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We combine numerical analysis and experiments to investigate the effect of hierarchy on the

propagation of elastic waves in triangular beam lattices. While the response of the triangular lattice

is characterized by a locally resonant band gap, both Bragg-type and locally resonant gaps are

found for the hierarchical lattice. Therefore, our results demonstrate that structural hierarchy can be

exploited to introduce an additional type of band gaps, providing a robust strategy for the design of

lattice-based metamaterials with hybrid band gap properties (i.e., possessing band gaps that arises

from both Bragg scattering and localized resonance). VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936564]

Phononic crystals1,2 and acoustic metamaterials3–7 have

attracted significant attention in recent years8,9 both because

of their rich physics and of their broad range of applications.

These include wave guiding,10–12 frequency modulation,13,14

noise/vibration reduction,15,16 acoustic imaging,17–20 and

thermal management.21,22 An important characteristic of

these composite structures is their ability to manipulate the

propagation of elastic waves through band gaps—frequency

ranges of strong wave attenuation. In phononic crystals,

band gaps are generated by Bragg-type scattering, whereas

in acoustic metamaterials, localized resonances within the

medium are exploited to attenuate the propagation of waves.

Materials with structural hierarchy are ubiquitous in natu-

ral and man-made systems23–26 and have recently received

considerable interest because of their superior properties.27–32

It has also been shown that structural hierarchy can be

exploited to manipulate the propagation of elastic waves.33–35

However, while all previous studies have focused on hierarch-

ical phononic crystals, the effect of hierarchy on lattice-based

acoustic metamaterials has not been explored yet.

In this letter, we focus on the dynamic response of

fractal-like triangular beam lattices and investigate both

numerically and experimentally the effect of hierarchy on

the propagation of small amplitude elastic waves. While a

simple triangular lattice is characterized by a locally reso-

nant band gap,36 we find that fractal-like triangular lattices

exhibit two types of gaps: (i) locally resonant band gaps and

(ii) Bragg-type band gaps due to scattering. Locally resonant

gaps are found in correspondence of the natural frequencies

of the beams, whereas the stiffer regions introduced by the

hierarchical refinement into the lattice are responsible for

Bragg-type gaps. Our analysis reveals that, by introducing

structural hierarchy into the lattice, not only higher fre-

quency band gaps can be created, but also the mechanism re-

sponsible for such band gaps can be tuned.

To generate the hierarchical triangular lattice considered

in this study, we start with an hexagonal unit cell comprising

24 equilateral triangles of edge L (see Fig. 1(a)) and create

24 smaller triangles by connecting the edge centers of the 6

central triangles (see Fig. 1(b)). Clearly, this process can be

repeated to create triangular lattices of higher hierarchical

order and after k iterations each original unit comprises 24

triangles of edge L=2k and 18 triangles of edge L=2k�j (with

j ¼ 1; :::; k). Therefore, a structure with k orders of hierarchy

comprises beams of slenderness kj ¼ L=ð2jbÞ (with

j ¼ 0; :::; k), where b denotes the width of the beam.

We start with a triangular lattice comprising beams of

slenderness k0 ¼ 50 and then introduce one order of hierar-

chy by adding beams of slenderness k1 ¼ 25. All models are

constructed using planar Euler-Bernoulli beams with width

b, mass per unit length m, and made of a linear elastic iso-

tropic material with Young’s modulus E. We further assume

that all joints are welded.

The Finite Element (FE) commercial package Abaqus/

Standard is used to investigate numerically the propagation of

elastic waves both in infinite and finite-size lattices. The

dynamic response of the infinite lattice is studied by consider-

ing a unit cell with Bloch-type boundary conditions and per-

forming frequency-domain wave propagation analysis.7,11,37

FIG. 1. (a) Hexagonal unit cell for the triangular lattice structure. (b)

Hexagonal unit cell for the triangular lattice with one order of hierarchy. (c)

Rhombic unit cell for the triangular lattice. (d) Rhombic unit cell for the tri-

angular lattice with one order of hierarchy. (e) Acrylic sample of the triangu-

lar lattice. (f) Acrylic sample of the triangular lattice with one order of

hierarchy.
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Note that we simplify the computational implementation by

using rhombic unit cells in Figs. 1(c) and 1(d) instead of the

hexagonal ones shown in Figs. 1(a) and 1(b). Moreover,

steady-state analyses are conducted to calculate the transmis-

sion of finite-size lattices comprising different numbers of unit

cells. In these simulations, an harmonic displacement is

applied at the central node on the left edge of the model. The

displacement of the central node on the right edge of the

model is then monitored and the transmission is calculated as

the ratio between the amplitudes of the output and input dis-

placements (see supplementary material for more details38).

In addition to the numerical analysis, acrylic samples of

the simple triangular lattice and the triangular lattice with

one order of hierarchy are fabricated and tested. These sam-

ples are cut from a sheet of acrylic material of thickness

0.5 cm (with Young’s modulus E¼ 2.8 GPa and density

q ¼ 1190 kg=m3) with a VLS6.60 laser cutter machine

(equipped with a 60 W CO2 laser). Each specimen comprises

an array of 3� 1 unit cells and measures 39.5 cm� 20.5 cm

(see Figs. 1(e) and 1(f)). Wave propagation in each sample is

excited by an electrodynamic shaker (Br€uel & Kjaer—model

LDS V406) attached to the left edge, and the dynamic

response is recorded using miniature piezoelectric acceler-

ometers (DJB Instruments-model A/25/E) attached at both

ends of the sample. Finally, the transmittance is computed as

the ratio between the output and input acceleration signals.

We start by investigating numerically the propagation of

elastic waves in the triangular lattice. Fig. 2(a) shows the

band structures in terms of the dimensionless frequency

X ¼ x=xwelded, where xwelded ¼ 22:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðmL4Þ

p
is the first

natural frequency of a single beam of length L with both

ends fixed (welded). As recently noticed,36 the structure is

characterized by a band gap generated by local resonance.

This finding is clearly supported by the fact that the band at

the lower edge of the band gap is completely flat (see red

band in Fig. 2(a)) and that is located in correspondence of

the first natural frequency of the beams (i.e., X¼ 1).

Furthermore, the Bloch mode shapes of the flat band at the

high-symmetry points G, X, and M reported in Fig. 2(a) con-

firm that each beam vibrates independently according to its

natural mode. A similar flat band can be observed at X ¼ 2:7
in correspondence of the second natural frequency of the sin-

gle beam. However, this second flat band does not give rise

to a band gap, in agreement with previous studies.11,36

Next, we simulate the dynamic response of the triangular

lattice with one order of hierarchy. The results reported in Fig.

2(b) clearly show that this system has a very different band

dispersion behaviour. While the gap at X¼ 1 is retained, three

additional band gaps appear at X ¼ 2:98� 3:00; X ¼ 3:13

�3:35, and X ¼ 3:43� 3:87. Importantly, all these three

band gaps are located at frequencies far from the natural fre-

quencies of elastic beams of length L and L=2 and the bands

at their edges are not flat, suggesting they are not generated by

local resonance, but by Bragg scattering (note that no locally

resonant band gap is found at X¼ 4—see supplementary ma-

terial for more details). In particular, focusing on the band gap

at X ¼ 3:43� 3:87, we can see that the bands at the lower

(highlighted in purple) and upper (highlighted in orange)

edges of the gap are not flat close to the X point (see Fig.

2(c)). Therefore, for certain wave vectors k the group velocity

of the propagating wave is not zero, resulting in not localised

eigenmodes (as shown in Fig. 2, right). Finally, we note that

these Bragg-type band gaps are generated because of the con-

trast of the effective properties introduced by the hierarchical

refinement within the structure. In fact, since for a triangular

lattice, the effective stiffness, �E, and density, �q, are given by39

�E ¼ 1:15
b

L
E ¼ 1:15

E

k
; �q ¼ 2

ffiffiffi
3
p b

L
q ¼ 2

ffiffiffi
3
p q

k
: (1)

It is easy to see that the shorter beams introduced into the lat-

tice by the hierarchical refinement result in denser and stiffer

cores within the unit cell.

FIG. 2. (a) Dispersion relation of the triangular lattice. (b) Dispersion rela-

tion of the triangular lattice with one order of hierarchy. (c) Zoom-in of the

dispersion relation of the triangular lattice with one order of hierarchy. The

Bloch modes of the red, purple and orange bands at high-symmetry points of

the Brillouin zone (G, X, and M) are shown on the right.
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Having demonstrated that infinite hierarchical triangular

lattices are characterized by higher frequency band gaps and

that these gaps are generated by Bragg scattering and not local

resonance as for the case of the triangular lattice, we now

investigate how this affects the transmission of finite-size

structures. First, we numerically investigate the dynamic

response of models comprising 1� 20 unit cells and apply

periodic boundary conditions on their horizontal edges (to

mimic the response of structures that are infinitely long in ver-

tical direction—see Fig. S2). As shown in Fig. 3(c) for the tri-

angular lattice, a significant asymmetric drop in the

transmittance is observed between X¼ 1 and X ¼ 1:24 with a

pronounced minimum at X¼ 1. The fact that the lowest trans-

mittance is observed in the vicinity of the lower edge of the

band gap predicted by the dispersion relation further confirms

that the band gap is generated by local resonance.3,9 On the

other hand, for the triangular lattice with one order of hierar-

chy, we still see drops in the transmittance in correspondence

of the band gaps predicted by the Bloch wave analysis at

X ¼ 2:98� 3:00; X ¼ 3:13� 3:35, and X ¼ 3:43� 3:87,

but these are more symmetric (see Fig. 3(d)). This is a charac-

teristic of Bragg-type band gaps.8,9

While the results reported in Figs. 3(c) and 3(d) are for

structures comprising 20 unit cells along the horizontal

direction and infinitely long in vertical direction, in Figs.

3(e) and 3(f), we show the evolutions of the transmission for

finite-size samples with 1� 3 unit cells (in this case, all

edges are free). Because of both size and boundary effects,

the transmittance is different, but all important signatures are

retained.

Finally, in Figs. 3(g) and 3(h), we report the experimen-

tally measured transmittance for the same structures (the sam-

ples are shown in Figs. 1(e) and 1(f)). For both tested

structures, we find a strong attenuation in transmission in the

vicinity of the numerically predicted gaps. In particular, for

the triangular lattice, we observe a drop of �20 dB near

X ¼ 1:0, which corresponds to a physical frequency of

f¼ 606 Hz for this sample (see Fig. 3(g)). For the triangular

lattice with one level of hierarchy, instead we see two regions

of strong attenuations in transmission in the vicinity of X ¼
3:1 and X ¼ 3:5, which correspond to f¼ 1879 Hz and

f¼ 2121 Hz, respectively (see Fig. 3(h)). The Bragg-type na-

ture of these two gaps is further confirmed by the fact that

their wavelength is about twice the unit cell size. In fact, from

the homogenized properties defined in Eq. (1), the shear wave

speed of the homogenized media can be estimated to be c �
530 m/s, resulting in a band gap wavelength k ¼ c=f � 25:2
cm (since the band gaps frequency is �2100 Hz), which about

twice the unit cell size (see Fig. 1(f)).

In summary, we have studied both numerically and

experimentally the propagation of small amplitude elastic

waves in fractal-inspired beam lattices. First, our results indi-

cate that the locally resonant band gap at X¼ 1 that charac-

terizes the dynamic response of the triangular lattice is

retained when introducing hierarchy in the structure.

Interestingly, the position of this gap is fully predictable (it

always occurs at X¼ 1), facilitating the design of systems

that suit the engineering constraints. Second, we have seen

that by adding hierarchy, more band gaps are formed. Most

of these are generated by Bragg scattering, since the hier-

archical refinement introduces a contrast in the effective

properties within the unit cell.

While systems with multiple bandgaps in both lower

and higher frequency intervals have been reported

before,40–45 our results presented here indicate that hybrid

band gap properties can also be achieved in an elastic mate-

rial using a simple building block such as a straight elastic

beam, without embedding additional resonators. In fact, in

FIG. 3. (a) Dispersion plot of the triangular lattice. (b) Dispersion plot of the triangular lattice with one order of hierarchy. (c) Numerically calculated transmit-

tance for the triangular lattice with 1� 20 unit cells and periodic boundary conditions on the horizontal edges. (d) Numerically calculated transmittance for the

triangular lattice with one order of hierarchy comprising 1� 20 unit cells and with periodic boundary conditions on the horizontal edges. (e) Numerically cal-

culated transmittance for the triangular lattice with 1� 3 unit cells. (f) Numerically calculated transmittance for the triangular lattice with one order of hierar-

chy comprising 1� 3 unit cell. (g) Experimentally measured transmittance in a triangular lattice with 1� 3 unit cells (see Fig. 1(e)). (h) Experimentally

measured transmittance in a triangular lattice with one order of hierarchy comprising 1� 3 unit cells (see Fig. 1(f)).
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the proposed lattice-based metamaterials, the beams play

simultaneously two roles: (i) they form a periodic elastic lat-

tice with stiffer regions introduced because of the hierarchi-

cal refinement, so that Bragg-type band gaps are generated;

(ii) they act themselves as mechanical resonators, resulting

in the formation of locally resonant band gaps. Therefore,

our results indicate a robust strategy to design acoustic meta-

materials with hybrid band gap properties.
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