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Abstract

Over the past decade, networks have become a leading model to illustrate both the anatomical 

relationships (structural networks) and the coupling of dynamic physiology (functional networks) 

linking separate brain regions. The relationship between these two levels of description remains 

incompletely understood and an area of intense research interest. In particular, it is unclear how 

cortical currents relate to underlying brain structural architecture. In addition, although theory 

suggests that brain communication is highly frequency dependent, how structural connections 

influence overlying functional connectivity in different frequency bands has not been previously 

explored. Here we relate functional networks inferred from statistical associations between source 

imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined 

by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain 

activity over a long time scale (minutes) and relate inferred functional networks to underlying 

structural connectivity for broadband signals, as well as in seven distinct frequency bands. We 

find that cortical networks derived from source EEG estimates partially reflect both direct and 

indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we 

find that when structural support is absent, functional connectivity is significantly reduced for high 

frequency bands compared to low frequency bands. The association between cortical currents and 

underlying white matter connectivity highlights the obligatory interdependence of functional and 

structural networks in the human brain. The increased dependence on structural support for the 

coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy 

directly shapes emergent brain dynamics at fast time scales.
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Introduction

Network science provides an intuitive framework to study brain organization. Over the past 

decade, networks have become a leading model to illustrate both the anatomical 

relationships (structural networks) and the coupling of dynamic physiology (functional 

networks) linking separate brain regions. Alterations in functional and structural brain 

networks have been reported in normal cognitive processes (Uhlhaas et al., 2009; Hipp et 

al., 2011), across development (Hermoye et al., 2006; Micheloyannis et al., 2009; Power et 

al., 2010; Boersma et al., 2011; Smit et al., 2012; Chu et al., 2014), and in a wide range of 

neurological diseases (de Haan et al., 2009; Uhlhaas and Singer, 2010; Kramer et al., 2010). 

Although brain functional networks are embedded in anatomical space, a complete 

understanding of the associations between functional and structural networks remains an 

active research area (Rubinov et al., 2009; Honey et al., 2009; Honey et al., 2010). A better 

understanding of how anatomical scaffolds support complex, temporally organized brain 

activity is necessary to study normal cognitive processes, as well as to improve 

identification and prediction of alterations in brain function in disease states.

Brain structural networks are believed to conserve energy by minimizing longer axonal 

projections while simultaneously maximizing integration between local brain regions 

(Bullmore and Sporns, 2009; Chklovskii et al., 2002; Klyachko et al., 2003). Tissue based 

dissection and tracing methods in non-human primates have found that functionally related 

cortical areas are connected by shorter anatomical path length (Fellemen and van Essen, 

1991; Hilgetag et al., 2000, Averbeck and Seo, 2008). New analysis techniques applied to 

modern neuroimaging data have enabled in vivo evaluation of white matter tracts to map the 

anatomical wiring between brain regions as well as the correlations between hemodynamic 

blood-oxygen level dependent (BOLD) signal fluctuations in different brain regions. Work 

in humans has consistently reported a strong association between structural and functional 

brain networks obtained using co-registered white matter tractography with low frequency 

BOLD oscillations (Greicius et al., 2009; Damoiseaux and Greicius 2009; Rubinov et al., 

2009; Baria et al., 2011; Goni et al., 2014). Computational models simulating dynamic 

activity suggest that structural networks constrain functional networks across many times 

scales (Ponten et al., 2010; Honey et al., 2007; Hlinka and Coombes, 2012). However, in 

human studies and simulations, brain anatomy does not fully predict the spontaneous 

functional associations observed.

Prior work relating functional and structural brain networks has focused on functional 

networks derived from hemodynamic oscillations in the brain, a surrogate marker for 

neuronal activity. How and whether the associations between direct measures of cortical 

currents relate to underlying brain structural architecture remains unclear. Recent work has 

shown that fMRI BOLD signal fluctuations may co-localize with slow fluctuations in EEG 

gamma power (He and Raichle, 2009; Ko et al., 2011), suggesting that functional networks 
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inferred from cortical currents should correspond to underlying structural networks. But, the 

relationship between the hemodynamic signals measured by fMRI and brain 

electrophysiology remains controversial (Bartels et al., 2008; Britz et al., 2010; Hlinka et al., 

2010; Christen et al., 2014). In addition, although theory and observation suggest that higher 

frequencies tend to integrate more focal regions and lower frequencies broader cortical 

regions (Singer, 1999; Kopell, et al., 2000; Miller et al., 2007; He and Raichle, 2009; 

Tallon-Baudry, 2009; Baria et al., 2011), whether structural connections influence overlying 

functional connectivity in a similar manner across different frequency bands remains 

unknown.

To directly address these questions, we evaluated functional networks inferred from 

statistical associations between localized cortical currents using electrical source imaging 

(ESI) techniques, and corresponding cortico-cortical structural brain connectivity 

determined by probabilistic white matter tractography. Sophisticated techniques in ESI 

provide accurate localization of cortical source activity from high-density scalp EEG signals 

with fine temporal and spatial resolution (Hämäläinen and Sarvas, 1989; Michel et al., 

2014). We evaluated the spontaneous fluctuating cortical brain activity over a long time 

scale (minutes) and related the inferred functional networks to underlying structural 

connectivity for broadband signals, as well as in seven distinct frequency bands. We found 

that cortical networks derived from ESI partially reflect both direct and indirect underlying 

white matter connectivity in all frequency bands evaluated. In addition, we found that 

although long-range functional connectivity is reduced in high frequency bands compared to 

low frequency bands, this reduction is significantly less when structural support is present. 

These results provide direct evidence for a link between structural anatomy and cortical 

functional connectivity in the human brain.

Material and Methods

Patients with high density EEG (70 electrodes), digitized electrode coordinates, and high 

resolution diffusion tensor imaging (DTI; 60 diffusion-encoding directions, 1.85 mm 

isotropic voxels) were retrospectively identified from clinical evaluations performed at the 

Massachusetts General Hospital Athinoula A. Martinos Center for Biomedical Imaging 

between 1/2009 and 12/2012. Patients identified for inclusion were 10–19 years of age, all 

female, and undergoing evaluation due to epilepsy from a variety of etiologies. Clinical 

information for these subjects is listed in Table 1. All EEGs were recorded in the interictal 

state. Analysis of the data from these patients was performed under protocols approved and 

monitored by the local Institutional Review Board according to National Institutes of Health 

guidelines.

EEGs were recorded with a 70-channel electrode cap, based on the 10-10 electrode-

placement system (Easycap, Vectorview, Elekta-Neuromag, Helsinki, Finland) in the quiet 

resting or sleep state. The positions of the EEG sensors were determined prior to data 

acquisition with a 3D digitizer (Fastrak, Polhemus Inc., Colchester, VA). The sampling rate 

was 600 Hz and the data were filtered with high- and low-pass filters (third-order 

Butterworth, zero-phase shift digital filtering) from 1–50 Hz for analysis using the 

MATLAB Signal Processing Toolbox and custom software. Data were visually inspected 
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and large movement, muscle artifacts and electrodes with poor recording quality removed. A 

minimum of two minutes (range 122–199 seconds) of artifact-free recording from each 

patient was used for analysis. This epoch size has been previously demonstrated to be 

sufficient to produce high similarity between inferred functional networks within patients 

across different states of consciousness (Chu et al., 2012).

Electrical Source Imaging

Source analysis of EEG data was performed using the MNE software package (Hämäläinen 

and Sarvas, 1989, Sharon et al., 2007, Gramfort et al., 2013) with anatomical surfaces 

reconstructed using Freesurfer (Fischl, 2012). MNE provides a distributed source estimate of 

cortical currents incorporating constraints from the patients’ MRI, transforming the data to 

brain space without requiring heuristic choices or strong assumptions about the sources.

Digitized electrode coordinates were aligned using the nasion and auricular points as 

fiducial markers. Each patient’s cortical surface was reconstructed from T1-weighted 

magnetization-prepared rapid acquisition gradient-echo (MPRAGE) data (Fischl, 2012). 

Head modeling utilized a three-layer boundary element method (BEM) model that was 

generated using the reconstructed cortical surface and fast low-angle shot (FLASH) MRI 

data, composed of the scalp, skull and brain with electrical conductivities of 0.33 S/m, 

0.0042 S/m and 0.33 S/m, respectively (Hämäläinen and Sarvas, 1989). A three dimensional 

grid with 5 mm spacing was used to form the solution space. The forward solution was 

calculated by using the BEM. The inverse operator was computed from the forward solution 

with a loose orientation constraint of 0.6 to eliminate implausible sources and 2 μV as the 

estimate of EEG noise. The closest gray/white junction point corresponding proximally to 

the digitized location of each scalp electrode was found for each patient (Fischl, 2012) and 

the source activities were extracted from the midpoints of these 70 regions of interest 

(ROIs).

White matter tractography

High resolution MRI data were acquired on a 3T Magnetom Trio scanner (Siemens, 

Erlangen, Germany) using a 32-channel head coil with the following sequences: DTI (60 

diffusion-encoding directions, TE = 82 ms, TR = 8080 ms, flip angle = 90°, voxel size = 

1.85 × 1.85 × 1.85 mm, diffusion sensitivity of b = 700 s/mm2), MPRAGE (TE = 1.74 ms, 

TR = 2530 ms, flip angle = 7°, voxel size = 1 × 1 × 1 mm) and multiecho FLASH (TE=1.85, 

3.85, 5.85, 7.85, 9.85, 11.85, 13.85, 15.85 ms, TR=2000 ms, flip angle = 5°, voxel size = 1 × 

1× 1 mm).

MPRAGE data were co-registered to the DTI data using an affine transformation for each 

subject. The electrode positions were then transformed into DTI space based on the co-

registration matrix, and the alignment was verified visually. ROIs with a sphere radius of 16 

mm were defined as the nearest main vertex in the white matter surface to each digitized 

electrode coordinate. This ROI size was determined based on the expected surface resolution 

obtained using high density EEG recordings (Nunez and Srinivasan, 2005). In this way, 

ROIs for structural network analysis were chosen to overlap with ROIs used for constructing 
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the functional networks. Overlapping volumes between neighboring ROI pairs were 

manually removed prior to tractography analysis.

For white matter connectivity analysis, probabilistic tractography (Probtrackx2 through FSL 

5.0.4/FDT - FMRIB’s Diffusion Toolbox 3.0; FMRIB’s Software Library) was used to 

process the DTI data, as described in detail in (Behrens et al., 2003; Behrens et al., 2007). 

Briefly, bedpostx was applied to create an estimation of diffusion parameters (e.g., 

distribution of principal diffusion directions) on a voxel-wise basis. Probtrackx was then 

used to repeatedly sample from the distributions, each time computing a streamline (inferred 

fiber tract) through these local samples, thus generating a connectivity distribution on the 

location of the true streamline (Behrens et al., 2007). By accounting for the inherent 

uncertainty in the distribution of diffusion vectors within each voxel, the probabilistic 

tractography method provides greater reliability of quantitative connectivity measurements 

than deterministic tractography methods.

User-specified ROI-ROI pair masks were used to calculate the connectivity distribution 

between a seed ROI and a target ROI bidirectionally for each ROI pair based on the EEG 

ESI location ROIs. A termination mask was applied to the target ROI because we were 

interested in quantifying the number of streamlines that reached the target ROI and not the 

number of voxels traversed by streamlines within the target ROI. In this way, individual 

streamlines were counted only once when they reached the edge of the target ROI. To 

normalize for target ROI volume, the mean number of streamlines per voxel were then 

computed. 1000 streamlines were sampled with a 0.2 curvature threshold with distance 

correction on to produce connectivity distributions representing the mean length of the 

streamlines multiplied by the number of streamlines that originated from the seed ROI and 

reach the target ROI. We note that all of our reported results were qualitatively similar when 

using distance correction off, but the number of long distance structural connections 

identified was negligible without distance correction. Because proximal nodes are known to 

be highly connected in both structural and functional networks due to true anatomical and 

physiological connectivity as well as spatial bias in measurement techniques (Chu et al., 

2012; Li et al., 2012), we report our results with distance correction on in order to highlight 

correlations between long distance structural and functional connections. Using the number 

of streamlines launched from the seed ROI and the number of voxels in the target ROI 

allows for calculation of a Connectivity Index (adapted from McNab et al., 2013):

The CI values for each ROI pair were placed in a connectivity matrix to generate the 

structural network for each patient. The same procedure was performed switching the seed 

and target ROIs and a symmetric connectivity matrix generated for each patient. The 

structural network processing stream is outlined in Figure 1 A–D.

Construction of functional networks

To assess the associations between activities recorded at two ROIs, we use two measures of 

linear coupling: cross correlation and coherence. For the correlation networks, the cortical 
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current activity obtained using MNE were segmented into contiguous 1s intervals. We chose 

this window size to balance signal stationarity and accurate assessment of the coupling 

measure. Within each window, the data were first normalized from each ROI to have zero 

mean and unit variance before coupling analysis. The maximal cross correlation between all 

ROI pairs was then calculated, allowing a lag of +/− 100 ms. The choice of lag time was 

selected to encompass the duration of known neurophysiological processes and cross-

cortical conduction times (Varela et al., 2001; Premoli et al., 2014). This resulted in a single 

value (the maximum value of the cross correlation computer over lags of +/− 100 ms) 

assigned to each ROI pair. For the coherence networks, the same segments of source activity 

were analyzed. The coherence was computed using a Hann taper and treating each segment 

of source activity as a separate trial. In this way, the coherence measures phase consistency 

across time. The coherence was computed in the frequency bands: delta (1–4 Hz), theta (4–8 

Hz), alpha (8–12 Hz), sigma (12–15 Hz), beta 1 (15–20 Hz), beta 2 (20–30 Hz), and gamma 

(30–50 Hz).

For inference of significant coupling, for each patient we performed a bootstrap procedure to 

create 10,000 surrogate coupling values for each ROI pair by shuffling the time intervals and 

ROI labels. More specifically, to generate a realization of surrogate data, 1s of data at each 

ROI was chosen (randomly, with replacement) from all 1s intervals and ROIs for that 

patient. This procedure preserved properties of the signals (e.g., the power spectrum) while 

disrupting the temporal and spatial ordering. For each interval of surrogate data created in 

this way, we computed a functional network using the same procedures as applied to the 

observed data (described in detail below). The resulting distribution of 10,000 coupling 

values was used to compute a p-value for the observed coupling of each ROI pair. Those 

ROI pairs with p-values below a threshold were assigned an edge to create a functional 

network (Kramer et al 2009). The threshold was determined by correcting for multiple 

comparisons using a linear step-up false detection rate controlling procedure with q = 0.05. 

For this choice of q, 5% of the edges in a functional network are expected to be falsely 

declared (Benjamini and Hochberg, 1995).

Functional networks were then computed for each patient using this statistical threshold to 

identify significant coupling and remove spurious coupling due to the inherent properties of 

the dynamic data. For the correlation measure, a binary network was then inferred for each 

1s segment. In some analyses and for visual inspection, these binary networks were 

averaged across segments to create a representative weighted network reflecting the average 

properties of the data over time, where the edge weight or strength reveals the consistency 

of an edge appearance across time. We have previously demonstrated that this technique 

identifies core functional networks that remain consistent across days (Kramer et al., 2011, 

Chu et al., 2012). The calculation of the coherence differs in that this measure requires a 

notion of “trials”. Here, we chose to let each 1s interval represent a “trial”, and therefore the 

coherence assessed the phase relationship between two signals across the entire ensemble of 

1s segments for a patient. The result is a single coherence network that represents the entire 

duration of data for a patient. A high coherence value in the resulting network represents a 

consistent phase relationship between two signals over time. Edges declared significant were 

assigned a weight or strength equal to the coherence value. We note that both measures (the 
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averaged correlation network and the coherence) produce a single weighted network that 

identifies the most consistent functional relationships across segments for a patient. The 

functional network processing stream is outlined in Figure 1 A, E–H.

Network Measures

To evaluate direct and indirect anatomical connectivity, we selected a fundamental measure 

of graph structure - the path length – defined as the smallest number of edges traversed in 

traveling between two nodes, and here computed using the function reachdist.m from the 

Brain Connectivity Toolbox (Rubinov and Sporns, 2010). We note that all nodes are 

reachable in all networks considered here. The average path length is defined as the average 

of the path length over all node pairs. To compute the path length, we first converted the 

weighted structural and functional networks for each patient to a binary network by 

including an edge between nodes whose weight exceeded zero.

To analyze the similarity between two networks, we computed the normalized two-

dimensional (2D) cross correlation with zero shift between the two networks, each 

represented by its adjacency matrix. The two-dimensional cross correlation is a template 

matching procedure used commonly to compare similarities between two images. When 

applied to two images of equal size with zero lag (as used here), it provides a measure of the 

point-by-point similarity between the two images. This method is widely used to compare 

pixel time courses in fMRI imaging analysis (see for example, Hyde and Jesmanowicz, 

2012) and thus was selected for this analysis. For each adjacency matrix, the scale, s, was 

calculated as the sum of its elements squared. The 2D cross correlation is then normalized 

by the square root of the product of s for each matrix. We note that, in the normalization, the 

diagonal elements of each adjacency matrix and the edges identified at zero lag are fixed to 

zero.

In order to interpret the similarity between the observed functional and structural networks, 

we compared them to random networks. Because network structure can be dramatically 

influenced by a network’s degree distribution (Faust, 2007, Newman et al., 2001), random 

networks (configuration models) were generated by shuffling each patient’s functional or 

structural network while preserving the degree distribution (Newman, 2010).

Statistical tests

In order to evaluate the relationship between functional connectivity, and path length and 

frequency band, main effects between were evaluated using a one-way ANOVA test. For all 

pair-wise comparisons, t-tests were performed.

Generalized linear models

To clarify the relationship between functional connectivity strength, structural connectivity 

strength, a network measure (anatomical path length), and inter-node linear distance, we 

implemented a generalized linear model (GLM). Generalized linear models (McCullagh and 

Nelder, 1989) have been utilized in many neuroscience contexts, especially in the analysis 

and characterization of spike train data (Brown et al., 2004; Truccolo et al., 2005; Czanner et 

al., 2008; MacDonald et al., 2011; Eden et al., 2012) and provide a means to evaluate the 
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independent contribution of different predictor variables to the value of a response variable. 

Here, we related the response variable – the functional connectivity – to three predictor 

variables and their combinations: the structural connectivity strength (scaled to maximum of 

1), the internode linear distance (scaled to a maximum of 1), and the structural path length 

between nodes (measured in integer units). For the correlation networks, we counted the 

number of times an edge occurred between two nodes across the networks inferred from 

each 1s segment. We chose a binomial distribution for the response variables (the integer 

number of edges detected across segments), and the logistic link,

where μ is the expected value of the functional connectivity between two nodes, the design 

matrix X is a function of the predictors (the structural connectivities, the distances, and the 

path lengths), and β are the unknown coefficients to determine.

We constructed three GLMs to fit the functional connectivity as a function of the predictors. 

In the first, we assumed that the number of edges observed in the correlation network 

depends only on the distance between the sources; we label this the distance (D) model, 

which represents the null hypothesis that the functional connectivity depends only on 

distance. This is the simplest model we consider, and is consistent with the notion that 

functional coupling depends strongly on distance. To this baseline model we add additional 

features and examine whether these additions improve the model accuracy. In the second 

model, which we label the distance+structure (D+S) model, we assumed that the functional 

connectivity depends on both distance and the structural connectivity between nodes. Again, 

this model is consistent with the notion that structural connectivity will impact functional 

connectivity. Finally, in the third model, we incorporated a measure of the structural 

network - the path length (see Network Measures) – as a third predictor; we label this the 

distance+structure+path length (D+S+PL) model. We note that many other models – with 

additional predictors – may be considered. However, we focus here on these three models, 

with the goal of characterizing the relationship between the physical distances between 

sources and the structural connectivity on the inferred functional networks.

To compare the three models, we compute the Akaike information criterion (AIC), defined 

as

where Δ is the deviance of the model, and n is the number of coefficients in the model. We 

note that the last term (“2n”) causes the I to increase as the model complexity (i.e., number 

of predictors) increases. Therefore, a model with many predictors may have a higher AIC 

(and therefore worse performance) than a model with fewer predictors. For each model, we 

computed the coefficients β and deviance using the combined results for all patients, and 

chose the model with the smallest AIC. To compare AIC, we report the change in AIC, 
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which is the AIC value for a given model minus the AIC of the best performing model. We 

note that in itself, the value of the AIC for a given data set has no meaning. But, when 

compared among a series of models, the model with the lowest AIC explains the data set 

best. For this best performing model, we confirm the model fit by checking that the Pearson 

residuals are approximately normally distributed (Kass et al., 2014).

For the correlation networks, the model performance was consistently poor when all 

observed functional connections were used; the Pearson residuals deviated strongly from the 

normal distribution when the weakest functional network edges were included 

(Supplementary Figure 1, Left). To focus the model and improve performance, we refined 

the fitting procedure by selecting only the most common functional connections for each 

patient, here defined as edges that appear in more than 10 percent of the 1s networks for a 

patient. Modeling this more restricted set of strong functional connections, the Pearson 

residuals better approximated the normal distribution. We note that the functional 

connections are not completely described (as measured by the proportion of deviance 

explained, see Results) with the three predictor variables evaluated here. This is consistent 

with existing experimental and modeling work which has shown that functional connectivity 

cannot be completely explained by underlying structural connectivity (Greicius et al., 2009; 

Damoiseaux and Greicius 2009; Rubinov et al., 2009; Baria et al., 2011; Goni et al., 2014; 

Ponten et al., 2010; Honey et al., 2007; Hlinka and Coombes, 2012). Higher resolution 

structural connectivity data and introduction of additional covariates (e.g., intracortical and 

subcortical connectivity patterns, etc.) may further improve model performance.

For the coherence networks, we followed a similar approach to implement a generalized 

linear model. For these networks, the edge values are continuous numbers from 0 to 1. To 

model these edge values, we chose in the GLM an inverse Gaussian distribution for the 

response variables, and the identity link. The inverse Gaussian distribution is consistent with 

the expectation of many small coherence values, and few large values. As for the correlation 

networks, the predictors are the distance between sources, the structural connectivity, and 

the path length, and we estimate the unknown coefficients β for the different models: 

distance (D), distance+structure (D+S), and distance+structure+path length (D+S+PL).

Results

Functional network connectivity partially reflects the underlying structural network

On direct visual inspection, each patient’s weighted functional (correlation and coherence) 

and structural adjacency matrices were non-random and had overlapping features (Figure 

2A). To evaluate the similarity of the network connections, we computed the two-

dimensional cross-correlation between the weighted functional correlation and coherence 

networks and the underlying structural network for each patient. Functional and structural 

networks were significantly more similar within patients than when compared to 

configuration models, which randomize the edge weights but preserve the degree 

distribution of the functional and structural networks (correlation and coherence networks 

for each frequency band evaluated p<0.00001; Figure 2B). For coherence networks, we 

found that the gamma band networks were significantly more similar to the structural 

networks than the delta (p=0.026) and theta band networks (p=0.047, Figure 2B). There was 
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no detectable main effect of age on functional and structural network similarity (ANOVA, 

p=0.99) and no difference detected between data obtained in the wake versus sleep state 

(p=0.63). To further evaluate the relationship between each patient’s functional and 

structural networks, we computed the average edge weight in the functional connectivity 

correlation networks for structurally connected and for structurally unconnected nodes. We 

found that within each patient, the functional connectivity between structurally connected 

nodes was significantly stronger than between structurally unconnected nodes (p<0.00001, 

Figure 2C). This finding held for the coherence networks in each frequency band evaluated 

(p<0.00001). In addition, we evaluated the similarity of functional and structural networks 

obtained across patients. We found some consistency in both functional and structural 

networks beyond random; however, structural networks were significantly more similar 

between patients than functional networks (Figure 2B, p<0.00001), consistent with the 

notion that all patients share some common features of anatomical connectivity.

Connections are more common between nodes that are spatially close

For each patient, we found that both structural and functional edges were more common 

between physically neighboring nodes (Figure 3). The data possess a broad distribution of 

distances between nodes, ranging from 0.6 cm to 11.9 cm, with a mean inter-node distance 

of 5.9 cm (Figure 3A). Both the functional connectivity correlation network strength and the 

structural connectivity strength tended to decrease as the inter-node distance increased, with 

the decrease in the structural connectivity strength occurring more rapidly (Figure 3B,C). 

Qualitatively similar results were found for coherence networks in all frequency bands 

evaluated. These results are consistent with the notion that brain connectivity tends to 

decrease with distance. However, we note that weak functional and structural connectivity 

appear across all inter-node distances; therefore, although spatial proximity strongly impacts 

network connectivity, distance alone is not sufficient to deduce the functional or structural 

association between two nodes.

White matter connectivity predicts functional connectivity beyond inter-node distance 
alone

Given the strong relationship between inter-node distance and both functional and structural 

connectivity (Figure 3), we implemented a generalized linear model to evaluate the 

relationship between structural and functional connectivity while accounting for distance 

(see Methods - Generalized Linear Models).

For the correlation networks, we evaluated 3 models that included the predictor variables: 

distance, structural connectivity, and path length. We found that the model that contains all 

three predictors (i.e., the inter-node distance, structural connectivity strength, and inter-node 

structural path length, the D+S+PL model) outperformed a model consisting of distance 

alone (the D model) and the distance and structural connectivity (the D+S model, change in 

AIC > 1100 in both cases). We note that an additional model that includes three predictors – 

the distance, structural connectivity, and an interaction term between distance and structural 

connectivity – also did not improve performance. Compared to a model consisting of only a 

constant predictor, the proportion of deviance (or variability) explained by the addition of 

three variables (D+S+PL) is 0.21, and is highly significant (p < 0.00001, by a likelihood 
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ratio test using the chi-squared distribution with three degrees of freedom). The D+S+PL 

model predicts that, as the (scaled) distance between two nodes increases by 0.1, the odds of 

a functional connection decreases by a factor of 0.79 (95% CI [0.77, 0.81]). However, as the 

scaled structural connectivity between two nodes increases by 0.1, the odds of a functional 

connection increases by a factor of 1.14 (95% CI [1.11,1.18]). Finally, an increase of path 

length by one edge decreases the odds of a functional connection by a factor of 0.81 (95% 

CI ([0.75, 0.87]). We note that distance and structural connectivity values are scaled from 0 

to 1 and path length is measured in integer units ranging from 1–4. In summary, these GLM 

results show that the odds of a functional connection between two nodes decreases with 

distance, as expected. While accounting for this distance dependence, we also find that the 

presence of a structural connection increases the odds of a functional connection. Moreover, 

the longer the structural path length between two nodes, the lower the odds of a functional 

connection. Comparing the subsets of patients in the wake and sleep states, we find that the 

proportion of deviance explained by the addition of three variables (D+S+PL) to a constant 

predictor model is highly significant (p <0.00001) in both cases, and there was no significant 

difference in the deviance explained between states (p=0.11).

In order to further characterize the relationship between structural and functional correlation 

network connectivity strength, independent of distance, we evaluated the functional 

connectivity of structurally-connected and unconnected node-pairs at 3 inter-node distance: 

short (<3cm), medium (3–6 cm) and long distance (>6 cm). Consistent with the GLM 

results, we found that functional connectivity strength tended to be higher in structurally 

connected node pairs at each distance (p=0.045, p=0.022, p=0.057, respectively, Figure 4A). 

Notably, fewer data points were available for long distance bins, which may account for the 

lack of a significant effect in the long distance bins. Similar trends were found for coherence 

networks (delta: p=0.014, p=0.029, p=0.092; theta: p=0.050, p=0.058, p=0.088; alpha: 

p=0.047, p=0.048, p=0.10; beta 1: p=0.055, p=0.021, p=0.062; beta 2: p=0.090, p=0.030, 

p=0.040; sigma: p=0.040, p=0.010, p=0.050; gamma: p=0.068, p=0.016, p=0.047).

Finally, to evaluate the impact of indirect structural connectivity on functional connectivity 

strength, we evaluated the correlation network functional connectivity of structurally 

connected and unconnected node-pairs grouped by anatomical path length. We found a 

significant main effect between functional connectivity strength and path length (ANOVA, 

p<0.00001). Node-pairs supported by direct white matter connections (i.e., separated by a 

path length of one) had the highest functional connectivity values, and a step-wise decrease 

in connectivity was seen for each increase in anatomical path length (path length 1 versus 2, 

p<0.00001, path length 2 versus 3, p<0.005; path length 3 versus 4, p=0.18; Figure 4B). 

Thus, cortical functional connectivity was found to reflect both direct and indirect white 

matter connectivity. Qualitatively similar results were found for coherence networks at each 

frequency band (delta: p<0.00001, p=0.032, p=0.22; theta: p<0.00001, p=0.039, p=0.36; 

alpha: p<0.0001, p=0.0057, p=0.42; beta 1: p<0.00001, p=0.026, p=0.34; beta 2: p<0.00001; 

p=0.0023, p=0.083, sigma: p<0.00001, p=0.071, p=0.31; gamma: p<0.00001, p=0.021, 

p=0.28).
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Structural networks influence coupling of high frequency oscillations more than low 
frequency oscillations

To evaluate the impact of structural connectivity and inter-node distance on functional 

connectivity in differing frequency bands, we implemented a generalized linear model for 

the coherence networks. We evaluated the predictor variables: distance, structural network 

strength, path length, and combinations of these variables. The response variables were the 

functional network edge weights in the coherence networks observed for each frequency 

band: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–15 Hz), beta 1 (15–20 

Hz), beta 2 (20–30 Hz), and gamma (30–50 Hz). We found that the distance+structure

+path length (D+S+PL) model performed the best in all frequency bands (change in AIC > 

130; range 130–1620). We show in Table 2 the results for the coefficient estimates for the D

+S+PL model in each frequency band. Compared to a model consisting of only a constant 

predictor, the proportion of deviance explained by the addition of three variables (D+S+PL) 

ranges from 0.13 to 0.38 (Table 2), and is highly significant for all frequency bands (p 

<0.00001, by a likelihood ratio test using the chi-squared distribution with three degrees of 

freedom). The deviance explained by the (D+S+PL) model is significantly greater for the 

gamma networks than the correlation networks or the lower frequency coherence networks 

(correlation: p=0.0002; delta: p<0.000001, theta: p=0.0004; alpha: p=0.0007; sigma: 

p=0.0045; beta 1: p=0.0137; beta 2: p=0.17).

The GLM results also show that, as the frequency increases, the functional connectivity 

strength decreases. We note that the constant term in the GLM represents the expected value 

of the functional connectivity (here, the coherence), excluding the impact of the other 

covariates (distance, structural connectivity, and path length). We find that the values of the 

constant term in the GLM model (i.e., the term with a constant predictor of 1) are smaller in 

the higher frequency bands (e.g., gamma and beta 2) than in the lower frequency bands (e.g., 

delta, theta, and alpha). This result is consistent with notion that higher frequency bands 

exhibit decreased long-distance coupling (Singer, 1999; Miller et al., 2007; Tallon-Baudry, 

2009; Chu et al., 2012). These results also show that, for all frequency bands, as the 

structural connectivity between two nodes increases, the functional connectivity increases. 

Notice that for the structural connectivity predictor (second column of Table 2), the 95% 

confidence intervals exceed 0 in all frequency bands. Finally, for all frequency bands, as the 

distance between two nodes increases, or the path length increases, the functional 

connectivity decreases. We note that, as the frequency increases, the impact of the structural 

connectivity becomes stronger and the impact of inter-node distance and path length become 

weaker (i.e., closer to zero). Comparing the subsets of patients in the wake and sleep states, 

we find that the proportion of deviance explained by the addition of three variables (D+S

+PL) to a constant predictor model is highly significant (p <0.00001) for both subsets of 

patients in all frequency bands. The relationship between the predictors (distance, structural 

connectivity, path length) and the functional coherence is the same in the wake and sleep 

states, and there was no significant difference in the deviance explained by the model 

between wake and sleep states in any frequency band evaluated (p>0.15, range 0.15–0.91).

Consistent with the GLM results, we found that higher frequency networks had lower 

functional connectivity. A significant main effect was found between mean edge weight of 

Chu et al. Page 12

Neuroimage. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the functional networks and frequency, with lower coherence seen in higher frequency bands 

(ANOVA, p<0.00001, Figure 5A).

In order to further evaluate whether the decrease in functional connectivity strength with 

higher frequencies was related to underlying structural connectivity, we computed the 

average functional connectivity strength for structurally connected and unconnected node-

pairs, normalized by the average functional network strength present in the delta band. We 

found no difference in the average functional connectivity strength of structurally connected 

versus structurally unconnected node-pairs within each lower frequency band: theta, alpha, 

and sigma, compared to delta. However, in higher frequency bands (beta 1, beta 2, and 

gamma), the average functional connectivity strength decreased significantly compared to 

the slower frequencies when structural connectivity was absent (p<0.00001 for each 

comparison, Figure 5B). Consistent with our finding that gamma band networks have 

highest similarity to underlying structural networks (Figure 2B), these findings suggest that 

the decrease in functional connectivity strength evident in higher frequency bands is 

primarily due to the loss of coherence between structurally unconnected nodes.

Discussion

Here we evaluated the relationship between functional and structural human brain networks 

using principled measures to infer networks from source estimates of scalp EEG and 

probabilistic tractography, enabling the comparison of cortical activity with high temporal 

resolution and across multiple frequency bands to underlying white matter connectivity. We 

have found that the coupling of brain activity in each frequency band is shaped by the 

observed underlying structural connectivity, including both direct and indirect paths. These 

associations highlight the obligatory interdependence of structural and functional networks 

in brain function. In addition, we found that high frequency oscillations exhibit sparse 

functional connectivity that is highly dependent on the existence of underlying structural 

connections.

Multiple studies have demonstrated a robust relationship between structural brain networks 

and spontaneous coupling dynamics in brain BOLD fluctuations (Baria et al., 2011; 

Damoiseaux and Greicius 2009; Rubinov et al., 2009; Goni et al., 2014). We have extended 

this work to show that cortical brain currents are likewise yoked to underlying anatomy. We 

have previously shown that long-term human EEG reveals persistent functional networks 

across days and states of consciousness (Chu et al., 2012). Here we show that persistent 

structures in functional brain networks reflect not only the impact of spatial proximity, but 

also the direct structural connectivity between brain regions, as well as indirect structural 

topology as measured through path length.

Our finding of increased functional and structural connectivity between neighboring brain 

regions is consistent with prior work in animals and humans. Increased connectivity between 

spatially proximal and functionally related units has been observed in structural networks 

across spatial scales ranging from microns to centimeters (Bullmore and Sporns, 2009; 

Braitenberg and Schuz, 1998; Hellwig, 2000; Hagmann et al., 2008). Similarly, evaluation 

of human brain networks with fMRI has demonstrated increased functional connectivity 
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between anatomically proximal regions (Bullmore and Sporns, 2009; Salvador et al., 2005; 

Achard et al., 2006). This modular network architecture has been proposed to both increase 

computational efficiency and decrease energy costs by organizing highly clustered modules 

that can be linked by few long distance connections (Cherniak, 1994; Sporns, 2011).

How the brain’s relatively static structural scaffolding molds dynamic information 

processing and sophisticated cognitive processes remains an active question in neuroscience. 

Many studies have posited that coupling of complex signals between and across different 

frequency bands support and encode the integration of simultaneous brain processes 

(Buzsáki, 2004; Buzsáki and Draguhn, 2004; Fries, 2005; Singer, 1999; Fingelkurts and 

Fingelkurts, 2004; Laufs, 2008; Bullmore and Sporns, 2009; Deco et al., 2011). Here we 

show that long-range integration of cortical activity in each frequency band is biased toward 

anatomically linked regions. These observations suggest that cortico-cortical connections 

provide a reliable physical substrate for the long-range transmission of composite signals 

with high dimensional frequency content (Lakatos, et al., 2005; Klimesch, 1996; Friston, 

1997; von Stein, et. al., 2000; Varela et al., 2001; Laufs, 2008; He and Raichle., 2009).

Here, we applied two measures of functional connectivity: the correlation (a broadband 

measure) and coherence (a narrowband measure). Although both measures produced 

qualitatively similar results, consistent with our finding that gamma coherence networks are 

most similar to underlying structural networks, the best performing model (D+S+PL) 

accounted for the most deviance in the gamma coherence networks. Increasing evidence 

suggests a spatial gradient in which slower oscillations couple more distributed brain 

regions, while faster oscillations are more focally distributed (Singer, 1999; Miller et al., 

2007; He and Raichle, 2009; Tallon-Baudry, 2009; Baria et al., 2011). Our observations that 

faster oscillations are dependent on underlying structural connectivity for long-range 

integration complement this growing body of literature. In contrast, long-range cortical 

integration between lower frequency oscillations could be preferentially facilitated by 

alternate processes, such as high amplitude traveling waves (Ermentrout and Kleinfield., 

2001; Sato et al., 2012), or shared subcortical pathways that synchronize neocortical delta 

activity (Steriade et al., 1993).

The observed relationship between cortical currents and underlying structural connectivity 

reported here likely underrepresents the true relationship between brain structural and 

functional connectivity, due to the limitations of current imaging and measurement 

techniques. For example, unmyelinated axons are not routinely reconstructed using current 

tractography techniques, including intra-cortical axonal and dendritic processes. 

Furthermore, inter-regional coupling mediated via shared subcortical sources were not 

evaluated. We focus here on observed long-distance connectivity patterns between 

superficial cortical regions in order to emphasize brain regions that can be anatomically 

approximated with surface EEG. In addition, current tractography techniques are known to 

underestimate inter-hemispheric connectivity, which is substantial between homotopic brain 

regions; this limitation was mitigated by using probabilistic tractography with multiple fiber 

orientations (Behrens et al., 2007). Furthermore, the b-value utilized for DTI in this study 

was relatively low, and diffusion data with higher angular resolution would improve 

accurate tract identification, especially in regions of crossing fibers (Setsompop et al., 2013). 
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Finally, we evaluated young patients across a wide range of ages with epilepsy due to 

varying etiologies, who may have age or disease dependent alterations in local structural 

(Liu et al., 2014; Ji et al., 2014; Barkovich et al., 1988; Ashtari et al., 2007) and functional 

(O’Muircheartaigh et al., 2012; Bartolomei et. al., 2013; Chu et al., 2014) networks at 

baseline. We note that in spite of any individual variations expected in this population, our 

finding that large-scale brain structural networks support overlying brain functional 

connectivity in a frequency-dependent manner was evident in each patient, suggesting a 

robust finding. However, future work should evaluate whether these findings persist in a 

healthy population, across the lifespan, and in other disease states. In addition, detailed 

evaluation of these relationships at the site of known structural or functional lesions could 

identify subtle variations that were not investigated in this global analysis.

Conclusion

This work shows that coupling between human cortical brain dynamics partially reflects 

observed white matter connectivity across multiple brain rhythms. The increased 

dependence on structural support for the coherence of faster brain rhythms provides new 

evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time 

scales. Although brain structure has not been shown to fully predict overlying cortical 

physiology, capturing the influence of brain structure on spontaneous brain activity provides 

new opportunities to manipulate these relationships to alter brain function and treat 

neurological disease.
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Highlights

• Both structural and functional edges are more common between physically 

neighboring nodes.

• Direct and indirect white matter connectivity predicts functional connectivity 

beyond inter-node distance alone.

• Functional connectivity strength is higher in structurally connected node pairs in 

all frequency bands evaluated.

• Lack of structural connectivity disproportionately reduces functional 

connectivity in high frequency bands.
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Figure 1. (A–D) Structural network processing stream
(A) For each patient, electrodes are co-registered to the patient’s structural MRI (red) and 

ROIs at the closest grey-white junction selected (green). (B) Diffusion tensor images are 

processed for fiber tracking using Probtrackx for quantitative probabilistic tractography. (C) 

Track counts between each ROI pair (diameter 3.2 mm) are estimated and stored (D) in a 

weighted adjacency matrix. (A, E–H) Functional network processing stream. (E) Voltage 

tracings are obtained from high density electrodes and electrical source imaging estimates 

computed at each ROI corresponding to those used for tractography. Maximal coupling 

between each ROI pair is measured for each 1s epoch and significance determined to 

identify edges. This procedure is repeated for each ROI pair (F) and for each data epoch (G). 

Binary adjacency matrices are averaged across the entire data sample and (H) stored in a 

summary weighted matrix representing the proportion of edges in all 1s epochs with 

significant correlations. A similar procedure is applied for coherence networks.
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Figure 2. Structural and functional networks are topologically similar
A. Examples of structural and functional adjacency matrices from one patient. Similarity 

between structural network architecture and cross-correlation and coherence functional 

networks is visually evident. B. The network similarity as measured by the two-dimensional 

cross correlation (+/− standard error) is plotted for configuration models with degree 

distribution preserved (black), each patient’s structural and functional correlation network 

(light gray), all patient’s structural and functional coherence networks (colored bars), and 

between all patients functional networks (medium gray), and all patients structural networks 

(dark gray). Patients’ structural and functional (correlation and coherence) networks are 

significantly more correlated than random (p<0.00001). Coherence networks in the gamma 

band were more similar to structural networks than coherence networks in the delta 

(p=0.026) and theta (p=0.047) bands. Between patients, both structural and functional 

correlation networks were more similar than random networks (p<0.00001). Structural 

networks were significantly more similar across patients than functional networks 

(p<0.00001). C. Average correlation network functional connectivity edge strength (+/− 

standard error) is plotted for each patient for structurally connected (blue) and structurally 

unconnected (red) node pairs. Mean functional connectivity between structurally connected 

nodes is significantly higher in each patient (p<0.00001). Similar findings occur for 

coherence networks in each frequency band evaluated (p<0.00001).
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Figure 3. Structural and functional connectivity strength depends on spatial proximity
A. Inter-node distance ranged from 0.2 cm to 9.4 cm with a grossly normal distribution. B, 
C. Functional correlation network (B) and structural network (C) connectivity strength 

decreases with internode distance, with strong connections in both structural and functional 

networks tending to occur between nodes that are physically close (< 3 cm). In these figures, 

each dot indicates a single edge (or equivalently, single node-pair) for each patient (in color, 

see legend).
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Figure 4. The relationship between structural and functional connectivity persists at different 
distances
A. Average correlation network functional connectivity strength (+/− standard error) is 

plotted for structurally connected (blue) and structurally unconnected (red) node pairs for 

three inter-node distances: <3 cm, 3–6 cm, >6 cm. Mean functional connectivity strength 

between structurally connected nodes is significantly higher at short distances (p<0.045) and 

medium distances (p=0.022), and tends to be higher at long distances (p=0.057). The 

relative paucity of data points available in longer distance bins may contribute to the lack of 

significant effect. Similar results were found for coherence networks (not shown). B. 
Average correlation network functional connectivity strength (+/− standard error) is plotted 

for node pairs by anatomical path length. Node pairs with direct white matter connectivity 

(path length 1) had significantly higher functional connectivity than node pairs connected by 

longer path lengths (p<0.00001 for all comparisons). This relationship tended to persist for 

each incremental increase in path length (path length 1 versus 2, p<0.00001, path length 2 

versus 3, p<0.005; path length 3 versus 4, p=0.18). Qualitatively similar results were found 

for coherence networks in all frequency bands (not shown).
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Figure 5. The average functional connectivity varies with frequency and structural connectivity
A. Average coherence network functional connectivity edge strength (+/− standard error) 

decreases at higher frequencies (ANOVA, p<0.00001). B. Average functional connectivity 

strength (+/− standard error) normalized to the delta band is plotted for structurally 

connected (blue) and structurally unconnected (red) node-pairs for coherence networks in 7 

frequency bands. Functional connectivity decreases more rapidly between structurally 

unconnected node pairs in the higher frequency bands. Structurally unconnected nodes (red) 

have significantly lower functional connectivity compared to structurally connected nodes 

(blue) in beta and gamma frequencies (B1, B2, and G, p<0.00001) but not lower frequency 

bands. In both subfigures: delta (D), theta (T), alpha (A), sigma (S), low beta (B1), high beta 

(B2), and gamma (G).
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