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Model for solute redistribution during rapid solidification

M.J. Aziz®

Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

(Received 24 July 1981; accepted for publication 6 October 1981)

A microscopic model for impurity uptake at a sharp crystal-liquid interface during alloy
solidification is presented in terms of the bulk properties of the liquid and solid phases. The
results for stepwise growth and continuous growth at the same interface velocity differ
quantitatively but exhibit the same qualitative features. A transition from equilibrium
segregation to complete solute trapping occurs as the velocity surpasses the diffusive speed of
solute in the liquid. The location of the transition varies little with equilibrium segregation
coefficient, and a kinetic limit to solute trapping is found to be quite unlikely. Comparison is
made with other models; critical differences are pointed out. Coupled with a growth velocity
equation and with macroscopic heat- and solute-diffusion equations, the model forms a complete
description of one-dimensional crystal growth. The steady-state solution to this system is
indicated for the case of a planar interface. The results are applied to describe regrowth from
laser-induced melting. Preliminary comparison with experiment is made. The steady-state
solution for thermal and impurity transport is suggested for use whenever detailed computer
calculations are unavailable or are unnecessarily involved.

PACS numbers: 81.10.Fq, 64.75. + g, 81.40.Ef, 79.20.Ds

I. INTRODUCTION

Until recently, descriptions of solidification of liquid
alloys have focused on the near-equilibrium limit, in which
the solidification speed is largely controlled by the rate of
transport of latent heat away from the interface. In this case,
crystal growth occurs slowly enough so that the solid and
liquid immediately on either side of the interface can be con-
sidered to be.in local equilibrium; i.e., their compositions are
given by the solidus and the liquidus on the phase diagram,
and the only problem is determining the interface tempera-
ture. However, experiments on chill casting of molten al-
loys," on solidification of small, highly undercooled liquid
droplets, and on thin molten surface layers created by pulsed
laser irradiation have produced such rapid interface motion
that the “local equilibrium” assumption can hardly be valid.
In fact, in certain systems with retrograde solid solubility,
splat quenching of molten alloys® and regrowth at velocities
u~1m/s from laser-induced melting®* have shown that
substantial departures from equilibrium at the interface
must exist. It was found that although the total free energy of
the liquid dropped, as it must, during crystallization, the
chemical potential of the minor component of dilute binary
alloys often increased. Solute concentrations far in excess of
the equilibrium solid solubility limit have been attained in
this manner. The discovery of this phenomenon, termed “so-
lute trapping,” ruled out local equilibrium and the idea that
the major and minor components act independently at the
interface during rapid solidification. This behavior under-
scored a need for more comprehensive knowledge of inter-
face structure and kinetics. In particular, the mechanism of
and the limits to solute trapping, of interest to those who
study atomic motions, have become important to techno-
logical applications of the newly-obtained enhanced
solubilities.
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A complete theory for the crystal-growth aspect of a
one-dimensional binary solidification problem requires the
simultaneous solution of four equations. There must be a
model relating the composition of the growing solid to that
of the liquid at the interface. There must be an expression
relating the growth velocity to the local conditions at the
interface (temperature, pressure, composition, etc.). Finally,
there must be equations for transport of rejected solute and
latent heat away from the interface. The simultaneous solu-
tion of these four equations tells us how the system will be-
have. The flow of heat away from the interface will cause an
interfacial undercooling sufficient to drive the transforma-
tion at a velocity matching, in steady state, that of thermal
escape. When growth is sufficiently slow, the interfacial un-
dercooling is negligible and the entire process is heat flow
limited. The second of the four equations may be ignored,
the interface temperature may be taken to be the liquidus
temperature, and the growth velocity may be found by solv-
ing the heat equation. However, if the temperature gradient
becomes steeper, the growth velocity increases to a point
where the finite interface mobility must be taken into ac-
count. The velocity-dependent composition of the growing
solid and the composition of the liquid at the interface, deter-
mined by the diffusion equation, determine the driving force
for the transformation after the interface temperature is
known.

It is estimated® that a transition to interface limited
growth begins when the temperature profile decays to ambi-
ent at a decay length of approximately 60 1. We expect both
solidification of sufficiently small droplets and regrowth
from laser annealing to be interface limited.

The basic idea behind solute trapping models is that
solute atoms, in order to avoid being engulfed by the growing
solid, must diffuse ahead of the interface. Solidification, in-
volving only short-range atomic rearrangements at the inter-
face and no long-range diffusive motion, can proceed much
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more rapidly than solute diffusion. Consequently, when
growth occurs with speeds u exceeding the diffusive speed

D, /A, where A is the interatomic spacing, and D, is the
solute diffusivity in the liquid, solute atoms are overtaken by
the advancing interface and incorporated into the solid.
The details of the engulfment process may vary. In this
paper the two cases of stepwise growth and continuous
growth are treated. (We are not concerned here with predict-
ing®” the transition from the former to the latter as the driv-
ing force grows.) The engulfment equation is combined with
an interface velocity equation and steady-state solutions to
the one-dimensional diffusion and heat equations to form a
system capable of predicting crystallization behavior.

Il. SOLUTE TRAPPING

The usual picture® of interface advance consists of sol-
vent and solute atoms in the liquid independently jumping
across the interface and joining the solid structure. The
growth rate is found by summing the net jumping rates for
each species. It now seems, however, that the incorporation
of an atom into the crystal is a process which occurs much
more easily and much more rapidly than the solute-solvent
exchange process, which is diffusive.* We expect that the
crystallization process is not a difficult one in metallic melts.
There is evidence® that the rate of the interface mechanism
for growth is limited only by the frequency of impingement
of atoms upon the interface. This means that the energy bar-
rier which an atom must surmount in order to join the crys-
tal is insignificant. In addition, such a jump is not a large,
diffusive-like jump of length A. The rearrangement step,
drawn schematically in Fig. 1, is a shift from an equilibrium
position in the liquid structure to that in the solid structure,
and is of much smaller distance.

Figure 1 illustrates a heuristic model of solute trapping
in two dimensions. Each atom in the solid and in the liquid is
vibrating about is equilibrium position created by the shell of
its nearest neighbors. The numbered atoms constitute the
monolayer in the liquid immediately to the right of the inter-
face. The lone impurity or B atom is number 4 in this mono-
layer. The equilibrium segregation coefficient is small be-
cause the lowest-energy arrangement of A-B bonds is with
the A-B-A bond angle at 60° and the B atom is more likely to

FIG. 1. Choreography of solute trapping.
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find such a configuration in the liquid. Now suppose that the
crystal grows a distance A by the indicated motions of atoms
1,2, 3, and 5. Atoms 4 finds the potential well in which it
vibrates shifting toward the lattice position and gaining po-
tential energy. As indicated by the solid arrow, the atom is
dragged along by its potential well, unless it happens to be
adjacent to a configuration in the liquid which allows it to
“roll” down the right side of the potential hill which it is
being dragged up. We will assume the fraction, a, of impuri-
ty atoms moving to the lattice deposition to be unity for the
rest of our calculations.’

If growth occurs by the rapid lateral passage of steps of
height 1, then the average time between the passage of steps
is 7 = A /u, where u is the growth velocity. The time it takes
atoms 2, 3, and 4 to shift to their lattice positions is negligible
when compared to 7, and the shifts can be treated as virtually
instantaneous. The impurity then tries to diffuse back to the
liquid. If it does not do so before a time 7 expires, then the
interface advances across another monolayer and the impu-
rity is permanently buried into the bulk of the solid, where
diffusion is negligible.

If continuous solidification occurs, the picture is not so
clear. The impurity atom is being dragged toward its lattice
site over a time of order 7. During this same time, it is trying
to diffuse away.

The model presented here will not predict whether step-
wise growth or continuous growth will occur, but the results
depend upon the answer to this question. References 6 and 7
indicate that for sufficiently small driving forces the step
mechanism will operate and for sufficiently large driving
forces the interface will advance continuously. The critical
driving force, where the transition occurs, will be very large
if the interface is discrete. It is still open to question whether

AVAVAVAVAV
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POSITION OF INTERFACE

FIG. 2. Free energy of system as a function of interface position. (a) Small
driving force, (b) critical driving force, and (c) large driving force.
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a driving force of such magnitude is attained in laser anneal-
ing of silicon. Figure 2, which is adapted from Ref. 6, is a
diagram of the free energy of the system as the interface
advances. In curve (a) the troughs represent complete filling
of the surface monolayer of the crystal. The humps represent
partial filling; some of the atoms in the monolayer have not
yet shifted from their liquid positions to their lattice posi-
tions. In effect, the surface energy is a periodic function of
position, with repeat distance A. The surface energy is added
to the driving force, expressed as a free energy gradient, to
produce the curves in Fig. 2. The interface cannot be ther-
mally activated across the humps in curve (a) because all of
the atoms in the liquid monolayer adjacent to the interface
must participate in such a jump; its only means of advance-
ment is via the step mechanism. In curve (b), the driving
force is just large enough for the interface to slide down the
energy hill without having to climb. Note that the interface
might be expected to move rapidly across the steeper parts of
the curve and move more slowly across the flatter parts of
the curve. Consequently, the impurity atom in Fig. 1 would
experience a situation similar to that in stepwise growth: the
interface moves rapidly across the monolayer and then
pauses while the impurity tries to diffuse out. In curve (c), the
driving force is so large that the humps are insignificant. In
this limit, the interface advances steadily while the impurity
tries to keep up with it.

A. Stepwise growth

In this regime, the interface can be considered locally
planar (the wide range of stability of a planar interface is

Fg ----att=0
during O<t=<t
a)
A""'B“
Dug
c position of interface
Cul- N R
b) I \|~\'\\‘\
Co— : ==
} ——— at t=0
Clt)=—-Y - at somed
intermediate
Cs— PR time t
eded — ot ter
z

FIG. 3. Standard free energy of impurity atoms, concentration of impurity,
and interface positon. (a) standard free energy of impurity at = 0 {dashed
curve) and at 7 = 7 {solid curve). For continuous growth, the curve evolves
from the former to the latter in some unknown manner during 0 < t < 7. For
stepwise growth, the dashed curve instantaneously shifts to the solid curve
at t = 0" and remains there for O < t<7. The solute fluxes J, ., and J, .,
across the activated state are depicted. (b) solute concentration drawn as a
continuous function of position at ¢ = 0{dashed curve), at intermediate time
(dot-dash curve), and at ¢ =  (solid curve). C,;(z) drops during stepwise
growth from C,; att =0to C, atr=r.
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discussed in Ref. 10}, as depicted in Fig. 3. The advance of
the interface at ¢ = 0 incorporates one liquid monolayer, in-
cluding all solute atoms, into the growing crystal. If C; is the
impurity concentration in the newly-created solid interfacial
monolayer and C;; is the impurity concentration in the liquid
at the interface (to be determined by the solution to the diffu-
sion equation), then C,(t = 0) = C,;. The impurity atoms in
the solid monolayer then have some time to diffuse back into
their low-energy states in the liquid. Those remaining are
frozen into the bulk of the solid as the next monolayer is
added at r = 7, whereupon the entire process repeats itself.
The negligible diffusivity in the bulk of the solid results in the
composition of the growing solid,, C;, being equal to that in
the monolayer at the instant it is covered: C, = C{7).

Chemical rate theory gives us expressions for the diffu-
sive impurity flux across the inteface for 0 < ¢ < 7. The flux
into the liquid from the solid monolayer is given by

— Aud*
fo»l(t ) =f;‘Vxﬂ.7/s Csi(t ) exp( R—;f_), (1)

where /, is the fraction of sites in the solid monolayer where
an atomic jump can occur, v, is the attempt frequency,
which is on the order of an atomic vibrational frequency, 7,
is the activity coefficient of solute in the solid, C,; is the
instantaneous impurity concentration in the surface layer of
the solid, Au%* is the molar free energy of activation to the
transition state, R is the gas constant, and 7 is the interface
temperature. Similarly, the diffusive flux in the opposite di-
rection is

Ox 0
Aug* — Aug >, 2)
RT,

where f; is the fraction of sites in the liquid monolayer where
such an atomic jump can occur, v, is the attempt frequency
in the liquid, ¥, is the activity coefficient of solute in the
liquid, C;; is the solute concentration in the liquid at the
interface,'" and AuY is the change in the standard molar free
energy of solute upon crystallization. Assuming negligible
diffusivity in the bulk of the solid, mass conservation re-
quires AdC,,/dt = J,_, — J,_.,. Inserting Egs. (1) and (2) into
this, and defining the “interface interdiffusivity”
D.=A%v,y, exp( — Auy*/RT;) and the equilibrium segre-
gation coefficient (at any undercooling)

k=" exp( — 4u3/RT)),

K}

Jis =fividviCy; CXP(

we obtain
dc, D, v,
Tl —’[ o I 3)
dt A WV

Detailed balance at equilibrium requires f,v, = f;v,. Equa-
tion (3) becomes

dcC,; — D,
— = -~ [Cult) — k. Cy ],
d[ A 2 [ B ( ) 1 ]
a differential equation for C,;(¢ ) with the boundary condition
C,(0) = C,.. The solution is

Dt
Cult) =, [kc.(T,») +[1- ke(T.-)]exp[ I ]]

M. J. Aziz 1160
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Diffusion to and from this layer comes to a halt when the
next monolayer is added at t = 7 = A /u, and the remaining
solute is permanently frozen into the solid. Consequently, if
X, is the mole fraction of impurity in the solid and X, is the
mole fraction of impurity in the liquid at the interface, and if
we ignore the volume change upon crystallization,

Xx(Xli’u,T,‘)
=Xli[ke(Ti)+ [1 —ke(Ti)]exp[ ——l” (4)
ud

We expect,'” for a sharp interface, D, ~ D, . Preliminary
plots of Eq. (4} are made using T, = T,, and D, = D, inFigs.
4 and 5. Solutions for T, (u) for several systems of interest are
in progress. Note that the model predicts equilibrium segre-
gation for u<D, /A and complete solute trapping for
uy D, /A, with the transition occurring over approximately
an order of magnitude in u. The location of the transition
will depend upon T (u) and D,. However, the limits will re-
main unchanged as long as the liquid is so dilute that there is
not interference from the thermodynamic limits to trapping
discussed by Baker and Cahn'? and by Cahn, Coriell, and
Boettinger. '?

B. Continuous growth

When the interface advances at a relatively uniform ve-
locity, the potential surrounding the solute atom as it moves
during regrowth is constantly changing in an unknown way
(see Fig. 3). Wood'* has suggested a molecular dynamics
calculation to explore this behavior. It is possible, however,
without such detailed knowledge, to write solutions for dif-

10 T T T
S
Cri
075— 1
050} b/[e ¢ .
0.25- X -
X
+
+
+
0 | |
20 0 0 10 20 30
log (&%)

i

FIG. 4. Bismuth (k, = 7x 10~ *) segregation in silicon. (a) stepwise growth
model (this work), (b} continuous growth model (this work) and JGL, and (c)
Baker model. X —Baeri et a/. data (111). + —Poate data (100). Data
plotted assuming D,/A = D, /A = 10 m/s. Theoretical curves plotted as-
suminga=1,T;, =T,,.
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FIG. 5. Arsenic (k, = 0.3) segregation in silicon: (a) stepwise growth model
{this work); (b) continuous growth model (this work) and JGL; (c) Baker
model. {d) Data, plotted assuming D,/4 = D, /A = 10 m/s. Theoretical
curves plotted assuminga = 1, T, = T,,.

fusive-type rate equations describing solute jumping across
the interface, if we assume that we have steady-state fluxes.
We also assume that some kind of an activated transition
state must be reached in order for any jump to occur, as
shown in Fig. 3. Once again, the activation energy for solute-
solvent exchange (jumps of length A ) must be significantly
greater than that for crystallization (jumps of length < 4 ).
Without linearizing (which, we will see, leads to the standard
diffusion equation and Baker’s results'®) the resulting rate
equations for solute jumps of length A across a sharp inter-
face, we find the steady-state solution in a reference frame
moving with velocity u, its origin fixed on the interface.

In such a reference frame, the requirement of the steady
state in one dimension is that the flux be the same every-
where so that no solute buildup occur with time. If J (z) is the
net diffusive impurity flux and C (z) the impurity concentra-
tion, the steady-state requirement is

i(J—uC)=O
Jz

because «C (z) is the nondiffusive flux due to center-of-mass
motion. Since dC /dz = (C,; — C,;)/A and"’

aJ /3z = (J,_,; — J_,)/A, the steady-state requirement
becomes

Jow —Jis =ulC; — C). (5)

The rate Egs. (1) and (2) from the previous section are insert-
ed into Eq. (5) to give us

uC, — Cy)

_ A#O* . Aﬂo
=/fiv,A CXP( “‘kTTi—B)(Cx ¥e — Cuy, exp —ET,_B -

With D, and &, (T;) defined as before, and defining the
dimensionless velocity B =ul /D,, this becomes

M. J. Aziz 1161
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B(Cli - Csi) = Csi - keclr"

or, with negligible diffusion in the solid so that C, = C,;
(which, in a steady-state formulation, does not vary with
time), we have

CS B + ke
Cu B+1
This expression'® approaches the limiting values of k, when
u—0 and 1 when u» D, /A. The transition from equilibrium
segregation to complete trapping, shown in Figs. 4 and 5,
begins at lower velocities than it does in stepwise growth, but
ends at the same velocities. These two cases may represent
limits for solute trapping during the transition regime where
interface motion is neither virtually instantaneous and step-
wise nor virtually constant and continuous.

k'=

(6)

C. Growth velocity

For pure systems, the interface velocity has been
written'’'°

u=fkA[l- exp(A_G—/RTf)],

wheref(hkl )is the fraction ofinterface sites which are growth
sites, &, is the atomic hopping frequency across the interface,
and AG is the change in molar free energy upon crystalliza-
tion. In metallic melts, it has been proposed'>**-2 that
growth is impingement limited, resulting in &, =~v, =u /A4
and

u = fu,[1 — expldAG /RT,)], (7)

where u, is the speed of sound. In alloy solidification, it
seems difficult to treat the two species individually since we
know they cannot be thought of as independent. Conse-
quently, we will assume complete dependence, i.e., that the
impurity atoms make the same jump as do the solvent atoms,
that Eq. (7) still holds, and that AG is given by the weighted
average of the changes in the chemical potentials:

4G = [uX,) ~ P X) (1 - X,)
+ [p2X.) = pPX) (X, (8)
When we insert (7) into (8) the result is

(X)) — &)1 = X,) — [wP(X,) — uP(X,)]
+RT, In{1 — u/fu,)=0. (%)

The first term is the decrease in free energy of the solvent
during solidification; the second is the gain in free energy of
the trapped solute. The final term is the free energy dissipat-
ed in driving the interface motion. Thompson and Spaepen®?
have developed a reliable method of estimating the chemical
potentials of interest here.

Note the approximation implicit in Eq. (8). The instan-
taneous freezing of a monolayer is accompanied by a change
in free energy which is strictly given by

AG, = [uf(X,) — uPX,) (1 — X,,) + [uPX;) — 1P(X,) 1(X,).
We see that such a process is only possible below the T, line
on the phase diagram, since 7, <7T,(X};), if and only if 4G,
<0. If X; becomes too large, then T, will drop below T, and

we will find the instantaneous freezing process unable to pro-
ceed. In this case, the passing ledge must wait for diffusion to

1162 J. Appl. Phys., Vol. 53, No. 2, February 1982

eliminate enough solute from the liquid interfacial mono-
layer to bring 7,(X,,} back above T;.2* We do not know how
far beyond 7, the system brings T,(X,;) before the monolayer
actually freezes; it is believed®?> not to be very far. We avoid
these difficulties by writing Eq. (8), which gives AG<0 when-
ever solidification can occur.?® In addition, whenever u is
slowed enough to allow significant diffusive solute escape
before the monolayer freezes, Eqgs. (4) and (6) will predict
significant diffusive solute escape, and the resulting error
when T, > T, may not be very large. Below the T, line, Eq. (8)
actually gives the sum of the free energy dissipated to drive
the interface motion and that dissipated to drive solute-sol-
vent exchange. We are overestimating the former by assum-
ing the latter to be insignificant?” when we combine Eq. (7)
with Eq. (8). The resulting error goes to zero as the velocity
increases and the solute experiences complete trapping. In
any system, we will always have 7, < T,, when the solution is
sufficiently dilute. In summary, the approximation implicit
in Eq. (8) is that the free energy dissipated in driving solute-
solvent exchange is significantly less than the free energy
dissipated in driving the interface motion.

Equations (4) and (9) or (6) and (9), are the two “‘response
functions” of the interface to the local conditions. They are
similar in some ways to other recently published models;
comparisons are made in the next section.

lli. COMPARISON TO OTHER MODELS

Baker model. This analysis'® treats a planar interface as
a continuum. The energy of a solute atom E {z} is a constant
E, in the liquid, a constant E| in the solid, and is given the
value E; at the center of the interface, which has width 24.
E (z) varies linearly from E, to E, to E, across the interface.
The standard diffusion equation is set up and solved in
steady state, in a reference frame fixed on the interface,
whose velocity is . The ratio of the steady-state composi-
tions on the two sides of the interface is the segregation coef-
ficient. Baker’s model does not predict the growth velocity.

In the moving reference frame, the diffusion equation is

dC/dt= —uVC+ V.J,

where C (z) is the impurity concentration and J (z) is the diffu-
sive impurity flux. The approximation is made that the diffu-
sive flux is proportional to the driving force,
J = (DC /RT) Vu, although the chemical potential gradient
may be quite large. The chemical potential is written
uiz) = E(z) + RT In C(z), giving

J= —DVC - (DC/RT)VE. (10)
The first term is the familiar diffusive flux through a uniform
medium. The second term represents solute sliding down an
energy “hill” which is the interface. If E;, = E, and § = 4,
the result is
C

. B+1Ink,
Cy

= , (11)
B+ —]g—lnke exp( — B)

4

k'=

where 8 =Au/D,. This expression, plotted as curve (c) in
Figs. 4 and 5, goes to the same limits of equilibrium segrega-
tion and complete solute trapping as do ours, but the transi-
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tion occurs for small £, at velocities which are quite high
compared to the diffusive speed D, /A4 . This is a direct con-
sequence of the linear approximation which leads to Eq. (10},
As k, becomes smaller, E, — E, and hence VE become arbi-
trarily large. According to Eq. (10), an arbitrarily large diffu-
sive flux is possible across the interface, which seems unlike-
ly. It allows solute to escape back into the liquid when it
might otherwise be trapped, if the flux were limited.

In our model for continuous growth at a sharp inter-
face, we would arrive at a similar result if we were to linearize
J=J_ , —J_., in Vu. By refraining from doing so, we find
the diffusive flux approaching an upper limit when ¥ u be-
comes so large (i.e., k, becomes so small) that the back reac-
tion J;_,; goes to zero.

Jackson-Gilmer-Leamy Model. This analysis,?® which
will be referred to as JGL, sets up rate equations for hopping
of both solute and solvent atoms acrass the interface. These
equations are used to describe both crystallization and so-
lute-solvent redistribution, ignoring the basic difference be-
tween the two atomic processes. The growth velocity is taken
to be the sum of the net fluxes of A and B atoms, and an
expression for the solid composition is arrived at by taking
the ratio of the net fluxes. In addition, it is supposed that a
fraction, a, of the impurity atoms are trapped in some man-
ner into the growing crystal. To the impurity crystallization
flux, determined by one of the rate equations, they add this
trapping flux.

The rate equations for solute hopping are written in the
same form as those for solvent hopping. JGL’s equations (1)
become our equations (1), (2),

2. = CR MV exp( — Au*/RT,),
Jiu=C}fMviAexplldul — 4uR)/RT,],

(12)

andJ 7., = auC}}. The notation of JGL translates into ours

asfollows: R F =QJ} R =0J2 RS =,
Ry =072 ,,0, =4h%, Qs =4h%* —RTInv,,
E:Ah% +RT1n 7/5/7//’

(R X Jo=Af1v exp(dsi*/R),

(R 5 )o=AfPvP exp[(Asy* + 4s3)/R ),

(R A )o=AfM0exp[(As%* + A5, )/R ],
and (R 5 )o=A4f2v? exp(ds3*/R),

where £ 3 g = 5 + T52 , is the standard partial molar
enthalpy of A and B, and {2 is the molar volume. {The pre-
viously implicit superscript B is written explicitly only in this
section.) The standard states are defined to be pure A and
pure B. Detailed balance is invoked for both species in equi-
librium at temperature 7,. Applied to the solvent, it requires
SV 2 =(C2/C %) explAu /RT,). For regular solu-
tions in the solid and in the liquid at the interface, the re-
quirement becomes JGL’s Eq. (2): f1v} = f2v*. Recall
from Sec. II that detailed balance for the minor component
implies f?vP = fPvF, which gives, in the notation of JGL,

X7 —E Q
Ry = =2 (R F)ex - == 13
B ke { B )0 p(RT,_(XE- RT‘) ( )
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Here T, (X }}} is the liquidus temperature at composition X 2,
which becomes T 4, for sufficiently dilute solutions. Equa-
tion {13)is equivalent to JGL’s Eq. (4). When pure B does not
have the same equilibrium crystal structure as does pure A,
it should be noted that the latent heat needed for such a
calculation is that of pure B when B is in the metastable
crystal structure which is crystallizing out of the liquid in the
binary solidification problem: it is nof the latent heat of fu-
sion of pure B liquid to the pure B equilibrium solid phase. It
may be possible in such cases to estimate Ah 3 from a fit of
the relevant portion of the phase diagram to a regular solu-
tion model.

The growth velocity is given by the sum of the net
fluxes,

(Jlas J;‘:—»[ +JB-»V +Jtrap - _?4-1)» (14)

and the solid composition is deduced from the ratio of the net
fluxes:

C : I-»s + '] ?rap
C A - J fas - J?—-[
These are combined to produce JGL’s Eq. (10):

_]B

s—1

i C; ViL/CH+au
TCr o WEL/CHEu
In terms of JGL’s dimensionless velocity V =uC 4/J %, we
have
aV+(CHP2 . /CRIP
k, — ( I [ ) . (15)
V+I(CRE/CATR)
We get the ratios of the fluxes from the rate equations:
J?z C%f?"??’
= > k, exp[(AuS* — AuS*)/RT,
ﬁ-,s CAfiA pl(Ap ) :]
and
Ji, _ Cly,
= - exp(dr — AudV/RT, ]
s Ii 7’1 R73
JGL assume 7y} exp[(4sR* + 4s5)/R )
= f1'v* expldsi*/R ), which turns Eq. (15) into
ho* —ARS* 45
aV+yk, ex ( A = B)
, oke exp| —" n
k= ; (16)
Vo e (Ah";—Ahg* Asg)
¥, exp RT, =

this is equivalent to JGL’s Eq. (15). If we assume instead that
vt = fPvP=fv, the result is

Aul* Ox
, RT;
k= . o (17)
Ve (__é____*’__)
Vs €Xp RT,
ifa=1.

If we choose ¥} exp( — Au$*/RT,)
= Va exp( — 4u3*/RT,), parallel to the suggestion of JGL
that O, = Q@p for substitutional alloys, then we can show
that F"becomes ul /D,. Equation (17) then becomes
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FIG. 6. Steady-state temperature and composition profiles in reference
frame moving with interface.

k'={B+k)/B+1),

which is formally identical to our continuous growth result,
Eq. (6). However, we will see that in this case the growth
velocity is limited by the diffusive speed; i.e., Bis restricted to
the range 0<<1. From Egq. (14), it follows that

u=(J . /CH[1 — exp(dus /RT,)]. But if AuS* = Aup*

— RTIny,, then from Eq. (12) we getJ . /C# =D, /A,
and hence u<D,/A. Such an upper limit on the growth veloc-
ity results in an effective kinetic limit to the segregation coef-
ficient at

() = (1 + K, )/2.

This result is the left half of curve (b) in Figs. 4 and 5, in the
region log(ud /D,)<0. We would arrive at a similarly trun-
cated curve if, instead of Eq. (7), we had written®®

D, _
u= - [1 — expldG /RT}}].

IV. DIFFUSION AND HEAT EQUATIONS

We have seen how the interface responds to the local
conditions of temperature and composition. In order to
make any comparison with experiment, we must derive the
local conditions from the ambient conditions. In general,
solutions to the heat equation and the diffusion equation are
quite complicated and require sophisticated computer tech-
niques.**3? A macroscopic steady-state analysis, however, is
relatively simple. Consider a semi-infinite crystal growing
with a constant velocity « to the right into a semi-infinite
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liquid of bulk composition X, and temperature T,,. Figure 6
depicts the situation in a reference frame moving with re-
spect to the center of mass, its origin fixed on the interface.
The interface temperature is 7';; its composition is X,; on the
liquid side and X; on the solid side. The temperature gradi-
ent at the interface is VT, on the liquid side and VT ; on the
solid side. Convection in the liquid is assumed to effect com-
plete mixing at a distance / from the interface; betweenz = 0
and z = [ is a liquid boundary layer, where transport is as-
sumed to occur only by thermal and impurity diffusion.*’
Ignoring the Soret effect and any dependence of the diffusi-
vity D, upon concentration or temperature, Fick’s law is
written dC /3t = D, V*C + uVC in a reference frame mov-
ing to the right with velocity # with respect to the center of
mass. In steady state, dC /9t = 0so V°C = — uVC/D,,or
equivalently, V2X = — 4VX /D, . In a similar manner we
obtain VT = — uVT /D, for Fourier’s law for thermal dif-
fusion, where the thermal diffusivity in the liquid D; is given
by K /pC,. Here K is the thermal conductivity, p is the densi-
ty, and C,, is the specific heat at constant pressure. Note that
these two equations require the sign of the curvature to be
opposite to that of the gradient. If the temperature and com-
position are to remain bounded, the only possible steady-
state profile in the solid (z < 0) is T = constant, C = con-
stant. Figure 5 has been drawn accordingly: X, = X,

T, =T,, VT,; = 0. The other boundary conditions are

—D, VX, =X, — X Ju, (18)
(conserving solute at the interface) and
=D, VT, =L(T,, X,, X,,)u/C,, (19)

(conserving energy at the interface). We may be able to esti-
mate the latent heat L rejected upon forming solid of compo-
sition X, from liquid of composition X; at temperature T,
from thermodynamic data. The solutions are

Xy =X, + (X, — X,)exp( +ul /D), (20)
T,=T,+ [1—exp(—ul/D;)]L /C,. 21

In principle, Egs. (4 or 6), (9), (20}, and (21) can be solved
simultaneously to give X, T;, X;, and u in terms of X, and
T,. Numerical solutions for certain systems of interest are in
progress.

V. APPLICATION TO LASER ANNEALING

The previous analysis can be applied to periods of
steady-state behavior during processes which, in their entire-
ty, are not steady. For example, Levi and Mehrabian* find a
transient period and a steady growth period in their analysis
of the solidification of undercooled metallic liquid droplets.
Regrowth from laser-induced melting also appears to occur
at velocities changing by less than a factor or two during
most of the regrowth.>®3! For the latter case, however, virtu-
ally all of the heat is extracted through the solid and Eq. (21)
must be replaced.

A. Modification of steady-state solution to heat
equation

When a temperature gradient exists in the solid at the
interface, conservation of energy at the interface requires Eq.
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FIG. 7. Laser-induced temperature profiles in solid and liquid. {a) Immedi-
ately after laser pulse, and (b} at commencement of steady-state regrowth.

{19) to be rewritten
D(VT, —VT,;)=Lu/C,. (22)

For thermal transport during laser annealing, we use this to
replace Eq. (21) as the fourth equation of the system to be
solved. We can approximately determine the temperature
gradients as follows.

For most cases of practical interest®® an incident planar
laser pulse of duration ¢, creates a temperature profile whose
decay length d is given by d = (2Dr1,)"'?, where Dy is the
thermal diffusivity of the solid; we will ignore the variation
with temperature of D and the difference between this and
the thermal diffusivity of the liquid. The initial profile, in a
semi-infinite solid occupying the half-space 20, is roughly
exponential as shown in Fig. 7; the details of the deviations
near the surface (z = 0) are unimportant. The pulse energy
per unit area E, and the pulse duration dictate /,, the initial
depth of melting. We let the absorbed energy per unit area £,
account for the latent heat of melting and for the tempera-
ture rise in the material. We assume that the exponential
profile is not significantly disturbed by the presence of a sol-
id-liquid interface®® during melting, and we locate the melt
front by finding the point of the exponential temperature
profile where 7'(z) = T,,.*" Letting T be the surface (i.e., at
z = 0) temperature, we have

T(z)— T, = (T, ~ T,) exp( — 2/d ).

We locate the initial depth of melting at z = /, by setting
Ty =T{)=T, + (T, — T, exp( - 1,/d),

which yields
I'=T,+(Ty, — T,)exp( + 1,/d). (23)

Assuming constant specific heats, the energy put into the
system per unit area is

t35

Ey=(1—R,)E, =1L +f [T(z)—T,]C, dz
(¢}
=LL + (T, — T,)C,d, (24)

P
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where T, is the ambient temperature of the solid, R, is the
reflectivity of the liquid, and L is the molar enthalpy change
upon melting solid of composition X at the temperature T,
of a superheated interface, which we will approximate by the
latent heat of fusion of pure solute at T },. Combining (23)
and (24}, we have an expression for /;:

(1—-RE, =1L+ (T, —T,)exp(+1,/d)C,d, (25)
which can be solved on a hand calculator for /,.

Calculations indicate®**! that the hot liquid cools to
nearly uniform temperature?® with relatively little interface

motion before steady-state regrowth begins. We estimate the
time ¢, necessary for such heat conduction to occur by

(ZDth)l/z’:ll-

During this time, the temperature profile in the solid broad-
ens. We still approximate it by an exponential curve, but the
new decay length is

d'= [2D.{t, +1,)]" = (> + 1)

During rapid regrowth, the interface is significantly under-
cooled to temperature T;. The temperature profile is roughly
described by:

T@Z)=T, 0<z<l,
Tiy=T, +(T; — T,)expl —(z - 1,)/d"}],

We find the gradient in the liquid at the interface to be essen-
tialy zero and the gradient in the solid at the interface to be
VT, L -7, (26)
st (d2+lf)”2.
This temperature gradient remains roughly constant®® dur-
ing steady-state regrowth.

The values of VT ; predicted by Egs. (25) and (26) are in
reasonable agreement with those of Surko ef a/.*° and of
Wood and Giles.”! Using L = 4192 J/cm?, C, = 2.117
J/em’K, Dy = 0.7 em?/s, T, =20°C, and R, = 0.57 for
comparison with Surko eral. and R; = 0.60 for comparison
with Wood and Giles, the results in Table I are obtained. We
have also taken T; = T3, = 1410 °C for the purpose of com-
parison. The resulting gradients are all within a factor of two
of the results of the computer calculations, which were taken
from Fig. 1 of Ref. 29 and from Fig. 3 of Ref. 30. Conse-
quently, for a good approximate description of regrowth
from laser-induced melting, Eq.(22) becomes

z>1,.

D,VT, = Lu/C,, (27)

TABLE 1. Comparison of predicted temperature profile characteristics
with computer calculations.

E, L d 1, d’ VT,
(J/em?) (ns)  (um) (um) (um) (10°K/cm)
Wood and Giles 1.75 25 — 0.7 3.6 39
This work 1.75 25 1.87 0205 188 74
Wood and Giles 125 25 — 045 2.1 6.6
This work 1.25 25 1.87 0 1.87 74
Surko et al. 4.5 33 — 1.3 1.8-5.3 7.7-2.6
This work 45 33 2.15 153 280 5.0
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with VT, given by Eq. (26}. Equations (4} or {6), (9), (20), and
(27) form a system of four equations which predict laser an-
nealing behavior from knowledge of E,¢, T.,X,,and . The
remaining unknown is the boundary-layer thickness /, which
is estimated in the following section.

B. Estimate of boundary-layer thickness for solute
diffusion

Solute transport in the melt has been assumed to be
purely diffusive out to a distance / from the interface, beyond
which convection effects complete mixing in the liquid.** A
1-u thick layer of laser-melted Si is five orders of magnitude
too thin for natural convection*® to set in. Convection can,
however, be induced by the variation of surface tension with
temperature, by the volume change upon melting and re-
growth,*? and by nonuniformities in the radiation pressure
during melting.

If the last effect dominantes, an estimate of the fluid
velocity can be obtained by assuming all of the radiation
momentum to be transferred to the fluid. If half of the fluid
acquires momentum p, and the other half acquires — p,, we
have

(14 R,)E, 4 /c = p; = puglhd /2),

where c is the speed of light, , is the induced fluid speed, 4 is
the area of the molten spot, and /, is the depth of the liquid
layer.

The induced convective motion is assumed to be as de-
picted in Fig. 8. Fluid motion near a point such as point S ”
is described by a “stagnation point profile”.”* The velocity u
at a distance z from the interface is equal to u,/2 when

0.5=z ( M)w
/)

where x is the horizontal distance from S, p is the density,
and 7 is the viscosity. If we let this define the length / (x} in the
neighborhood of stagnation points separated by a typical dis-
tance /,, then we average across the interface to get

77[ 1/2
1= ({l(x))=0.23 (——'—) . (28)
U p
For the 33 ns pulse described by Surko ez al., E, = 4.5 X 10’
erg/cm?, giving u,~20 cm/s and /~0.7 z with an uncer-
tainty of perhaps an order of magnitude. Note in cases where
! is greater than /,, that the steady-state solution, Eq. (20}, to
the diffusion equation will only be useful in a qualitative
manner. A slightly more sophisticated analysis, perhaps like
the “quasi-steady-state”” treatment of Liau ez al.,** may be
appropriate. However, whenever sophisticated computer
techniques are unavailable or are unnecessarily involved,
Eqgs. (26) and (28) are probably sufficient.

VI. PRELIMINARY COMPARISON WITH EXPERIMENT

Equations (4) and (6) for solute trapping cannot be truly
tested until 7;, C,, and u are either solved for or measured
during an experiment. Baeri ezal.*’ have calculated the latter
two variables and measured C; during laser annealing of
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Si(Bi). During the calculation of the growth velocity it is
assumed that 7, = T, and also that u is independent of C;.
These assumptions are questionable; those which lead to Eq.
(9) seem more appropriate. We can still make a preliminary
comparison of the predictions of Egs. (4) or (6) with such
experiments with the following caveats. The theory is only
for dilute solutions at this point, since no solute-solute inter-
action has been considered in the kinetic analysis. In addi-
tion, we have no way of knowing a and D, at present; we
expecta = land D, =D, =107 °cm?/s, which we have cho-
sen for comparison. Instead, we could use them as free pa-
rameters to be found by fitting the data. The activity coeffi-
cients, ¥, and y,, are at present unknown in Si(Bi), Si(As), and
in many other systems of interest; they must be estimated for
use in Eq. (9). Finally, the orientation dependence of f'(if
faceting occurs) or of the ledge height and of 4u%* (if no
faceting occurs) has been ignored so far, as has any tendency
for solute adsorption or desorption at the interface. On the
other hand, the experimental curves and points in Figs. 4 and
5 may appear somewhat different after accounting for the
solute effect upon growth velocity and for the effects of an
undercooled interface, using Eq. (9), for example. In addi-
tion, the tendency for some systems, e.g., Si(Bi), to phase
separate in the liquid state may introduce some uncertainty
in the local value of C;.

The data of Baeri et al. are plotted with the theoretical
curves in Figs. 4 and 5. The observation of complete trapping
of arsenic at very low velocities cannot be explained unless
D, <1073D, . The tendency for bismuth trapping to saturate
near k' = 0.3 may be explained, if the calculations of v are
not significantly in error, in two ways. Either the experi-
ments have demonstrated a kinetic limit to trapping*® and
we must conclude a = 0.3 in Si(Bi) or else C;, has come too
close to the T}, line and the experiments have run into a ther-
modynamic limit to solute trapping. In the former case, we
expect to see anomalously large vacancy concentrations (or
dislocation loops formed by their conglomeration and col-
lapse) in the grown crystal. In the latter case, cutting the
bismuth dose should increase the maximum segregation co-
efficient observed. Accounting for the orientation depen-
dence of D, and of A (note A,,,/A4 9o = 2.3) will shift the theo-
retical curves to positions consistent with the orientation
dependence of the data.
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FIG. 8. Assumed convection profile. / (x) is the height at which u = u,/2.
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VIl. CONCLUSIONS

We have developed a microscopic model for solute in-
corporation at the surface of a rapidly-growing crystal with-
out having to resort to the unknown properties of the solid-
liquid interface. The results for stepwise growth and for con-
tinuous growth have slight quantitative differences but ex-
hibit the same qualitative features. They predict complete
solute trapping when growth is more rapid than the diffusive
atomic motion of solute trying to escape. The crystal growth
process itself is limited only by the impingement frequency
of atoms upon the crystal-melt interface and can conse-
quently occur much more rapidly than the solute-solvent
redistribution process, with velocities approaching the speed
of sound. The location of the transition from equilibrium
segregation to complete trapping varies little with equilibri-
um segregation coefficient, unlike that of Baker. We find a
kinetic limit to solute trapping to be quite unlikely, in con-
trast to the amended model of Jackson, Gilmer, and Leamy,
which predicts an absolute maximum of (1 + k,)/2 for the
impurity segregation coefficient.

Coupled with macroscopic heat- and solute-diffusion
equations, the model is capable of predicting rapid steady-
state regrowth velocities and solid compositions from
knowledge of the ambient temperature and of the bulk com-
position of the liquid. With minor modifications, the results
can be applied to describe regrowth from laser-induced melt-
ing. The temperature profiles so obtained are roughly consis-
tent with computer-generated solutions to the heat equation,
where the latter exist. The heat-flow and liquid-diffusion
analyses presented here are suggested for use whenever the
finite-element results are unavailable or are unnecessarily
detailed. The assumptions of no interfacial undercooling and
no effect of solute upon the driving force should be replaced
by a growth velocity equation such as Eq. (9). Preliminary
comparison with experiment indicates the possibility of an
unexpectedly low interface diffusivity of As in Si and also the
possibility of an unexpected saturation of Bi trapping in Si.
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