
The ANT-Architecture--An Architecture for CS1

Citation
Ellard, Dan, Penelope Ellard, James Megquier, and J. Bradley Chen. 1998. The ANT-
Architecture--An Architecture for CS1. Harvard Computer Science Group Technical Report
TR-14-98.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620471

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620471
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20ANT-Architecture--An%20Architecture%20for%20CS1&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=83ba3d7e2c7434dacf4e241b7993e8ba&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

The ANT Architecture {

An Architecture For CS1

Dan Ellard, Penelope Ellard, James Megquier, J. Bradley Chen

A central goal in high-level programming lan-

guages, such as those we use to teach intro-

ductory computer science courses, is to pro-

vide an abstraction that hides the complexity

and idiosyncrasies of computer hardware. Al-

though programming languages are very e�ective

at achieving this goal, certain properties of com-

puter hardware cannot be hidden, or are useful

to know about. As a consequence, many of the

greatest conceptual challenges for beginning pro-

grammers arise from a lack of understanding of

the basic properties of the hardware upon which

computer programs execute.

To address this problem, we have developed

a simple virtual machine called ANT for use in

our introductory computer science (CS1) curricu-

lum. ANT is designed to be simple enough that

a CS1 student can quickly understand it, while

at the same time providing an accurate model

of many important properties of computer hard-

ware. After two years of experience with ANT

in our CS1 course, we believe it is a valuable

tool for helping young students understand how

programs and data are actually represented in a

computer system.

This paper gives a short introduction to ANT.

We start with a brief description of the architec-

ture, and then describe how we use ANT in our

CS1 course. We include speci�c examples that

demonstrate how ANT can give students intu-

ition about pointers, the representation of data

in memory, and other key concepts.

1 A Description of ANT

ANT is a simple and extremely small architec-

ture. The guiding philosophy of the ANT archi-

tecture is simplicity, but not at the cost of func-

tionality. The result is an architecture that is

simple in every important aspect: easy for stu-

dents to learn and to implement as a virtual ma-

chine, and with a machine language that is easy

to assemble. Despite this simplicity, the ANT ar-

chitecture is rich enough to support many simple

but interesting applications, and to accurately

model how computers actually execute their pro-

grams.

The ANT instruction set follows the RISC de-

sign philosophy. It uses �xed-width instructions

with opcodes, registers, and constants in �xed

positions so that the instructions are very easy

to decode. The �rst four bits of every instruc-

tion are the opcode. The second four bits always

represent a register number. The �nal eight bits

represent either a pair of register numbers, a reg-

ister number and a 4-bit constant, or an 8-bit

constant. Figure 1 describes the ANT instruc-

tion formats. Note that the use of four-bit �elds

means that an ANT instruction can be trivially

written or read in hexadecimal.

Also following the RISC philosophy, the only

ANT instructions that directly access memory

are the load and store instructions.

The ANT register set consists of 14 general-

purpose registers and two special-purpose regis-

ters. The �rst special-purpose register, r0, al-

1

Figure 1: The ANT Instruction Formats

All �elds are four bits wide, unless otherwise noted.

� The instruction format for register-to-register instructions.

DstOp Src1
Reg

Src2
RegReg

� The lc (load constant), inc (increment), jmp (jump) and sys (system call) instructions use a variant

of the standard format that allows for an 8-bit constant.

Op Reg1 8-bit Const

� The ld (load) and st (store) instructions use a four-bit constant in place of the third register speci�er.

4-bitOp Reg1 Reg2
Const

ways contains the constant zero, and the second,

r1, is used to hold results related to the previous

instruction (such as over
ow or under
ow from

arithmetic operations). There are no status regis-

ters or condition codes, and the program counter

is not directly accessible to the programmer.

ANT uses 8-bit two's-complement integers, 8-

bit addresses, and 16-bit instruction words. In

its current implementation, it uses separate ad-

dress spaces for instructions and data, making it

possible to have as many as 256 16-bit instruc-

tions and 256 8-bit words of data simultaneously.

These address spaces could be combined, but this

would crowd the tiny address space even further,

and introduce the possibility of new kinds of pro-

gramming bugs, such as programs that accidently

overwrite their own instructions.

The ANT architecture also includes a single

sys instruction, which can perform a variety of

tasks, depending on its parameters: it can be

used to halt the processor, dump the contents

of registers and memory (for debugging), or to

read or write characters or integers from or to

standard I/O.

A block diagram of the ANT architecture is

shown in Figure 2.

There are currently only twelve instructions in

the ANT architecture, including the sys instruc-

tion. Although this seems like a very small num-

ber of instructions, we have found this set to be

entirely adequate for our use of ANT in our intro-

ductory course{ we have even considered remov-

ing some infrequently-used instructions for future

versions of ANT.

Despite its small number of instructions and

tiny address space, the ANT architecture is full-

featured enough to support a wide variety of in-

teresting programs of a level of complexity similar

to the �rst several programming assignments in

a CS1 course. Some examples include:

� hello.asm - The \Hello World" program,

written in ANT assembly language. Uses

2

Figure 2: A block diagram of the ANT architecture.

Instruction FetchPC

Decode

Execute
arithmetic or

(memory load/store)

(register writeback)

(side effects)

Error checking throughout

reg1op

inst

ld/st

I/O

Data

Memory

Registers

CPU

Instruction

Memory

syscall

sys

0

15

0

255

0

255

r1
r0

16 bits x 256

8 bits x 256

8 bits x 16

three instructions. This program is shown

in Figure 6.

� echo.asm - copy stdin to stdout one charac-

ter at a time. Uses seven instructions.

� reverse.asm - reads lines from the user, and

prints them out in reversed order. Uses 27

instructions. This program is shown in Fig-

ure 7.

� sort example.asm - bubble-sort numbers

read from user. Uses 40 instructions.

� rotate.asm - prints \rotated" versions of a

string. Uses 52 instructions.

� hi-q.asm - plays the game of Hi-Q. Uses

253 instructions. The students write a Hi-Q

game in C as part of an earlier assignment,

so they can easily understand this program.

In fact, it is possible to implement a slightly

simpli�ed ANT virtual machine in ANT itself,

and execute simple ANT programs on this virtual

machine.

We typically assign short assembly language

programs, such as reverse.asm, as a part of stu-

dent assignments, but we do not assign longer

assembly language programs. We do not expect

our students to become seasoned or even particu-

larly pro�cient assembly language programmers;

our goal of giving them some intuition about

architecture is achieved well before that point.

Nonetheless, ANT programs such as rotate and

hi-q provide students with examples of assembly

language programming, and demonstrate that in-

teresting programs can be implemented for the

ANT virtual machine. This gives motivated stu-

dents an opportunity to exercise their creativity

and explore the design space provided by a simple

virtual machine.

3

The limited size of the ANT address space

makes it very easy to understand and debug ANT

programs{ in fact, the ANT debugger can dis-

play the contents of all of the registers and the

entire contents of data memory in a single 24-

by-80 text window. This simplicity is a crucial

feature that distinguishes ANT from a \real" ar-

chitecture. The smallness of the machine means

that programs never get too big or complex. As a

result, there are relatively few bugs that our stu-

dents cannot �nd and �x themselves, which in-

creases their self-con�dence and reduces the time

required from teaching sta�.

Although ANT is fully adequate for achieving

our educational goals, there are many things that

were purposefully left out of the architecture, in

order to keep it small and simple. ANT con-

tains no support for interrupts, memory protec-

tion, any kind of MMU, or any of the other fea-

tures that would be required to implement a full-

edged operating system or run more than one

program at a time. ANT also does not include

a number of architectural features that are com-

mon in modern processors{ it does not include

any sort of cache, nor does it have an execution

pipeline. It does not include support for
oating

point arithmetic, and supports only a limited set

of I/O operations. Although it has some instruc-

tions that can be used to implement a stack, there

is no hardware support for a stack pointer. (We

do not ask students to write ANT programs that

would require a stack.) These features would be

helpful for writing more complex ANT programs,

or to provide a more realistic example of a com-

puter architecture{ but detailed realism is not

our goal. Even so, many of these features are

mentioned in discussions of how we could make

the architecture more powerful and realistic.

An extension we have considered is increasing

the data word size to 16 bits. In considering

such features we weigh the advantages of enabling

new applications against the risk of degrading the

simplicity and elegance of the architecture, and

generally give priority to the latter. Because the

complete machine speci�cation for ANT is less

than seven pages, students can be expected to

understand every detail of the speci�cation. We

consider this to be essential, and we believe that

this would be impossible for any real architecture.

2 ANT Programming

The ANT programming environment consists of

an assembler, interpreter, and debugger. The as-

sembler converts an assembly language source �le

into a simpli�ed format that the interpreter can

directly read and execute.

The debugger is an extended version of the in-

terpreter, with debugging functionality added. It

allows the user to set and remove breakpoints,

generate a program trace, single step through a

program, or reinitialize the processor, as well as

examine the contents of registers and data mem-

ory and disassemble the instructions.

It would be easy to combine the assembler, in-

terpreter, and debugger into one program. We

did not choose this approach, however, because

it would make some of our assignments more

di�cult{ this year, we had students write both

an ANT interpreter and an ANT assembler, and

we believe that keeping each of these programs

separate helped the students by giving them a

concrete example to emulate.

2.1 ANT Assembly Language

This section brie
y describes the instructions and

system calls available in ANT assembly language.

For a complete speci�cation of the assembly lan-

guage, please refer to the documentation men-

tioned in the conclusion of this paper. The ANT

instructions and their mnemonics are listed in

Figure 3, and the system calls are described in

Figure 4. The notation used in Figures 3 and 4

is documented in Figure 5.

Note that for all instructions except sys, reg-

ister r1 is always updated after all register reads

4

for the instruction are complete, so that it is al-

ways safe to use r1 as a source register for these

instructions. (The current behavior of sys with

respect to r1 is a relic of an early design decision,

and will be removed in the next revision of the

ANT architecture.)

2.2 ANT Assembler Directives

� Comments - A comment begins with a #

and continues until the following newline.

The only exception to this is when the #

character appears as part of an ASCII char-

acter constant.

� Constants - Several ANT assembly instruc-

tions contain 8-bit or 4-bit constants. The

8-bit constants can be speci�ed in a variety

of ways: as labels, as decimal, octal, or hex-

adecimal numbers, or as ASCII codes, using

the same conventions as C. The value of a

label is the index of the subsequent instruc-

tion in instruction memory for labels that

appear in the code, or the index of the sub-

sequent .data item for labels that appear

in the data. The 4-bit constants must be

speci�ed as unsigned numbers, using deci-

mal, octal, or hexadecimal notation. ASCII

constants and labels cannot be used as 4-bit

constants, even if the value represented �ts

into 4 bits.

� The data Label - The special label data

is used to mark the boundary between the

instructions of the program, which must ap-

pear before the data label, and the data of

the program, which must appear afterward.

� The .data Pseudo-Op - The .data direc-

tive is a pseudo-op that assembles the given

bytes (8-bit integers) into the next available

locations in the data segment. As many as

8 bytes can be speci�ed on the same line.

The byte values may be speci�ed as hex, bi-

nary, decimal or C character constants (as

described above).

An example use of the .data directive is

shown in Figure 6, where .data is used to

assemble a string in data memory.

3 How Do We Use ANT in

CS1?

This year, we introduced the ANT architecture

in the sixth week of CS1{ after the students have

mastered the basics of C programming, including

loops, conditional execution, and arrays, but be-

fore they are exposed to pointers, structures, or

dynamic memory allocation.

Our purpose for teaching machine architecture

and assembly language programming in CS1 is to

focus on basic issues of data representation and

machine architecture. We use ANT extensively

to demonstrate these issues. However, ANT has

proven
exible enough to be tied in to a number

of other important concepts, as described below.

3.1 Data Representation and Ma-

chine Architecture

Our CS1 begins to introduce elements of data

representation such as binary and hexadeci-

mal notation, two's-complement arithmetic and

ASCII codes early in the semester, followed im-

mediately by the revelation that computer pro-

grams themselves are stored in \machine lan-

guage" using a very similar representation, and

are executed in an entirely mechanical manner.

We use several small ANT programs to illus-

trate these points, using the ANT debugger to

demonstrate how the state of the ANT machine

changes as it executes each instruction. Finally,

to reinforce these ideas, we have students write

small amounts of ANT assembly language code

themselves.

5

Figure 3: The ANT Instruction Set

Op Operands Description

add dst, src1, src2 Register dst gets src1 + src2. r1 gets any over
ow/under
ow from this

addition.

sub dst, src1, src2 Register dst gets src1 - src2. r1 gets any over
ow/under
ow from this

subtraction.

mul dst, src1, src2 Compute src1 � src2, leaving the low-order byte in register dst and the

high-order byte in register r1.

div dst, src1, src2 Compute src1 = src2, leaving the quotient in register dst and the remainder

in register r1.

beq reg, src1, src2 Branch to reg if src1 == src2 . r1 is set to the address of the instruction

following the beq.

bgt reg, src1, src2 Branch to reg if src1 > src2 . r1 is set to the address of the instruction

following the bgt.

ld dst, src1, uconst4 Load the byte at src1 + uconst4 into dst. r1 is unchanged.

st reg, src1, uconst4 Store the contents of register reg to src1 + uconst4. r1 is unchanged.

lc dst, const8 Load the constant const8 into dst. r1 is unchanged.

jmp reg, uconst8 Branch unconditionally to the speci�ed constant. reg is ignored.

inc dst, const8 Add const8 to register dst.

sys reg, code Makes a system call. See Figure 4 for a list of the ANT system calls.

Figure 4: The ANT System Calls. Note that all syscalls set r1 to 0 if successful, and set r1 to

non-zero values to indicate failure.

Service Code Description

halt 0 Halt the processor. reg is ignored.

dump 1 Dump core to �le ant.core. reg is ignored.

put int 2 Print the contents of reg as a decimal number.

put char 3 Print the contents of reg as an ASCII character.

put string 4 Print the zero-terminated ASCII string that starts at reg.

get int 5 Read an integer into reg. reg must not be r0 or r1. If EOF, r1 is set to 1.

Does not check for illegal input.

get char 6 Read a character into reg. reg must not be r0 or r1. If EOF, r1 is set to 1.

Figure 5: Notations used in Figures 3 and 4.

dst Must always be a register, but never r0 or r1.

reg, src1, src2 Must always be a register.

const8 Must be an 8-bit constant (-128 .. 127): an integer (signed), char, or label.

uconst8 Must be an 8-bit constant (0 .. 255): an integer (unsigned) or label.

uconst4 Must be a 4-bit constant integer (0 .. 15).

6

Figure 6: The \Hello World" program, written in ANT assembly language.

Note that ANT programs always begin execution at instruction 0.

There is no "main".

lc r2, $hello_str # load the address hello_str into r2

sys r2, 4 # Print the string pointed to by r2.

sys r0, 0 # Halt

The data segment follows the _data_ label:

data:

hello_str:

.data 'H', 'e', 'l', 'l', 'o', ' '

.data 'W', 'o', 'r', 'l', 'd'

.data '\n', 0

3.2 Pointers

Our CS1 is taught in C, and pointers in C are a

subject that confuses many CS1 students. Over

the past several years, we have experimented

with di�erent methods of reducing the initial

problems with pointers. Teaching a small seg-

ment on assembly language using ANT before

teaching pointers seems to help students over the

initial hurdles of understanding pointers{ once

students are familiar with the relatively simple

semantics of load and store, the concepts be-

hind C pointers are much easier to grasp. Sim-

ilarly, students who have written ANT code to

stride through arrays generally have an easier

time understanding address arithmetic and the

convenient and crucial relationship of arrays and

pointers in C.

3.3 Design and Style

It is nearly impossible to write nontrivial pro-

grams in assembly language without careful plan-

ning and design. Similarly, it is very di�cult to

understand, modify, or debug improperly orga-

nized or uncommented assembly language. This

is even more true for ANT assembly language

programs, because the current assembler does not

support macros or similar constructs that would

make the resulting code more readable. There-

fore, the ANT assembly programming exercises

force students to think ahead before beginning

to write their ANT programs, allocating regis-

ters and choosing label names with some care,

and organizing the code in a readable manner,

and it also encourages them to carefully docu-

ment their code. We believe that this is a piv-

otal experience in the course for many of our

students{ particularly the students who come in

to CS1 with some prior programming experience,

and therefore manage to hack through the �rst

few assignments without a clear design or docu-

mentation. The ANT programming assignments

are generally two short problems, each of which

can be completed in approximately one page of

well-commented code{ not dauntingly di�cult,

but hard enough so that the bene�t of thinking

ahead is clear.

7

Figure 7: The reverse program.

reverse.asm-- A program that reads lines of text from the user and prints out each line in

reverse order. If the line is longer than 80 characters, the extra chars are discarded.

REGISTERS USED:

r2 - a pointer to the beginning of the line buffer ($buffer).

r3 - i, the counter.

r4 - holds each char as it is read in and printed out.

r5 - used as a scratch register for branches, or to compute the address of buffer [i].

r6 - the constant '\n'.

r7 - the constant 80, the line length limit.

lc r2, $buffer # Initialize r2 to point to the buffer.

lc r6, '\n' # Initialize r6 to '\n'.

lc r7, 80 # Initialize r7 to 80.

main_loop: lc r3, 0 # i = 0.

read_loop: sys r4, 6 # Read a character into r4.

lc r5, $exit

bgt r5, r1, r0 # Check for EOF; if we see it, exit.

lc r5, $end_read

beq r5, r4, r6 # if got a newline, exit read_loop.

lc r5, $read_loop

beq r5, r3, r7 # if already too many chars, ignore it,

add r5, r2, r3 # else compute the address of buffer[i],

st r4, r5, 0 # store character to buffer[i],

inc r3, 1 # and increment i.

jmp r0, $read_loop # iterate.

end_read: inc r3, -1 # i--;

print_loop: add r5, r2, r3 # compute the address of buffer[i], and

ld r4, r5, 0 # load character at buffer[i] into r4,

sys r4, 3 # and print the character.

inc r3, -1 # i--

lc r5, $newline

bgt r5, r0, r3 # If 0 is greater than i, go to $newline,

jmp r0, $print_loop # else repeat the print_loop.

newline: sys r6, 3 # Print a newline.

jmp r0, $main_loop # repeat the main_loop.

exit: sys r0, 0 # Halt.

data:

buffer: # Everything past $buffer is available for the line.

8

3.4 Virtual Machines

ANT is currently implemented only as a virtual

machine, although there has been some interest

in creating a hardware implementation for use

in one of the introductory hardware architecture

courses. Since ANT is a virtual machine, we can

conveniently introduce the topic of virtual ma-

chines in the same context as machine architec-

ture.

To reinforce these concepts, we have students

implement nearly all of an ANT virtual machine

themselves. We supply the code to load ANT

programs from �le, and code to implement most

of the sys instruction, because at this point in

the semester our students have not seen �le I/O

yet. Our students have not yet seen structures,

pointers, or dynamic memory allocation, but the

assignment is designed so that it does not require

these constructs. A well-designed solution to this

assignment requires approximately 300 lines of

commented C code.

For this assignment, we provided the students

with an automated test suite that they could use

to test their ANT implementations for confor-

mance to the assignment speci�cation. This in-

troduced them to the idea of rigorous testing, and

that testing could be highly automated. We also

encouraged students to write their own tests, to

add to our test suite.

3.5 Compilers and Assemblers

Even after being exposed to the ideas of machine

language and assembly language, it is not clear

to many students how these ideas are related to

higher-level languages. To demystify this rela-

tionship, we \hand compile" some simple C pro-

grams into ANT, leaving the students with an

intuition of how some parts of compilation can

be performed.

In an assignment near the conclusion of the

semester, students write a substantial fraction of

an assembler for ANT itself, allowing them to

gain deeper insights into how translation from

one language to another can be accomplished.

The students were required to implement func-

tions to translate assembly language statements

into machine code, check for illegal or ill-formed

instructions, maintain a symbol table of labels,

and perform backpatching. We supply a tok-

enizer for the input and a function for handling

constants in hexadecimal, octal, decimal, and

ASCII because these tasks are very tedious, and

the assignment was already very long. The solu-

tion typically required 100 lines of code for the

symbol table (not counting reuse of code from li-

braries developed as part of earlier assignments)

and approximately 500-700 lines of code for the

rest of the assembler.

This is a substantial assignment for students

at this level, and in retrospect it was probably

too di�cult. It did reinforce the value of de-

sign and modular code, however{ students were

urged to use a modular design, and those who did

found the assignment much easier to implement

and test than those who attempted an ad-hoc

design.

This assignment also utilized an automated

ANT assembler validation suite in a manner sim-

ilar to that used in the ANT virtual machine as-

signment, which was provided to the students to

help them test their assembler for conformance

to the assignment speci�cation, including proper

handling of erroneous input.

With this assignment complete, students can

write their own programs in ANT assembly lan-

guage, assemble them with their own ANT as-

sembler, and execute them on their own ANT

virtual machine.

4 Conclusion

We have found ANT to be very e�ective in our

CS1 course. It allows introductory-level students

to develop very good intuitions about such con-

cepts as pointers and compilation, while avoid-

9

ing the complexity of real architectures. It also

provides an e�ective way to discuss topics such

as virtual machines and automated testing, while

the corresponding programming assignments give

ample opportunity for students to strengthen

their programming and design skills.

For more details on ANT, including tuto-

rial documentation for students, example pro-

gramming exercises, and the ANT speci�cation,

visit the ANT home page

1

. The ANT vir-

tual machine, assembler, debugger, documenta-

tion and sample ANT programs will be avail-

able in February 1998 as a binary or source

code distribution. Please contact Dan Ellard

(ellard@eecs.harvard.edu) for more informa-

tion.

5 Acknowledgments

The ANT architecture would not exist without

the encouragement of Brian Kernighan, Margo

Seltzer, and the entire teaching sta� of Harvard's

CS50 for 1996 and 1997.

1

http://www.eecs.harvard.edu/�ellard/ANT.

10

