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We analyze the properties of a general Ginzburg-Landau free energy with competing order parameters,
long-range interactions, and global constraints !e.g., a fixed value of a total ‘‘charge’’" to address the physics
of stripe phases in underdoped high-Tc and related materials. For a local free energy limited to quadratic terms
of the gradient expansion, only uniform or phase-separated configurations are thermodynamically stable.
‘‘Stripe’’ or other nonuniform phases can be stabilized by long-range forces, but can only have nontopological
!in-phase" domain walls where the components of the antiferromagnetic order parameter never change sign,
and the periods of charge and spin-density waves coincide. The antiphase domain walls observed experimen-
tally require physics on an intermediate length scale, and they are absent from a model that involves only
long-distance physics. Dense stripe phases can be stable even in the absence of long-range forces, but domain
walls always attract at large distances; i.e., there is a ubiquitous tendency to phase separation at small doping.
The implications for the phase diagram of underdoped cuprates are discussed. #S0163-1829!99"03734-0$

I. INTRODUCTION

One of the fundamental issues in the theory of highly
correlated solids is the nature of the ground-state phases pro-
duced when a small concentration x of ‘‘doped holes’’ is
introduced into a Mott insulator, particularly an antiferro-
magnet. It is now established1–4 that, at small enough x and
in the absence of long-range Coulomb interactions, a doped
antiferromagnet generally phase separates into a hole-rich
and a hole-free phase; i.e., the antiferromagnetic state is de-
stroyed via a first-order phase transition. In the presence of
weak, long-range Coulomb interactions that frustrate this lo-
cal tendency to phase separation, the two-phase region is
replaced by states which are inhomogeneous on intermediate
length scales,4–6 and especially ‘‘stripe phases,’’ which have
now been observed in a wide variety of oxide materials.7–11
In various quasi-two-dimensional cuprate high-temperature
superconductors and the isostructural nickelates the stripes
are observed12 to be ‘‘topological,’’ in the sense that the
charge is concentrated along one-dimensional ‘‘rivers’’
which are at the same time antiphase domain walls in the
antiferromagnetic !AF" order. In the nearly cubic manganate
colossal magnetoresistance materials,8,9 the ‘‘stripes’’ are
two-dimensional sheets of charge which are nontopological.
!In some sense, each sheet can be thought of as a dimer of
topological stripes.9,13"
Here we study the properties of a general Ginzburg-

Landau free energy with competing order parameters, long-
range interactions, and global constraints #e.g., a fixed value
of a total ‘‘charge,’’ as defined in Eq. !2"$ to address the
physics of inhomogeneous !‘‘stripe’’" phases. Specifically, a
stripe phase is a unidirectional density wave which, in the
case of a doped antiferromagnet, consists of a coupled spin-
density wave !SDW" and charge-density wave !CDW". At
very dilute doping, a stripe phase consists of an ordered array
of far-separated self-localized structures or individual stripes.
At moderate doping levels, where the spacing between
stripes is comparable to their width, the structures are best
described as nearly harmonic density waves.
Zachar and two of us14 have considered the density-wave

limit of a Landau theory of coupled CDW and SDW order,
each with a fixed wave vector q! , near a transition to a disor-
dered state, which occurs as the temperature or doping is
varied. The existence of a cubic term in the Landau free
energy coupling these two order parameters drives the period
of the SDW to be twice that of the CDW, and the absence of
any net AF ordering is equivalent to the statement that the
stripes are topological. By contrast, as shown in Appendix A,
the same sort of term in the Landau theory of the transition
between a homogeneous ordered antiferromagnetic phase
and a stripe ordered phase produces a state in which the Néel
magnetization does not change its sign between the domains;
i.e., the stripes are nontopological.
To elucidate the circumstances in which arrays of stripes
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can be thermodynamically stable, and what determines their
character !i.e., topological vs nontopological, collinear vs
spiral" we shall concentrate on the dilute limit, where the
spacing between stripes is large, and the stripes are highly
anharmonic structures. Specifically, we study the extremal
states of a general Ginzburg-Landau free energy functional
for coupled order parameters as a function of the average
charge density.
Whenever the order parameter profiles are slowly varying

everywhere, so that only the lowest-order !quadratic" terms
in the gradient expansion of the free energy are necessary
#Eqs. !1" and !4"$, we show the following.

!1" In the absence of long-range interactions, only spa-
tially uniform and phase-separated !two-phase coexistence"
states are globally stable.

!2" ‘‘Stripe’’ or other nonuniform phases can be stabilized
by long-range forces, but they are nontopological in the
sense that any component ui of the order parameter has a
uniform sign as long as the free-energy density is an even
function of ui . #We indicate all point symmetry groups
which satisfy this condition for a magnetic !pseudovector"
order parameter.$

!3" Whenever there is a global rotational symmetry of the
order parameter, any localized configuration which interpo-
lates between two distinct asymptotic ground states !e.g., an
antiphase domain wall" is locally unstable to untwisting.
The possibilities become richer in cases in which higher-

order derivative terms in the Ginzburg-Landau free energy or
lattice effects determine an additional length scale—the core
size of a localized defect.14 When there is no frustration,
topological stripes are still forbidden in the ground state.
However, frustration, such as competing first- and second-
neighbor interactions in a lattice model or opposite-sign
terms in the gradient expansion of the Ginzburg-Landau
model !i.e., below a Lifshitz point", can stabilize topological
collinear domain walls. In the context of doped antiferro-
magnets, this kind of frustration can arise as a result of the
competition between the tendency of the Coulomb interac-
tion to localize the charges and the tendency of electrons to
quantum delocalize. However, even in this case, the
asymptotic interaction between defects is still attractive at
large distances, so long-range forces are necessary to sup-
press phase separation in the dilute limit.
In other words, topological stripes are a consequence of

physics on an intermediate length scale, and they do not
appear in a theory that considers only long-distance or low-
energy physics.
The plan of this paper is as follows. In Sec. II we review

some of the theoretical and experimental background. Spe-
cifically, we discuss some of the early theoretical work pre-
dicting stripe phases, the theoretical controversies concern-
ing the range of phase separation in microscopic models,
such as the t-J model, and some of the experimental facts
concerning stripe phases in doped antiferromagnetic insula-
tors.
In Sec. III we perform a scaling analysis of possible non-

uniform configurations which minimize a generalized
Ginzburg-Landau functional, establish the analog of the
virial theorem which relates the long-distance Coulomb in-
teraction to the gradient energies of the system, and derive
the universal asymptotic form of the large-distance interac-

tions between domain walls or other defects.
In Sec. IV we analyze the local and global stability of

nonuniform ground-state configurations. For systems with a
global rotational symmetry of the order parameter, we show
that the antiphase domain walls are locally unstable to ‘‘un-
twisting,’’ even in the presence of long-range forces. If the
rotational symmetry is broken, these domain walls can be
locally stable, but they are not necessarily allowed in any
ground-state configuration. We establish a corresponding
sufficiency criterion for global instability for such antiphase
domain walls, and identify the corresponding point symme-
try groups of the underlying lattice.
In Sec. V, we show that antiphase domain walls can be

stable even in the ground state, if the free-energy functional
includes higher-derivative terms or is defined on the lattice.
We discuss a sufficiency criterion for local stability of the
solutions, and illustrate the effect of stabilization of an-
tiphase domain walls in particular examples. We also show
that, for systems with short-range interactions and mixed AF
and charged order parameters, the domain walls always at-
tract at large distances, which indicates a tendency to phase
separation at small doping. If long-range Coulomb interac-
tions are included as well, inhomogeneous phases are stabi-
lized. Depending on the details, either wide stripes are pro-
duced via Coulomb-frustrated phase separation15,5 or certain
dense stripe phases are stabilized, in agreement with the ar-
guments of Hellberg and Manousakis.16,4
We conclude that although !avoided" phase separation is

ubiquitous, especially at small doping, antiphase domain
walls are not universal in the ground state, even in the pres-
ence of long-range forces. Certain types of short-distance
physics are required to stabilize antiphase domain walls.
Therefore, effective long-distance models are not, in general,
sufficient for a successful description of the stripe morphol-
ogy in the cuprates and nickelates.

II. BACKGROUND

The undoped parent compounds of the high-Tc materials
have one electron per unit lattice cell, and, if it were not for
the electron-electron interactions, one would expect them to
be metallic. Instead, strong Coulomb repulsion renders the
system a Mott insulator and results in an AF ground state
with a doubled unit cell. Unlike usual band insulators, such
correlated insulators do not conduct even when weakly
doped. The short-distance physics of the doped system,
dominated by strong electron-electron repulsion, is believed
to be captured in the large-U Hubbard model, the t-J
model,17 or related models.18
Unfortunately, to this time, none of these models has been

solved in anything resembling a physical regime of param-
eters. One well-established aspect is the tendency of these
models to phase separation19–21,1–4 in a substantial range of
parameters. In the presence of the long-range Coulomb re-
pulsion phase separation is, of course, impossible, unless the
dopants are mobile. Instead, the system forms a charge-
inhomogeneous state, in which hole-rich regions exist in an
antiferromagnetic background.4,5 Within this picture, it is
natural to interpret the stripe phases observed in various
doped antiferromagnets as being a consequence of Coulomb-
frustrated electronic phase separation !sometimes called mi-
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crophase separation9". Such stripe phases can be either me-
tallic or insulating, depending on the character of the hole-
rich phase.4,22–26 However, the precise range of parameters
in which phase separation occurs in systems with short-range
interactions and even the physical reasons for the stability of
antiphase domain walls in systems with Heisenberg symme-
try have not been fully elucidated. Moreover, phase separa-
tion, especially at small doping, is notoriously hard to see
numerically; even for the most studied t-J model, some nu-
merical studies have been interpreted as indicative of20,2,3,27
the universality of phase separation in the limit of small dop-
ing, while others purport to indicate the existence of a critical
ratio of J/t below which phase separation does not
occur.28,24,25
For the case of doped AFs with unbroken spin-rotational

invariance this controversy was resolved by Pryadko, Kivel-
son, and Hone.1 It was shown that spin-wave exchange al-
ways causes an attraction between localized holes or hole
clusters, similar to the well-known Casimir effect.29 At large
distances this attraction falls off as a power law, and there-
fore it is always stronger then the exponentially decreasing
forces present in the system with short-range interactions.
This proves that any phase with static charge order is ther-
modynamically unstable at small enough doping. However,
the absolute magnitude of this attractive force is very small,
and even a relatively weak easy-axis anisotropy !allowed by
the symmetry in planar materials" can provide a spin-wave
gap sufficient to suppress this effect.
Static incommensurate magnetic and charge order in the

cuprate high-temperature superconductors was first
discovered30 in La1.6!xNd0.4SrxCuO4"% . Recently,
x-ray31–33 diffraction measurements have confirmed the ex-
istence of charge order. Moreover, in this material, static
stripe order coexists34,35 with superconductivity, albeit with
suppressed Tc . Additional indirect information about the fre-
quency range of magnetic correlations was provided by local
probes, such as muon spin resonance (&SR".36–38 In this
material a structural phase transition to a low-temperature
tetragonal !LTT" phase substantially stabilizes the stripe or-
der, making it particularly easy to detect, but, at the same
time, suppresses the superconducting transition temperatures.
Indeed, in closely related materials !e.g.,
La1.4!xNd0.6SrxCuO4), static stripe order is observed, but no
evidence of superconductivity has been found.39,40 However,
more recently, static stripe order has been detected11 in the
more widely studied high-temperature superconductors
La2!xSrxCuO4 with 0.05#x#0.13 and10 ‘‘stage-IV’’
La2CuO4"% , in which the transition temperature Tc
$42 K is not suppressed.
Moreover, evidence has mounted that in a still broader

class of high-temperature superconductors !perhaps even all
high-temperature superconductors" stripe order is nearly con-
densed in the sense that there are substantial stripelike cor-
relations which persist at low temperatures over long inter-
vals of space and time. Slow dynamically fluctuating
incommensurate magnetic correlations were observed some
time ago41 by inelastic neutron scattering in La2!xSrxCuO4.
That these incommensurate structures are simply fluctuating
stripes is now clear from a comparison30,7 of the fluctuations
in this material and its ordered cousin La1.6!xNd0.4SrxCuO4.
Evidence supporting the universality of incommensurate

fluctuations in high-Tc materials has also been recently pro-
vided by neutron scattering studies42 of spin fluctuations in
YBa2Cu3O7!x and Bi2Sr2CaCu2O8, and indirect evidence of
the same structures in Bi2Sr2CaCu2O8 has been obtained
from angle-resolved photoemission spectroscopy
!ARPES".43 Indirect evidence that static stripe structures may
also be more common than previously appreciated can be
deduced from &SR measurements44 and nuclear quadrupole
resonance !NQR" measurements.45
The existence of stripe phases was first established in the

nickelates (La2!xSrxNiO4"%) by direct electron46 and
neutron47–49 scattering. But the ubiquity of stripe phases in
doped antiferromagnets has become clear only in the last
couple of years of intensive experimental inquiry. Stripe or-
der in the insulating, nearly cubic manganates has been viv-
idly visualized by electron diffraction studies.9 Here the
charge order is strongly coupled to a lattice !Jahn-Teller"
distortion, which makes the stripes more classical and more
strongly ordered; the stripes here are nontopological in the
sense that the CDW period is equal to the SDW period. The
real-space images constructed from the electron diffraction
results make it clear that each nontopological stripe can be
viewed as a pair of close-by topological stripes or, equiva-
lently, that the topological stripe array has been dimerized.
In all cases in the cuprates and nickelates, where the in-

formation is available, the measured positions of the incom-
mensurate peaks indicate that the period of spin modulation
is twice that of the charge modulation. This and other data7
support the model50,51 of charged holes concentrated on the
antiphase walls between neighboring antiferromagnetic do-
mains. The effect of stabilization of such antiphase domain
walls, or stripes, by the addition of charged holes to a corre-
lated insulator, was named22topological doping.
But while the existence of stripe phases in doped antifer-

romagnets is clearly established, and there is growing evi-
dence that it is a general phenomenon, there is less agree-
ment on the origins of the stripes and their implications. The
existence of stripe phases consisting of arrays of antiphase
domain walls in doped antiferromagnets was, in fact, pre-
dicted still earlier than the work15 on Coulomb frustrated
phase separation on the basis of Hartree-Fock mean-field
theory.50,52 The Hartree-Fock stripes always have a commen-
surate density of holes corresponding to one hole per site
along the length of the stripes, and are always insulating; a
gap equal to a substantial fraction of the insulating gap opens
at the transition to the Hartree-Fock stripe phase. These are
generalizations of similar calculations in one dimension53 to
the higher-dimensional case, and are closely related to
calculations54 which sought to explain the existence of strong
incommensurate peaks in the magnetic susceptibility in
terms of Fermi surface nesting; the stripe phase in Hartree-
Fock theory is directly a consequence of that nesting.52 In
detail, these approaches do not account for the behavior of
the cuprates, in which the density of holes along a stripe
varies55 continuously as a function of x, and the stripe phases
are conducting or superconducting, not insulating. Moreover,
the evidence from ARPES is that there are no sharply de-
fined quasiparticles in the normal state of the cuprates.56 In
the La-Sr-Cu-O family of materials, in which the evidence of
stripe order and stripe fluctuations is strongest, there is sim-
ply no vestige of a quasiparticle in the region of momentum
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space where the nested Fermi surface is supposed to occur.43
However, these mean-field !MF" Hartree-Fock calculations
already reflected the tendency57 of the holes to be collec-
tively self-trapped in regions of suppressed antiferromag-
netism, a close relative of phase separation. Moreover, they
correctly identify the microscopic physics, the transverse ki-
netic energy of the holes, which gives rise to the antiphase
character of the stripes.
The unreliability of the Hartree-Fock approximation for

determining the properties of domain walls in strongly
coupled systems was also pointed out by Nayak and
Wilczek.23 They analyzed the energy per electron on a par-
tially filled stripe, which, ignoring the effect of antiferromag-
netic surrounding, was approximated as the sum of the en-
ergy of broken AF bonds and the kinetic energy of one-
dimensional electrons in the limit U→' . Even in the
absence of long-range interactions, the model does not de-
velop a gap, and the value of the optimal filling of the stripes
was shown to vary continuously with parameters. Therefore,
the stripes in this approximation are conducting and not in-
sulating as follows from the Hartree-Fock analysis.
An alternative phenomenology of high-Tc materials was

suggested by Zhang,58 who emphasized the competition be-
tween the superconducting and AF order parameters. In the
vicinity of a !hypothetical" SO!5"-symmetric point, where
these two order parameters form a five-dimensional vector of
‘‘superspin,’’ the effective free energy can be written in gen-
eral Ginzburg-Landau form, with relatively small symmetry
breaking terms. An analysis59 of nonuniform MF solutions in
such a model !assuming that the magnitude of the five-
dimensional ‘‘superspin’’ remains constant" was recently
performed by Veillette et al. In the absence of the long-range
Coulomb interaction, and at small enough doping, a Maxwell
construction was used to show that the system phase sepa-
rates into antiferromagnetic and superconducting regions.
Turning on the long-distance Coulomb interaction stabilizes
a variety of nonuniform droplet and stripe phases. Surpris-
ingly !at the time", the expected antiphase domain walls were
not discovered among the numerical solutions. The signs of
both AF and SC order parameters were always uniform, al-
though their magnitude changed substantially. It is apparent
that the absence of antiphase domain walls is an artifact of
the model, but the specific reason for this feature was not
elucidated.

III. MIXED PHASE OR PHASE SEPARATION

A. General scaling arguments

The mean-field approach typically works well if the im-
portant degrees of freedom vary slowly in time and space. In
such cases one can write an effective free energy in general-
ized Ginzburg-Landau form

Fl$! dDx"(
i

#) i!u"!*ui"2$"V!u"# , !1"

which retains only the leading !quadratic" terms in the ex-
pansion over the gradients of the order parameters ui . Usu-
ally, such a form of the free energy #with )$const and poly-
nomial V(u)$ is used in the vicinity of a second-order phase
transition, where the selection of the important terms is dic-

tated by their ‘‘relevance’’ in the sense of an appropriate
renormalization group flow. Similarly, in high-energy
applications,60–62 only renormalizable potentials are usually
considered. Here, we shall try to make as general an analysis
as possible, and only assume that the positive susceptibilities
) i(u) and the potential energy V(u), which is bounded from
below, are smooth enough functions of their arguments, so
that a lowest-energy configuration always exists. Such a gen-
eralization of the Ginzburg-Landau free-energy functional is
necessary because, as we shall show, form !1" is not suffi-
cient for describing the stripe phases of interest, indepen-
dently of the specific form of the local potential V.
The first statement is that the ground state of the model

!1", possibly with one or more constraints of the form

Q$! dDx +!u", !2"

is either uniform or phase separated in the thermodynamic
limit; the energy of any mixed (nonuniform) phase can al-
ways be lowered in an infinite system. To prove this, let us
imagine that it were not the case and that some nonuniform
configuration u$u(1)(x) !which, generally, we can assume
to be periodic" minimizes the free-energy density f$F/, ,
and also, if necessary, satisfies the constraint for the charge
density +̄$Q/, . Then the dilated fields, u(-).u(1)(- x) sat-
isfy the same constraints, while the corresponding energy
density

f -$-2K (1)"/ (1), !3"

written here in terms of the original ‘‘kinetic’’ and ‘‘poten-
tial’’ energy densities

K (1).! (
i

) i!*ui"2
dDx
,
, / (1).! V!u"

dDx
,
,

evaluated at the configuration u$u(1)(x), can be reduced by
decreasing the scale parameter - , which is equivalent to a
uniform dilation of the original field configuration. This con-
tradicts the original assumption, and we conclude that no
such coordinate-dependent configuration can minimize the
energy of the system.
It is important to emphasize that the statement proved

above is only correct in the thermodynamic limit. For a pe-
riodic solution in a finite system the scaling parameter - can
take only discrete values, so that at least one period would fit
the system size. Further energy-density reduction is possible
by doubling both the system size and the total charge, and
then performing an additional rescaling. Such scaling also
has a direct implication for possible numerical studies of this
and related models: because -2K (1)01/L2, the finite-size
correction to the free energy and other parameters will be
likely to fall off as a power of the system size.
At first sight it appears that the existence of stable kinks

for any symmetric double-well potential contradicts this
statement. We must point out, however, that only a single-
kink solution is topologically stable; in any configuration
with periodic boundary conditions one has an equal number
of kinks and antikinks, and the energy can be lowered by
annihilating the pairs. For periodic potentials, multikink con-
figurations may be topologically stable, as long as the total
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number of kinks is fixed by the boundary conditions. With
free or periodic boundary conditions, however, such ex-
tremal solutions never represent the ground state of the sys-
tem.
Similarly, one can create stable nontopological

solitons62–67 by minimizing the energy of the system with an
imposed finite-charge, as opposed to a finite-charge-density,
constraint. In this case the amount of charge itself is used to
introduce an additional length scale which fixes the size of
the soliton, and the question about phase separation does not
arise. The solution of this apparent paradox is that, if the
thermodynamic limit is defined correctly, both the energy !1"
and the conserved charge !2" will turn out to be infinite !or
zero", and they cannot be used to define a length scale. Only
in this case the correct procedure is to minimize the finite
density of the system’s free energy, at a given charge density.
Let us now consider how the scaling in Eq. !3" is modified

in the presence of a long-range interaction

FC$! dDx dDx!
#+„u!x "…! +̄ $#+„u!x!"…! +̄ $

$x!x!$1
, !4"

where 1#D for convergence. Obviously, in this case the
total charge constraint !2" can be dropped, because the inte-
gration in Eq. !4" will diverge in large systems if the screen-
ing is not perfect, no matter how weak the interaction is.
Evaluating the free-energy density along the dilated field
configuration u (-) !which, of course, must have the correct
value of the average charge density, so that the long-range
part of the energy is finite" we obtain, instead of Eq. !3",

f -$-2K (1)"/ (1)"-!D"1V (1), !5"

where V (1) is the long-range energy !4" per unit volume,
evaluated for the field configuration u(1). The integral !4"
converges if D!1%0, and the free-energy density f - has a
minimum at -$1 if

2K$!D!1"V . !6"

This expression is analogous to the virial theorem68 for the
considered class of models. It is the manifestation of the
equilibrium between competing gradient terms, which tend
to dilate the system, and the long-range forces, which tend to
decrease the scale of charge variations. As a result of this
competition, an additional length scale is introduced into the
problem, and periodic field configurations can be
stabilized.69

B. Interaction of defects

Despite its generality, the scaling technique, considered
above, is limited to continuous models. Furthermore, it is not
sensitive enough for analyzing the stability of more general
models, where the existence of mixed phases may depend on
actual parameters. Indeed, if the shape of individual soliton-
like or instantonlike defects for a given model is fixed at
some short scale, the mixed phase can often be understood as
a lattice of such relatively weakly coupled defects. The sta-
bility of such a phase will be defined by soundlike displace-
ment modes, which are likely to be much softer than the

uniform dilations we considered so far. The relevant elastic-
ity modulus will obviously be defined by the interaction be-
tween the constituent defects.
In this section we discuss how the asymptotic form of the

interaction between widely separated solitons can be found
by a simple linear analysis, even though the core structure of
the solitons themselves is governed by a complicated set of
nonlinear differential equations. Qualitatively, this is so be-
cause away from their cores solitons asymptotically ap-
proach one of the uniform ‘‘vacuum’’ configurations, and the
interaction between two solitons, placed sufficiently far
apart, can depend only on the form of this asymptotic falloff.
Indeed, the mutual interaction can be interpreted as a force
exerted on the core of either soliton in the presence of the
infinitesimal field created by the other; therefore, this inter-
action cannot depend on the internal structure of either soli-
ton as long as the large-distance asymptotic form remains the
same.
This implies that the interaction between individual soli-

tons must be totally determined by the region of overlapping
tails. In this region the amplitude of the perturbation of the
vacuum is small, and the effective free energy can be linear-
ized. After this step, the linearized problem reduces to a
static Schrödinger equation in an external potential, and the
interaction energy can be found by standard methods.70
As an illustration,71 consider a one-dimensional (D$1)

free energy of the form !1", with constant susceptibilities
) i$1/2, and the potential V(u)20 reaching global minima
only at u&$&m, V(&m)$0. In the absence of any special
symmetries, there exists only one !up to translations"
minimal-energy trajectory u0(x) interpolating between these
minima, u0(&')$&m. With this trajectory, we can also
construct approximate double-kink trajectories of the form

u!x "$u0!x!x1""u0!x2!x "!m, !7"

and write the corresponding interaction energy as

%F.F#u1"u2!m$!F#u1$!F#u2$

$!
!'

'

dx#u1!u2!"V!u1"u2!m"!V!u1"!V!u2"$ ,

where u1,2$u0(&x'x1,2), and the prime denotes the spatial
derivative. Let us choose a point x0 somewhere between the
positions of the kinks, x1(x0(x2. Then, in the left domain
x#x0 the field %u1.u2!m is small and can be considered
as a small perturbation, while in the region x%x0 the field
%u2.u1!m is small. Keeping only the terms of linear order
in each domain, we obtain

%F$!
!'

x0
dx" !u1!%u1"!"%u1%!u1""

3

3uV!u1"& #
"!

x0

'

dx41↔25, !8"

or just

%F$u1!!u2!m"!u2!!u1!m"$x$x0, !9"

where the bulk terms disappear to this order because each
field u1 and u2 obeys the Euler-Lagrange extremum equa-

PRB 60 7545TOPOLOGICAL DOPING AND THE STABILITY OF . . .



tions exactly. Despite appearances, the interaction energy !9"
is actually independent of the choice of the point x0, as long
as it is located far enough from the cores of the kinks, so that
the linearized Euler-Lagrange equations apply.
Equation !9" relates the long-distance interaction between

the kink and the antikink with their asymptotic form at large
distances. For multicomponent order parameters the
asymptotic properties may vary. However, in the particular
case of antisymmetric kinks, u0(x)$!u0(!x), we can
choose the separation point x0$(x2"x1)/2 exactly midway
between the kinks, and the interaction energy can be rewrit-
ten as

%F$2u0!!u0!m"$x$L/2

$
d
dx !u0!m"2$x$L/2#0,

where L$x2!x1 is the distance between the kinks, and the
negative sign of the derivative corresponds to a positive
quantity asymptotically vanishing far to the right of the kink.
The obtained sign corresponds to an attraction at large dis-
tances. The attraction is also expected for a pair of symmet-
ric nontopological solitons !in this case the same formula
with an appropriate m applies". Of course, for the case of a
single-component order parameter, u.u , this result is well
known. Even in a more general case, we could expect to find
the attraction between such defects, as we already know that
inhomogeneous configurations are always thermodynami-
cally unstable in the system !1", !2", unless there are topo-
logical reasons for the stability. The effect of topological
stability is also easy to understand here: equally charged
kinks #which are allowed, for example, if the potential V(u)
is periodic$ always repel. In accordance with Sec. III A, such
kinks would be pushed infinitely far apart unless stabilized
by the boundary conditions.
A similar calculation can be repeated for any combination

of spatially separated defects, in arbitrary dimension. In ev-
ery case the interaction in the lowest order can be split into a
sum of pairwise terms which are defined by the gradient
terms in the original free energy.

IV. SYMMETRY AND THE STRUCTURE
OF DOMAIN WALLS

So far we mostly considered global properties of the con-
figurations minimizing the free energy of the general form
!1". For this local functional we saw that nonuniform states
are unstable to phase separation, and thus indicated the Cou-
lomb repulsion as an important component of any continuous
mean-field model designed to describe the observed incom-
mensurate structures in high-Tc materials. Now let us con-
centrate on the local structure of nonuniform configurations
minimizing the free energy !1", !4". Specifically, we shall
attempt to answer the question whether a component of the
order parameter can change its sign in a thermodynamically
stable state !ground-state configuration".
For this question to make sense, the zero value must have

an unambiguous meaning. This is guaranteed if the free en-
ergy depends only on the square of the order parameter. For
example, in antiferromagnets time-reversal symmetry as-
sures that this is the case for the pseudovector of magnetiza-

tion s. Even if the full spin-rotational symmetry is broken,
the susceptibilities ) i , the potential V, and the charge density
+ can only depend on the bilinear combinations sis j of the
magnetization components. The free energy will depend only
on the squares si

2 as long as the mixed combinations with i
6 j are prohibited by the symmetry, as discussed in Sec.
IV C.

A. Continuous symmetry and the untwisting instability

Let us first consider a system with a free energy of the
form !1", !4", with an additional rotational symmetry be-
tween m22 components of the order parameter u
$(s1 , . . . ,sm ,71 , . . . ). For clarity, and having in mind a
particular application to magnets, we shall call these the
components of a !generalized" spin magnetization s, and as-
sume that both local and nonlocal parts of the free energy
can only depend analytically on the square S2.s2 of this
vector, while the dependence on the remaining components
7 i remains generic,

+!u".+!s2,71 , . . . ", V!u".V!s2,71 , . . . ", . . . .

In the presence of such continuous spin-rotational symmetry,
the gradient terms in the free energy !1" tend to align the
direction of the magnetization s. Indeed, the rotationally
symmetric gradient term can be written as

)s!S2,7 i"!*s"2$)s!S2,7 i"#!*S "2"S2!* ê"2$ , !10"

where ê.s/S is a unit vector in the direction of s. Obviously,
in any region where S60, the energy of a ‘‘twisted’’ con-
figuration ( ê6const) can be lowered by aligning the magne-
tization along a common direction, which eliminates the sec-
ond term on the right-hand side !RHS" of Eq. !10". The
rotational stiffness vanishes if S$0 !nodal points in one-
dimensional case or nodal hypersurfaces for D%1), and the
energy does not depend on the relative orientation of the
vectors s in the regions separated by such nodes. In any case,
one can select s1$&S , sl$0 for l%1; i.e., the minimal
configuration can be always chosen to have only one com-
ponent, although the sign of this component is not fixed at
this point. We shall show below, however, that the energy of
any such configuration with a node !closed nodal surface for
D%1) can be continuously lowered by introducing an ap-
propriately chosen perturbation in the orthogonal direction.
Such instability to local ‘‘untwisting’’ is well known for one-
dimensional systems; it implies that only uniformly oriented
spin configurations can minimize the free energy in the pres-
ence of a rotational symmetry.
To analyze the ‘‘untwisting’’ instability in general, con-

sider a spin configuration s$(s0,0) with a single nonzero
component s0(x) which is presumed to have a node !nodal
surface for D%1). The local instability of such configura-
tions can be demonstrated by introducing an orthogonal per-
turbation s1$(0,s1). The relevant part of the perturbed free
energy functional !1" can be written as

F$! dDx4)!S2,x "#!*s0"2"!*s1"2$"V!S2,x "5,
!11"
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where S2$s0
2"s1

2, and the additional coordinate dependence
is introduced to account for a possible presence of the re-
maining nonuniform components of the order parameter.
Here we only consider a simpler case in which the charge
density + !and, consequently, the long-range Coulomb inter-
action" is independent of the spin configuration; this is gen-
eralized in Appendix C.
To quadratic order in the perturbation s1 the increment of

the free energy !11" is

%F$! 4)0!x "!*s1"2"G0!x " s1
25dDx ,

where the effective susceptibility )0(x).)(s0
2 ,x)%0 is

positive everywhere, the effective potential G0(x)
.)!(s0

2 ,x)(*s0)2"V!(s0
2 ,x) is continuous and limited

from below, and primes denote derivatives with respect to
S2. The local stability of the configuration s0(x) requires that
the functional %F be non-negative; equivalently, the self-
adjoint eigenvalue problem

!*„)0!x "*8…"G0!x "8$98 !12"

should have no negative eigenvalues. Using the spin-
rotational symmetry !or directly, by comparing with the
Euler-Lagrange equation for s0), it is easy to see that the
function 80(x).const)s0(x) satisfies Eq. !12" with zero
eigenvalue 90$0. It is a well-known fact about the self-
conjugate eigenvalue problem !12" that its ground state is
nondegenerate and does not change sign.72 Since the func-
tion 80(x) does change its sign by assumption, it cannot be
the ground-state eigenfunction, and, therefore, there must be
at least one unstable direction 8!1(x) which corresponds to
a lower eigenvalue 9!1#90$0. Therefore, the energy of
the original spin configuration „s0(x),0… can be continuously
lowered by the orthogonal perturbation s1$const
)„0,8!1(x)…, and we conclude that only a uniformly ori-
ented spin configuration without nodes (nodal hypersurfaces
for D%1) can realize the global minimum of the functional
!1" in the presence of a continuous spin-rotation symmetry.73

B. Instability in the Ising limit

Let us now imagine that the continuous spin-rotational
symmetry is broken by the lattice. We begin with the case of
a relatively strong easy-axis !Ising" anisotropy, so that effec-
tively only one component s of the spin remains. In the ab-
sence of any other magnetic ordering, the residual symmetry
of the free energy is the discrete Z2 group associated with the
time-reversal symmetry s→!s . Ordinarily, such broken
symmetry indicates the possibility of topologically stable
kinks, or domain walls in D%1, separating regions of oppo-
site magnetization. It turns out, however, that despite their
local stability, such configurations do not occur in the
lowest-energy state of the system; they can only occur as
excitations. Formally, this can be proved in general, utilizing
the residual symmetry Z2 of the free-energy functional.
Indeed, we saw that in the presence of a continuous spin-

rotational symmetry the ground-state configuration is uni-
formly aligned; it can always be chosen to have only one
component of the spin. Therefore, the ground state of the
functional

F$! dDx4)!s2,x "!*s "2"V!s2,x "5,

is in a one-to-one correspondence !modulo the overall rota-
tion" with the ground state of the U!1"-symmetric extended
functional

Fz$! dDx4)!s2,x "!*s"2"V!s2,x "5,

where the field s$(s1 ,s2) has two components. Because of
the untwisting instability, the second functional has a node-
less ground-state configuration; our mapping indicates that
so does the first.
We have proved a version of the no-node theorem, i.e.,

the statement that any component s of the order parameter
preserves its sign in the globally minimal configuration, pro-
vided that the potential energy !including the long-distance
part; see Appendix C" depends only on the square of this
component.74

C. Group-theoretical analysis: Effects of ‘‘spin-orbit
coupling’’

The situation of perfect Ising anisotropy considered in the
previous section is, of course, an idealized case. In real sys-
tems the anisotropy can be quite small, so that all three com-
ponents (sx ,sy ,sz) of the magnetization pseudovector must
be considered. Nevertheless, it is possible to show that the
same conclusion about the absence of topological domain
walls holds as long as the symmetry of the underlying lattice
is high enough.
Generally, because of the global time-reversal symmetry,

the local potential energy can be an arbitrary function of all
bilinear combinations sis j , i , j$x ,y ,z . Expanding in powers
of such products, we can also write any such function as

V!sis j"$V0"V1sysz"V2szsx"V3sxsy , !13"

where the coefficients in the expansion are, generally, some
functions of the squares of the magnetization components,
Vk.Vk(sx

2 ,sy
2 ,sz

2), k$0, . . . ,3. The statement about the
sign of the magnetization components proved in the previous
section applies only if the cross terms are absent. In particu-
lar, this happens independently of the specific details of the
function V(sis j), if such terms are not allowed by the sym-
metry of the lattice. Conversely, if at least one of such terms
is present, no general statement about the sign of any com-
ponent of the spin magnetization can be made, unless the
additional components of magnetization are suppressed by a
sufficiently strong easy-axis anisotropy.
The effective free-energy functional should remain invari-

ant under any transformation which preserves the lattice
structure; for the local potential V only the transformations
from the corresponding crystallographic point group are rel-
evant. Because the pseudovector of magnetization remains
invariant under inversion, its components transform under
reflection,

:h : !x ,y ,z "→!x ,y ,!z ",

as (sx ,sy ,sz)→(!sx ,!sy ,sz), in exactly the same fashion
as under the ; rotation with respect to the axis z,
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C2 : !x ,y ,z "→!!x ,!y ,z ".

The invariance of the potential !13" with respect to either of
these transformations requires V1$V2$0. The existence of
another symmetry transformation of one of these kinds, with
respect to an orthogonal plane or an orthogonal axis, is suf-
ficient to suppress the only remaining coefficient, V3$0.
Such symmetries are present in all crystallographic point

groups of cubic !groups O, Oh , T, Th , Td" and orthorhombic
(C2v ,D2 ,D2h) systems, and in sufficiently symmetric
groups of tetragonal (C4v ,D4 ,D4h ,D2d) and hexagonal
(C6v ,D6 ,D6h ,D3h) systems. For all other crystallographic
groups we constructed invariant expressions, mixing several
components of the magnetization. For example, the quantity
sxsy(sx

2!sy
2) is symmetric with respect to all transformations

of the groups C4 , C4h , and S4, the quantity szsy(sy
2!3sx

2) is
symmetric with respect to all trigonal groups, etc.
The lattice symmetry also determines the structure of the

derivative terms in the free-energy functional. In addition to
components of the pseudovector of the magnetization, s, we
now have the components of the axial vector of the gradi-
ents, and so the number of possible symmetric terms in-
creases. The conclusions about the phase separation and the
local structure of the domain walls will be absolutely modi-
fied if the terms linear in derivatives are present in the free
energy. Such terms are known to stabilize topological do-
main walls in the ground state. Among the groups we listed
above, only the groups Oh , Th , D6h , D4h , and D2h abso-
lutely prohibit the existence of invariant quantities linear in
derivatives. All these groups include the inversion, which
guarantees the absence of such invariants. The groups which
include only proper rotations were eliminated by the exis-
tence of the pseudoscalar invariant s•#*)s$ . All other
groups required special consideration.75
The highly symmetric point groups listed in the previous

paragraph prohibit both terms linear in derivatives, and the
mixing between different components of the magnetization
in the potential energy. Nevertheless, in the presence of a
spin-orbit interaction any point symmetry group allows mix-
ing between different components of the magnetization in
the gradient terms due to the existence of a rotationally in-
variant scalar

!*•s"2$!3xsx"2"23xsx3ysy"••• .

For specific groups, dangerous terms can also include less-
symmetric invariant quantities containing terms of the form
3xsx3ysy . Formally, because these terms cannot be elimi-
nated by symmetry, antiphase domain walls are possible in
the ground state of any non-Heisenberg system. For the case
of magnetic ordering one may argue, however, that the sym-
metry breaking in the gradient terms can only result from the
combination of the hopping, already small because it is de-
termined by the tunneling matrix elements, and the spin-orbit
interaction, typically small because it is a relativistic effect.
Therefore, such terms are expected to be very small, and it is
clear that they cannot be responsible for very robust an-
tiphase domain wall ordering observed in the cuprates and
nickelates.

V. ANTIPHASE DOMAIN WALLS

The crystallographic point groups of the relevant phases
of high-Tc materials76–80 and related compounds81,82 are D4h
in tetragonal phases and D2h in orthorhombic phases. Ac-
cording to our arguments in the previous section, these
highly symmetric groups absolutely rule out antiphase do-
main walls in the lowest-energy state, and yet such domain
walls have been observed in many such materials. Moreover,
this constraint is not limited to the continuous model !1" with
gradient terms quadratic in derivatives: many lattice models
with arbitrary long-distance interactions can be cast in the
generic form considered in Appendix D, and by the theorem
proved there they must have ground states with uniform sign
of the order parameter. Clearly, this situation is by no means
an exception.
For example, a tendency for forming in-phase domain

walls was seen83 in a model of two Heisenberg antiferromag-
nets coupled across a stripe represented by a Luttinger liquid,
as a result of their interaction with the staggered magnetic
moments induced on the stripe. This is not surprising in view
of our general MF treatment; the model83 ignores completely
the transverse mobility of the stripe !the processes of elec-
trons’ hopping from AF to the stripe" which counteracts the
usual exchange coupling.84,85
In the remaining part of the paper we show that antiphase

domain walls in the ground state can be stabilized in the
presence of frustration involving competing interactions. We
consider two specific models with short-range interactions: a
lattice model of a doped antiferromagnet and a continuous
model with higher-order derivative terms. In both systems
periodic antiphase domain wall structures can be thermody-
namically stable at large enough charge densities, but do-
main walls attract at asymptotically large distances, so that
the phase separation necessarily happens at sufficiently small
values of doping.

A. Antiphase domain walls on the lattice

Let us consider a lattice model of the form

F$J(
<i j=
SiSj"J!(

<il j=
SinlSj"(

i
V!Si

2 ,ni", !14"

where the first term represents the usual exchange of local-
ized spins, the second term84,85 is due to higher-order ex-
change processes with virtual hops through a partially occu-
pied site, the hole density, 0>nl>1 is defined to be a
bounded continuous variable, and the local potential V must
be chosen to ensure the stability of the model, as well as to
provide an adequate repulsion between the holes and the
spins on the same site. As usual, we presume that the average
hole density is fixed,

x. n̄$N !1(
i
ni , !15"

where N is the total number of lattice sites. Clearly, the
positive values of the second exchange constant, J!%0, tend
to frustrate antiferromagnetic ordering in a doped system; we
argue below that a competition of this sort is necessary to
form antiphase domain walls and suppress the global AF
order in the system.
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For the purpose of this example, we will limit our analysis
to the quartic form of the potential

V!S2,n "$
g1
2 !S2!1 "2"' g̃2n"

zJ
2 (S2" g3

2 n
2, !16"

where g̃2$g2!z(z!1)J!/2, z is the lattice coordination
number, and the coefficients are chosen so that in terms of
the antiferromagnetic Néel order parameter si$(!1) iSi the
free energy could be rewritten in a form

F$
J
2 (

<i j=
!si!sj"2"J!(

<il j=
nl!sisj!sl

2"

"(
i

%g12 !si
2!1 "2"g2nisi

2"
g3
2 ni

2& . !17"

The term with the coefficient g1 favors unit values of the
on-site magnetization, and the coefficient g2 is a measure of
the strength of the repulsion between spins and charges,
while the coefficient g3 measures the local tendency against
doping.
At zero doping all charges necessarily vanish, nl$0, and

Eq. !17" is minimized by a uniform AF state s2$1 with the
value FAF(0)$0. Uniform AF states can be also formally
found at sufficiently small nonzero dopings, with energy
given by the second line of Eq. !17", minimized at s2$1
!g2x/g120 with the energy-density value

fAF!x "$g2x"
x2

2 ' g3! g2
2

g1
( .

The magnitude of the AF ordering reduces to zero at x
$g1 /g2, and at larger filling fractions the AF phase is re-
placed by a uniform nonmagnetic state with the energy f 0
$(g1"g3x2)/2.
The energies of these phases for the strong repulsion case

g2
2%g1g3 are illustrated in Fig. 1. The function fAF(x) !solid

line" has a negative curvature at small values of doping, so
the system is necessarily unstable to phase separation be-
tween an undoped antiferromagnet and a completely or par-
tially doped uniform nonmagnetic phase !dashed line". The
energy of phase-separated system is shown in Fig. 1 with a
dotted line. The absence of other phases was checked nu-
merically by minimizing Eq. !17" for systems with periodic
boundary conditions of all even sizes in the range between
N$4 and N$40. To reduce the possibility of accidental
trapping in a local minimum, we used the Metropolis algo-
rithm with variable temperature !simulated annealing". For
each system size we did a set of up to eight trial cooldown
runs starting with a random configuration, selected the best
resulting configuration, and then repeatedly cycled the tem-
perature up to 20 times. The minimal energy density chosen
among the systems of all sizes was used as an estimate of the
ground state energy; these values are shown in Figs. 1 and 2
with squares. As expected, in the regime of phase separation,
typically the lowest energy density was achieved for the big-
gest system.
Phase separation is impossible if a long-distance interac-

tion is also included in the model !14". However, the above
calculation remains relevant as long as this interaction is suf-
ficiently weak. In this case, there exists a large length scale
D, at which the long-distance forces become relevant. It is
this scale that determines the period of a stripe phase, in
which the regions of undoped AF and nonmagnetic phases
are separated by the domain walls of the model !14". As long
as the size d of these domain walls is relatively small, d
(D , the long-range interaction does not significantly change
their form.
In the considered regime of the strong local repulsion,

g2
2*g1g3, the domain wall between the undoped AF and
non-magnetic phases with density x$min#1,(g1 /g3)1/2$ is
very sharp. The order parameters approach their vacuum val-
ues as determined by the solution of the corresponding lin-

FIG. 1. Locating the minimum of the free energy !17" per unit
site for the strong repulsion case, J$0.9, J!$0.6, g1$0.6, g2
$1.9, and g3$0.8. Bold solid and dashed lines respectively show
the energies of uniform AF and nonmagnetic (S$0) phases. The
dotted line gives the free energy per site of an infinite system in the
phase-separated regime. Solid and open squares respectively indi-
cate periodic and phase-separated configurations minimized nu-
merically with system sizes up to N$40.

FIG. 2. Locating the minimum of the free energy !17" per unit
site for the case of weak repulsion, J$0.9, J!$0.6, g1$0.6, g2
$0.3, and g3$0.8. The line AF2 corresponds to a uniform AF with
the period of four lattice sites, which becomes preferable at larger
values of J!. The lines S3 and S4 correspond to commensurate
stripe phases with the charge periods 3 and 4, as illustrated in the
insets. Below x?0.75 the system phase separates into an undoped
!or very weakly doped" AF phase and the phase S3. Solid and open
squares respectively indicate the phase-separated and uniform con-
figurations as seen numerically with system sizes up to N$40.
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earized equations. On the AF side, the charge density is
locked at n$0, and the perturbation %sj0exp(!@0j) falls off
with the same exponent as in the ideal undoped AF,

sinh2!@0/2"$g1 /J . !18"

Similarly, expanding the free energy !17" to quadratic order
in the vicinity of the zero-magnetization state with the den-
sity n1$(g1 /g3)1/2#1, we obtain

4 sinh2!@1/2"$' 2!
J

2n1J!
(

"!' 2!
J

2n1J!
( 2" 2!g2n1!g1"

n1J!
.

The second term under the square root, and, consequently,
the RHS of the entire expression, are guaranteed to remain
positive everywhere in the strong repulsion regime, indepen-
dent of the values of the exchange constants. The domain
walls are relatively narrow when @D(1; in this case the
solution has a form of an array of domain walls between the
AF and nonmagnetic regions. This is the canonical picture of
Coulomb-frustrated phase separation,15,5 where wide stripes
are directly analogous to the classical stripe phases.6
The ground-state phase diagram changes substantially in

the opposite case of very weak repulsion, g2
2(g1g3. The

main difference of this regime is that nonuniform phases
with antiphase domain walls are much closer to stability; as
illustrated in Fig. 2, some of them may be stable even in the
absence of any long-range forces. As the long-range interac-
tions are introduced, instead of stabilizing wide stripes by the
usual Coulomb-frustrated phase separation15,5 mechanism,
they may stabilize certain dense stripe phases. Such a picture
of Coulomb-stabilized microscopic stripe phases is in agree-
ment with the arguments of Hellberg and Manousakis16
based on their results of exact numerical diagonalization of
small t-J clusters.
In the considered limit of weak repulsion, g2

2(g1g3, non-
zero magnetization can coexist with substantial doping even
in the limit of a fully doped system, x$1. Because of the
constraint 0>ni>1, only a uniform charge configuration is
possible at x$1, and the spin ordering is determined by the
competition between two exchange couplings. For a particu-
lar set of parameters chosen in Fig. 2, the lowest-energy
phase in this limit has a spin modulation period of three
lattice sites. As the doping is reduced, it is energetically fa-
vorable to put all electrons at the points of maximum mag-
netization, so that the charge density has a period of three
lattice sites, as illustrated in the right caption. The energy of
such a ferrimagnetic phase S3 is denoted with a bold dash-
dotted line in Fig. 2; as the doping is lowered, this line starts
to increase again below the point x?0.67 where single un-
doped sites are separated by fully doped antiphase domain
walls of width two sites. In a similar phase S4 !with the
charge period of four and the spin period of eight sites", such
domain walls are separated by two weakly doped sites, but
this phase is avoided in large systems which prefer to phase
separate instead. The energy density of a phase-separated
system !PS" is shown with the dotted line; in the vicinity of

the point x00.5 this line goes only slightly below the line
denoting the energy of the stripe phase, S4.
Numerically, for all combinations of parameters we tried,

the nonuniform ‘‘stripe’’ phases seemed to be stable only at
sufficiently large values of doping. It turns out that this state-
ment can be proved for any form of the potential V(s2,n) in
Eq. !14" by using a variant of the argument in Sec. III B.
Any nonuniform charge configuration in the limit of low
doping must consist of some defects, charged solitons or
domain walls, separated by wide regions of almost perfect
AF. In this limit every defect, described by the spin si and
charge ni distributions, must realize a local minimum of the
free energy !14", and satisfy appropriate Euler-Lagrange
equations. A two-defect configuration can be well approxi-
mated by a linear superposition of corresponding spin- and
charge-density distributions, with the value of the constraint
!15" independent of the mutual position of the defects. In the
vicinity of each defect the effect of the other one can be
considered as a perturbation. By rearranging the sums inde-
pendently in each region, with the help of the corresponding
Euler-Lagrange equations, the linear order cross terms can be
made to disappear in the bulk, so that only the ‘‘integrated’’
part

%E$"J%s0
b%s1

a"J!#s!1
a n0

a%s1
b!%s0

bn1
as2

a$!J%s0
a%s1

b

!J!#s!1
b n0

b%s1
a!%s0

an1
bs2

b$ !19"

remains. Here %s.s!s' is the deviation of the AF magne-
tization from its vacuum value, and the superscripts a and b
label the fields caused by the defect situated far to the left
and far to the right from the origin, respectively. Similarly to
Eq. !9", the precise location of the separation boundary is not
important, as long as it is chosen far enough from each de-
fect. For a symmetric defect configuration sl

a$s1!l
b , Eq. !19"

can be rewritten as

%E$J#!%s1
a"2!!%s0

a"2$"2J!s'
a #%n0

a%s0
a!%n1

a%s1
a$

"2J!n'
a #%s!1

a %s0
a!%s1

a%s2
a$ , !20"

where %nl.nl!n' . Only the first term exists for the
asymptotic form !18", where the hole density nl is pinned to
zero at finite distances from defects. This term gives a nega-
tive interaction energy, corresponding to asymptotic attrac-
tion between far-separated defects. This is in accordance
with our simulation in Fig. 2, where the most stable charge-
modulated configuration was a dense condensate of an-
tiphase stripes. Of course, the repulsion of the stripes at small
distances and the stability of the dense stripe configuration
cannot be inferred from this asymptotic analysis.
Generally, for models of the form !14", the hole density nl

does not necessarily vanish at a finite distance from a defect,
or it may even have a nonzero value n' in the intermediate
AF phase. Then the second exchange term also contributes to
the interaction energy. In principle, this contribution may be
attractive or repulsive, depending on the relative sign of
s'%s and %n . However, we are interested in systems with a
strong repulsion between AF ordering and the doped holes;
here the effect of the second exchange is negative, and the
second term in the first line of Eq. !20" gives attraction as
well.
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Contrarily, the last term in Eq. !20", which exists only if
the doping saturates to a nonzero value n' far from the soli-
tons, is positive; it contributes to a repulsion between the
domain walls. This is not surprising, because the second ex-
change term counteracts the usual exchange if a finite hole
density is present. Nevertheless, one can show that the net
result is an attraction between the defects, as long as the
uniformly doped AF state is locally stable.

B. Antiphase domain walls in a continuum model

Although we now have an example of a model which
admits antiphase domain walls in the ground state, this
model is not a continuum model, and one might infer that it
is the lattice commensuration effects that enable the exis-
tence of antiphase domain walls in the ground state. To stress
our statement that it is not the lattice, but the frustration
between different interactions that stabilizes such domain
walls, we give a brief analysis of a continuum model with
similar properties.
Consider a one-dimensional system with the free energy

of the form

F$! dx#A!s""2")s!s!"2")7!7!"2"V!s2,7"$ .
!21"

As usual, the primes denote spatial derivatives, the field s
represents an antiferromagnetic order parameter, and 7 is a
scalar field with some conserved charge density +$+(7).
Unlike Eq. !1", we no longer assume that the spin suscepti-
bility )s$)s(7) is a positively defined function of the scalar
order parameter 7 , and the higher-order derivative term,
with A%0, is required for stability. In analogy with the sec-
ond hopping term of the lattice model !14", we shall assume
that the spin susceptibility

)s!7"$1!B+!7" !22"

depends linearly on the charge density, so that its sign can be
reversed in the presence of large enough hole density.

1. Scaling analysis

It is obvious that the general conclusion of instability of
periodic states made in Sec. III A does not apply for the
model !21". Indeed, instead of Eq. !3", we obtain

f -$-4Q1"-2K1"/1 , !23"

where Q1%0 is the contribution of the term!s" quartic in the
derivatives. Because the second-derivative terms are no
longer positively defined, this expression may have a mini-
mum at -$1 and

K1$!2Q1#0.

Although this condition does not guarantee the global stabil-
ity of a periodic solution, it is clear that periodic structures
may in principle be stabilized for the free energy !23".

2. Asymptotic interaction of domain walls

The asymptotic form of the interaction between the do-
main walls for the model !21" can be easily found by a linear
analysis similar to that in Sec. III B, by evaluating the energy

of a superposition of two domain walls separated by a wide
stretch of undoped antiferromagnet. As before, only surface
terms survive in the linear order,

%E$2A%sa"%sb!!2!A%sa""!%sb"2)s%sa!%sb"2)77a!7b

!!a↔b ",

where the scalar field 7 i and the deviation of the AF order
parameter %si must satisfy the corresponding Euler-Lagrange
equations exactly; i$a ,b respectively denotes the defect lo-
cated far to the left and far to the right of the point where this
expression is evaluated. For two symmetric domain walls
sa(x)$sb(2x0!x) this expression is simplified if the point
x0 is chosen exactly in the middle,

%E$!4!A%sa"%sa"!"2)s!%sa
2"!"2)7!7a

2"!$x$x0.

The parameters A , )s , and )7 in this expression must be
evaluated in the vacuum configuration; they are all positive.
The perturbation of the vacuum state gets smaller as we
move to the right, and the two last terms are negative; as
before, this corresponds to an attractive interaction. How-
ever, it is easy to see that the first term is positive; it con-
tributes to the repulsion between the domain walls. Only by
analyzing the linearized Euler-Lagrange equations in the
nearly perfect AF region can we conclude that the overall
sign of the interaction energy is negative, as long as the AF
state is a locally stable minimum of the functional !21".
Therefore, as previously, domain walls attract at large
enough distances, and the system cannot form a stable non-
uniform solution at asymptotically small doping as long as
AF ground state is stable at zero doping and as long as there
are no long-range forces.

3. Twist stability

The twist instability, which was discussed in Sec. IV for
positive )s and A$0, can be also avoided for the model
!21"; a magnetization vector s can reverse its direction and
yet remain locally stable with respect to twists. A sufficient
condition for this stability can be obtained by analyzing the
derivative terms in the free energy !21". By decomposing the
vector s$Se into a product of its magnitude S and the unit
vector e, after several integrations by parts, the gradient
terms in the free energy can be rendered into a form

!s""2→S2!e""2"!e!"2#2!S!"2!4S"S$"!S""2,

!s!"2$!S!"2"S2!e!"2.

The system !21" will remain stable to developing spontane-
ous twists as long as the coefficient in front of (e!)2 remains
positive; this gives the sufficiency criterion of stability,
namely, the condition that the expression

2A!S!"2!4AS"S")sS2%0 !24"

must remain positive everywhere. This condition is easy to
check directly for any given single-component solution of
Euler-Lagrange equations; there is no need to look for mul-
ticomponent solutions if Eq. !24" is satisfied.
Formally, this expression can remain positive near a node

of the magnetization because of the presence of the higher-
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derivative term in Eq. !21". However, such solutions can be
allowed in the ground state only if )s can become negative,
which indicates the presence of a competition between dif-
ferent interactions. Therefore, the role of the higher-
derivative term is only to limit the instability caused by this
competition.

4. Approximate variational solution

To illustrate the considered general properties, let us
choose the potential

V$! %g12 !s2!1 "2"g2+s2"
g3
2 +2&dx , !25"

of the same quartic form as used in Eq. !17", with +
.+(7)$72. Numerically, the solutions at small enough
densities look very much like the usual domain walls in mag-
nets, with s changing its sign where 7 has a maximum. Al-
though the simplest set of trial functions 7$70 /cosh(kx),
s$tanh(kx) does not work, we can use it as a variational
solution to estimate the ground-state energy and the areas of
stability of different phases.
Performing the integration, we obtain the expression for

the total charge,

Q0$! dx 72$270
2/k ,

and the free energy,

F0$
2
3k%g1" 8

5 Ak4"k2' 2"70
2!

8
5 B70

2(
"70

2!g2"g370
2"& .

In the limit of small charge density the stripe solution must
minimize the energy per unit doped charge, f 0.F0 /Q0. This
is achieved by selecting the amplitude of the charge soliton

70
4$!g1"2k2"8Ak4/5"/g3 .

The resulting expression has a minimum at a nonzero scale
k$k0 if the constant B in Eq. !22" is

B$
5
8 % 1"

2!g3!1"8Ak0
2/5"

!g1"2k02"8Ak0
4/5& ;

the corresponding value of the energy per unit charge is

f 0$g2"
2!g3!g1"k0

2"

!g1"2k02"8Ak0
4/5

.

The resulting configuration will be stable with respect to
twists if the criterion !24" is satisfied. The analysis shows
that this is indeed the case for large enough values of A and
g3.
The stability of a stripe phase made out of these domain

walls is determined by Eq. !23". With the derived expres-
sions we find that

K0$' 1!
8
5 B ("

2
70
2$!

16Ak2

570
2

is always negative. This implies that the periodic phase
might indeed be stabilized at some intermediate scale, in
agreement with our numerical simulations of this model.
Therefore, the local stability of topological domain walls
may lead to the stabilization of a dense stripe phase made out
of such walls, in agreement with detailed simulations24,25 of
the t-J model. However, such a phase can only be stable at
large enough charge densities: within the MF approximation
we have shown that the asymptotic large-distance interaction
between such domain walls is always attractive, and in the
limit of small values of doping the system necessarily phase
separates. In addition, more subtle fluctuation effects1 always
contribute to power-law Casimir attraction between charged
defects, and the statement about the phase separation in
weakly doped antiferromagnets persists.

VI. CONCLUSIONS

Phase separation at small doping is a ubiquitous property
of doped insulators with short-distance interactions. Gener-
ally, in the absence of a frustration caused by competing
interactions, the staggered magnetization of the ground state
never changes its sign. These two statements can be formu-
lated as theorems in the vicinity of a second-order phase
transition involving AF ordering, where the correlation
length is large and the derivative terms are small.
In application to high-Tc materials, the competition be-

tween the tendency of the holes to move around and the
tendency of repulsive interactions to localize the charges
must be accounted for in any model for describing high-Tc
superconductors or related materials. Only at relatively short
distances !where, strictly speaking, we go outside the limits
of applicability of the MF theory" may the domain walls
repel, which could lead to the stabilization of dense static
stripe phases.
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APPENDIX A: LANDAU THEORY

The phase transition between a stripe phase and a high-
temperature disordered state considered by Zachar et al.14
involves only one spin-order parameter, the incommensurate
spin-density wave Sq . The transition from a well-developed
antiferromagnet with a modulation vector ;! $(; ,;) to an
incommensurate modulated phase must account for both the
original AF-order parameter S;! !which, generally, cannot be
assumed small" and the spin-density wave S;! "k , with modu-
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lation period 2;/k . Coupling these two spin-order param-
eters together, it is easy to write nontrivial and yet spin-
rotation-invariant terms of the Landau expansion of the
effective free energy,

F$rs$S;! "k$2"rc$+k$2"1#S;!
*S;! "k+k*"c.c.$"••• ,

!A1"
where +k is the complex-valued amplitude of the charge-
density wave with the wave vector k, +k*.+!k , and the
quartic !and higher-order" terms required for stability are
omitted. This expression suggests that an instability in either
the spin #rs.rs(q)#0$ or the charge #rc.rc(k)#0$ sector
generates both spin- and charge-density waves at the wave
vectors q$;! "k and k, respectively, with modulation am-
plitudes linearly proportional to each other. More precisely,
the modulation appears if rs(q) and/or rc(k) are negative, or
if

rs!;! "k"rc!k"#$1$2$S;! $2.

Near the transition the magnitude of the incommensurate
peak is necessarily much smaller than the commensurate AF
modulation, $S;! "k$($S;! $; it is easy to see that this corre-
sponds to in-phase domain walls. The derived relationship
between q and k implies that the periods of spin and charge
modulation must be equal for such domain walls.
Experimentally, novel incommensurate elastic peaks, co-

existing with the commensurate peaks at (; ,;), have been
observed86 recently at the border of the antiferromagnetic
region of La2!xSrxCu O4 at x$0.05. The incommensurate
peaks are rotated by 45° compared to the antiphase peaks at
larger doping, which could be caused by the fact that these
peaks appear at a temperature that is lower than the energy of
the low-temperature-orthorhombic–low-temperature-tetra-
gonal phase mode.87 If the data represent a bulk effect, and
assuming that the commensurate AF correlation length in the
cluster spin-glass phase44 at smaller values of doping (x
#5%) is sufficiently large for the Landau expansion !A1" to
apply, we interpret the simultaneous presence of both com-
mensurate and incommensurate peaks as the signature of in-
phase domain walls, expected in this region, and not merely
coexisting antiferromagnetic and stripe phases. The above
analysis indicates that the corresponding charge modulation
must have the same period and direction as that of the SDW
order. Because the observed ordering differs substantially for
these two phases, the transition from a weakly modulated
diagonal AF phase to the fully developed stripe state with
antiphase domain walls is expected to be first order in a clean
system.
In general, however, a discontinuous transition between a

topological and nontopological stripe phases is not the only
possibility. A particularly simple scenario of a continuous
transition between these phases corresponds to a dimeriza-
tion transition, where pairs of antiphase domain walls spon-
taneously merge to form wider dimerized domain walls,
similar to those observed in manganates.9 As a result, the
period of charge modulation doubles, and a CDW with the
periodicity of the original spin ordering must develop. In
addition, the perfect symmetry between the regions with two
opposite signs of AF order is broken, and a net antiferromag-
netic ordering appears. Here we present only the simplest

scenario for such a continuous transition, minimally extend-
ing the charge-driven part of the phase diagram of Zachar
et al.14 A more complete symmetry analysis of possible
dimerized phases will be published elsewhere.88
To describe the dimerization transition, the Landau effec-

tive free energy must include at least two harmonics of the
density wave, +k , +2k , coupled to the SDW harmonics
S;! "lk , l$0, 1, 2. While the quadratic part of the free energy
has the usual form,

F2$(
l$0

2

rsl$S;! "lk$2"(
l$1

2

r+l$+ lk$2,

there are five possible cubic terms

F3$+2k* !-0S;! "k
2

"-1+k
2"-2S;!S;! "2k"

"+k*!10S;! "kS;! "11S;! "2kS;! "k
* ""c.c. !A2"

The invariant with the coefficient -0 has been considered
previously in Ref. 14, and the terms with coefficients 10 and
-2 were considered above in Eq. !A1".
Let us follow Zachar et al.14 and consider the transition

from a disordered phase, driven by the instability in the
CDW sector, r+2#0. In this scenario, as the amplitude of the
CDW +2k gets sufficiently large, the term with the coefficient
-0 generates an instability in the SDW sector. From our
extended free energy !A2" it is clear that the same density
wave may also destabilize the double-periodic CDW +k !via
the term with coefficient -1). If this is the case, the remain-
ing cubic invariants will simultaneously generate nonzero
AF modulation S;! !coefficient 10) and an additional SDW
harmonic S;! "2k !coefficients -2 and 11). Obviously, in a
certain range of parameters, the transition to the phase with
+k60 is continuous. The resulting dimerized phase, with
equal periods of SDW and CDW, and a nonzero AF order-
ing, would be interpreted as a nontopological stripe phase. If
observed, such a transition will provide a precise macro-
scopic meaning to the notion9 of dimerized stripes.

APPENDIX B: INTERACTION OF CHARGED SOLITONS

Here we demonstrate that the expression for interaction
energy between the defects, derived in Sec. III B, also works
for systems with global charge constraint !2". The single-
soliton field configuration u0(Q;x) minimizes the energy
functional at a fixed value of charge Q, but the total charge
corresponding to their linear superposition !7" does not nec-
essarily equal 2Q . Therefore, instead of Eq. !7", we need to
consider a corrected configuration

u!x "$u0!Q!%Q;x!x1""u0!Q!%Q;x2!x "!m

$u0!x!x1""u0!x2!x "!m"%u!x ", !B1"

where the additional exponentially small !of the order of the
tail overlap %Q) deformation

%u$!%Q%3u0!Q;x!x1"
3Q "

3u0!Q;x2!x "

3Q &
serves to adjust the value of charge constraint, so that, e.g.,
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%QL$!
!'

x0
!u2!m"%u"

3+!u1"
3u1

dx$0,

and a similar condition for the region x%x0 where the field
u2 is far from equilibrium value !all notations as in Sec.
III B". In the presence of the charge constraint the Euler-
Lagrange equations for a single kink must be written with a
chemical potential & ,

!u0""
3

3u #V!u""&+!u"$$u$u0$0,

and the combination in the square brackets in the integrand
of Eq. !8" no longer disappears. Instead, it changes the en-
ergy by an amount proportional to the total charge increment
%QL in the region x#x0 and a similar term for x%x0. These
charge increments vanish for the corrected configuration
!B1", and in the linear order we are again left with the same
universal expression !9". As before, it was important that the
correct configuration deviate very little from the simple
minded superposition !7", including the tail regions, where
the correction %u can be safely ignored as an exponentially
small quantity of higher order.
Such linear analysis is equivalent to finding the instanta-

neous acceleration89,90 of a defect surrounded by a surface by
calculating the total flux of the energy-momentum tensor
into the enclosed volume due to all other defects located
outside the surface. The corrections to Eq. !9" are easy to
find in equilibrium, and they indeed turn out to be exponen-
tially smaller, if the locally stable configuration of several
defects exists !in some cases such configurations can be sta-
bilized by the boundary conditions". Often, however, be-
cause of the attraction between individual solitons, there are
no locally stable equilibrium configurations minimizing the
free energy. In such cases, instead of analyzing the forces in
static configurations, the interaction can be found more ac-
curately by studying the full dynamics of the system.91 In the
present work, however, we are mostly interested in the sign
of the interaction between defects, and the accuracy of Eq.
!9" is sufficient.

APPENDIX C: UNTWISTING INSTABILITY
OF CHARGED DEFECTS

Here we extend the local stability analysis of Sec. IV A to
systems with conserved charge and long-range interactions.
Now, instead of Eq. !11", the relevant part of the free energy
and the corresponding constraint can be written as

F$! )!S2,x "!*s"2"V!S2,x "dDx

"
1
2! %+!S2,x "K!x ,x!"%+!S!2,x!"dDx dDx!,

!C1"

! #+!S2,x "! +̄ $dDx$0, !C2"

where the explicit coordinate dependence of the local part of
the potential energy V and the charge density increment
%+(S2,x).+(S2,x)! +̄ account for the presence of all other

components ui
(0)(x), 2>i>N of the order parameter. The

expansion !10" remains valid even in the present case, and
we can always select the ground-state configuration of the
functional !C1" to have only one component, s$„s0(x),0….
As before, our task is to prove that this configuration is lo-
cally unstable to ‘‘untwisting,’’ as long as the function s0(x)
has a node. The problem with the charge constraint !C2" is
slightly more difficult, since the naively perturbed configu-
ration s$(s0 ,s1) generally has a different value of charge.
To correct this, we consider a perturbed solution of the form

s$4s0!1!C1,C2w5, S2$s0
2"C2

2w2!C1s0
2 ,

where C1 must be chosen to preserve the average charge
density, i.e.,

C1$!C2
2% ! +!w2dDx &% ! +!s0

2dx &!1
, !C3"

where we assume that the denominator does not vanish iden-
tically, and the derivative +!.3+(S2,x)/3(S2).
To quadratic order in C2, the increment of the energy

functional !C1" is just

%F$! dx4)0!x "#C2
2!*w "2!C1!*s0"2$"#C2

2w2!C1s0
2$

)#+0!80!x ""V0!"!*s0"2)0!$5, !C4"

where all functions with subscript 0 are evaluated with the
nonperturbed configurations s0, the prime denotes the deriva-
tives over S2 as in Eq. !C3", and the scalar potential

80!x ".8!#s0
2$ ,x ".! K!x ,x!"%+„s02!x!",x!…dDx!.

Equation !C4" can be simplified with the help of the relation
!C3" and the Euler-Lagrange equation for the nonperturbed
solution s0,

!*!)0*s0""G!#s0
2$ ,x "s0$0, !C5"

where the self-consistent potential function

G!#v0
2$ ,x ".#80!x ""&$+0!"V0!"!*s0"2)0!

contains the Lagrange multiplier & . We obtain, with the
same accuracy,

%F$C2
2! dDx4)0!*w "2"G!#s0

2$ ,x "w25. !C6"

Let us return to the Euler-Lagrange equation !C5". As it
stands, it is a nonlinear integro-differential equation for s0.
However, one can formally look at this expression as an
action of the linear self-adjoint operator L̂$!*()0*)
"G0(x) „with fixed functions )0(x) and G0(x)
.G(#s0

2$ ,x)… on the function s0. From this point of view s0
is an eigenfunction of this operator, L̂s0$90s0 with zero
eigenvalue 90$0. The same operator serves as the kernel of
the energy increment !C6", and so, expanding w$(Alsl(x)
over the orthogonal eigenfunctions of this operator, we ob-
tain
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%F$C2
2( 9 lAl

2! sl
2dDx .

By assumption, s0 has a node, and so there must72 exist an
eigenfunction s!1 corresponding to a negative eigenvalue
9!1#0. Therefore, taking w$s!1, we can decrease the free
energy,

DF$9!1C2
2! v!1

2 dDx#0,

which violates the original assumption. Therefore, the spin
configurations with nodes are locally unstable to untwisting
even in systems with charge constraint and/or long-range
interactions.

APPENDIX D: NO-NODE THEOREM
FOR DISCRETE SYSTEMS

It is also possible to prove a version of the no-node theo-
rem for many lattice models. Consider the problem of find-
ing a minimum of the expression

H$(
i j

) i j!ui!u j"2"V!u1
2 , . . . ,uN

2 ", !D1"

where the variables ui, i$1, . . . ,N are scalars,92 the nonlo-
cal potential V(u1

2, . . . ,uN
2 ) is a limited, continuously differ-

entiable function of all its arguments, and the connections
) i j20 can be positive or zero, with the only limitation that
all points can be linked. We are going to prove that in the
minimum of Eq. !D1" all variables ui are nonzero and have
the same sign, or all of them vanish identically.
Let us suppose that the opposite statement is true, namely,

that the global minimum H (0) is achieved on the set ui
(0) ,

some of which could be positive, negative, or zeros, but at

least one nonzero value exists. Without limiting generality,
we can suppose that this value is positive. Let us now replace
the original set by the non-negative set ui

(1)$$ui
(0)$. Clearly,

because of the obvious inequality !Cauchy"

!a!b "22! $a$!$b$"2,

this substitution cannot increase the energy. This inequality
becomes strict if a and b have opposite signs, which implies
that the points with positive and negative values in the origi-
nal configuration must be separated by zeros, or our assump-
tion was wrong. Therefore, some of the values in the modi-
fied set ui

(1) are expected to be zeros. By assumption, there
are no disconnected points, and at least one point j with zero
value u j

(1)$u j
(0)$0 must be connected to a point i with

ui
(1)%0. If we replace the zero by a sufficiently small value
u j
(2)$C%0, the increment of the energy !D1" will be nega-
tive,

%Hj$(
i

4) i j!C2!2Cui
(1)"5"C2

3V!u1
2 , . . . "

3u j
2 )

ul$ul
(1)

$!2C(
i

) i jui
(1)"O!C2"#0. !D2"

The procedure can be repeated for all points with zero value.
Therefore, the original assumption was wrong, and in the
global minimum all values ui must have the same sign !al-
though they can be exponentially small".
Because the increment !D2" of the energy is linear in C ,

the proven statement can be easily extended to accommodate
an arbitrary dependence of the connections ) i j(u1

2 , . . . ,uN
2 )

on the variables, as well as an arbitrary number of nonlocal
constraints of the form A(u1

2 , . . . ,uN
2 )$0.
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