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Superconducting proximity effects in magnetic metals
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We explain the basic physics behind oscillatory effects in superconductor/metallic ferromagnet (S/F) sand-
wiches, and describe the important effects of the spin orbit scattering in these systems. We find that spin-orbit
scattering plays a major role in the physics of the superconducting proximity effect with a conducting ferro-
magnet. As examples, we present calculations of the Tc of an S/F bilayer and the Josephson current !near
Tc" of an S/F/S trilayer. #S0163-1829!97"06521-1$

I. INTRODUCTION

What happens when a ferromagnetic layer (F) is placed
in contact with a superconductor (S)? The purpose of this
work is to consider the answer to this question for the spe-
cific case in which the ferromagnet is a good conductor and
the superconductor is an s-wave superconductor. We also
restrict our consideration to the most relevant case when the
Curie temperature of the ferromagnet is much greater than
the superconducting Tc .
This situation has been treated by several authors, most

recently by Buzdin et al.,1–5 who have observed that the ex-
ponentially decaying Cooper pair density in the ferromagnet
also has an oscillatory character, indicating that the Cooper
pair acquires a spatially dependent phase in the ferromag-
netic layer. This causes an exchange field dependent oscilla-
tion in the critical current of SFS sandwiches, and in the
Tc of SF bilayers and multilayers. When the Josephson cou-
pling energy is negative, one has a so-called % junction, for
which the minimum energy configuration corresponds to a
phase shift of % in the macroscopic phase difference across
the junction. Despite several experimental studies,6 there is
no definitive experimental evidence for these predictions.
The purpose of this paper is to review these earlier calcu-

lations, so as to reveal more clearly the underlying physics,
and to extend them so as to include a more general treatment
of the important effects of the spin-orbit scattering. As we
shall see, spin-orbit scattering plays a major role in the phys-
ics of the proximity effect with a ferromagnet.7,12 We do not
consider here a specific example of the experimental situa-
tion, which is unclear and controversial. We simply note that
spin-orbit scattering is relevant in conductors containing
large Z elements. An assessment of the current experimental
situation in light of our results will be presented in a subse-
quent paper.
Before turning to the detailed microscopic theory of these

effects, it is well to review the basic physics behind them,
and to present simple physical arguments which justify them.
The fundamental feature to be justified is the oscillating pair
density.
For simplicity, we first consider the situation in which

spin is a good quantum number !i.e., there is no spin-orbit

interaction". Imagine a Cooper pair being adiabatically trans-
ported across an SF interface with its electron momenta
aligned with the interface normal. Upon entering the F re-
gion, where the pair is not an eigenstate, it becomes an eva-
nescent state, decaying exponentially on the length scale
&0 , the normal metal coherence length. In addition, the up
spin electron in the pair lowers its potential energy by h , the
exchange field energy in the ferromagnet, while the down
spin electron raises its potential energy by the same amount.
In order for each electron to conserve its total energy, the up
spin electron must increase its kinetic energy, while the
down spin electron must decrease its kinetic energy, to make
up for these additional potential energies in F .
So for a pair, shown on top of Fig. 1, entering into a

ferromagnetic region results in acquiring a center of mass
momentum Q!2h/vF . The fermionic antisymmetry re-
quires us to consider the pair described above together with
the pair which has the down spin and up spin electrons in-

FIG. 1. Coopper pair in superconductor and ferromagnet. 'p
!h/vF .

PHYSICAL REVIEW B 1 JUNE 1997-IIVOLUME 55, NUMBER 22

550163-1829/97/55!22"/15174!9"/$10.00 15 174 © 1997 The American Physical Society



terchanged in momentum space !shown on the bottom of
Fig. 1". The latter gains a center of mass momentum "Q
upon crossing the SF boundary. Combining the two pairs
into a singlet combination we see that the overall effect of
the exchange field in the F region on a singlet Cooper pair is
to give it a spatial modulation. Hence if the wave function of
the pair in a superconductor is ((x1"x2), where x1 and
x2 are the coordinates of the two electrons, in a ferromagnet
the wave function becomes cos#Q(x1#x2)$((x1"x2).
In the more general case when the electrons in a pair have

their momenta at an angle ) with respect to the interface
normal !see Fig. 2", the additional momentum that each elec-
tron gains after crossing the SF boundary is 'px
!h/vF cos) and 'py!'pz!0. Here we used the fact that
momentum is conserved in the direction parallel to the inter-
face to reason that the electrons may change their momenta
in the x direction only. The modulation factor of the pair
shown in Fig. 2 in the F region is cos#h(x1#x2)/vF cos)$.
The overall Cooper pair distribution is then obtained by

accounting for all possible angles of incidence for the pair,
so it is proportional to

!
0

1
d!cos)"cosx!!

0

1
d!cos)"cos" 2hx

vFcos)
#*

sin!x/&m0"
!x/&m0"

.

!1"

#We assume, for simplicity, that vF /(2h)!&m0$&0 , so that
the overall exponential decay of the Cooper pair in F over
&0 may be neglected.$ Thus the Cooper pair distribution os-
cillates on the scale set by the length &m0 . This establishes
simply the physical origin of the oscillations.
The physical picture of the proximity effect in a clean

ferromagnetic conductor is therefore very similar to the
Fulde-Ferrel-Larkin-Ovchinikov !FFLO" effect.8,9 In the
FFLO state a superconducting order parameter is generated
in the presence of an exchange field, and it turns out that

energetically a spherically symmetric distribution of the elec-
trons is less favorable than the distribution extended along
one of the directions perpendicular to the exchange field. So
Cooper pairs with shifted center of mass momenta appear,
and an inhomogeneous distribution function, similar to the
one we described earlier, develops.
We now want to understand the effect of elastic potential

!nonmagnetic and non-spin-orbit" scattering. As usual we
only need to consider the processes in which the two elec-
trons in a Cooper pair are scattered by the same impurity into
states with opposite momenta, since all the other scattering
events are incoherent in the pairing process. An interesting
question now is what happens to the center of mass momen-
tum that the Cooper pairs acquire upon entering the ferro-
magnet #and ultimately the modulation factor cos#h/
(vF cos ))(x1#x2)] for singlet pairs". In a clean limit we
found that this center of mass momentum was a function of
the relative momentum of the two electrons and remained
constant throughout the whole trajectory of the pair in the
F region. Now, as a result of the multiple scattering pro-
cesses, the center of mass momentum will vary along the
trajectory of the pair together with the relative momentum. It
is important to realize, however, that the center of mass mo-
menta that we need to consider are always in the x direction,
because the scattering events leading to the other directions
are incoherent. And since scattering on impurities does not
change the energy of the electrons, we can again use the
energy argument introduced above to deduce that in the dirty
limit we have the same local relationship between the direc-
tion of the relative momentum of the electrons and the mag-
nitude of the center of mass momentum Q!2h/vF cos) as
in the clean limit. This observation allows us to treat the case
of isotropic and strong potential scattering !l , the mean free
path due to scattering, is much smaller than any other length
in the problem" similarly to the clean case, only instead of
integrating over the angles of incidence of the pairs we inte-
grate over all possible intermediate orientations. The only
thing that we will need to add for the case of impurities,
present in a ferromagnet, is an extra decay of the Cooper
pairs due to scattering. This decay has the important feature
that it depends on the direction of the momenta of the elec-
trons in the Cooper pair and, in the dirty limit, the net scat-
tering rate for the pairs is proportional to cos)/+, yielding an
effective mean free path for pairs of l/cos).10 The pair dis-
tribution function, accounting for this scattering effect, is
thus proportional to

!
0

1
d cos)e"!x/l "cos)cos" 2hx

vFcos)
# !2"

which integrates approximately, yielding a Cooper pair den-
sity proportional to

Re" e"!1"i "x/&m#3%i/8

!x&m /l2
# ,

where &m!!l&m0/2.
In the integral !1" the rapid oscillations of the integrand

for small values of cos) ensure that the most important pair
trajectories contributing to this effect are those which are
nearly perpendicular to the SF interface. Formula !2" shows

FIG. 2. Cooper pair in superconductor and ferromagnet for a
general direction of the relative momentum of two electrons. 'px
!h/vFcos).
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that if there is strong elastic scattering in F , however, the
values of cos) less than one can contribute as well, because
of scattering into the low ) direction. The average cos) value
contributing dominantly then decreases. This lowers the ef-
fective period of the oscillations, as well as introducing de-
cay of the oscillations due to the fact that momentum parallel
to the interface is no longer conserved within the F layer.
The oscillations are now damped on the same length scale at
which they oscillate. The effect of the scattering is to average
over the effective magnitude of the exchange field from a
minimum value equal to h(cos)!1), to a maximum which
approaches infinity (cos)!0), resulting in a shorter oscilla-
tion period.
In the presence of spin-orbit scattering, the spin singlet

Cooper pair wave function decays !to a spin triplet" by spin-
flip scattering, and the #Q momentum pairs mix with the
"Q momentum !spin-exchanged" pairs. The decay to a trip-
let is a pair breaking effect, giving the pairs a finite lifetime
because the intermediate state in spin-orbit scattering is a
triplet whose energy depends upon the exchange field. An-
other effect of the spin orbit scattering is to mix the Copper
pair with its spin-exchanged counterpartner. This causes a
pair to ‘‘see’’ an exchange field which changes sign at a rate
proportional to 1/+so , decreasing the average h field experi-
enced by the pair, hence increasing the period of the oscilla-
tions.
For very strong spin-orbit scattering, the Cooper pair can

no longer be regarded as a spin singlet for any reasonable
length of time, in particular for the time 't!1/h , when +so
%1/h , so that the oscillation effect disappears. Put another
way, the electrons which make up the pair can no longer be
regarded as eigenstates of spin in this case.
For pedagogical purposes, we ignore potential scattering

for the moment, and consider the effects of spin-orbit scat-
tering alone. In actuality, spin-orbit scattering is inevitably
accompanied by potential scattering. The additional influ-
ence of potential scattering in the dirty limit will be ac-
counted for subsequently.
The decay and mixing processes change the energy of the

pairs, and introduce a lifetime effect through equations for
the forward ( f Q) and backward, spin-exchanged ( f"Q) por-
tions of the Cooper pair wave function !see Sec. III of this
paper":

#E"!2h#2i/+so"$ f Q#2i/+sof"Q!0,

#E"!"2h#2i/+so"$ f"Q#2i/+sof Q!0.

!In the absence of the exchange field h , one sees immedi-
ately that f Q! f"Q and the spin orbit scattering has no effect
on the pairs." Solving for E yields a !complex" pair energy

E!2i/+so"!!2h "2"!2/+so"2!vF /,m0
and hence a complex momentum

Q!E/!vFcos)"!1/!,m0cos)".
Accounting for both directions of momentum, we get a Coo-
per pair density proportional to

!
0

1
d!cos)"Re!eix/!,m0cos)"".

This integrates approximately to

Re" eix/,m0ix/,m0
# .

One can see that the existence of oscillations requires h
&1/+so .
If we include strong elastic scattering as before, then this

becomes, approximately

Re" e"!1"i "!x/,m"#3%i/8

!x,m /l2
# ,

where ,m!!l,m0/2.

II. EILENBERGER EQUATIONS
IN THE PRESENCE OF THE EXCHANGE FIELD

AND THE SPIN ORBIT SCATTERING

In this section we briefly review the derivation of the
Eilenberger equations and show how they can be generalized
to account for the presence of an exchange field and spin
orbit scattering.
We perform all the calculations in the Matsubara imagi-

nary time formalism and our four-coordinate x stands for
!+,r". Following Maki11 we introduce a spinor representation
of the fermion operators:

-!x "!" .↑!r ,+"
.↓!r ,+"
.↑
†!r ,+"

.↓
†!r ,+"

# , -†!x "!„.↑
†!r ,+".↓

†!r ,+".↑!r ,+".↓!r ,+"…. !3"

In the absence of the impurities the Gor’kov equations for a 4'4 matrix Green’s function Ĝ(x1 ,x2)!
"/T+-(x1)-†(x2)0 can be written in two forms, corresponding to writing the equations of motion of the particles at x1 or
x2 ,

1Ĝ!x1 ,x2"
1+1

!$ " 22

2m 31
2#4 # 5̂3#'̂!r1"#h!r1"5̂36̂3% Ĝ!x1 ,x2"" 1̂73!r1"r2"7!+1"+2",

"
1Ĝ!x1 ,x2"

1+2
!Ĝ!x1 ,x2"$ " 22

2m 32
2#4 # 5̂3#'̂!r2"#h!r2"5̂36̂3% " 1̂73!r1"r2"7!+1"+2", !4"
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where

'̂!r "!i 5̂#6̂2'!r ""i 5̂"6̂2'*!r ",

'!r "!8/.↓!r ".↑!r "0!
i8
2 Tr# 5̂#6̂2Ĝ!x ,x "$ . !5"

5̂ and 6̂ are the Pauli matrices in the particle-hole and spin spaces correspondingly and 8 is the BCS coupling constant.
The Gor’kov equations carry the information about both the macroscopic fields and the excitation spectrum. In particular,

it is the the center of mass spatial dependence that gives the macroscopic fields and the relative coordinate dependence that
gives the excitation spectrum. Since we are not interested in the excitation spectrum but only in the macroscopic pair wave
function, we integrate over the relative coordinates of two particles sacrificing our knowledge of the excitation spectrum for
the sake of getting simpler equations.
We want to separate the center of mass and relative motions inside the Green’s functions. So, from r1 and r2 we go to

R!(r1#r2)/2, the position of the center of mass, and r!r2"r1 , the relative coordinate of the two particles. We also make
a Fourier transform in the imaginary time domain using the fact that the time homogeneity is not broken and everything
depends on +2"+1 only,

& 22

2m " 12 1

1R"
1

1r # 2#4 'Ĝ9" R"
r
2 ,R#

r
2 #!$ "i95̂3" 5̂3'̂" R"

r
2 #"h" R"

r
2 # 6̂3% Ĝ9" R"

r
2 ,R#

r
2 ## 5̂37

3!r ",

& 22

2m " 12 1

1R #
1

1r # 2#4'Ĝ9" R"
r
2 ,R#

r
2 #!Ĝ9" R"

r
2 ,R#

r
2 # $ "i95̂3" 5̂3'̂" R"

r
2 #"h" R"

r
2 # 6̂3% # 5̂37

3!r ". !6"

We assume that the macroscopic fields h and ' vary on the length scales bigger than the coherence length of material
!S or F", and so we can replace the actual argument of the two functions R(r/2 by just R . Later we will be using the resulting
equations when this condition is not rigorously satisfied. However, one can convince oneself that this procedure is a quasi-
classical approximation and only results in averaging over the fast oscillations on the length scale of 1/kF .
We subtract the first equation of !6" from the second and get

22

m
12

1R1r Ĝ9" R"
r
2 ,R#

r
2 #!:i95̂3# 5̂3'̂!R "#h!R "6̂3;Ĝ9" R"

r
2 ,R#

r
2 #"Ĝ9" R"

r
2 ,R#

r
2 #

':i95̂3# 5̂3'̂!R "#h!R "6̂3;. !7"

We can integrate over the energies of the relative motion of the two particles using two simple transformations

Ĝ9" R"
r
2 ,R#

r
2 #!! d3p

!2%2"3
Ĝ9!R ,p"eipr/2,

Ĝ9!R ,n"!! d&p
2%2

Ĝ9!R ,p". !8"

This gives

iv
1

1R Ĝ9!R,n"!:i95̂3# 5̂3'̂!R "#h!R "6̂3;Ĝ9!R ,n""Ĝ9!R ,n":i95̂3# 5̂3'̂!R "#h!R "6̂3;, !9"

where n is a unit vector that carries information about the direction of the relative motion of two particles and v!p/m
(vFn.
At this point it is straightforward to introduce the effect of the impurities. It is simply a matter of insertion of the self-energy

in Born approximation into !9",

iv
1

1R Ĝ9!R,n"!:i95̂3# 5̂3'̂!R "#h!R "6̂3" 5̂3<9!R ,n";Ĝ9!R ,n""Ĝ9!R ,n":i95̂3# 5̂3'̂!R "#h!R "6̂3"<9!R ,n"5̂3;,

!10"

where

<9!R ,n"!n!R "! dn!
4%

Û!n"n!"Ĝ9!R ,n!"Û!n!"n",
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Û!n"n!"!U153#Usoi#n'n!$= , !11"

and = is an electronic spin operator =!#(1#53)/2$6##(1"53)/2$62662 .
Components of the matrix Ĝ are given by

Ĝ9!R ,n"!
mpF
2%222 )"

i
2 g# 0 0

"1
2 f#

0 "
i
2g"

1
2 f" 0

0
1
2 f

† i
2g" 0

"
1
2 f#

† 0 0
1
2g#

)
!9 ,R ,n"

. !12"

When writing !12" we assumed purely singlet pairing, and
we used the integral of the equation !10"

v
1

1R #Tr Ĝ9!R ,n"$!0 !13"

together with the asymptotic form of the Green’s functions in
the bulk of the superconductor to get the equality of the spin
reversed Green’s functions !so, that we have only two g’s
instead of four". And we also introduced numerical factors in
order to have a simple assymptotic form of the f and g
functions in the bulk of the superconductor: f(

!'/!92#'2 and g(!9/!92#'2 !for the case when h
!0". Using the functions introduced in !12", Eqs. !10" and
!11" become

" 9̃(!r ,v "(ih!r ""
1
2 v

1

1r# f(!9 ,r ,v "

!'̃(!9 ,r ,v "g(!9 ,r ,v ",

" 9̃(!r ,v "(ih!r "#
1
2 v

1

1r# f(
† !9 ,r ,v "

!'̃(* !9 ,r ,v "g(!9 ,r ,v ",

f(
† f(#g(

2 !1,

9̃(!r ,v "!9#
1
2+1

! d>!
4%

g(!r ,v "

#
3
2+so

! d>!
4%

g)!r ,v!"sin2!)")!",

'̃(!9 ,r ,v "!'#
1
2+1

! d>!
4%

f(!r ,v "

#
3
2+so

! d>!
4%

f)!r ,v!"sin2!)")!",

!14"

where

+1
"1!nN!0 "*U1*2,

+so
"1!

2
3 nN!0 "*Uso*2,

'!
8

2 ?
9

! d>

4%
# f#!9 ,r ,v "# f"!9 ,r ,v "$.

Equations !14" are the generalization of the Eilenberger
equations for the case when an exchange field and spin-orbit
scattering are present. A heuristic way to obtain these equa-
tions would be to generalize the results from Maki11 and
Likharev.13
One can see from !14" that in the absence of the spin-orbit

scattering the plus and minus components do not mix with
each other. It is only +so that mixes the time reversed states.

III. USADEL EQUATIONS CLOSE TO Tc

The Eilenberger equations can be considerably simplified
when the mean free path for potential scattering l!vF+1 is
much shorter than the superconducting coherence length.
This simplification appears because all the Green’s functions
corresponding to the different directions of the relative mo-
tion of the electron !different n’s" get smeared out on the
distances of the order of l , and since the characteristic scale
of the Green’s functions variations is & we obtain that the
spherical harmonics expansion is rapidly converging so that
we can restrict ourselves to only the first two harmonics.
We will not derive the general case of the Usadel equa-

tions in the presence of the spin-orbit scattering but will only
restrict ourselves to the temperatures very close to Tc . This
case is much simpler for investigation and contains all the
new physics of introduction of the spin orbit scattering. For
temperatures sufficiently close to Tc we can take g(@1 and
!10" becomes

" 9̃((ih"
1
2 v

1

1R# f(!9 ,r ,v "!'̃(!9 ,r ,v ", !15"

" 9̃((ih#
1
2 v

1

1R# f(
† !9 ,r ,v "!'̃(* !9 ,r ,v ", !16"
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9̃(!9 ,r ,v "!9#
1
2+1

#
1

+so
,

'̃(!9 ,r ,v "!'#
1
2+1

! d>!
4%

f(!9 ,r ,v!"

#
3
2+so

! d
>!
4%

f)!9 ,r ,v!"sin2!)")!".

!17"

We solve Eqs. !15"–!17" for the case when the parameters
vary only as a function of x . This corresponds to the ‘‘sand-
wich’’ geometry of interest here.
Let ) be the angle between n and x axis. From the

full Legendre polynomial expansion of f((9 ,+ ,v)
!? l!0

A f l(9 ,x)Pl(cos)) by the reasons described earlier we
take only the first two terms

f(!9 ,x ,v "! f(
0 !9 ,x "# f(

1 !9 ,x "cos) . !18"

We integrate Eq. !15" over all )’s directly and after being
multiplied by cos) to arrive at the following equations:

" 9(ih#
1
2+1

#
1

+so
# f(
0 !9 ,x ""

vF
6

1

1x f(
1 !9 ,x "

!'#
1
2+1

f(
0 !9 ,x "#

1
+so

f(
0 !9 ,x ", !19"

" 9(ih#
1
2+1

#
1

+so
# f(
1 !9 ,x ""

vF
2

1

1x f(
0 !9 ,x "!0.

!20"

We are in the limit of a very dirty superconductor, when
1/+1*Tc , h , 1/+so , so Eq. !20" simplifies to

f(
1 !9 ,x "!+1vF

1

1x f(
0 !9 ,x ". !21"

Inserting into !19" we get

1
4 D

12

1x2 f(
0 !9 ,x ""!9(ih " f(

0 #'

!
1

+so
# f(
0 !9 ,x "" f)

0 !9 ,x "$ ,

'!x "!
8

2 ?
9

# f#
0 !9 ,x "# f"

0 !9 ,x "$ , !22"

where D! 2
3+1vF

2 . In the absence of the spin orbit scattering
we recover the equations of Ref. 3.
We now want to check the self-consistency of our ap-

proximation, namely that the higher harmonics in the Leg-
endre polynomial expansion are small. From Eq. !21" we see
that f 1 / f 0Bl/L where L is the characteristic scale on which
f( changes. Analogously, we can get that f (n#1)/ f (n)
Bl/L by multiplying Eq. !15" by cosn) and integrating over
all angles. In the superconductor LB&0 and in the ferromag-
net LB!D/h and in both cases l/L$1, so that our approxi-
mation is valid.

IV. BOUNDARY CONDITIONS FOR THE EILENBERGER
AND USADEL EQUATIONS

The boundary conditions for the Eilenberger equations
follow from the continuity conditions for the normal and
anomalous Greens functions. Ivanov et al. showed14 that at
the sharp planar interface the Eilenberger functions are con-
tinuous along the flight trajectories on which the electrons
can pass from one metal to the other

f !x!0" ,n"! f !x!0# ,n" !23"

and are equal on trajectories corresponding to the incident
and reflected waves

f !x!0,n#"! f !x!0,n"". !24"

In Eq. !23" we assumed that x!0 is the boundary between
two metals and in Eq. !24" x!0 is a perfectly reflecting
boundary.
The Usadel functions are the isotropic part of the Eilen-

berger functions and obviously they should also satisfy the
continuity condition on any boundary. Another condition on
these functions comes from the requirement of the continuity
of the current and reduces to the conservation of the quantity
DN3F where N is the density of states and D is the diffu-
sion coefficient.
Interfacial scattering breaks the validity of the semiclassi-

cal approximation. Several authors have found effective
boundary conditions that include the effect of 7-function
scattering.15,16 However, those do not appear to be applicable
for our particular case. In Sec. VII we will describe qualita-
tively the effect of the interfacial scattering on the Josephson
current in the SFS system.
In the sections to follow we assume for simplicity that the

Fermi velocities in the two materials are the same. Whatever
difference there may be in these velocities will lead to reflec-
tions at the interface, and can also be modeled by a
7-function potential, as we will do in the subsequent article.
For now we will justify our assumption by noticing that there
is little difference between the Fermi velocities of most con-
ducting ferromagnets and superconductors, leading to a neg-
ligible reflection at the interface.

V. PROXIMITY EFFECT IN A FERROMAGNET

As described in the introduction an exchange field in the
ferromagnet leads to the oscillations of the induced super-
conducting order parameter !see Fig. 3". In this section we
show that the presence of spin-orbit scattering not only
modifies the oscillation length but also leads to an extra de-

FIG. 3. Superconducting order parameter on the SF interface.
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cay of the order parameter and, that a critical strength of the
spin orbit scattering completely suppresses the oscillations.
Clearly the role of the spin-orbit scattering needs to be ad-
dressed in interpreting the experimental results on the S-F-S
Josephson junctions and S-F bilayers.
We restrict ourselves to the case of dirty superconductors

at temperatures close to Tc , when Eqs. !22" are valid. In our
model the superconductor is characterized by ' which we
take constant everywhere in the superconductor, which has
no exchange field and no spin orbit scattering. In the ferro-
magnet, the BCS coupling is identically zero, so that 'F
!0. However, the induced order parameter /.↓(x).↑(x)0 is
finite.
The Usadel equations in the superconductor are given by

1
4 D

12

1x2 f(!9 ,x ""9 f(#'!0 !25"

and in the ferromagnet

1
4 D

12

1x2 f(!9 ,x ""!9(ih " f(!
1

+so
# f(!9 ,x "" f)!9 ,x "$ .

!26"
We need to solve these equations with the boundary condi-
tions

f(
!F "*x!0#! f(

!S "*x!0" ,

6n
1

1x f(
!F "*x!0#!6s

1

1x f(
!S "*x!0" , !27"

which correspond to continuity of the order parameter and
the current. Another obvious condition is that at x!"A , in
the bulk of the superconductor, the f( functions approach
their equilibrium values of '/9.
Since h*Tc in most cases of interest, in Eq. !26" we can

omit the 9 term. As it turns out this way we are only losing
the usual decay of the induced order parameter in the normal
metal at the distances &n!!D/' , because we are interested
in the effects of the exchange field, not in the conventional
proximity decays. We look for the solution of Eq. !26" in the
form

" f#!x "
f"!x " #!"C#

C"
# ekx !28"

and after substitution into !26", we get the eigenvalue equa-
tion for k

" 14 Dk2" 1
+so

# 2#h2"
1

+so
2 !0. !29"

This equation has four solutions (kM and (kM*, where

kM
2 !#i

4
D

!h2"1/+so2 #
4

D+so
, !30"

kM*2!"i
4
D
!h2"1/+SO2 #

4
D+SO

.

The imaginary part of kM defines the oscillations. We can
see from !30" that spin orbit scattering modifies the charac-

teristic length of the oscillations and completely destroys
them for 1/+so&h . The analogous expression for the case of
strong spin orbit scattering has been obtained by Ref. 17.
For future reference we find a complete solution of the

Usadel equations in the ferromagnet and the superconductor,
which means that we need to find the eigenvectors corre-
sponding to each eigenvalue.
For the ferromagnet

(k!kM!" 4
D+so

#
4i
D

!h2"1/+so2 # 1/2,
C#

C"
!

i/+so
!h2"1/+so2 "h

, !31"

(k!kM*!" 4
D+so

"
4i
D

!h2"1/+so2 # 1/2,
C#

C"
!"

!h2"1/+so2 "h
i/+so

. !32"

So, the general form of the solution in the ferromagnet is

" f#!9 ,x "
f"!9 ,x " #!C1" i=1 # ekMx#C2" i=1 # e"kMx#C3" 1

"i= # ekM* x
#C4" 1

"i= # e"kM* x, !33"

where

=!
1/+so

!h2"1/+so2 "h
. !34"

And for the superconductor

(k!kS!!49/D !35"
and the solution is

" f#!9 ,x "
f"!9 ,x " #!"C1C2 # ekSx#"C3C4 # e"kSx. !36"

VI. Tc FOR AN S-F BILAYER

In this section we apply the general equations developed
above to determine the superconducting transition tempera-
ture of the superconductor-ferromagnet bilayer !see Fig. 4
for geometry". The difference between our consideration and
that by Ref. 2 is the inclusion of the spin-orbit scattering.
For this problem it is more convenient to work with

F#!9 ,x "!
1
2 # f#!9 ,x "# f"!9 ,x "$ ,

FIG. 4. Geometry of an SF bilayer.
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F"!9 ,x "! f#!9 ,x "" f"!9 ,x ", !37"

rather than with f( . We have the following equations for
F’s.
In the superconductor, x%0:

D
12

1x2 F#!9 ,x ""*9*F#!9 ,x "#'!0,

D
12

1x2 F"!9 ,x ""*9*F"!9 ,x "!0, !38"

and we have a self-consistency equation '(x)
!8?9F#(9 ,x).
In the ferromagnet, x&0:

D
12

1x2 F#!9 ,x ""
ih
2 F"!9 ,x "!0,

D
12

1x2 F"!9 ,x ""
ih
2 F#!9 ,x "!

2
+so

F"!9 ,x ". !39"

And in the last two equations we also neglected 9 in com-
parison with h which means that the thickness of the ferro-
magnetic layer should be smaller than !D/' .
Let us take solutions of F# in the superconductor of the

form

F#!9 ,x "!C#!9"cos#ks!x#ds"$ . !40"

This will satisfy Eq. !38" if we take

C#!9"!
'

Dks
2#*9*

. !41"

For F" we take

F"!9 ,x "!C"!9"cos#!*9*/D!x#ds"$ . !42"

Both !40" and !42" satisfy the condition F(! (x!"ds)!0
!no current" on the left boundary of the superconductor.
The self-consistency equation in the superconductor is

now given by

8?
9

1
Dks

2#*9*
!1. !43"

After finding ks from the boundary conditions, equation !43"
gives the transition temperature.
In the ferromagnet, the solution of !39" that satisfies the

boundary condition at x!dm is

"F#!9 ,x "
F"!9 ,x " #!C1F" ih

2DkM
2

1
# cosh#kM!x"dM "$

#C2F" ih
2DkM* 2
1

# cosh#kM* !x"dM "$ .

!44"

Introducing C!C2F /C1F , the boundary condition at the
S-F interface x!0 becomes a set of two equations on C and

ks !since the equations are linear it is sufficient to require the
continuity of 6F!-F at the interface"

6s!*9*/D tanh#!*9*/Dds$

!"6n

kMsinh!kMdM "#C" kM*kM # 2kM* sinh!kM*dM "

cosh!kMdM "#C" kM*kM # 2kM* cosh!kM*dM "

,

6skstan!ksds"!6n
kMsinh!kMdM "#CkM* sinh!kM*dM "

cosh!kMdM "#CkM* cosh!kM*dM "
.

!45"

In order for our assumption of the separation of 9 and x
dependences in F# to be valid we must have ks and corre-
spondingly C independent of 9. As can be easily seen from
!45" this is only true when 6sks*6FkM or 6sks$6FkM . We
will consider the first case, and the second one can be done
in a similar fashion.
So, for 6sks*6FkM ,

C!"" kMkM* # 2 cosh!kMdM "

cosh!kM*dM "
!46"

and for ks we have

ks tan!ksds"!
6n

6s

kM* tan!kMdM ""kMtan!kM*dM "

kM*
kM

"
kM
kM*

!
6n

6s

"i ImkM
kM*
kM

"
kM
kM*

sinh!2 RekMdM "

cosh!kMdM "cosh!kM*dM "

'&1"
RekM
ImkM

sinh!2 ImkMdM "

sinh!2 RekMdM "' . !47"

If we introduce ),

tan2)!
!h2"1/+so2
1/+so

, !48"

we can write kM!*kM*ei). And if now we assume
*kM*dMcos)D1 and take into account 6sks*6FkM expres-
sion !47" simplifies to

ks
2!

6n

6s

*kM*
2dscos)

#1"2e"2*kM *cos)dMsin!2*kM*sin)"$ .

!49"

The transition temperature for the bilayer may be found
from

5c!
Dks

2

2%TC
,

ln
Tc0
Tc

!." 12#5c#"." 12 # . !50"
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In Fig. 5 we show how the oscillations of Tc are modified
by the presence of the spin orbit scattering.
We can see that the oscillations of Tc as a function of the

ferromagnetic layer thickness found by Ref. 2 are consider-
ably modified by the presence of the spin orbit scattering.

VII. JOSEPHSON EFFECT IN THE SFS SANDWICH

We assume that the phase of the left superconductor is
"E/2 and the phase of the right one is E/2. Fermi velocity,
electron masses, and all other parameters are taken equal for
both superconductors and the ferromagnet !see Fig. 6 for
geometry".
As we have shown earlier, in the presence of the spin-

orbit scattering f# and f" are not eigenfunctions of the Us-
adel equations. It is more convenient therefore to use the
basis

ê1!" i=1 # , ê2!" 1
"i= # !51"

that we have derived in Sec. V. In the bulk of the supercon-
ductor

" f#

f"
#!

'

9 " 11 #!
1#i=
1"=2

'

9
ê1#

1"i=
1"=2

'

9
ê2 !52"

and now we can solve for ê1 and ê2 components separately.
Matching the values of the functions and the derivatives on
the boundaries we get after simple calculations that the Jo-
sephson current near Tc is given by

Is!2%N!0 "DTc?
9

'2

92 $ kM
sinh!kML "

#
kM*

sinh!kM*L "

#
2i=
1"=2 & kM

sinh!kML "
"

kM*
sinh!kM*L "' % . !53"

We can again see that the spin orbit scattering considerably
modifies the answer.
Interfacial scattering at the two interfaces modifies this

result. Using Bogolyubov–de Gennes equations as in Ref. 18
one can show that in the lowest order in transmission coef-
ficients the right-hand side of Eq. !53" is multiplied by the
product of the transmission coefficients, which is an intu-
itively clear result. We plan to present the details of these
calculations elsewhere.
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FIG. 5. Transition temperature of an SF bilayer as a function of
the magnetic layer thickness for different values of the spin orbit
scattering. Curve a is for 1/+so!0, curve b for 1/+so!0.5 h, and
curve c for 1/+so!0.9 h. Other parameters were taken to satisfy
%D6n*kM*/4ds6sTc0!0.1.

FIG. 6. Geometry of the SFS trilayer junction.
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