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Functional extracellular eosinophil granules: novel implications
in eosinophil immunobiology

Josiane S. Neves1 and Peter F. Weller1,*
1Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston,
MA, 02215, USA

Abstract
Human eosinophils contain within their cytoplasmic granules multiple preformed proteins, including
over three dozen cytokines with nominal Th1, Th2 and immunoregulatory capabilities and four
distinctive cationic proteins. The secretion of these granule-derived proteins within eosinophils
occurs principally by a mechanism whereby selected proteins are mobilized into vesicles for transport
to and release at the cell surface. In contrast, the enigmatic presence of membrane-bound cell free
granules extruded from eosinophils has been long recognized in tissues associated with eosinophilia,
including allergic diseases and responses to helminths. Functional capabilities for extracellular
granules have recently been demonstrated. Eosinophil granules express cytokine receptors on their
membranes and function, upon extrusion from eosinophils, as independent secretory organelles
releasing granule constituents in response to activating cytokines and chemokines. We provide an
update on the processes that mediate selective protein secretion from within eosinophil granules both
as intracellular organelles and, as novelty demonstrated, as cell-free extracellular structures.

Background
Eosinophils are granulocytic leukocytes notably associated with allergic conditions,
anthelminthic host defense and immunoregulatory responses. Eosinophils contain notable
cationic proteins stored within their cytoplasmic granules, including eosinophil peroxidase
(EPO), major basic protein (MBP), eosinophil cationic protein (ECP) and eosinophil derived
neurotoxin (EDN), which are capable of inducing tissue damage and dysfunction [1].
Furthermore, eosinophils store within their granules substantial quantities of preformed
chemokines, growth factors and diverse cytokines with nominal Th1, Th2 and regulatory
capacities [2,3]. Eosinophils rapidly and selectively secrete these granule preformed proteins
in response to differing stimuli [3-7]; and this capacity for differential secretion of granule-
derived cytokines and other proteins is central to the range of activities of eosinophils in varied
inflammatory and immunoregulatory responses.

Eosinophil “degranulation”
By electron microscopy (EM), mature eosinophils have a single population of “specific”
granules, membrane-bound organelles that contain a crystalloid core surrounded by a matrix.
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Unlike mast cells or basophils that undergo acute exocytotic degranulation upon cross-linking
of their FcεRs, a physiologic mechanism to elicit comparable acute degranulation of
eosinophils has not been identified. Exocytosis of granules, with fusion of granules to plasma
membranes to release all granule contents in toto, is rarely seen in vivo, except when eosinophils
are on the surface of large multicellular helminthic parasites. Cross-linking FcRs for IgG and
IgA elicits release of eosinophil cationic granule proteins; but this FcR-mediated
“degranulation” has subsequently been shown to be cytolytic for eosinophils and notably
releases substantial numbers of free membrane-bound granules from most eosinophils.

In contrast to acute “exocytotic degranulation” the ultrastructure of “activated” eosinophils in
vivo reveals that eosinophil granule contents are released by alternative mechanisms of granule
secretion. By EM, “activated” eosinophils, e.g., those in asthmatic airways, demonstrate
granule alterations, including losses of the crystalloid core and/or the granule matrix, indicative
of mechanisms for the intracellular mobilization of granule contents. These alterations within
intracellular granules provide evidence for the selective release of ultrastructurally imaged
components of eosinophil granules, a process termed “piecemeal degranulation” (PMD) [2,
8-11]. During PMD, eosinophil specific granules undergo progressive emptying of some, but
not all of, their protein contents. Granule contents are selectively mobilized into spherical and
tubular vesicles that need to disengage from granules, cross the cytoplasm and fuse with the
plasma membrane to release their specific granule-derived protein cargo. Insights into the
functioning of granules during PMD have come from previous work of our group. Melo and
colleagues, using transmission electron microscopy (TEM) and electron tomography (ET)
techniques, demonstrated that eosinophil secretory granules contain elaborate internal
membranous vesiculotubular structures able to sequester and relocate granule products during
eosinophil PMD [12]. Stimulated granules release both small spherical vesicles and elongated
curved tubular vesicles, both of which have been shown to mediate transport of MBP and IL-4
[6,7]. Subcellular fractionation studies documented that for at least seven cytokines, including
IL-4, IL-6, IFN-γ, TNF-α and IL-10, granules are the predominant intracellular sites of storage
of these preformed cytokines within eosinophils [3]. Interestingly, granules are also rich sites
of localization of chemokine (e.g., CCR3) and cytokine (e.g., IL-4Rα) receptors [5]. Moreover,
during secretion of IL-4, IL-4 is transported and carried in secretory vesicles bound to its
cognate receptor, IL-4Rα [5]. Subsequently, IL-15 has been likewise documented during its
secretion to be obligately chaperoned by complexing with its IL-15 receptor α in other cell
types, including transfected cell lines[13]. These findings elucidate mechanisms whereby
vesicles derived from granules within eosinophils can transport specific granule-derived
proteins, including cytokines chaperoned by their likely non-signaling receptors, and
contribute to the selective secretion processes of eosinophils.

Diverse studies of PMD secretion by stimulated eosinophils have demonstrated that different
agonists can elicit the differential secretion of certain preformed, granule-derived cytokines
without releasing other cytokines [3,5,6,14-17]. Stimulus-induced release of proteins from
human eosinophils is a tightly regulated, highly selective process that occurs within minutes
of agonist stimulation; and additional insights will be needed to fully delineate the mechanisms
that mediate the selective mobilization of specific granule-derived proteins from within
intracellular granules of stimulated eosinophils.

Free extracellular eosinophil granules and disease
Besides “piecemeal degranulation,” cytolysis, which involves release and deposition of
clusters of free extracellular granules upon lysis of the cell, has been suggested as a potential
eosinophil “degranulation” process. EM studies that can recognize the distinct core-containing
ultrastructure of membrane bound, extracellular eosinophil granules have suggested that
cytolysis is a common mechanism of for the release and deposition of membrane-bound
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granules extracellularly in tissue biopsies of patients with atopic dermatitis [18], nasal allergy
[19,20], nasal polyps [21] and in other upper airway respiratory mucosal disorders [22]. The
functioning of cell-free granules and their capacities to mobilize their contents of preformed
proteins had not been never been investigated.

The presence of free extracellular eosinophil granules has been recognized in association with
diverse eosinophilic disorders. The first recognition of free eosinophil granules in sputum of
asthmatics was reported in the early 1880's [23]. Over the years, the presence and importance
of free eosinophil granules in tissue sites have been underestimated and at times attributed to
“crush artifacts”. However, to date, eosinophil lysis and generation of membrane-bound free
eosinophil granules have repeatedly been depicted in the literature by different groups [18,
24-32]. With their unique ultrastructure, free extracellular eosinophil granules have been
recognized in the airways or tissues in association with asthma and rhinitis [23,25,32]. Clusters
of intact extracellular eosinophil granules were found in asthmatic sputum samples [23] and
in association with sinus tissue of patients with chronic rhinosinusitis [25,32]. Analysis of the
nasal mucus of patients with nasal allergy [20] and skin of patients with chronic idiophatic
urticaria [27] revealed the existence of cytolytic eosinophils and extracellular deposition of
eosinophil granules. EM analyses of skin biopsies of patients presenting with atopic dermatitis
showed the presence of membrane-bound eosinophil granules outside the cell between collagen
bundles and in dermis without recognizable adjacent eosinophils [18]. The reaction of the
mammalian host to the parasites is associated with eosinophils and their released granule
proteins, mainly after anthelminthic chemotherapy. For instance, it was shown that granules
from necrotic eosinophils were regularly found on the surface of damaged microfilariae of
Onchocerca volvulus after treatment with amocarzine [28]. In patients presenting advanced
gastric carcinoma, TEM images revealed extracellular deposition of clusters of membrane-
bound extracellular granules admixed with lipid bodies adjacent to late apoptotic eosinophils
[29]. In patients with eosinophilic esophagitis, blind histologic evaluation of esophageal biopsy
specimens revealed significantly increased numbers of degranulated eosinophils (defined as
free eosinophil granules) in the esophageal epithelium [31]. In a different study, after analyzing
biopsies of patients with eosinophilic esophagitis, eosinophil granules were also extensively
found extracellularly [30]. Free eosinophil granules have also been found in histopathologic
analyses of subcutaneous fat necrosis lesions in newborns [33].

As noted the functional importance of extracellular eosinophil granules has been unclear,
although one report noted that the presence of free extracellular granules correlated with the
severity of urticaria [27]. Moreover, Uller and colleagues found that anti-Fas mAb-induced
cytolysis of murine airways eosinophils with release of cell-free granules aggravated rather
than resolved experimental airways inflammation [34]. The release of free extracellular
granules might potentially explain the observed exacerbation of the inflammatory response,
but an underlying mechanism by which extracellular eosinophil granules might augment
inflammation was unknown.

Eosinophil granules function as secretory-competent organelles
We have recently shown that isolated human eosinophil granules function extracellularly as
secretion competent organelles [35,36]. Granules express on their outer membranes the G
protein-coupled receptor (GPCR) for eotaxin, CCR3, and the IFN-γ receptor α chain. On
isolated granules, both receptors express ligand-binding domains on their membranes.
Receptor activation elicited intragranule signal transduction that lead to the differential
secretion of granule-stored cytokines and other proteins. After stimulation with IFN-γ and
eotaxin, granules secreted ECP and hydrolytic enzymes such as β-hexosaminidase. IFN-γ also
induced differential secretion of cytokines eliciting the release of lL-4 and IL-6, but not IL-13,
from isolated granules. Inhibitors of tyrosine kinases, protein kinase C (PKC), and p38
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mitogen-activated protein kinase (MAPK) inhibited IFN-γ-dependent release of effector
proteins from the granules, whereas the p38 MAPK inhibitor and pertussis toxin, an inhibitor
of Gi-coupled GPCRs, blocked eotaxin-dependent granule content release. Western blotting
showed the increased phosphorylation of tyrosine residues and p38 MAPK in granules in
response to either eotaxin or IFN-γ stimulus compared with unstimulated granules. Moreover,
granule secretion was suppressed when the intragranular membranotubular network was
collapsed, as assessed after granule treatment with brefeldin A, suggesting a role for this
intragranular membranous system on granule secretion, in the same fashion brefeldin A was
shown previously to act within granules in intact eosinophils [12].

These findings are remarkable because they provide additional understanding about the
capacity of eosinophils to contribute to modulating host and inflammatory responses after
eosinophil cytolysis. Cytolytic release of intact eosinophil granules yields extracellular
organelles fully capable of ligand-elicited active secretory responses able to act as functional
“cluster bombs” amplifying the differential secretory properties of eosinophils and contributing
to the persistence and exacerbation of the inflammatory response. More recently, we have
identified functional receptors for cysteinyl leukotrienes on cell-free extracellular granule
membranes, sensitive to inhibition by montelukast and a P2Y12 receptor antagonist,
identifying novel mechanisms whereby cysteinyl leukotrienes may modulate granule secretion
(unpublished data).

To date, one of the major challenges regarding extracellular granules as secretory organelles,
remains in understanding the mechanism by which proteins are released. For cytoplasmic
granules, during the process of eosinophil “piecemeal degranulation” and granule emptying,
ET studies showed mobilization of granule content from granular subcompartments to the
granule surface. Moreover, ET analysis followed by three dimension reconstruction and
modeling revealed that there is an area of continuity between the intragranular membranous
network and the limiting granule membrane [12]. For extracellular granules, our findings
indicate a role for the intragranular vesiculotubular network during extracellular granule
secretion, as assessed after granule brefeldin A treatment. However, whether intragranular
vesicular structures fuse with the plasma membrane, leading to release of a granular
subcompartment content or if there are vesicles coming out from the granule membrane
carrying granule cargo, still needs to be elucidated (Figure 1).

Likewise, these findings are intriguing for eosinophil cell biology. We have previously shown
that certain cytokine and chemokine receptors are present on eosinophil granules and have an
importance as a mechanism used by eosinophils to selectively and rapid secrete cytokines
[5]. Interestingly, the granule surface membrane topology of receptors (CCR3, IFN-γ receptor
α chain), [35], with ligand-binding domains displayed on the outer granule membranes, not
only allows granules to function extracellularly, but also suggests that they granule expressed
receptors may potentially serve as intracrine mediators of eosinophil granule-derived secretion.
Excepting the GPCR receptor for cell-permeant estrogens, GPCRs have classically been
considered to transduce signals at the plasma membrane [37]. More recently, in addition to its
conventional plasma membrane expression, GPCRs for lipid mediators such as prostaglandins
and cysteinyl leukotrienes have been immunolocalized at nuclear membranes [38-40]. For
GPCRs such as the leukotrienes and prostaglandin receptors, activated by hydrophobic ligands
that can be synthesized at the nuclear membrane or lipid bodies [41,42], it is possible to predict
roles for these receptors in intracellular compartments, since they could have easy access to
their ligands. For cytokine receptors, it is also feasible that the ligands themselves may be
released into intracellular compartments during their biosynthesis and maturation or have
specific cell uptake mechanisms.
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Free granules from other leukocytes have rarely been found or recognized. The presence of
free neutrophil granules in tissues of patients with chronic rhinosinusitis was reported in one
study [32]. Moreover, by EM, the presence of CCR3 and IL-10 receptors has been demonstrated
on the membranes of intracellular mast cell [43] and neutrophil [44] granules, respectively.
However, whether granules from other leukocytes express receptors or are capable to work
extracellularly as independent organelles is still unknown.

Concluding remarks and questions for the future
There remain important questions regarding the secretory capacities of eosinophil granules.
Current knowledge is only beginning to understand the functional biology and responses of
eosinophil granules. Eosinophils contain morphologically unique cytoplasmic granules; and
evolving understanding has recognized that that eosinophil granules contain secretory
machinery that enables granules to both selectively mobilize and secrete specific protein
contents intracellularly and to function as secretory “organelles” extracellularly when
eosinophil granules are extruded or otherwise released following eosinophil cytolysis in vivo.
Important questions remain about the functioning of granule secretory components and their
properties on cytoplasmic and extracellular free granules. For instance, how do cytokine and
chemokine receptors, so richly localized intracellularly to eosinophil granules, traffic to and
from granule membranes? Are granule membrane-expressed cytokine and chemokine
receptors phosphorylated, desensitized and internalized in a manner analogous to cell surface
receptors? Are granules sites for de novo protein synthesis of granule-stored proteins? Also
remaining to be defined is the energy source for granule secretion. ATP or proton motive forces
are potential candidates. However, whether granules express nucleoside transporters, known
to mediate the majority of influx and efflux of nucleosides across membranes, or proton pump
ATPases on their membranes, remain to be investigated. Previous work reported the expression
of a vacuolar H+-ATPase (V-ATPase) in eosinophil granules whose function was related to
the control of intragranular pH and exocytosis [45,46] . However, whether V-ATPases are
involved in extracellular granule protein secretion remains to be elucidated.
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Figure 1.
Schematic representation of the eosinophil post-cytolytic mechanisms that leads extracellular
granule deposition and activation.
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