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Abstract (100-200 word limit) 

 This work demonstrates the application of a 3D culture system, which is known as 

Cells-in-Gels-in-Paper or CiGiP, in evaluating the response of lung cancer cells to 

ionizing radiation.  This system has four attributes: (i) multiple layers of paper, 

containing cell-embedded hydrogels, are assembled into a stack to form a thick (~800 

µm) tissue-like construct, (ii) the metabolism of the cells, coupled with the boundary 

conditions imposed by an impermeable holder, generate a gradient of oxygen and 

nutrients that decreases monotonically in the stack, (iii) the construct has no peripheral 

components (e.g., pumps, tubing), that fits easily in an irradiator, and (iv) the construct 

can be disassembled into individual layers, allowing for the quantification of cellular 

phenotypes based on their position within the stack. With increased distance from the 

source of oxygenated media, cells show increased levels of hypoxia-inducible factor, 

decreased proliferation, and reduced sensitivity to ionizing radiation.  The multi-layer 

culture setup for CiGiP also distinguished differences in the radiosensitivity of three 

isogenic variants of A549 cancer cells, which have known differences in their metastatic 

behavior in vivo.  The CiGiP system can, therefore, capture aspects of radiosensitivity of 

populations of cancer cells related to mass-transport phenomenon inaccessible in 

traditional culture systems.  
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1. Introduction 

  In the United States and many developed countries, the overall 5-year survival 

rate of a patient with lung cancer is estimated to be between 15 to 20 % [1, 2]. One-third 

of lung cancer patients are diagnosed at an advanced stage, and radiation therapy remains 

a preferred strategy for targeting tumor cells because these cells are known to possess 

compromised DNA repair machinery, and often proliferate at higher rates than normal 

cells [3-5]. The mechanism by which cells die from radiation therapy is believed to result 

from damage to DNA; ionizing radiation can damage DNA directly by inducing single- 

or double-strand breaks, or indirectly by generating free radicals that subsequently react 

with DNA [6-15]. While the ultimate goal of radiation therapy is cell death, cells can 

respond to ionizing radiation in three ways: (i) repairing the damage directly; (ii) 

undergoing cell cycle-arrest, which can lead to irreversible arrest (called senescence); or 

(iii) inducing programmed cell death (apoptosis) [9, 16, 17].  

 Oxygen plays a significant role in radiation therapy and is believed to act as a 

sensitizer for malignant cells to radiation. In contrast, hypoxic cells are often associated 

with poor outcomes and tumor recurrence [18-22]. To support the metabolic needs of 

cells for oxygen (O2), cells should be no more than 150 – 200 µm away from a capillary 

[23-25]. Beyond this distance, cells receive inadequate concentrations of oxygen and 

other molecules (e.g., glucose, autocrine factors) [26]. Subpopulations of cells with 

varying phenotypes arise in the gradients of molecules that form within the tumor. Well-

oxygenated cells, which are closest to a well-perfused blood vessel, undergo aerobic 

respiration. Poorly-oxygenated cells, which are further from the blood vessels, cope with 
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the decreased oxygen tensions by switching from aerobic to anaerobic metabolism. This 

metabolic switch is mediated by hypoxia-inducible factor (HIF) [27-31], transcription 

factors which regulate the expression of genes related to cancer cell survival such as 

glycolysis, angiogenesis, and invasion/metastasis [27, 32-34]. Cells that adjust to these 

hypoxic conditions in a tumor have also been associated with the ability to resist both 

chemotherapy and radiotherapy [19, 22, 34-37]. Elucidating the mechanisms by which 

cancer cells survive after radiation therapy is key to discovering novel therapies to 

improve outcomes and prevent tumor recurrence for patients undergoing these treatments.  

   Current in vitro models in radiobiology evaluate cellular response based on 

changes in either metabolism or proliferation following exposure to radiation. These 

models are either cells grown in 2D as a monolayer, or in 3D as spheroids or embedded 

in hydrogel slabs. While 2D cultures are easy to establish experimentally, they fail to 

mimic many aspects of a tissue because the cells lack the structural features of a tissue: 

the 3D contacts formed between adjacent cells; 3D contacts between cells and the 

extracellular matrix; and 3D structural features that limit the mass transport of molecules 

(e.g., oxygen, glucose, lactate, and carbon dioxide) within the culture environment [38, 

39]. These factors are crucial to the response of cells to chemo- and radio-therapy [40]. 

Spheroids provide a more realistic 3D microenvironment for cells than monolayer 

cultures do because: cells within the spheroids are able to participate in cell-to-cell 

interactions, and spheroids can form a diffusion-limited environment in which cells 

receive different concentrations of oxygen, other nutrients, or drugs as a function of their 

location. Due to these properties, models of diffusion in solid tumors are often based on 
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studies with spheroids [41-44]. The analysis of spheroids, however, can be challenging 

because: (i) dissociation of the intact spheroid into a suspension of single cells prevents 

spatial analysis of the heterogeneity in the spheroid, (ii) histology requires fixation of 

cells, thus preventing further culture of these cells, and (iii) the heterogeneity in the size 

of the spheroids can affect the reproducibility of the assay (i.e., drug and radiation 

assays).  

 To address the issues in 3D cultures for radiation biology, we adapted Cells-in 

Gels-in-Paper, or CiGiP, [45-47] to evaluate the response of cells to increasing doses of 

ionizing radiation. CiGiP is a 3D cell culture system consisting of a stack of layers of 

paper, which are patterned to contain hydrophilic zones surrounded with hydrophobic 

borders.  Cells suspended in a hydrogel are pipetted into these hydrophilic zones, and can 

be cultured in the paper-based scaffolds for prolonged periods of time. CiGiP provides a 

culture environment that mimics some of the features of tumor tissues including (i) cell-

cell and cell-ECM interactions, and (ii) 3D structure that influences the transport of 

molecules (e.g. oxygen, glucose, proteins and other waste products); these aspects are 

crucial to the viability of cells [45, 47, 48]. We used sheets of a paper-plastic construct 

with a thickness of ~130 µm (Fig. 1A) to support the cell-laden gels. The sheets were 

stacked to form thick (~800 µm), tissue-like constructs, which were placed in an acrylic 

holder. The geometry of the holder allowed us to control access of fresh medium (e.g., 

oxygen, glucose, other nutrients) to the stack, thus generating monotonically decreasing 

gradients—from top to bottom of the stack—not only of these nutrients, but also of the 

factors being secreted by the cells (e.g., carbon dioxide, lactate, cytokines). The format of 
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the CiGiP system we used in this study forms an environment that mimics two features of 

a poorly vascularized tumor in vivo:  (i) Cells at the top of the stack are proximal to the 

region of the holder containing a series of holes, which provide access to the source of 

fresh medium; these cells experience an environment similar to cells in a tumor that are 

near a blood vessel (i.e., in a normoxic environment). (ii) Cells at the bottom of the stack 

do not have access to fresh medium; these cells experience an environment similar to 

cells in a region of a tumor that is far from a blood vessel (i.e., in a hypoxic 

environment). Isolation of the cells from the different regions of this tumor model do not 

require histological sectioning–layers can be de-stacked at the end of an experiment 

simply by peeling apart the layers of paper; this ability allows us to evaluate a variety of 

phenotypes of the cells as a function of the distance from the source of medium (in ~130–

µm increments, based on the thickness of each sheet in the stack), and hence the distance-

dependent gradients (e.g., oxygen, nutrients, growth factors, waste products) formed in 

the stack. In this work, we used multi-layer 3D culture to demonstrate that the 

radiosensitivity of cells is driven by proliferation rate.  

2. Materials and Methods 

2. 1.  Materials and Reagents   

Polvinyl sheets with a thickness of ~130 µm were obtained from Warp Bros. 

(Chicago, IL). Whatman 105 lens paper with a thickness of ~ 40 µm was purchased from 

GE Healthcare Biosciences (Pittsburgh, PA). Poly(methyl methacrylate) (PMMA) were 

purchased from McMaster-Carr (Princeton, NJ) and machined to prepare the custom-built 
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holders used in this work. We purchased the A549 cells from American Type and Culture 

Collection (Manasas, VA). Supplies for cell culture and cell labeling such as Dulbecco’s 

Modified Eagle Medium (DMEM), penicillin-streptomycin, TrypLETM Express, and 

Click-iT® EdU were purchased mostly from Life Technologies (Grand Island, NY). Fetal 

bovine serum (FBS) was purchased from HyClone (Logan, Utah), Matrigel (growth 

factor-reduced) was purchased from Corning (Tewksbury, MA), and RIPA buffer was 

purchased from Teknova (Hollister, CA). For immunoblotting, primary antibodies were 

purchased from Cell Signaling Technologies (Danvers, MA) and R&D Systems 

(Minneapolis, MN); secondary antibodies and Odyssey® blocking buffer were purchased 

from LI-COR Biosciences (Lincoln, Nebraska). 

2.2. Fabrication of PVC-lens paper composite sheets 

We used  a Graphtec Craft ROBO Pro craft cutter (Irvine, CA) to cut the design in 

the sheets of polyvinyl chloride (PVC); the pattern containing perforations (~ 3 mm in 

diameter) was designed in Illustrator C4 (Adobe) and is available upon request. We used 

a heat press to melt and sandwich the patterned sheet of polyvinyl chloride (PVC) 

between two sheets of Whatman 105 lens paper (Fig. 1A). We pressed the sheets together 

at 215 °C in three to four cycles of 10-15 seconds to form a single composite sheet (See 

Fig. S-1). The thickness of the single-layer composite sheet is ~130 um. We routinely 

patterned the composites to contain ten 3-mm holes, which are referred to as the “zones” 

of the composite. The composites were placed in a glass petri dish and autoclaved. The 
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autoclaved composites were air-dried in a laminar flow hood, exposed to UV light for 1 

hour, and then stored in a sealed sterile container. 

2. 3.  Cell culture conditions and seeding of cells into the composite sheets 

We cultured all cell lines in vented tissue culture flasks in DMEM with 5% FBS 

and 1% Penicillin-Streptomycin and then passaged them every 4-6 days until use. Unless 

stated otherwise, the cultures were maintained in 5% CO2 at 37°C.  For each experiment, 

we detached the cells from the flasks by treatment with TrypLETM Express (5mins at 

37°C), washed them in media, and then pelleted them by centrifugation at 1500 rpm. We 

prepared a suspension of cells with cold Matrigel (4°C) at a concentration of 2,000 cells/

µL, unless stated otherwise. The suspension was kept on ice to avoid the gelling of 

Matrigel. We spotted 1 µL of the suspension into each zone of the composite with a 

micropipette and then incubated the composite into a 6-well plate containing warm 

(37°C) media. The cold suspension wicks into the composite, fills up the zone, and then 

forms a gel upon warming (37°C) in media. To ensure that the Matrigel gelled 

completely, and that the cells recovered from being in a cold temperature, we incubated 

the sheets with zones containing cell-embedded gels for at least 12 hours before 

conducting further experiments such as stacking or exposure to radiation. 

2.4. Fabrication of the PMMA holder and stacking of cell-containing composite sheets 

 The PMMA holders comprised of a perforated top piece with holes that 

correspond to the position and diameters of the zones of the composite and a solid bottom 
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base, were custom machined (Figure S-1). Both pieces of the holders were also equipped 

with threaded holes to fit screws, which not only guide the alignment of the individual 

sheets of the composite, but also ensure the sheets are held in place after stacking. The 

holders were placed in a glass petri dish and autoclaved. The holders were dried in a 

laminar flow hood and kept in a sealed container until use.  

Using the PMMA holder, we stacked the six sheets of the composite to prepare a 

multi-layer 3D culture. We then incubated these multi-layer cultures in petri dishes 

containing (37 °C) warm media. To ensure that the medium covered the top of the multi-

layer culture completely, we used a tip of the micropipette to remove any air bubbles, 

which formed on top of the holders during stacking. Unless stated otherwise, we 

incubated the multi-layer cultures for at least four days before irradiation to ensure a 

gradient in oxygen and nutrients formed within the stack. 

2.5. Irradiation  

The samples were exposed to ionizing radiation using a GammaCell 40 Extractor 

Cesium-137 irradiator, which emits radiation at the rate of 1Gy·min-1 (Best Theratonics, 

Ontario, Canada ). The irradiated samples were incubated for an additional 6 to 7 days 

before measurement of metabolic activity, senescence, and proliferation rates. 

2.6. CellTiter-Glo® (CTG) Assay 

 Multi-layer cultures were de-stacked by disassembling the holder and separating the 

individual sheets with tweezers. Each sheet was washed in 1X PBS (5 min, room 
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temperature), lysed in 1mL RIPA buffer (10 min, at 4°C) on an orbital shaker (at ~160 

rpm), and then diluted the lysate (1:10 by volume) with 1X PBS. We transferred the 

diluted cell lysate (100 µL/well) into the wells of a black 96-well plate with a clear 

bottom. We prepared the CTG reagent by following the manufacturer’s protocol. We 

added CTG reagent (100 µL/well) into the wells containing the cellular lysates and 

incubated them for 20 minutes, and measured the luminescence of the samples using a 

Perkin Elmer Wallac Luminometer (Waltham, MA), or a BMG Labtech PHERAstar FS 

microplate reader (Ortenberg, Germany). For each scaffold, we took eight measurements 

(i.e., n = 8 wells) for CTG assay, calculated the average luminescence, and used this 

average value in calculating for the % metabolic activity. 

2.7. Senescence Assay 

We recovered A549-GFP cells from the composite sheets by incubating the 

samples in warm (37°C) Accumax for 30-45 minutes. Accumax degrades the Matrigel, 

and releases the cells from the paper into the Accumax solution. The cells were pelleted 

by centrifugation (~1500 rpm), and resuspended in culture medium (10,000 A549-GFP 

cells/mL). We dispensed the resuspended cells into the wells of a 96-well plate (100 µL/

well) and cultured them overnight. We stained the senescent cells using Millipore 

Cellular Senescence Assay Kit (Cat. KA002). Following the manufacturer’s suggested 

protocol, we aspirated the media out of the wells, washed the wells in 1X PBS (5 min), 

incubated the cells in the provided fixative solution (diluted to 1X, 15 min), washed the 

wells with 1X PBS (5 min), and incubated the cells in senescence-associated β-
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galactosidase staining solution in a CO2-free incubator (24 hours at 37°C). We aspirated 

the staining solution and then washed the wells in 1X PBS (5 mins × 3). We collected 

images of the samples using a bright field microscope and counted all the senescent cells, 

which stained blue. We also collected images of the cells using a fluorescence microscope 

and counted the total number of cells, which expressed GFP.   

2.8. Proliferation Assay 

We used Click-iT® EdU kit to label A549-GFP cells undergoing proliferation. In 

brief, we incubated the composite sheets in culture medium containing 10 µM EdU 

solution (24 hours at 37°C and 5% CO2). The EdU-labeled samples were then fixed with 

4% paraformaldehyde for 20 minutes, washed with 3% (v/v) BSA in 1X PBS (5 mins × 

3), incubated in 0.5% (v/v) Triton X-100 (20 mins), washed with 3% (v/v) BSA in 1X 

PBS (5 mins × 3), and incubated in Click-iT® reaction cocktail for 30 minutes. The Click-

iT® reaction cocktail, which contained Alexa Fluor®  594-conjugated azide, 4 mM copper 

(II) sulfate was prepared based on manufacturer’s suggested protocol. The samples were 

washed once with 3% BSA in 1X PBS (5 min) and kept in 1X PBS (4°C). The composite 

sheets containing labeled cells were scanned with a Typhoon Gel Scanner. EdU was 

scanned using LPG filter, 532 nm (excitation) / 615 nm (emission), PMT value of 400 V, 

and resolution of 50 µm; GFP was scanned using 590 nm (excitation)/615(emission), 

PMT value of 400 V, and resolution of 50 µm; GFP was scanned using BPB1 filter, 473 

nm (excitation) / 519 nm (emission), PMT value of 300 V, and resolution of 50 µm. 
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2.9. Western Blot 

Multi-layer cultures were de-stacked by disassembling the holder and separating 

the sheets with tweezers. Each sheet was washed in 1X PBS (5 min, room temperature) 

and then lysed in 500 µL RIPA buffer (30 min, at 4°C) on an orbital shaker (at ~160 rpm). 

We quantified the total protein content for each lysate using (bicichoninic acid) BCA 

Assay, following manufacturer’s protocol.  For each sample, we prepared the protein 

solution containing approximately 0.5 µg/µL protein, 1X NuPAGE® sample reducing 

buffer, and 1X NuPAGE® LDS sample buffer in 1X PBS. We heated the protein solutions 

at 100°C for 10 mins and centrifuged them at 10,000 rpm (10 min at °C). We loaded 20 

µL of the protein solution per lane in a NuPAGE® 4-12% Bis-Tris Gel and ran the gels 

with 1X NuPAGE® MOPS SDS Running Buffer. The proteins were transferred 

electrophoretically from the gel to a Bio-Rad Trans-Blot® TurboTM 0.2µm PVDF transfer 

membrane using a Bio-Rad Trans-Blot® TurboTM transfer system. We blocked the 

membranes with an Odyssey blocking buffer for 1h, incubated them in the primary 

antibody solution containing anti-HIF-1α (diluted 1:1000), anti-CAIX (diluted to 1:200) 

anti-GAPDH (diluted 1:1000) in blocking buffer (overnight at 4°C) on a slow rocking 

platform. We washed the membranes containing the labeled bands with TBST (5 min × 3) 

and incubated them in the secondary antibody solution containing IR Dye 680-conjugated 

donkey anti-rabbit IgG (diluted 1:10,000) in blocking buffer (1 hour at 20°C). We imaged 

the membranes using Odyssey CLX (LI-COR Biosciences) and analyzed them using 

Odyssey 2.1 Software. See Table S-3 for the description of the antibodies in detail.    
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2.10. Immunoassay for Quantification of Levels in Cells 

 We seeded A549, A549-HGF, or A549-HGF-M cells into black-walled 96-well 

plates with clear bottom at 2,000 cells/ well, and cultured overnight. We assayed the HGF 

levels using a Quantikine® ELISA from R&D Systems which utilized a sandwich 

immunoassay method, and followed the protocol recommended by the manufacturer. The 

HGF microplate (i.e., a well plate pre-coated with monoclonal antibodies specific to 

human HGF), assay diluent, wash buffer, HGF conjugate (polyclonal antibody specific to 

HGF conjugated to horseradish peroxidase), substrate solution (solution of horseradish 

peroxidase and chromogen tetramethylbenzdine) and stop buffer (2N sulfuric acid) were 

all included in the kit. In brief, we transferred 50 µL of the media into the microplates 

(HGF microplate) containing 150 µL assay diluent, incubated the media in the microplate 

for two hours, washed the microplate with wash buffer four times, added the HGF 

conjugate into the HGF microplate for two hours, washed the microplates four times, 

incubated in substrate solution for 30 minutes, then added the stop solution. If the culture 

medium contained HGF, the color of the solution in the microplate changes from blue to 

yellow. The absorbance of the solutions was measured using Spectramax at 450 nm. The 

absorbance read at 450 nm was corrected by subtracting the absorbance at 540 nm to 

account for the optical imperfections of the well plate. The HGF concentration was 

calculated from the best-fit line obtained from a standard curve. 

3. Results  
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3.1 Design of Paper-Based Composite to Support 3D Culture  

Previously described scaffolds in the Cells-in-Gels-in-Paper (CiGiP) [46, 49-51] 

and Cells-in-Gels-in-Mesh (CiGiM) [48] culture systems used sheets of paper (or mesh) 

that were patterned to contain an array of hydrophilic regions separated by hydrophobic 

borders. In this work, we used a scaffold that requires fewer steps to fabricate than the 

paraffin film-patterned mesh sheet, but has a hydrophobic barrier that prevents the lateral 

diffusion of oxygen more efficiently than wax-printed paper [46, 48].  We fabricated a 

composite material by sandwiching a ~130 µm-thick sheet of polyvinyl chloride (PVC), 

perforated with an array of holes (3 mm in diameter), between two sheets of Whatman 

105 lens paper (Fig. 1A). We chose sheets of lens paper because it is thin (~ 40 µm in 

thickness) and contains a large void volume (~70 %). Using a heated press (~215°C), we 

melted the PVC plastic into the paper layers to form a single composite sheet. The 

perforated spaces in the PVC formed cylindrical regions (referred to as “zones”) in which 

we seeded the cells. We routinely patterned the composites to contain ten zones; these 

zones allowed for replicates in a single experiment, and provided a convenient means of 

aligning the cell-embedded gels during the stacking process. We sterilized the composite 

sheets using an autoclave. 

3.2. Modulation of Oxygen Availability in Cells Supported on Composite Sheets 

Gradients of nutrients (e.g., oxygen, glucose), waste products (e.g., CO2, lactate), 

and secreted factors form monotonic gradients in the individual layers and throughout the 

stacked structure. These gradients are controlled by three parameters: (i) the rates in 
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which cells in each layer consume the available nutrients and produce waste products; (ii) 

the number of layers in the stack determines the characteristic thickness over which the 

transport of molecules will occur; and (iii) the rate of diffusion of molecules into the 

sheets (from medium, or from adjacent layers) by diffusive mass transport [52]. In a 

single-layer composite sheet (Fig. 1A) cells receive adequate amounts of oxygen and 

nutrients because molecules can diffuse efficiently from the bulk medium into the zones 

of the composite from both sides of the layer. This configuration, which we refer to as 

“single-layer culture” (Fig. 1A), is comparable to the region of the tumor near a 

functional blood vessel and contains well-oxygenated cells. In a stack of composite 

sheets containing cell-embedded gels, a custom-built acrylic holder keeps the sheets in 

conformal contact. The holder consists of two main parts: (i) a solid bottom plate, which 

blocks the mass transport of soluble factors at the bottom of the stack; and (ii) the top 

plate, which was machined with an array of holes corresponding to the zones in the 

composite. The top plate provides access of the oxygenated media to the top of the stack. 

In this work, we prepared multi-layer stacks of six composite sheets, each containing 

cell-embedded gels. For convenience, we refer to these layers as L1, L2, L3, L4, L5, and 

L6, where L1 is the topmost layer, and is in contact with the oxygenated media. We refer 

to cultures in this multiple layer configuration as “multi-layer cultures” (Fig 1B). 

3.3. Sensitivity to Radiation Decreases with Increasing Cellular Densities 

To determine if the density of cells in single-layer cultures affects their response 

to radiation, we prepared single-layer cultures of A549 cells with varying cellular 
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densities, exposed them to ionizing radiation, and measured the reduction in metabolic 

activities of the samples as a result of irradiation. We seeded each zone by spotting the 

suspensions of cells in Matrigel with a micropipette onto the top sheet of lens paper and 

allowing the suspension to wick into the entire scaffold; zones contained concentrations 

of A549 cells ranging from 2,000 cells/zone to 80,000 cells/zone. We cultured the cells 

overnight and irradiated these samples with doses ranging from 0 to 16 Gray in a 

cesium-137 irradiator. One Gray (Gy) is a measure of absorbed dose of radiation in the 

international system (SI) of units, and is defined as the amount of energy absorbed by a 

kilogram of matter in J kg-1; for an irradiator delivering a dosage of 1 Gy · min-1, we 

exposed samples for either 2 or 16 mins to receive dosages of 2 Gy or 16 Gy, 

respectively. We measured the metabolic activity of the cells six days post-irradiation 

using the CellTiter-Glo® (CTG) assay, which quantifies the level of ATP present in cells 

[53]. The sensitivity of cells to radiation (Eq 1 and 2) decreased with increasing seeding 

density of cells (Fig. 2A). We compared the metabolic activities of an irradiated sample 

and a non-irradiated sample; the zones in both samples were seeded at the same densities. 

Six days post-irradiation, the metabolic activity of samples seeded at 2,000 cells/zone 

decreased by up to 81% (values ranged from 78% to 85% for n = 3 scaffolds) when 

irradiated with 16 Gy. The metabolic activity of samples seeded at a density of 80,000 

cells/zone irradiated with the same dose decreased by less than 29% (values ranged from 

26% to 35% for n = 3 scaffolds). These results suggest cells seeded at higher densities are 

more resistant to radiation and single-layer cultures can accommodate high seeding 

densities.  

Page !  of !17 42



3.4. Increases in Cellular Density Decrease Cellular Proliferation 

Exposure to ionizing radiation can damage DNA [3, 6, 7, 54, 55], and the 

continued replication of unrepaired and defective DNA can result in cellular death [55]. 

We hypothesized that the reduced sensitivity of cells to radiation for increasing seeding 

densities correlated with the rate in which these cells proliferate. To test this hypothesis, 

we seeded A549 cells at a density of 2,000 cells/zone or 100,000 cells/zone in the single-

layer composite sheets, and cultured the layers for seven days. We then incubated the 

samples in media containing 5-ethynyl-2´-deoxyuridine (EdU), a thymidine analog that 

intercalates into the DNA of cells undergoing replication [56], to label proliferating cells. 

We then fixed and visualized the EdU–labeled cells with Alexa Fluor® 488-conjugated 

azide [56].  Confocal fluorescence micrographs (Fig. 2B) revealed a higher fraction of 

proliferating cells in single-layer cultures seeded at low density than those seeded at high 

densities. This result is consistent with the hypothesis that radiation-induced damage to 

cells can be enhanced by increasing the population of cells undergoing proliferation. 

3.5. Radiation-Resistant Cells in Oxygen-Rich Environments are Mostly Non-

Proliferating and Senescent.  
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There are at least two possible explanations for the metabolically active cells that 

remain after irradiation with as much as 16 Gy: (i) the surviving cells were senescent at 

the time of irradiation, or became senescent after irradiation [57], or (ii) the surviving 

cells retain properties of “cancer stem cells” that allow them to repair DNA damage 

during irradiation [58-61].  To characterize cells appearing to survive high doses of 

radiation in well-oxygenated (i.e., single-layer) cultures, we cultured A549-GFP in 

single-layer composites (seeded at 2,000 cells/zone) overnight, irradiated them with doses 

ranging from 0 to 16 Gy, and then incubated the irradiated cells with either (i) EdU, or 

(ii) X-Gal (5-bromo-chloro-3-indolyl-β-D-galactopyranoside), a chromogenic substrate 

for β-galactosidase, a marker of senescent cells.  

3.5.1 Most of the surviving cells do not proliferate 

To approximate the ratio of the number of proliferating cells to the total number 

of cells that survived irradiation, we compared the fluorescence intensities of EdU-

labeled cells (proliferating A549 cells) and GFP (surviving A549 cells). The graph in Fig. 

2C shows this ratio decreased with higher dosages of radiation. This result indicates that 

the surviving cells in the cultures exposed to at least 8 Gy were non-proliferating, or that 

they have lost their ability to proliferate.  

3.5.2. Most of the surviving cells are senescent  

To determine if the surviving cells were senescent, we incubated the cells in X-

Gal and counted the cells which stained blue. The X-Gal substrate is hydrolyzed by β –
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galactosidase, a senescence-associated enzyme, to generate a by-product that readily 

dimerizes to form a blue precipitate [62]. Counting blue-colored cells in the single-layer 

scaffolds can be difficult with bright-field microscopy [45, 48] because the cellulose 

fibers of the paper layers scatter light. To count the number of senescent cells more 

accurately, we recovered the cells from the paper by enzymatically degrading the 

Matrigel with Accumax, resuspending the cells in media, and dispensing the suspension 

of cells into 96-well plates (1,000 cells/zone).  We then cultured the recovered cells for 48 

hours before staining with X-Gal. Fluorescence and bright-field images (Fig. 2D) showed 

two indications that a fraction of cells were senescent [62, 63]. (i) The fraction of X-gal 

positive cells increased with increasing dosage of radiation. The graph in Fig. 2D 

indicates that the number of senescent cells (i.e., % XGal positive cells) increased with 

increasing radiation dosage; the average fraction of senescent cells increased from 8 % 

(values ranged from 5 % to 18 % for n = 3 scaffolds) in non-irradiated cultures to 82 % 

(values ranged from 72 % to 83 % for n = 3 scaffolds) in cultures irradiated at 16 Gy. (ii) 

The size of the cells increased with radiation dosage, also indicating a senescent 

phenotype (Fig. 2D) [62, 63].  The majority of cells that survived radiation dosages of at 

least 8 Gy, therefore, were senescent.  Although this result does not preclude the presence 

of a subpopulation of cancer stem cells, the existence of this subpopulation was not 

experimentally validated.    

  

3.6. The Availability of Oxygen and Nutrients Influence Radiation Sensitivity in Multi-

layer Cultures  
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To determine if cells cultured in layers of the multi-layer stack have different 

sensitivities to irradiation, we assembled in parallel two sets of 3D cell culture in stacks

—one set of irradiated stacks (i.e., treated stacks), and one set of non-irradiated stacks 

(i.e, control stacks), irradiated the stacks, and measured the reduction in the metabolic 

activities of each layer of the stacks as a result of irradiation. We prepared each stack by 

seeding 2,000 A549 cells/zone in the composite sheets, culturing the sheets overnight as 

single layers, and then assembling multi-layer stacks composed of six layers. We cultured 

the stacks for four days (Fig. 3A) before exposing the treated stacks with 8 Gy to ensure a 

gradient of oxygen formed in the stacks. Each stack was cultured for an additional seven 

days post-irradiation before they were de-stacked and analyzed using CTG assay (Fig 

3B). Unless stated otherwise, radiation experiments for all multi-layer cultures were 

carried out as described above.  

 We evaluated the radiation response of cells in the stacks by comparing the 

metabolic activity of each layer from the irradiated stack with its corresponding layer 

from the non-irradiated stack (e.g., we compared the number of metabolically-active cells 

from L1 of the irradiated stack with the number of metabolically-active cells from L1 of 

the non-irradiated stack). The reduction in metabolic activity in layers that responded to 

radiation was calculated using Equations 2 and 3. 

 We found that the metabolic activity of cells in layers closest to the source of 

oxygen and media was reduced the most after irradiation while layers at the bottom of the 
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stack did not decrease (Fig. 3B). The metabolic activity of the cells in L1 and L2 

decreased by 48% (values ranged from 35 % to 59 % for n = 6 scaffolds). The metabolic 

activity in L3 decreased by 37% (values ranged from 17 % to 52% for n = 3 scaffolds). 

No significant decrease was observed in L4 and L5. The responsiveness of the cells in L6 

to irradiation is unclear because the mean is smaller than about twice the standard error 

(i.e., 1.96 × standard error) for L6 of the non-irradiated stack (Table S-1a)[64]. These 

results are consistent with the response observed in solid tumors in vivo: cells in close 

proximity to blood vessels (i.e., < 200 µm) respond to radiation, and cells residing 

beyond this distance, which is believed to be a hypoxic environment, are likely 

insensitive to irradiation [32, 65-67].  

 We hypothesize the insensitivity of these cells to radiation is due to decreased 

proliferation caused by the deprivation of oxygen: cells in the uppermost layers 

consumed most of the oxygen diffusing into the stack, and consequently, deprived cells in 

the lower layers of the stack of the oxygen required to support proliferation. To verify this 

hypothesis, we labeled the proliferating cells with EdU in the non-irradiated multi-layer 

culture of A549-GFP cells after 11 days of culture. Confocal images of the stained layers 

showed qualitatively a similar observation; the proliferation of cells is highest in L1 and 

is lowest in L6 (Fig 3C). 

3.7. Hypoxia Markers Expressed in Cells Increases with the Distance of Cells from the 

Source of Oxygenated Media  
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Our irradiation data for the multi-layer stacks showed that the sensitivity of cells 

to ionizing radiation decreased with increasing distance from the source of the 

oxygenated medium. To verify the cells were experiencing different oxygen tensions, we 

measured the expression of two markers for hypoxia in each of the six layers of the multi-

layer 3D culture: (i) hydroxy-HIF-1α, the predominant form of HIF-1α in cells when 

oxygenated (upon de-stacking) [68], and (ii) carbonic anhydrase 9 (CAIX), a HIF-1 

inducible protein [69-71]. We stacked six sheets of lens paper-PVC composite containing 

overnight cultures of A549 (seeded at 2,000 A549 cells/zone) in an acrylic holder, 

cultured the stack for 4 days, disassembled the stacks into separate layers, and analyzed 

lysates for expression of hydroxy-HIF-1α and CAIX. To account for differences in total 

protein content in each lysate, we used glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) as a control to normalize the signal of hydroxy-HIF-1α and CAIX to the total 

protein content. Table S-3 lists the brand and specificity of primary antibodies, and the 

secondary antibody used for immunoblotting. Images of the membrane from the Western 

blot showed an increase in the intensity of hydroxy-HIF-1α and CAIX band from L1 to 

L6 (Fig. 4A). The ratio of the intensities of the bands of hydroxy-HIF-1α to GAPDH also 

increased from L1 to L6 (Fig. 4B). These results support our assumptions about multi-

layer 3D cultures when nutrients, oxygen specifically, can only diffuse from one side of 

the cultures: The cells receive decreasing levels of oxygen, resulting in lower rates of 

proliferation than the cells receiving adequate oxygen, and therefore show resistance to 

ionizing radiation (Figs. 3A-C). 
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3.8. Multi-layer Cultures Provide a System that can Distinguish Differences in 

Radiation Response of Cell Lines that Secrete Different Levels of Hepatocyte Growth 

Factor 

We compared the radiation sensitivity of three isogenic cell lines, the parental 

A549 cell line and two variants expressing different levels of hepatocyte growth factor 

(HGF): A549 cells that overexpress HGF (A549-HGF), and a sub-clone of A549-HGF 

cells that was collected from a metastatic tumor in the lung of a xenografted mouse 

(A549-HGF-M).  The parental A549 cells is known to be less metastatic in vivo than the 

other two A549 variants [49]. Using sandwich-based ELISA, we found that the A549 

parental cell line did not secrete a detectable level of HGF, while both A549-HGF and 

A549-HGF-M secreted significant levels of HGF (Table 1). HGF is known to increase 

cellular migration and proliferation [72, 73]. When cultured in a monolayer (Fig. 5A) or 

when cultured in a single-layer composite sheet (Fig. 5B), the three lines of A549 cells 

responded similarly to increasing dosages of radiation.   

 We prepared two sets of stacks for each cell line; one set was irradiated, and 

another set was not irradiated. We compared the metabolic activity of each layer of the 

stack seven days post-irradiation. Response to radiation is indicated by the reduction in 

the viability in the layer of the irradiated stack from its corresponding layer of the non-

irradiated stack. When cultured in the multi-layer stacks, cells that released the most HGF 

responded the least to irradiation (Fig. 5C): (i) A549-HGF-M cells, independent of their 

location in the stack, have no clear response to radiation (Tables S-2e,f); (ii) A549-HGF 

have an observable response in L1 (a distance of ~150 µm from the source of fresh 
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media) with 18 % in reduction in metabolic activity (ranging from 13 % to 30 % for n =3 

scaffolds) (Tables S-2c,d) ; and (iii) wild-type A549 cells have  a clear response in L1 

through L3 (a distance of ~400 µm away from the source of fresh media) (Tables S-2a,b). 

We hypothesized that the different HGF levels in the three cell lines attributed to the 

observed differences in radiosensitivity by affecting the proliferation or migration rate of 

the cells. 

 To better understand the effects of migration and proliferation during culture, we 

analyzed the irradiated multi-layer stacks of A549-HGF-M at shorter time-points. The 

metabolic activity of cells in the upper layers showed an observable decrease in viability, 

two days and four days post-irradiation (Fig. 6A); and by day six post-irradiation, the 

number of viable cells in each layer of the stack matches that of a stack that was not 

irradiated. These results support our hypothesis that after irradiation, cells can repopulate 

by proliferating rapidly, and/or migrating from the lower layers of the stack to the upper 

layers of the stack; both events might account for the apparent unresponsiveness of A549-

HGF-M cells to radiation seven days after irradiation. 

 To decouple the contribution of migration from proliferation in multi-layer 

cultures of A549-HGF-M cells, we separated the layers with sheets of polycarbonate 

filters with 0.20 µm diameter pores; these pores prevented the migration of cells to 

adjacent layers during culture, but allowed diffusion of molecules (e.g., oxygen and 

glucose) into the stack. The graph in Fig. 6B indicates that blocking migration does not 

enhance the sensitivity of cells to radiation, and thus suggests that the unresponsiveness 
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we observed in long-term cultures of A549-HGF-M cells was due to proliferation, and 

not migration.  

 These results, therefore, demonstrate that multi-layer cultures can serve as an in 

vitro system for studying biological processes such as radiation response, while taking 

into account factors that are native to tumor biology such as limitations of mass transport 

and migration of cells. 

4. Discussion  

 The paper-based cell culture system we describe in this work offers many 

advantages over the monolayer or spheroid cultures currently used in radiation studies 

because: (i) millimeter-thick cultures can be generated by simply stacking the single-layer 

composite sheets; (ii) cells in the different layers of the culture can receive a gradient in 

nutrients, waste products, and drugs by restricting the diffusion of media from one side of 

the stack; (iii) each sheet in the stack can contain different types of cells and/or gels; (iv) 

the multi-layer stack can be sectioned easily by peeling the layers apart and does not 

require histology equipment; (v) the separated sheets can be analyzed optically or through 

the use of enzymatic assays; and (vi) the sheets can be patterned using the fabrication 

method described above to create multi-zone patterns that can be adapted for high-

throughput assays [46, 48, 51]. 

 Using this system, we were able to demonstrate in vitro, that decreasing levels of 

oxygen can reduce the proliferation of non-small cell lung cancer cells, and consequently, 

reduce the sensitivity of these cells to ionizing radiation. Increases in the expression of 
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hypoxia-inducible factor and CAIX with increasing distance from the source of oxygen 

and media can also be observed in this system; a trend also observed in tumors in vivo. 

Since HIF-1α in re-oxygenated tumors only has a half-life of less than one minute [74], 

and cells within the stacks get re-oxygenated upon de-stacking, we expect that most of 

the HIF-1α expressed in cells, even at the lower regions were hydroxylated [68].  It is 

therefore not surprising that the expression of hydroxy-HIF-1α is lowest in L1, and 

highest in L6, as HIF-1α is targeted for degradation following hydroxylation and 

ubiquitination [27-30]. These results are in agreement with the widely held view that 

gradients of oxygen present in a tumor directly affect the sensitivity of the cells to 

radiation, but emphasize that the presence of these oxygen gradients are as, if not more, 

influential post-treatment than during treatment. 

 The current disadvantage of the system is that any kind of analysis requires the 

system to be disassembled, and consequently the gradients in the stack to be destroyed, if 

multiple measurements are taken over time.  Incorporating sensors into the layers, for 

example, printing electrodes to measure oxygen concentration or pH, can be an approach 

to monitor cellular activities in the different layers without disassembling the stack, and 

hence keeping the fidelity of the molecular gradients formed in the stack. Integrating a 

sensing system to the 3D culture system that could quantify oxygen concentration within 

the stack will enable direct assessment of the influence of oxygen levels on cellular 

phenotype.   

 We believe this approach can be further used to evaluate the response of different 

tumors under different oxygen tensions to radiation, while taking into account differences 
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in the rates of proliferation and migration of the cells within the population.  The 

dynamics would be particularly interesting when studying the heterogeneous populations 

of cells found in the tumor environment (e.g., cancer stem cells and stromal cells). For 

example, we have used paper-based 3D culture to model an orthogonal system—cardiac 

ischemia, and study the interactions that arise between cardiomyocytes and cardiac 

fibroblasts [47]. The study of the interaction between tumor cells with stromal cells, co-

cultured in this multi-layer culture system, is among our group’s current work.  We 

believe this system also has the potential to be used as an in vitro assay for evaluating 

drugs that target hypoxic cells, or to evaluate the resistance of cells to radiation over long 

periods (i.e., weeks) post-treatment. 

5. Conclusion 

 This work describes a paper-based 3D culture system that can distinguish the 

sensitivity of cells to ionizing radiation, within gradients of small molecules of oxygen, 

nutrients, and autocrine factors, using a single setup.  These gradients are also present in 

tumors in vivo, and recapitulating these factors in vitro, may more accurately predict 

tumor response to therapeutic treatments than conventional 2D and 3D culture systems. 

Using this system, we were able to demonstrate in vitro that cellular proliferation, 

and sensitivity to radiation decrease with monotonically-decreasing gradients of oxygen 

and nutrients. This system therefore provides a unique ability to evaluate and distinguish 

the response of different cellular populations—rather than measure one collective cellular 

response—to radiation treatment.  The simplicity of the CiGiP system, with minimal 
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required equipment, will enable users from a broad-range of disciplines to adopt this 

technology in their own radiation studies.  
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Figure 1. Cell-in-Gels-in-Paper Cultures for Radiotherapy Assays. (A) Schematic 
representation of the fabrication of single-layer composite sheets used in the irradiation 
experiments. (B) Scheme for a multi-layer culture with a collective thickness of 0.78 mm (6 
layers × 130 µm thick/layer = 0.78 mm thick). Unless otherwise stated, cells were seeded at a 
density of 2,000 cells/zone, cultured as single layers overnight, stacked, cultured as a stack for 
four days, irradiated at 8 Gy, and cultured for seven days before analysis. 
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Figure 2. Radiation response of single-layer cultures of A549-GFP cells (A) Scheme showing 

a zone of a single-layer culture (left) and graph showing the response of single-layer cultures that 

were seeded at different densities (right). The radiation response, represented by the reduction in 

the metabolic activity of cells, was measured using the luminescence-based CellTiter-Glo® 

(CTG) assay. Data represent the ratio of the luminescence between irradiated to non-irradiated 

samples for n = 3 scaffolds. The luminescence value for each scaffold is an average of eight 

measurements (see supporting information for details of CTG assay) (B) Confocal fluorescence 

images of A549 cells stained with Click-iT® EdU Alexa Fluor® 488. Both images were taken at 

the same magnification. (C) Confocal fluorescence images of A549 cells stained with Click-iT® 

EdU Alexa Fluor® 594. The scale bar for all the images are found on the sample irradiated at 16 

Gy—the top scale bar is for images at low magnification, while the bottom one is for images at 

high magnification.  Graph showing the ratio of proliferating cells with surviving A549-GFP 

cells. The intensities of Alexa Fluor® 594 (proliferating A549-GFP cells) and GFP (surviving 

A549-GFP cells) were measured using a Typhoon scanner. Error bars represent the standard 

deviation for n = 10 zones. (D) Fluorescence (top) and bright field (bottom) images of A549-GFP 

cells labeled for senescence-associated β-galactosidase activity. All images were taken at the 

same magnification. Graph showing the percentage of senescent cells (stained with blue) with 

the total number of A549-GFP cells. Data points represent the % X-Gal for n = 3 wells. 
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Figure 3. Radiation Response of Cells in Multi-layer Cultures of A549 Cells (A) Scheme 

representing a column of cells in a zone of the multilayer stack. Blocking the bottom of the stack 

with a plate impermeable to gases and small molecules limits the diffusion of molecules to the 

top of the stack. (B) Graph summarizing the number of metabolically-active cells in multi-layer 

culture of A549 cells from L1 to L6. Circular and triangular markers represent values obtained 

for each stack; bars represent the average for 3 stacks. The luminescence value for each scaffold 

is an average of eight measurements (see supporting information for details of CTG assay). 

(Inset) Enlarged graph for the viability of multi-layer cultures from L4 to L6. The broken lines 

indicate the seeding density of cells (2,000 cells/zone) in each layer. (C) Confocal fluorescence 

images of A549 cells in a non-irradiated, multi-layer culture showing decrease in the density of 

cells, and decrease in the incorporation of the proliferation stain, EdU (Click-iT® EdU Alexa 

Fluor® 594), as cells get depleted of oxygen (i.e., from L1 to L6).  
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Figure 4. Hydroxy-HIF1-α and CAIX Expression of A549 Cells in Multi-layer Cultures 

Using Western Blot (A) Images of blots of A549 lysates carried out for hydroxy-HIF-1α, CAIX 

and GAPDH (loading control).  Lysates were collected from multi-layer cultures that were 

cultured for four days and then disassembled into separate layers. CAIX is a dimeric protein, and 

is the reason for the two bands in the Western Blot. (B) Graph summarizing the ratio of HIF and 

CAIX intensities to the normalization factor (the normalization factor was calculated from the 

ratio of the intensity of the band from GAPDH of each layer, to the intensity of the highest 

GAPDH among all the layers). 
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Figure 5. Radiation response for Lung Carcinoma Lines in Different Culture Systems. 

Viability curves of A549, A549-HGF and A549-HGF-M in (A) 2D and (B) single-layer cultures. 

Error bars represent the standard deviation for n = 6 wells (96-well plates), and n = 3 sheets 

(PVC-lens paper composite). (C) Graphs summarizing the viability of A549, A549-HGF and 

A549-HGF-M in multi-layer cultures. Circular and triangular markers represent values obtained 

for each stack; bars represent the average for n = 3 stacks. 
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Figure 6. Radiation response of A549-HGF-M in Multi-layer Culture (A) Viability of multi-

layer cultures of A549-HGF-M measured at different time points. (B) Viability of multi-layer 

cultures of A549-HGF-M with polycarbonate filters (pore diameter = 0.20 µm to block 

migration). (Inset) Enlarged graph for the viability of multi-layer cultures of A549-HGF-M from 

L2 to L6. Circular and triangular markers represent values obtained for each stack; bars represent 

the average for n = 3 stacks. 
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Table 1. HGF Levels Released from Overnight Cultures of A549 and A549-derived Lines 
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