 -3.18 -2.96 0.134 0.001 0.003 0.153 0.002 0.000

CD86 0.25 -1.77 -0.99 0.803 0.077 0.322 0.761 0.413 0.455

CD36 -1.81 -2.71 -2.71 0.070 0.007 0.007 0.025 0.024 0.008

CD163 -1.02 -0.21 -0.51 0.308 0.834 0.610 0.391 0.240 0.787

CD83 1.31 2.02 1.89 0.190 0.043 0.059 0.208 0.083 0.168

Baseline proportions are italicized if significantly greater than among uninfected controls and bolded if significantly lower by Mann Whitney U tests.

Comparisons were made between week 12 and baseline (0–12), week 24 and baseline (0–24), and week 48 and baseline (0–48) using both Wilcoxon

signed rank test and the generalized estimating equation. Significant increases (p<0.05) are italicized and significant decreases are bolded. Robust Z

score for the GEE plot are included to aid in the understanding of the direction of the change; negative Z score indicates decreased values after ART

initiation and positive Z scores indicate increased values after ART initiation.

doi:10.1371/journal.pone.0139474.t002
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count were 34,469 copies/mL and 283 cells/uL respectively. The control population was 80%
male, 67%White non-Hispanic, with a median age of 48, and one-third of the subjects were ciga-
rette smokers. Smoking data were not available for the HIV-1 infected patients.

Monocyte Phenotypes in Fresh and Cryopreserved PBMCS
Multicenter clinical trials designed to monitor immune cell subsets typically utilize cryopre-
served samples since multi-parameter flow cytometry using fresh blood samples has not yet
been standardized to support on-site performance at multiple centers. While most T cell phe-
notypes are stable with cryopreservation [13], the stability of monocyte phenotypes after cryo-
preservation is not adequately described, and certain monocyte functions have been found to
be diminished after cryopreservation [14, 15]. We therefore needed to determine which mono-
cyte surface markers were relatively unaltered with cryopreservation.

We obtained peripheral blood mononuclear cell (PBMC) samples prepared by Ficoll density
sedimentation of EDTA-anti-coagulated whole blood from four healthy controls and four
HIV-1-infected subjects and stained a portion of each sample with our monocyte phenotyping
panel. The remaining cells were cryopreserved and later thawed and stained using the same
phenotyping panel.

Monocyte subset distributions in fresh and cryopreserved monocytes are similar (Fig 1A).
Expression of CD40, CD163, CD86, CD38, HLA-DR, CCR2, CX3CR1, and CD13 on mono-
cytes was consistent in fresh and cryopreserved PBMCs of healthy (Fig 1B) and virologically
suppressed HIV-1-infected subjects (Fig 1C), though the HIV-1-infected subjects appear to
have higher variability in staining. The density (MFI) of CD36 appeared to be greater in the
cryopreserved PBMCs of the healthy subjects, though this was driven by relatively low expres-
sion of CD36 in the fresh preparation from one healthy subject. Although the expression of
CD83 was relatively diminished in cryopreserved PBMCs of the controls, we elected to retain
this marker in the panel as CD83 expression is a marker of monocyte maturation that increases
in response to viral products[16]. In contrast, the expression of LOX1, PDL1 and PDL2 was
diminished so dramatically after cryopreservation that these markers were excluded from the
panel (data not shown).

Altered Proportions of Monocyte Subsets in Untreated HIV-1 Infection
In earlier work using fresh whole blood samples, we found lower proportions of traditional
monocytes, and increased proportions of inflammatory and patrolling monocytes in HIV-1
infected patients with uncontrolled viremia [1]. Our new data evaluating a smaller number of
cryopreserved samples from different patient and control populations are similar. The propor-
tion of traditional (CD14+CD16-) monocytes tended to be lower in HIV-1-infectedpatients
(median-76.6%) compared to the proportion of traditional monocytes among control subjects
(median-82.5%), though not significantly lower (p = .089). The proportion of inflammatory
(CD14+CD16+) monocytes also tended to be higher in the setting of HIV-1 infection
(median-14.8%) than among controls (median-13.9%), though not significantly (p = 0.19). The
proportion of patrolling (CD14dimCD16+) monocytes was significantly higher in HIV-1
infection (median-6.0%) than among controls (median-2.9%, p = .029, Fig 2A). These subset
proportions did not change with ART (Fig 2B–2D).

Monocyte Phenotypes are Altered in Untreated HIV-1 Infection and
Change with ART
Shown on Tables 2 and 3 are summaries of the baseline and on treatment data sets presented
in this manuscript. Proportions and mean fluorescent intensities that differ significantly at
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baseline from controls’ values are shown in red (greater in patients) and green (lower in
patients). Likewise, significant changes from baseline in these values during ART are shown in
red if they rise and in green if they diminish. Selected graphic distributions of these phenotypes

Table 3. Alterations in surfacemarker density on total monocytes andmonocyte subsets of HIV-1-infected patients before and after initiation of
ART.

GEE GEE Signed Rank test

MFI Robust z Robust P p value

0–12 0–24 0–48 0–12 0–24 0–48 0–12 0–24 0–48

Total HLADR -1.710 -2.740 -5.730 0.087 0.006 0.000 0.194 0.175 0.001

CCR2 5.060 4.070 4.770 0.000 0.000 0.000 0.000 0.003 0.003

CX3CR1 0.950 -0.610 0.570 0.342 0.542 0.569 0.727 1.000 1.000

CD38 -0.410 -1.350 -2.450 0.682 0.177 0.014 0.715 0.831 0.011

CD13 -1.220 -1.610 -3.610 0.222 0.107 0.000 0.593 0.278 0.000

CD40 -2.540 -2.660 -1.130 0.011 0.008 0.258 0.035 0.024 0.056

CD86 -1.940 -2.400 -0.680 0.052 0.016 0.497 0.068 0.024 0.040

CD36 0.680 -0.190 -2.580 0.497 0.849 0.010 0.675 1.000 0.080

Traditional HLADR -0.350 -1.490 -3.470 0.726 0.136 0.001 0.855 0.700 0.013

CCR2 3.290 1.970 2.940 0.001 0.049 0.003 0.001 0.032 0.080

CX3CR1 1.440 -0.010 0.880 0.150 0.992 0.379 0.224 0.154 1.000

CD38 -1.150 -2.440 -3.290 0.250 0.015 0.001 1.000 0.278 0.006

CD13 -0.460 -1.040 -2.840 0.646 0.298 0.005 0.952 0.638 0.000

CD40 -0.590 -1.160 0.120 0.555 0.246 0.904 0.802 0.123 0.083

CD86 -1.430 -1.840 -0.160 0.153 0.066 0.873 0.135 0.042 0.057

CD36 0.240 -0.640 -2.620 0.810 0.522 0.009 0.442 0.839 0.069

Inflammatory HLADR -1.530 -1.880 -4.050 0.126 0.060 0.000 0.626 0.320 0.002

CCR2 3.360 3.310 3.500 0.001 0.001 0.000 0.033 0.005 0.127

CX3CR1 3.230 0.570 1.610 0.001 0.569 0.107 0.012 0.221 0.266

CD38 0.170 -0.580 -2.440 0.865 0.562 0.015 0.808 0.966 0.021

CD13 -2.510 -2.690 -4.610 0.012 0.007 0.000 0.119 0.024 0.000

CD40 -0.720 -1.510 -1.340 0.472 0.131 0.180 0.808 0.230 0.055

CD86 -2.290 -2.980 -1.390 0.022 0.003 0.165 0.049 0.007 0.110

CD36 1.110 0.160 -2.410 0.267 0.873 0.016 1.000 0.959 0.110

Patrolling HLADR -2.290 -1.830 -4.070 0.022 0.067 0.000 0.013 0.123 0.001

CCR2 -0.430 0.600 0.900 0.667 0.549 0.368 1.000 1.000 1.000

CX3CR1 5.160 2.590 1.920 0.000 0.010 0.055 0.001 0.042 0.147

CD38 -3.750 -3.850 -2.680 0.000 0.000 0.007 0.001 0.004 0.021

CD13 -3.380 -3.540 -4.900 0.001 0.000 0.000 0.013 0.032 0.001

CD40 -2.360 -3.450 -4.600 0.018 0.001 0.000 0.049 0.014 0.003

CD86 -1.770 -2.810 -3.560 0.077 0.005 0.000 0.078 0.083 0.021

CD36 -0.510 -1.570 -3.370 0.610 0.116 0.001 0.119 0.206 0.057

Baseline MFI values are italicized if significantly greater than among uninfected controls and boldedif significantly lower by Mann Whitney U tests.

Comparisons were made between week 12 and baseline (0–12), week 24 and baseline (0–24), and week 48 and baseline (0–48) using both Wilcoxon

signed rank test and the generalized estimating equation. Significant increases (p<0.05) are italicized and significant decreases are bolded. Robust Z

score for the GEE plot are included to aid in the understanding of the direction of the change; negative Z score indicates decreased values after ART

initiation and positive Z scores indicate increased values after ART initiation

doi:10.1371/journal.pone.0139474.t003
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are also shown in Figs 3–6. The means and standard errors of the means are shown in S1 and
S2 Tables.

Greater HLA-DR Expression and Density in Untreated HIV-1 Infection,
Tend to Decrease with ART
HLA-DR is utilized for presentation of peptide antigen to CD4+ T cells [17, 18] and HLA-DR
expression on monocytes typically increases in the setting of activation [19]. We found that
both frequency of HLA-DR expression and the HLA-DR mean fluorescence intensity (MFI)
on total monocytes were significantly greater in patient samples (p = 0.004, 0.0005 respectively)
than they were among controls’ samples (Fig 3A and 3B). With initiation of ART, the

Fig 1. Gating strategy for flow cytometry and comparison between fresh and cryopreservedmonocyte surface marker expression. (A) Shown are
isotype control dot plots and CD14 and CD16 expression in freshly obtained and cryopreserved PBMC from the same healthy volunteer and the expression
of CX3CR1 on each monocyte subset in the cryopreserved sample. Monocyte subsets were gated using the isotype staining as a guide, as seen in the
farthest left panel. Traditional monocytes are in purple, inflammatory monocytes are in pink, patrolling monocytes are in green. Gates are drawn based on
negative isotype staining using Rat IgG2b, in the case of CX3CR1. (B) Summary surface marker expression, both proportion and MFI, in fresh and
cryopreserved PBMCs on total monocytes of healthy control subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle)
represents an individual healthy control subject. (C) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on
total monocytes of virologically suppressed HIV-infected subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents
an individual HIV-infected subject.

doi:10.1371/journal.pone.0139474.g001
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proportions of HLA-DR+monocytes did not decrease significantly and remained elevated when
compared to proportions among healthy controls. HLA-DR density (MFI) decreased signifi-
cantly on total monocytes at weeks 24 and 48. At baseline, the frequency of HLA-DR expression
was higher on each monocyte subset in the setting of HIV-1 infection (traditional-p = 0.002;
inflammatory-p<0.0001; patrolling-p = 0.039) compared to the frequency of HLA-DR expres-
sion on monocyte subsets from controls. When these monocyte subpopulations were examined
individually, both the proportions and density of HLA-DR decreased significantly on both
inflammatory and patrolling monocytes at week 48; the frequencies of HLA-DR expression on
these subsets was no longer different from these frequencies in subsets from controls’ samples
(Fig 3E and 3G). At baseline, HLA-DR density on traditional (p = 0.003) and inflammatory
(p = 0.003) monocytes was significantly higher on samples from HIV-1-infected subjects com-
pared to HLA-DR density on samples from controls (Fig 3D and 3F). Density of HLA-DR tended

Fig 2. Monocyte subset proportions at baseline and after ART initiation compared to proportions among controls. (A) Jitterplot comparing the subset
proportions in HIV-1-infected individuals prior to ART initiation and subset proportions in controls. Medians are shown, and p values were determined using
MannWhitney U tests. Figs B-D display Tukey boxplots of medians and interquartile ranges. Outliers are shown as open circles. Tukey boxplots show the
proportions of traditional monocytes (B), inflammatory monocytes (C) and patrolling monocytes (D) in controls (red) and in HIV-1-infected subjects at
baseline and over the course of 48 weeks of ART.

doi:10.1371/journal.pone.0139474.g002
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to be higher on the patrolling monocytes of patients when compared to the density on controls’
samples, but these differences were not significant (p = 0.0893) (Fig 3H). Density of HLA-DR
decreased on all monocyte subsets after 48 weeks of ART (Fig 3D and 3F).

Greater CD86 Expression and Density on Monocytes in Untreated HIV-1
Infection decrease with ART
CD86 is a surface receptor that binds T cell CD28 and aids in co-stimulation [20, 21]. The pro-
portion of total monocytes expressing CD86 was significantly greater in the untreated HIV-
1-infected patients (p = 0. 012), and CD86 density was significantly higher (p = 0.005) among
patients’ cells than among controls’ cells (Fig 4A and 4B). The proportion of CD86+ monocytes

Fig 3. Expression and density (MFI) of HLA-DR on patient monocytes at baseline and after ART initiation compared to values among controls.
Values for frequency and density of HLA-DR on monocyte subsets in untreated HIV-1 infection were compared to levels among controls (in red) using Mann
Whitney U tests, and baseline values among patients were compared to values on ART using GEE and Signed Rank test (see boxed legend). Figures show
Tukey boxplots of medians and interquartile ranges, outliers are shown as open circles. HLA-DR densities and proportions were increased at baseline when
compared to the levels seen in the controls (A-G). Tukey boxplots show the proportions of HLA-DR+ total monocytes (A), traditional monocytes (C),
inflammatory monocytes (E), and patrolling monocytes (G) in controls’ samples (red) and in patient samples at baseline and after ART initiation. Tukey
boxplots show the density of HLA-DR on total monocytes (B), traditional monocytes (D), inflammatory monocytes (F), and patrolling monocytes (H) in
controls’ samples (red) and in patient samples at baseline and after ART initiation.

doi:10.1371/journal.pone.0139474.g003
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did not change with treatment while CD86 density decreased significantly (by GEE and signed
rank test) at week 24 and by signed rank test at week 48, achieving levels not different from lev-
els seen in controls.

Both the proportion of CD86 expressing traditional monocytes and the density of CD86 on
traditional monocytes were significantly higher in untreated HIV-1 infection compared to the
levels seen in the healthy control population (p = 0.008, p = 0.009 respectively) (Fig 4C and
4D). After 48 weeks of ART, both the density and expression of CD86 on traditional monocytes
fell to levels no longer different from those seen among controls and the changes from baseline
were significant at week 24.

Fig 4. Expression and density (MFI) of CD86 on patient monocytes at baseline and after ART initiation compared to values among controls. Values
for frequency and density of CD86 on monocyte subsets in untreated HIV-1 infection were compared to levels among controls (in red) using MannWhitney U
tests, and baseline values among patients were compared to values on ART using GEE and Signed Rank test (see boxed legend). Figures show Tukey
boxplots of medians and interquartile ranges; outliers are shown as open circles. Tukey boxplots show the proportion of CD86+ total monocytes (A),
traditional monocytes (C), inflammatory monocytes (E), and patrolling monocytes (G) in control samples (red) and in patient samples at baseline and after
ART initiation. Tukey boxplots show the density of CD86 on total monocytes (B), traditional monocytes (D), inflammatory monocytes (F), and patrolling
monocytes (H) in control samples (red) and in patient samples at baseline and after ART initiation.

doi:10.1371/journal.pone.0139474.g004
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The proportion of inflammatory monocytes expressing CD86 tended to be greater in
untreated HIV-1 infection (p = 0.050) and the MFI of CD86 on these cells was greater in
patients than among controls (p = 0.004) (Fig 4E and 4F). The proportions of CD86+ patrolling
monocytes decreased from baseline at weeks 24 and 48, and at these times neither their fre-
quencies nor MFIs were different from those seen among controls’ cells (Fig 4G and 4H).

Lower CD40 Density on Traditional Monocytes in Untreated HIV-1
Infection
In monocytes, the ligation of CD40 can result in the production of several pro-inflammatory
cytokines, such as IL-6 and IL-1β, and also can result in greater co-stimulatory molecule

Fig 5. Expression and density (MFI) of CCR2 on patient monocytes at baseline and after ART initiation compared to values among controls. Values
for frequency and density of CCR2 on monocyte subsets in untreated HIV-1 infection were compared to levels among controls using MannWhitney U tests,
and baseline values among patients were compared to values after ART initiation using GEE and Signed Rank test (see boxed legend). Figures show
boxplots of medians and interquartile ranges; outliers are shown as open circles. Tukey boxplots show the proportion of CCR2+ total monocytes (A),
traditional monocytes (C), inflammatory monocytes (E), and patrolling monocytes (G) in control samples (red) and in patient samples at baseline and after
ART initiation. Tukey boxplots show the density of CCR2 on total monocytes (B), traditional monocytes (D), inflammatory monocytes (F), and patrolling
monocytes (H) in control samples (red) and in patient samples at baseline and after ART initiation.

doi:10.1371/journal.pone.0139474.g005
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expression through interaction with CD40 ligand on CD4 T cells [22]. The proportions of
monocytes expressing CD40 were not significantly different from the proportions in controls
(total-p = 0.75, traditional-p = 0.33; inflammatory-p = 0.97; patrolling-p = 0.92), however, the
density of CD40 was marginally lower on traditional monocytes in HIV-1 infection (total-
p = 0.71; traditional-p = 0.048; inflammatory-p = 0.38; patrolling-p = 0.89) and the density of
CD40 on total monocytes and on patrolling monocytes decreased significantly from baseline
after 48 weeks of ART (Table 3).

Fig 6. Expression and density (MFI) of CX3CR1 on patient monocytes at baseline and after ART initiation compared to values among controls.
Values for frequency and density of CX3CR1 on monocytes in untreated HIV-1 infection were compared to levels among controls using the MannWhitney U
test, and baseline values were compared to values after ART initiation using GEE and Signed Rank test. Figures show boxplots of medians and interquartile
ranges; outliers are shown as open circles. Tukey boxplots show the proportion of CX3CR1+ total monocytes (A), traditional monocytes (C), inflammatory
monocytes (E), and patrolling monocytes (G) in control samples (red) and in patient samples at baseline and after ART initiation. Tukey boxplots show the
density of CX3CR1 on total monocytes (B), traditional monocytes (D), inflammatory monocytes (F), and patrolling monocytes (H) in control samples (red) and
in patient samples at baseline and after ART initiation.

doi:10.1371/journal.pone.0139474.g006
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Chemokine Receptor (CCR2 and CX3CR1) Expression on Inflammatory
and Patrolling Monocyte Subsets is Lower in Untreated HIV-1 Infection
and Normalizes with ART
We next examined the distribution of the chemokine receptors CCR2 and CX3CR1 on mono-
cyte subsets (Figs 5 and 6). As expected, traditional monocytes had the highest expression of
CCR2 and the lowest expression of CX3CR1, and, conversely, patrolling monocytes had the
highest expression of CX3CR1 and the lowest expression of CCR2, with expression of these
molecules on inflammatory monocytes falling in between[23].

At baseline, the proportion of total monocytes expressing CCR2 was lower in patients
(p = 0.0002) when compared to the proportion of CCR2+ monocytes in controls (Fig 5A) and
there was a trend towards lower CCR2 density (MFI, p = 0.053) on patient monocytes (Fig 5B).
At baseline, inflammatory monocytes from patients tended to less frequently express CCR2
(p = 0.057) and to have lower CCR2 MFIs (p = 0.045) compared to inflammatory monocytes
from controls (Fig 5E and 5F). There were no significant differences in CCR2 expression at
baseline among traditional (MFI-p = 0.55; %- p = 0.14) (Fig 5C and 5D) or patrolling subsets
(MFI-p = 0.075; %- p = 0.097) (Fig 5G and 5H) compared to expression levels and frequencies
on controls’monocytes. Both the proportion of CCR2+ monocytes and the CCR2 densities
increased from baseline by week 12 of ART on total monocytes and on both traditional and
inflammatory populations, and became comparable to levels seen among controls.

The frequencies and densities of the fractalkine receptor (CX3CR1) on total monocytes, tra-
ditional monocytes, and inflammatory monocytes, were comparable in samples from controls
and patients at baseline (Fig 6A–6F). Though they were unaltered at baseline, the proportions
of CX3CR1+ traditional and inflammatory monocytes, and the density of this receptor, rose
from baseline at 12 weeks (Fig 6C and 6E). Among patrolling monocytes from patient samples,
both the proportion of CX3CR1+ cells and CX3CR1 density were lower than among controls
at baseline (p = 0.0453, p = 0.0235 respectively) and rose by week 12 of ART to be no longer
different from these values among controls’ cells (Fig 6G and 6H).

CD13 is a homotypic cell adhesion molecule which is expressed on both monocytes and
endothelial cells, and is thought to play a role in monocyte adhesion and migration, and is used
as a marker of monocyte maturation [24]. The proportion of CD13+ monocytes was lower
(p = 0.013) in untreated HIV-1 infection and this was related to low frequencies of CD13
expression in a subset of patients. The proportion of total monocytes expressing CD13 was
decreased further after 48 weeks on treatment (Table 2). At baseline, the proportion of CD13
+ traditional monocytes was significantly lower in samples from patients than among samples
from controls (p = 0.019), but this was not seen among inflammatory (p = 0.37) or patrolling
subsets (p = 0.48).

Discussion
Our study examined the phenotype of monocytes and their subsets in untreated HIV-1 infec-
tion, after ART initiation, and in a healthy control population also at risk for coronary artery
disease. We were able to confirm previous reports demonstrating an increased proportion of
patrolling monocytes in HIV-1 infection [8] and we also provide new insights into the kinetics
of ART effects on monocyte phenotype in HIV-1 disease.

We report here the phenotypes of total circulating monocytes, as well as the phenotypes of
circulating monocyte subpopulations as defined by CD14 and CD16 expression[1]. While
there are a number of ways to distinguish the monocyte subsets [25, 26], we selected the
approach used by Cros et al [6] and by us in our earlier works [1, 27], recognizing that there is
not yet a consensus as to how best to phenotype circulating monocytes. In untreated HIV-1
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infection, circulating monocytes have greater expression of HLA-DR and CD86 that may
reflect in vivo activation and might affect their ability to co-stimulate T cells. Higher expression
and density of HLA-DR on monocytes has been reported previously [28]. Interestingly, we
found lower CD40 density on traditional monocytes in HIV-1 infection. Earlier work by our
group has found diminished induction of CD40L expression on activated (CD38+) CD4 T cells
after T cell receptor stimulation [29, 30]. Concurrent lower level CD40 expression on antigen
presenting cells may contribute to an impaired CD4 T cell response to antigen in vivo; a recog-
nized complication of HIV-1 infection[31].

We confirmed our previous finding that patrolling monocyte proportions are increased in
untreated HIV disease when compared to the patrolling monocyte proportions found in a con-
trol population [1]. An increased proportion of CD16+ (inflammatory and patrolling) mono-
cytes in HIV disease has been reported by several groups [32–34], and was recently found to be
predictive of greater coronary artery calcium progression in HIV-1-infected patients[34]. We
also confirmed previous reports of unaltered CD163 expression on CD14+CD16+ monocytes
after administration of ART[35].

Lower CCR2 expression and higher CX3CR1 expression on cryopreserved monocytes from
elite controllers and patients on ART with viral suppression has been reported previously [36]
while CX3CR1 expression on classical monocytes has been shown previously to be higher in
patients with uncontrolled viremia [1]. The expression of CCR2 on monocytes was previously
shown to be unaltered in treated HIV disease, similar to what we found after 48 weeks of ther-
apy [27]. We extend these findings by reporting for the first time, significantly lower CCR2
expression on total circulating monocytes, lower CCR2 density on inflammatory monocytes,
and lower CX3CR1 expression and density on patrolling monocytes in patients with untreated
HIV-1 disease. Lower proportions of CCR2- or CX3CR1-expressing cells may reflect an
increased systemic exposure to their ligands, CCL2 or fractalkine respectively, causing
impaired monocyte migration. The lowered chemokine receptor expression could also indicate
that patient monocytes have already egressed into sites of inflammation and are no longer rep-
resented in the blood, leaving behind those monocytes with lower chemokine receptor expres-
sion. Importantly, these alterations appear to be abrogated with ART, as shown by the increase
in both CCR2 and CX3CR1 expression after ART initiation.

Limitations of this study include a relatively modest sample size and the complexity of deal-
ing with missing samples, due in part to the inconsistent quality and numbers of monocytes
present in samples thawed after cryopreservation. We therefore needed to apply statistical
methods to deal with missing data (GEE). Also, patients in this study were treated with an inte-
grase-inhibitor based ART regimen. Additionally, as plasma inflammatory profiles have differ-
ent trajectories after initiation of integrase-based versus non-nucleoside based therapy [37, 38]
it is not certain that the findings here will be superimposable after initiation of different ART-
based regimens.

It should be noted that our healthy control population is comprised of subjects with defined
cardiovascular risk, and may differ from healthy controls utilized in other studies. As our HIV-
1-infected patients are also at greater risk for cardiovascular disease [1, 34, 39–42], these con-
trols gave us the opportunity to link the perturbations we observed in circulating monocyte
phenotypes to HIV-1 infection itself. On the other hand, as we do not have access to smoking
histories of our patients, this remains a limitation of our study. Also, by including controls with
defined cardiovascular risk, we may have limited our ability to identify some monocyte pheno-
typic changes associated with HIV-1 infection and the cardiovascular risks that are its conse-
quence; for example CCR2 expression that did not differ between patients and controls at
baseline, but rose with ART.
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In summary, we have identified distinct perturbations in circulating monocyte phenotypes
in patients with untreated HIV-1 infection: elevated expression of HLA-DR and CD86 that
normalized with ART while expression of the chemokine receptors CX3CR1 and CCR2 rose
with ART. In contrast, we found lower expression of CD40 in untreated HIV-1 infection which
decreased with ART, rather than normalizing. These data demonstrate that cryopreserved
monocytes can be used to examine monocyte phenotypes and in HIV-1 infection, and pertur-
bations of circulating monocyte phenotypes tend to improve with administration of suppres-
sive antiretroviral therapy. The role of circulating monocytes in the sustained inflammatory
environment of HIV-1 infection warrants further study.
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