
Using Multiple Hash Functions to Improve IP
Lookups

Citation
Mitzenmacher, Michael and Andrei Broder. 2000. Using Multiple Hash Functions to Improve IP
Lookups. Harvard Computer Science Group Technical Report TR-03-00.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518798

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518798
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Using%20Multiple%20Hash%20Functions%20to%20Improve%20IP%20Lookups&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=3f040887785943034d3580bc76743758&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Using Multiple Hash Funtions to Improve

IP Lookups

Mihael Mitzenmaher

and

Andrei Broder

TR-03-00

Computer Siene Group

Harvard University

Cambridge, Massahusetts

Using Multiple Hash Funtions to Improve IP

Lookups

Andrei Broder

�

Mihael Mitzenmaher

y

Abstrat

High performane Internet routers require a mehanism for very eÆient IP

address look-ups. Some tehniques used to this end, suh as binary searh on

levels, need to onstrut quikly a good hash table for the appropriate IP pre�xes.

In this paper we desribe an approah for obtaining good hash tables based on

using multiple hashes of eah input key (whih is an IP address). The methods

we desribe are fast, simple, salable, parallelizable, and exible. In partiular,

in instanes where the goal is to have one hash buket �t into a ahe line, us-

ing multiple hashes proves extremely suitable. We provide a general analysis of

this hashing tehnique and spei�ally disuss its appliation to binary searh on

levels.

1 Introdution

We desribe a new hashing approah suitable for use in network routing software

and hardware. This hashing approah an be applied to improve IP lookups

using the tehnique of binary searh on levels to �nd the longest mathing pre�x.

In partiular, we expet that this approah will prove highly suitable for IP-v6

addresses (when ombined with previous tehniques suh as pre�x expansion),

and for new programmable network proessors [4℄. We expet that it will also

be useful for similar problems, suh as paket lassi�ation and �ltering, where

hashing is ommonly used as a subroutine to allow fast lookups [13℄.

The basi idea of the approah is to use multiple hash funtions. The idea has

been been analyzed and developed in several reent theoretial works. We therefore

spei�ally address how this approah an be used to improve performane on

�

AltaVista Company, 1825 S. Grant Street, Suite 410, San Mateo, CA 94402, USA. This work was

done while at Compaq Systems Researh Center, Palo Alto.

E-mail: andrei.broder�altavista.om.

y

Harvard University, Computer Siene Department. 33 Oxford St., Cambridge, MA 02138. Part of

this work was done while visiting Compaq Systems Researh Center.

E-mail: mihaelm�ees.harvard.edu.

1

the real problem of IP lookups. In partiular, we emphasize that by properly

struturing the data, one an parallelize memory aesses so that using multiple

hash funtions is desirable.

1.1 Hashing for IP lookups

The standard approah used by an IP router to forward a paket is to keep a

forwarding table based on IP destination address pre�xes. Eah pre�x is assoiated

with the next hop towards the destination. The IP router looks in its table for the

longest pre�x that mathes the destination address of the paket, and forwards

aording to that math.

One attak for solving the longest mathing pre�x problem is to perform binary

searh on levels [14, 17℄. We briey review the main ideas.

1

Pre�xes are divided

aording to length, with all pre�xes of a given length in a table. We then perform

a binary searh for mathing pre�xes of the destination address aording to pre�x

lengths. A math in a given table implies that the longest mathing pre�x is at

least as long as the size of pre�xes in the table, whereas a failure to math implies

the longest mathing pre�x is shorter. Tables for eah pre�x length an be stored

as a hash table. In this ase, if there are W di�erent possible pre�x lengths and

n di�erent pre�xes, the searh requires O(n log

2

W) memory and O(log

2

W) time.

This tehnique is enhaned by using the proess of ontrolled pre�x expansion in

order to redue the number of distint pre�x lengths, as desribed by Srinivasan

and Varghese [14℄. If the number of distint pre�x lengths used is only ` instead

of the W possible, then only log

2

` table lookups are required, instead of log

2

W .

This redues the searh to O(log

2

`) time; the amount of memory used depends on

the inrease in the number of pre�xes. Srinivasan and Varghese suggest that from

experiments on real data, the possible inrease in the number of pre�xes does not

lead to large inreases in memory requirements [14℄.

The binary searh on levels sheme depends on being able to reate suitable

hash tables in order to minimize the number of memory aesses. Sine a memory

aess requires reading in a ahe line, a natural goal is to ensure that the number

of items that fall in a buket orresponds to the apaity of a single ahe line,

so that eah hash buket orresponds to a ahe line of memory. This ensures

that eah level examined during the binary searh only requires a single memory

aess. Srinivasan and Varghese therefore suggest searhing for a \semi-perfet"

hash funtion where eah buket has only ollisions, where is the number of

items that an �t in a single ahe line [14℄. In their ase, = 6.

One potential problem with the above method is that �nding a suitable semi-

perfet hash funtion an be a slow proess. As reported in [14℄, for the MaeEast

database of IP addresses, onstruting suh a hash funtion took almost 13 min-

utes. The authors argue that this time may not be a problem, as pre�xes hange

rarely enough that this omputation an be done o�-line. Note that if one attempts

1

Of ourse there are other possible attaks for this problem as well, as detailed for example in reent

works [2, 14℄.

2

to handle table modi�ations on-line, there is the possibility that the apaity of

a buket ould be exeed by an unfortunate seletion of values to be hashed. Suh

a problem ould be handled by hoosing a new hash funtion and re-hashing all

entries; however, if �nding a suitable hash funtion requires signi�ant time, this

is not desirable.

A related potential problem is that the above sheme potentially wastes signif-

iant memory. When some bukets have fewer than six elements, spae is wasted

for ahe lines that do not hold their full ontingent of items.

Our hashing sheme is designed to solve the problems introdued by searhing

for a semi-perfet hash funtion, by instead using multiple hash funtions. The

approah is very general and hene should prove highly suitable for IP-v6 addresses

(when ombined with previous tehniques suh as pre�x expansion), as well as

other similar lookup problems that use hashing.

1.2 Multiple hash funtions

For some time it has been known that using multiple hash funtions an lead to

di�erent performane behavior than using a single hash funtion. One of the �rst

analyses suggested using multiple tables, with a separate funtion for eah table.

Elements that ollide in one table perolate to the next. The tables shrunk in size

and the hashes ould be omputed in parallel [3℄.

A seminal result in the area onsidered the following natural hashing sheme

[1℄, whih we here all the d-random sheme. Suppose that n items are hashed

sequentially into a table with n bukets, in the following manner. Eah item is

hashed using d hash funtions, whih we assume yield independent and identially

distributed bukets for eah item. The item is plaed in the least loaded buket

(that is, the buket with the fewest items); ties are broken arbitrarily. A searh

for an item now requires examining the d possible bukets; however, as shown in

[1℄ the maximum load in a buket (with high probability) is

log log n

log d

+O(1). This

ompares quite favorably to the situation where just one hash funtion is used, in

whih ase the maximum load is

log n

log log n

+ O(1). The key point of this result is

that using two hash funtions leads to a ompletely di�erent behavior than using

a single hash funtion, while three is not too muh di�erent from two. Besides

improving the maximum load, using two hash funtions in this way leads to a

more equal distribution of the load aross bukets. A numerial analysis of this

hashing proess is given in [11℄, and extensions to queueing models are presented

in [10, 9, 16℄.

The hashing sheme we examine here is a variation of the d-random sheme,

with better performane and harateristis that make it more suitable for the IP

lookup problem. It was �rst introdued and analyzed theoretially by V�oking

[15℄; a simpler analysis more relevant to our disussion was developed by V�oking

and Mitzenmaher [12℄.

3

.

Left Right

z

9 10 11 121 2 3 4 5 6 7 8 13 14 15 16

Figure 1: The 2-left sheme. A newly inserted item, labeled z, is plaed in the less �lled

of two random bukets, one from the left and one from the right. Ties are broken to the

left. A searh for z may require searhing both of the bukets in whih z might have

been plaed.

2 Multiple hashes: the d-left sheme

We begin by fousing on the ase of two hash funtions. The sheme we desribe

was introdued by V�oking in [15℄ and is referred to as the 2-left sheme in [12℄.

Our hash table onsists of n bukets. (We assume n is even.) We split the n

bukets into two disjoint equal parts, whih for onveniene we all the left and

the right.

2

When an item is inserted, we all both hash funtions, where eah

hash funtion has a range of [1; n=2℄. The �rst hash funtion determines a buket

on the left, the seond a buket on the right. The item is plaed in the buket

with the smaller number of existing items; in ase of a tie, the item is plaed in

the buket on the left. In order to do a lookup, one must examine the ontents of

the two possible bukets orresponding to the two hashes of an item.

An obvious disadvantage of this approah is that it requires two hash table

lookups for eah level. Note, however, that these lookups are independent, in that

they an be performed in parallel. Spei�ally, if the hash table is plaed into

memory so that the left and right parts of the table are guaranteed to map to

di�erent memory areas, then aessing the two bukets orresponding to an item

an naturally be pipelined. For example, in software one might arrange so that

the left side of the table orresponds to even ahe lines and the right side to odd

ahe lines. Alternatively, in hardware one ould store di�erent parts of the table in

distint memory bank subsystems. Hene we do not feel that the requirement that

two memory aesses are required will have an important negative performane

impat. (Similarly, if the mahine an issue multiple instrutions, then the two

2

We emphasize that \left" and \right" are terms hosen simply for onveniene; the point is simply

that the table onsists of two disjoint parts.

4

bukets may be searhed for the item in parallel as well.) We show that in return

for this prie, we obtain signi�ant bene�ts.

We may generalize the above to more hash funtions, with the d-left sheme

using d hash funtions. Initially the n bukets of the hash table are divided into

d groups of n=k bukets. (Again, we assume n=k is an integer.) We think of the

groups as running onseutively from left to right. An inoming item is plaed in

the buket with the smallest number of existing items; in ase of a tie, the item is

plaed in the buket of the leftmost group with the smallest number of items. In

order to searh for an item in the hash table, the ontents of d bukets must be

heked. Again, the orresponding memory lookups an easily be pipelined. We

show that by inreasing the number of hash funtions used, one an redue the

memory required for the hash table at the potential expense of more (pipelined)

memory aesses and omputation.

An interesting question is why we suggest that ties be broken towards the left,

rather than breaking ties randomly as in the d-random sheme. Surprisingly, the

asymmetry introdued by breaking ties toward the left atually improves perfor-

mane, in that the maximum number of items plaed in a buket is smaller (in a

probabilisti sense) when one breaks ties in this manner. The intuition for this im-

provement is that as items are added, the ases where there are ties are extremely

signi�ant. For example, suppose the largest load thus far is four. In order to

obtain a buket with load �ve, we must hoose two bukets with load four. Ties

are therefore neessary to push the maximum load to new, higher levels.

By breaking ties asymmetrially, one atually redues the number of ties during

the ourse of the proess, and this improves the overall balane. To see this, again

suppose the system is in a state with several bukets of load four. Bukets with

load �ve are reated when two bukets of load four are hosen; subsequently,

bukets of load six are reated when two bukets of load �ve are hosen. If ties are

broken randomly, the bukets of load �ve are spread evenly on the left and right

sides. If, however, ties are broken asymmetrially, the bukets of load �ve initially

are all plaed on the left hand side. Sine our random buket hoies are taken

one from eah side, this auses it to take longer before a bin of load six an arise.

In the ontext of IP lookups, this asymmetry is also helpful in that it an be

used to slightly redue the average lookup time, in the ase where the item being

searhed for is atually in the table. As the leftmost groups are more likely to

hold more items, they an be examined �rst. If the pattern is found in one hash

buket, the other need not be searhed. Hene, for the 2-left sheme, more than

half the time the seond (pipelined) memory aess for eah level will not have to

be examined when the item is to be found in the table.

2.1 A Basi Analysis

We provide a simple approximate uid limit analysis of the d-left sheme, following

[12℄. The uid limit analysis aptures the behavior of the system as the number

of bukets grows to in�nity. The analysis depends on viewing the insertion of

5

items as a deterministi proess, where loads behave essentially aording to their

expetations. Appropriate large deviation theory yields that for suÆiently large

systems, this approah is quite aurate; Cherno�-like bounds an be obtained,

using theory that dates bak to Kurtz [6, 7, 8℄. Essentially, the theory demonstrates

that the law of large numbers applies to these systems. Hene, from these Cherno�-

like bounds, the probability of deviating sign�antly from the loads given by the

di�erential equations falls exponentially in the size of the system, in terms of the

number of bukets n. In pratie, as we shall see, this analysis proves aurate

even for systems of reasonable size, as the theory would suggest.

For this setion we follow [12℄; however, we present the analysis here for om-

pleteness. For onveniene we begin with the ase d = 2; thus we have two groups

and n=2 bukets. Let y

i

(t) be the fration of the n hash bukets that ontain at

least i items and are in the �rst, that is, leftmost, group when nt items have been

plaed. Similarly, let z

i

(t) be the fration of the n hash bukets that ontain at

least i items and are in the seond group when nt items have been plaed. Note

that y

i

(t); z

i

(t) � 1=2 and that y

0

(t) = z

0

(t) = 1=2 for all t. We will drop the

expliit referene to t and simply use y

i

and z

i

where the meaning is lear.

If we hoose a random hash buket on the left, the probability that it has at

least i items is

y

i

1=2

= 2y

i

. Analogously, if we hoose a random hash buket on the

right, the probability that it has load at least i is 2z

i

.

The uid limit behavior expresses the deterministi behavior the system would

follow in the limit as the number of bukets n and the number of items nt grow

to in�nity. It is expressed by a family of di�erential equations, where for i � 1:

dy

i

dt

= 2 (y

i�1

� y

i

) (2z

i�1

) ;

dz

i

dt

= 2 (z

i�1

� z

i

) (2y

i

):

These equations express the following natural intuition. Let dt represent the

amount of time during whih one item is plaed in the hash table. For y

i

to

inrease over some interval dt, the newly inserted item must hoose a buket on

the left with exatly i�1 items and a buket on the right with at least i�1 items.

The probability of this ourring is simply 2 (y

i�1

� y

i

) (2z

i�1

). Similarly, for z

i

to inrease over some interval dt, the newly inserted item must hoose a buket on

the left with at least i items and a buket on the right with exatly i� 1 items.

It will be somewhat more onvenient to generalize to the ase of general d if

we write these equations all in terms of a single sequene x

i

. If we substitute x

2i

for y

i

and x

2i+1

for z

i

, the equations above niely simplify to the following (for

i � 2):

dx

i

dt

= 2 (x

i�2

� x

i

) (2x

i�1

)

= 4 (x

i�2

� x

i

) x

i�1

: (1)

For the d-left sheme, we may think of x

jd+k

as representing the fration of

the bukets that have at least j items in the kth group from the left (where the

6

leftmost group is the 0th group from the left). Then the uid limit model yields

the following family of di�erential equations:

dx

i

dt

= d

d

(x

i�d

� x

i

)

i�1

Y

j=i�d+1

x

j

: (2)

We will use these equations to derive the approximate behavior when multiple

hash funtions are used. It is also worth noting what these families of di�erential

equations tell us about the distribution of items to hash bukets. For example,

suppose we have n items and n hash bukets (so that we an think of the equations

as running until time t = 1). How do the x

i

behave?

As in [15, 12℄, to desribe this behavior, we de�ne the generalized Fibonai

number F

d

(k) by F

d

(k) = 0 for k � 0, F

d

(1) = 1. and F

d

(k) =

P

d

i=1

F

d

(k � i)

when k > 1. Note that for d = 2 the generalized Fibonai numbers are just the

standard Fibonai numbers. Then the behavior of the x

i

is essentially

x

i

(1) � 2

�F

d

(i)

:

We provide a loose justi�ation. From equation 2, we have

dx

i

dt

� d

d

i�1

Y

j=i�d

x

j

;

so by integrating

x

i

(1) � d

d

Z

1

0

i�1

Y

j=i�d

x

j

(t)dt

� d

d

i�1

Y

j=i�d

Z

1

0

x

j

(t)dt

� d

d

i�1

Y

j=i�d

x

j

(1):

Now suppose x

j

(1) � 2

�F

d

(j)�1

=d for i� d � j � i� 1. Then

x

i

(1) � d

d

i�1

Y

j=i�d

2

�F

d

(j)�1

d

�

i�1

Y

j=i�d

2

�F

d

(j)�1

� 2

�d

2

�

P

i�1

j=i�d

F

d

(j)

�

2

�F

d

(i)

d

:

7

Hene, one the tails beome suÆiently small, a simple indution an be used to

show the tails derease faster than 2

�F

d

(i)

; that is, the derease has a generalized

Fibonai number in the exponent.

Beause x

jd+k

represents the fration of the bukets that have at least j items

in the kth group from the left, the fration of bukets with load at least i is

P

d�1

k=0

x

id+k

� 2

�F

d

(di)

: Reall that for large i, F

d

(k) grows exponentially; that

is, F

d

(k) � �

k

d

for some onstant �

d

. In fat �

2

is the golden ratio

1+

p

5

2

=

1:618 : : :, and the �

d

form an inreasing sequene satisfying 2

(d�1)=d

< �

d

< 2.

(For referene, �

3

= 1:839 : : : and �

4

= 1:927 : : :) So, for example, when d = 2 the

fration of bukets with load at least i falls approximately like 2

�2:6

i

; note that

the i is in the exponent of the exponent. Intuitively, this implies that the x

i

fall

extremely quikly with i, and hene the maximum load is very small.

Indeed, an alternative proof tehnique based on witness trees demonstrates that

the maximum load is

log log n

d log �

d

+O(1) with high probability [15℄. The analysis based

on di�erential equations is not ompletely suitable for obtaining suh �ne bounds

[11℄; however, it does yield aurate numerial information useful for prediting

the behavior of the hash funtion in pratie.

2.2 Modeling Dynami Deletions and Additions

In the setion, we onsider how to modify the basi equation (1) to handle dynami

additions and deletions to the table. Our goal here is to suggest that additions and

deletions of addresses an be handled on-line with our suggested hashing sheme.

We emphasize, however, that when attempting to handle table additions on-line

there is always the possibility that the load on a buket will exeed the maximum

apaity, as given by the ahe line size. In suh a ase, one must be prepared to

take an ation suh as re-hashing the data using new hash funtions. An advantage

of our multiple hash funtion approah is that �nding suitable new hash funtions

is very quik, and our analysis demonstrates that the need for suh emergeny

proedures an generally be made so rare that it is not a signi�ant issue.

Note that if we are required to handle dynami additions only, equation (1)

still holds. One only needs an upper bound on the number of items to be hashed,

and the equation an be used to determine the distribution when the number of

items hashed reahes this upper bound.

If there additions and deletions, we must model how deletions our. Two

important points are the rate of deletions ompared with the rate of additions, and

how the items to be deleted are hosen. For the �rst issue, a natural breakdown is

to assume that items are added only up to some point in time, and then additions

and deletions vary. We let the probability that an event is an insertion be p and

the probability that an event is a deletion be 1� p. For the seond issue, we an

vary our equations to analyze the ase where, when a item is to be deleted, the

item is hosen uniformly at random from all items. More onretely, we an model

the situation where all addresses have lifetimes that are exponentially distributed

with the same mean. More general deletion models, suh as models where the age

8

of an item an a�et its probability of being deleted, an be handled using the

analysis of [15℄, although this approah does not give the numerial answers we

desire here. The model where a random buket is hosen and an item is deleted

from that buket an also be handled using these tehniques, however [9℄.

We modify the equation (1) to aount for deletions by noting that the total

number of balls is

P

i�0

i(x

2i

+x

2i+1

), and the number of balls that an be deleted

that ause a redution in x

i

is b

i

2

(x

i

� x

i+2

). Hene the equations that desribe

the behavior of the system are given by

dx

i

dt

= 4p (x

i�2

� x

i

) x

i�1

� (1� p)

bi=2(x

i

� x

i+2

)

P

j�0

i(x

2j

+ x

2j+1

)

: (3)

Intuitively, the �nal distribution is likely to be smoother when deletions our

in this manner, as heavily loaded bukets are more likely to inur a deletion than

lightly loaded bukets.

3 Data

3.1 Evaluating the di�erential equations

Load

number of items

n=2 n 2n 3n 4n

0 6.1e-01 3.7e-01 1.4e-01 5.0e-02 1.8e-02

1 3.0e-01 3.7e-01 2.7e-01 1.5e-01 7.3e-02

2 7.6e-02 1.8e-01 2.7e-01 2.2e-01 1.5e-01

3 1.3e-02 6.1e-02 1.8e-01 2.2e-01 2.0e-01

4 1.6e-03 1.5e-02 9.0e-02 1.7e-01 2.0e-01

5 1.6e-04 3.1e-03 3.6e-02 1.0e-01 1.6e-01

6 1.3e-05 5.1e-04 1.2e-02 5.0e-02 1.0e-01

7 9.4e-07 7.3e-05 3.4e-03 2.2e-02 6.0e-02

8 5.9e-08 9.1e-06 8.6e-04 8.1e-03 3.0e-02

9 3.3e-09 1.0e-06 1.9e-04 2.7e-03 1.3e-02

10 1.6e-10 1.0e-07 3.8e-05 8.1e-04 5.3e-03

11 7.4e-12 9.2e-09 6.9e-06 2.2e-04 1.9e-03

12 3.1e-13 7.7e-10 1.2e-06 5.5e-05 6.4e-04

13 1.2e-14 5.9e-11 1.8e-07 1.3e-05 2.0e-04

14 4.2e-16 4.2e-12 2.5e-08 2.7e-06 5.6e-05

15 1.4e-17 2.8e-13 3.4e-09 5.5e-07 1.5e-05

Table 1: Loads in the uid limit (n bukets, 1 hoie). Entries represent the fration of

bukets with that load.

9

Load

number of items

n=2 n 2n 3n 4n

0 5.3e-01 2.3e-01 3.4e-02 4.6e-03 6.2e-04

1 4.4e-01 5.5e-01 2.1e-01 4.0e-02 6.9e-03

2 3.0e-02 2.2e-01 5.0e-01 2.0e-01 4.3e-02

3 8.6e-06 4.4e-03 2.6e-01 4.8e-01 1.9e-01

4 9.2e-16 5.2e-08 9.1e-03 2.7e-01 4.7e-01

5 1.4e-42 1.2e-21 5.0e-07 1.2e-02 2.8e-01

6 5.3e-58 7.2e-19 1.1e-06 1.3e-02

7 1.5e-50 6.6e-18 1.6e-06

8 5.7e-48 1.8e-17

9 8.4e-47

Table 2: Loads in the uid limit (n bukets, 2 hoies). Entries represent the fration

of bukets with that load.

We �rst demonstrate what results we obtain by evaluating the uid limit system

given by the family of di�erential equations. The results obtained here were found

by simulating the progress of the di�erential equations using disrete time steps of

5 � 10

�7

, whih prove more than suÆient for this level of auray. For example,

to obtain a result for n=2 items and n bukets, we run the di�erential equations

up to t = 1=2. Values of less than 1e�100 are left blank in our tables.

For omparison purposes, we inlude in Table 1 equivalent results in the ase

where a single hash funtion is used, assuming that the hash funtion distributes

items independently and uniformly at random into bukets. We note the well-

known fat that as n grows to in�nity the fration of bukets with load k when

the average load is � approahes a Poisson random variable, and hene the fration

with load k is simply

e

��

�

k

k!

.

Two important points are manifest from Tables 1, 2, and 3. First, when using

two or more hash funtions, the fration of bukets with a given load dereases

remarkably quikly with the load, espeially in omparison with the single hoie.

This is to be expeted given our previous disussion. As an example, onsider

when n items are hashed into n bukets, for large n. Our results show that 1e-06

of the bukets will have load at least 9 if a single hash funtion is used; with two

hash funtions, only about 5.2e-08 + 1.2e-21 + 5.3e-58 � 5.2e-08 of the bukets

will have load four or greater, and similarly with three hash funtions, only 4.4e-33

of the bukets will even have load four!

Seond, when tn items are plaed, the loads are strongly entered around the

integers nearest to t. This follows naturally from the above, sine the average

buket load is of ourse t, and the probability of high buket loads dereases so

quikly. These two e�ets are exatly what we desire from our hash table. We

wish the probability of having a heavily loaded buket should be small, so that we

10

Load

number of items

n=2 n 2n 3n 4n

0 5.1e-01 1.6e-01 9.1e-03 4.6e-04 2.3e-05

1 4.9e-01 6.8e-01 1.6e-01 1.0e-02 6.0e-04

2 6.8e-03 1.6e-01 6.6e-01 1.5e-01 1.1e-02

3 5.5e-15 1.1e-05 1.7e-01 6.6e-01 1.5e-01

4 2.9e-92 4.4e-33 2.0e-05 1.8e-01 6.6e-01

5 2.2e-31 2.2e-05 1.8e-01

6 4.6e-31 2.3e-05

7 5.6e-31

Table 3: Loads in the uid limit (n bukets, 3 hoies). Entries represent the fration

of bukets with that load.

do not overload a ahe line; however, we wish most ahe lines to be reasonably

full.

It is worth noting that there is a notieable gain in moving from two hash

funtions to three. The di�erene follows from the Fibonai derease of the

tails; the tails derease signi�antly faster with eah additional hoie. (From our

theoretial analysis, we have that when d = 2 the fration of bukets with load

at least i falls approximately like 2

�2:6

i

; for d = 3, the fration of bukets with

load at least i falls instead like 2

�6:2

i

.) Hene one an trade o� the number of

memory aesses required in order to improve the memory usage. Using more hash

funtions requires more memory aesses (although they an still be pipelined in

a straightforward fashion); in return, more entries an be stored without violating

the onstraint given by the number of entries that an �t on a ahe line.

3.2 Comparing the di�erential equations and simula-

tions

Beause the results given by the di�erential equations desribe asymptoti behav-

ior, it is worth omparing their behavior to simulations of the underlying random

proess. In partiular, we are interested in whether the di�erential equations a-

urately predit the maximum load of a buket for numbers of items and bukets

likely to arise in pratie. For this reason, we fous on instanes where the number

of bukets and items are in the small tens of thousands. Our di�erential equa-

tions would better math larger systems, and give less aurate results for smaller

systems.

For the ase of one or two hash funtions, we simulated systems with 32,000

items with varying numbers of bukets: 8,000, 16,000, 32,000, and 64,000. In

order to divide groups evenly, we used slightly di�erent numbers of bukets for the

ase of three hoies (see Table 6). These simulations are idealized, in that the

11

Items Bukets Results

32000 64000 Max. load 5 for 3992 trials

Max. load 6 for 5375 trials

Max. load 7 for 598 trials

Max. load 8 for 34 trials

Max. load 9 for 1 trials

32000 32000 Max. load 6 for 675 trials

Max. load 7 for 6487 trials

Max. load 8 for 2485 trials

Max. load 9 for 320 trials

Max. load 10 for 30 trials

Max. load 11 for 3 trials

32000 16000 Max. load 8 for 233 trials

Max. load 9 for 4437 trials

Max. load 10 for 4075 trials

Max. load 11 for 1040 trials

Max. load 12 for 178 trials

Max. load 13 for 29 trials

Max. load 14 for 7 trials

Max. load 15 for 1 trials

32000 8000 Max. load 11 for 2 trials

Max. load 12 for 1105 trials

Max. load 13 for 4354 trials

Max. load 14 for 3018 trials

Max. load 15 for 1139 trials

Max. load 16 for 287 trials

Max. load 17 for 74 trials

Max. load 18 for 15 trials

Max. load 19 for 2 trials

Table 4: Simulation results, random insertions, 1 hoie.

12

Items Bukets Results

32000 64000 Max. load 2 for 5826 trials

Max. load 3 for 4174 trials

32000 32000 Max. load 3 for 9980 trials

Max. load 4 for 20 trials

32000 16000 Max. load 4 for 9911 trials

Max. load 5 for 89 trials

32000 8000 Max. load 6 for 9895 trials

Max. load 7 for 105 trials

Table 5: Simulation results, random insertions, 2 hoies.

Items Bukets Results

30000 60000 Max. load 2 for 10000 trials

30000 30000 Max. load 2 for 7154 trials

Max. load 3 for 2846 trials

30000 15000 Max. load 3 for 7441 trials

Max. load 4 for 2559 trials

30000 7500 Max. load 5 for 8462 trials

Max. load 6 for 1538 trials

30000 6000 Max. load 6 for 8735 trials

Max. load 7 for 1265 trials

Table 6: Simulation results, random insertions, 3 hoies.

13

0

20

40

60

80

100

4 5 6 7 8 9 10 11

Maximum Load

P
er

ce
n

t o
f T

ri
al

s

1 choice, 32/64

1 choice, 32/32

2 choices, 32/16

2 choices, 32/8

Figure 2: One vs. two hash funtions, over 10,000 trials. In the legend, the the number

of items (in thousands) is followed by the number of bukets (in thousands).

bukets for eah item were hosen independently and uniformly at random from

the left and right hand sides (using the pseudo-random generator random). We

emphasize that this idealization does not neessarily orrespond to the data itself

being random in pratie, but rather that the hashes of the initial data appear

random. Using an omputationally expensive but powerful hash funtion suh

as MD5 ould approximate this behavior. In pratie, we suggest simpler hash

funtions, as desribed in Setion 4.

As an example of how to ompare these results with the uid limits, onsider

the ase of 32,000 items and 32,000 bukets. The uid limit suggests that a fration

5.2e-08 of the bukets will have load 4 (or greater) in this ase. Hene, over 10,000

runs, we would expet to see around 16 or 17 bukets with load 4. In simulations

we see a maximum load of 4 only 14 times, suggesting the uid limit provides an

exellent guide to the behavior of realisti sized systems.

We provide a graphial representation of the di�erene between using one and

two hash funtions in Figure 3.2. The legend gives the number of items (in thou-

sands) followed by the number of bukets (in thousands). The main points here is

that using two hash funtions allows greater preditability and a smaller maximum

load, even while using muh less memory.

The power of using three hash funtions is rather surprising. Consider the ase

where there are tens of thousands of items, and six items an �t into a ahe line;

this is essentially the situation onsidered in [14℄. With 30,000 items and 6,000

bukets using three hash funtions, even though the average load is �ve items per

buket, the maximum load is only six! Using two hash funtions, we see that with

32,000 items and 8,000 bukets the maximum load is very likely to be six. Hene

we an ahieve an average load of four and a maximum load of six, using two hash

funtions. In general, we see that for parameters that appear reasonable for the

14

IP routing senario, we an ahieve a very good utilization of memory with our

hash table using a small number of hash funtions.

For a more diret omparison between our simulations and the uid limit alu-

lation, we provide detailed results for eah of our sets of 10,000 trials. We present

the fration of bukets of eah load. The results of Tables 7 and 8 are almost ex-

atly the same as predited by our analysis as given in Tables 2 and 2. The small

di�erenes might simply be the statistial e�et of having too small a sample for

rare events. Alternatively, the analysis might slightly underestimate the fration

of bukets with the largest load for our simulations; for larger numbers of items

and bukets this disrepany would shrink.

The results are strongly robust. For example, we ran 1,000,000 experiments

with 32,000 items and 8,000 bukets, using two hoies. The maximum load was

6 for 987,296 of these trials, and 7 for the remaining 12,704 trials.

Again, the results make lear that using two or three hash funtions an dras-

tially redue the maximum load and the variane in the maximum load, leading

to better and more preditable hashing performane. Further, using multiple hash

funtions an dramatially improve upon the total spae used to store the hash

table by reduing the amount of unused spae.

Load

number of bukets

64,000 32,000 16,000 8,000

0 5.3e-01 2.3e-01 3.4e-02 6.3e-04

1 4.4e-01 5.5e-01 2.1e-01 6.9e-03

2 3.0e-02 2.2e-01 4.9e-01 4.3e-02

3 8.6e-06 4.5e-03 2.6e-01 1.9e-01

4 6.3e-08 9.1e-03 4.7e-01

5 5.6e-07 2.8e-01

6 1.3e-02

7 1.3e-06

Table 7: Loads found by simulations (32; 000 items, varying numbers of bukets, 2

hoies). Entries represent the fration of bukets with that load.

3.3 Simulations for Deletions and Additions

The di�erential equations (3) desribe the behavior of a system with insertions

and random deletions. Suh equations an be used to determine the end state of

the system. However, what is important in the setting of deletions is not the end

state, but the amount of time until the number of items hashed to a single buket

beomes too large. At suh time, a ahe line annot store a buket, and we are

fored to do a potentially expensive re-hash to reate a new hash table.

15

Load

number of bukets

60,000 30,000 15,000 7,500

0 5.1e-01 1.6e-01 9.1e-03 2.4e-05

1 4.9e-01 6.8e-01 1.6e-01 5.9e-04

2 6.8e-03 1.6e-01 6.6e-01 1.1e-02

3 1.1e-05 1.7e-01 1.5e-01

4 2.0e-05 6.6e-01

5 1.8e-01

6 2.3e-05

7

Table 8: Loads found by simulations (30; 000 items, varying numbers of bukets, 3

hoies). Entries represent the fration of bukets with that load.

The results from the di�erential equations an be used to obtain very loose

approximations for the probability that some buket exeeds its apaity during

the ourse of a proess. Sine x

2i

+ x

2i+1

is meant to approximate the fration of

bukets with load at least i as the number of bukets and bukets grows large, the

total expeted number of bukets with load at least i over the �rst T steps an

approximately be upper bounded by

T�1

X

t=0

x

2i

(t) + x

2i+1

(t) � T max

0�t�T�1

x

2i

(t) + x

2i+1

(t):

The expeted number of bukets with load at least i over the �rst T steps is

ertainly larger than the probability of seeing a bin with load at least i over

the �rst T steps. Hene, if this expetation is small, we obtain a bound on the

orresponding probability.

We emphasize that the point here is not so muh to get aurate upper bounds

for the probability a bin ever exeeds some load. Rather, the point is that the x

i

shrink so fast that we would expet to run a signi�ant number of steps before

needing to re-hash if we hoose our parameters appropriately. We onsider a

spei� example: suppose we start by inserting 32,000 items into 16,000 bukets.

We then either insert or delete an item, eah with equal probability, until we see a

buket with load six. For onveneniene, we refer to eah insert or delete operation

as a step.

From Table 2, the asymptoti fration of bukets with load at least six is 7.2e-

19 after the insertion stage. As deletions tend to redue the number of highly

loaded bukets, we would therefore expet that our hash table ould deal with

insertions and deletions for a long time before a buket with load six appears. In

pratie, however, with suh a small number of bins, the variane has a very large

e�et.

16

We simulated the proess with 32,000 items and 16,000 bins, stopping when we

saw a buket with load six or the number or when we had performed 10,000,000

steps. In one hundred trials, we reahed 10,000,000 steps without seeing a buket

with load six seventy-�ve times. Of the remaining twenty-�ve trials, the smallest

number of steps was only 121,805, but the average was approximately 4.54 million.

In all of these twenty-�ve trials, the number of hashed items was greater than

32,000 when the proess stopped; the average was over 34,500 items. Hene the

maximum number of items that one expets to be in the system should be a

major onern when deiding the appropriate size of the hash table. These results

justify our assertion that our hashing shemes are highly robust under deletions

and insertions.

3.4 Impliations

It is worth summarizing some of the bene�ts and the new tradeo�s that our ap-

proah yields.

One important bene�t is that under the assumption that hash funtions are

suÆiently random (whih we disuss below), the performane of these hashing

shemes for various values of the memory size, ahe line size, et. an easily

be tested numerially using the appropriate di�erential equations. Although the

results obtained in this fashion are asymptoti, they appear quite aurate for

systems of reasonable size (say, in the tens of thousands). This is not surprising,

given that Cherno�-like bounds apply.

Similarly, when a �xed number of items are to be inserted in the hash table,

one an use the asymptoti results to predit the probability of suess for a given

ahe line size. This number an be used to trade pre-proessing time for spae.

In partiular, in order to use less memory, it may be suitable to aim for a setup

where the probability that no ahe line size is exeeded is, say, only 20%. In this

ase, trying several ombinations of hash funtions may be neessary; the set of

items an be re-hashed o�ine until a suitable hash table is produed. Knowing

the probability of suess allows one to estimate the time to �nd an appropriate

ombination. The searh for good hash funtions is likely to be very eÆient, as

we desribe in Setion 4.

There are tradeo�s between the number of hash funtions used, the memory

used, and the appliable ahe line size. Inreasing the number of hash funtions

dereases the maximum load, and hene allows smaller ahe lines. While two

hash funtions appear generally suÆient, three an be used to improve memory

utilization. Similarly, inreasing the hash table size redues the maximum load

while inreasing the total memory used.

Our hash sheme also performs well when items are inserted and deleted from

the table. Deletions have a tendeny to derease more full bukets, and therefore

the system an handle a signi�ant number of insertion and deletion steps before

unfortunate irumstanes neessitate a re-hashing of the data.

Finally, we reiterate that all memory look-ups required by this sheme an be

17

done in parallel, in either hardware or software, sine eah hash funtion yields

bukets that an be stored in ompletely separate areas of memory.

4 Implementation Details

In pratie one annot simply obtain a perfetly random hash funtion; instead

one generally hooses a hash funtion from a small family of hash funtions. Our

analysis thus far has assumed that our hash funtions are perfetly random, and

unfortunately we don't know how to analyze the use of smaller hash families (e.g.,

2-universal families [3, 5℄) in this ontext, although our belief is that standard hash

families will provide performane similar to the analysis in pratie. Our belief is

entered on the fat that in pratie we will not have adversarially hosen worst

ase data, and hene our hash funtions are likely to be \suÆiently random" that

our analysis desribes atual behavior. An interesting question that is outside the

sope of this paper is to onsider what the best hash funtions to use on IP routing

data. A related question is how random does IP routing data appear.

A simple hash funtion (for both hardware and software) that one an use is

to treat the input as an element in an appropriate �nite �eld Z[2

k

℄ and multiply

by a random element in the �eld Z[2

k

℄, that is, modulo a given irreduible prime

polynomial. This is simply implemented as a multiplier without arries and a CRC

(yli redundany hek). Eah hash funtion an be based on a di�erent random

multiplier and a di�erent irreduible prime polynomial. Using a more omplex and

larger family of hash funtions based on using several random multipliers (see, e.g.,

[3℄) more losely approximates the family of all possible hash funtions, if this is

desired.

An IP router that needed to build a hash table ould simply hoose two random

elements of the �eld, using one element as a multiplier for eah hash funtion. If

the hash table is found suitable, in that the maximum number of items in a buket

�ts on a ahe line, these multipliers are used; otherwise, new random elements

are hosen. The proess is repeated until a suitable hash funtion is found.

To test how realisti hash funtions perform, we implemented a simple sheme

that derives two hash values from pre�xes by omputing the standard 16 bit CRCs,

CRC-16 and CRC-CCITT, on them. (Hene we have not even bothered with

random multipliers for the hash funtion.) Note that if we assume that our pre�xes

are, for example, 32 bit strings generated uniformly at random, then it is as though

our hashes give two uniform, independent values for eah hash funtion. (This

follows simply from the Chinese remainder theorem, applied over this polynomial

domain.) We heked our implementation by testing it on 32 bit strings generated

uniformly at random, and found that it indeed behaves entirely similarly to the

simulations based on hashes being perfetly random.

3

3

Beause our hashes are 16 bits and our simulations use a number of bukets that is not a power

of 2, some bukets are slightly more likely to be hosen. We have not found this to have a signi�ant

impat.

18

Conseutive pre�xes (whih may be likely to arise in pratie) naturally land

in distint bukets for eah hash funtion, whih should atually improve per-

formane. We tested this with the following experiment. Items are divided into

bloks. The �rst 32 bit string for eah blok is generated randomly; the rest of

the bit strings in the blok are just onseutive integers. The results appear in

Table 9. Although performane appears quite similar to our simulations where

items are hashed independently and uniformly at random when the blok size is

small, when the blok size is large performane atually improves. This is beause

the small stride ensures that all items within a blok hash to di�erent bukets.

Items Bukets Blok size Results

32000 16000 10 Max. load 4 for 9925 trials

Max. load 5 for 75 trials

32000 16000 100 Max. load 4 for 9966 trials

Max. load 5 for 34 trials

32000 16000 1000 Max. load 3 for 1919 trials

Max. load 4 for 8075 trials

Max. load 5 for 6 trials

32000 8000 10 Max. load 6 for 9866 trials

Max. load 7 for 134 trials

32000 8000 100 Max. load 6 for 9942 trials

Max. load 7 for 58 trials

32000 8000 1000 Max. load 5 for 3128 trials

Max. load 6 for 6870 trials

Max. load 7 for 2 trials

Table 9: Simulation results, 2 CRCs as hash funtions, with bloked inputs (stride 1).

We performed similar tests using di�erent strides; for example, we tried hav-

ing onseutive elements in the same blok di�er by 256 or 173. For most strides,

performane was similar to that of our simulations where items are hashed inde-

pendently and uniformly at random. However, for a stride of 256, performane

degraded for large blok sizes. We believe that this partiular stride interats

with the hash funtion in some way that some bukets tend to be repeated. Fur-

ther tests suggested that there may be a small number of stride values that have

worse performane than expeted. This problem disappears, however, when we

introdue random multipliers as desribed above, as shown in Table 10.

4.1 Using Real IP Data

We also examined the performane of these hash funtions on real data obtained

from Srinivasan and Varghese, who used this data in [14℄. Our tests were based

on a snapshot of the MaeEast database with 38,816 pre�xes.

19

Items Bukets Blok size Results

32000 16000 10 Max. load 4 for 9902 trials

Max. load 5 for 98 trials

32000 16000 100 Max. load 4 for 9700 trials

Max. load 5 for 300 trials

32000 16000 1000 Max. load 4 for 668 trials

Max. load 5 for 8565 trials

Max. load 6 for 765 trials

Max. load 7 for 2 trials

32000 16000 1000 Max. load 4 for 9562 trials

with random multiplier Max. load 5 for 436 trials

Max. load 6 for 2 trials

Table 10: Simulation results, 2 CRCs as hash funtions, with bloked inputs (stride

256).

Our primary test was to take the input data that arises for one of the hash

tables using the Binary Searh on Levels with ontrolled pre�x expansion. Using

three levels (with pre�xes of 16, 24, and 32 bits), the table of 24-bit pre�xes has

198,734 entries. (The other tables are signi�antly smaller, and we ignore them

here.) The hash funtion determined in [14℄ used 131,072 bukets of 32 bytes, and

therefore requires four megabytes of spae, in order to ensure that at most six

entries were held in eah ahe line. The hash funtion took a few minutes to �nd

on a modern Alpha system. Using just the two CRCs as hash funtions and 65,536

bukets, we obtained a maximum load of �ve. Using 50,000 bukets suÆes for

a maximum load of six. Our hash table requires half the spae (or less) and was

found essentially instanteously. Experiments using random multipliers along with

the CRCs show essentially the behavior, although it appears that using just the

two CRCs is somewhat fortuante. For 1,000 trials with random multipliers and

65,536 bukets, the maximum load was �ve for 835 trials and six for the remaining

trials.

We repeated the experiment when the �rst pre�x level uses 18 bits. In this

ase, the number of entries for the 24 bit hash table is redued to 117,131. Again,

in this instane the hash funtion determined in [14℄ requires four megabytes of

spae and some time to �nd. Using the two CRCs, we an ahieve a maximum

load of six with only 32,768 bukets. In this ase, we require only one quarter

the spae, and again the �rst pair of hash funtions we tried prove suessful. In

fat, when this experiment was repeated 1,000 times with random multipliers, the

maximum load was six every time.

Just for fun, tried reating a hash table using just the 38,816 pre�xes, all

onverted into 32 bit numbers. With 9,000 bukets we ahieved a maximum load

of six, again just using the CRCs.

From these results, we suggest that although we annot make statements re-

20

garding worst ase behavior for using multiple hash funtions when the hash fun-

tions are hosen from a small, easily implemented family, we believe that in pratie

a reasonable implementation will perform similarly to our analysis. The families

we have tested (with a single random multiplier per hash funtion) perform lose

to the analysis and are simple to implement in hardware or software. In fat, they

are quite minimal; one ould undoubtedly design more omplex hash funtions

that would improve results. Determining what hash funtions are most appropri-

ate depends in part on the underlying data and in part on the desired tradeo�

between hashing omplexity and performane. For the spei� ase of IP routing,

this is an avenue for possible future study.

We note that there are also further possibilities for saving spae in the hash

table. For example, it may be possible not to store the entire IP pre�x in the hash

table. Suppose we use a 1-1 hash funtion (a random permutation) that maps

32 bit IP pre�xes (in, say, IPv-6) to 32 bit values. We may use the �rst 16 bits

as an index into a hash table, and identify the pre�x in the table using only the

remaining 16 bits from the hash.

5 Conlusions

We have suggested a hashing sheme, d-left, based on using multiple hash funtions

that is suitable for situations where it is important to bound the maximum number

of items that fall into a buket, suh as when the buket is meant to �t in a ahe

line. A key feature of the d-left sheme is that all hashes and memory lookups an

be done in parallel in a straightforward manner.

We have also disussed the appliability of d-left to IP routing, using the binary

searh on levels approah. Important future work inludes building a more om-

plete testbed for testing the d-left hashing sheme on real data and omparing its

performane against other approahes. We also believe that d-left hashing is a sim-

ple but extremely powerful tehnique that will prove useful in other appliations

as well, and we are atively seeking possible appliations.

6 Aknowledgments

The authors would like to thank V. Srinivasan and G. Varghese for providing us

with data from their work on pre�x expansion.

Referenes

[1℄ Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balaned Alloations. In Pro-

eedings of the 26th ACM Symposium on the Theory of Computing, 1994, pp.

593{602.

21

[2℄ A. Bremler-Barr, Y. Afek, and S. Har-Peled. Routing with a Clue. In Pro-

eedings of the ACM SIGCOMM '99 Conferene, 1999, pp. 203{213.

[3℄ A. Broder and A. Karlin. Multilevel Adaptive Hashing. In Proeedings of the

1st ACM-SIAM Symposium on Disrete Algorithms, 1990, pp. 43{53.

[4℄ D. Carrigan. Network Proessors Help En-

able the Internet Eonomy. Available at

//developer.intel.om/solutions/arhive/issue19/stories/top3.htm.

[5℄ L. Carter and M. Wegman. Universal Classes of Hash Funtions. Journal of

Computer Systems and Siene, 18:2, 1979, pp. 143{154.

[6℄ S. N. Ethier and T. G. Kurtz.Markov Proesses: Charaterization and

Convergene, 1986, John Wiley and Sons.

[7℄ T. G. Kurtz. Solutions of Ordinary Di�erential Equations as Limits of Pure

Jump Markov Proesses. Journal of Applied Probability Vol. 7, 1970, pp. 49-

58.

[8℄ T. G. Kurtz, Approximation of Population Proesses, SIAM, 1981.

[9℄ M. Mitzenmaher. The Power of Two Choies in Randomized Load Balaning.

Ph.D. thesis, University of California, Berkeley, September 1996.

[10℄ M. Mitzenmaher. Load Balaning and Density Dependent Jump Markov

Proesses. In Pro. of the 37

th

IEEE Symp. on Foundations of Computer

Siene, 1996, pp. 213{222.

[11℄ M. Mitzenmaher. Studying Balaned Alloations with Di�erential Equa-

tions. To appear in Combinatoris, Probability, and Computing.

[12℄ M. Mitzenmaher and B. V�oking. The Asymptotis of Selet-

ing the Shortest of Two, Improved. Extended abstrat available at

www.ees.harvard.edu/~mihaelm/NEWWORK/papers.html. Short ab-

strat to appear in Pro. of the 39

th

Allerton Conferene.

[13℄ V. Srinivasan, S. Suri, and G. Varghese. Paket Classi�ation using Tuple

Spae Searh. In Pro. of SIGCOMM '99, pp. 135{146.

[14℄ V. Srinivasan and G. Varghese. Fast Address Lookups using Controlled Pre�x

Expansion. ACM Transations on Computer Systems, vol. 17, no. 1, 1999, pp.

1{40.

[15℄ B. V�oking. How Asymmetry Helps Load Balaning. To appear in FOCS '99.

[16℄ N.D. Vvedenskaya, R.L. Dobrushin, and F.I. Karpelevih. Queueing System

with Seletion of the Shortest of Two Queues: an Asymptoti Approah.

Problems of Information Transmission, Vol 32, 1996, pp. 15{27.

[17℄ M. Wadvogel, G. Varghese, J. Turner, and B. Plattner. Salable High Speed

IP Routing Lookups. In Pro. of SIGCOMM 97, 1997.

22

