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 25 

ABSTRACT 26 

Studies of microbial sulfate reduction have suggested that the magnitude of sulfur isotope 27 

fractionation varies with sulfate concentration. Small apparent sulfur isotope fractionations 28 

preserved in Archean rocks have been interpreted as suggesting Archaean sulfate concentrations 29 

of less than 200 μM, while later larger fractionations have been interpreted to require higher 30 

sulfate concentrations. In this work, we demonstrate that isotope fractionation can sometimes 31 

vary with sulfate concentrations over a large range of concentrations, but that this relationship 32 

depends on the organism being studied. Two sulfate reducing bacteria grown in continuous 33 

culture between 0.1 and 6 mM sulfate showed markedly different relationships between sulfate 34 

concentration and isotope fractionation. Desulfovibrio vulgaris str. Hildenborough cultures 35 

showed a large and relatively constant isotope fractionation (34εSO4-H2S ≅  25‰) over the 36 

experimental range of sulfate concentrations. Over the same concentration range, fractionation 37 

by Desulfovibrio alaskensis strain G20 strongly correlated with sulfate. Both data sets can be 38 

modeled as Michaelis-Menten (MM) type relationships but with very different MM constants, 39 

suggesting that the fractionations imposed by these organisms respond in dramatically different 40 

ways to sulfate concentrations. 41 

These data reveal complexity in the sulfate concentration-fractionation relationship. 42 

Sulfur isotope fractionation during sulfate reduction relates to environmental sulfate 43 

concentrations but also to strain-specific physiological parameters such as the affinity of sulfate-44 

reducing microorganisms for sulfate and electron donors. Previous studies have suggested that 45 

the relationship between sulfate concentration and isotope fractionation is best fit with a MM fit.  46 

suggested We present a simple model, grounded in the physiology of sulfate reduction, in which 47 

the ratio of MM relationships for sulfate and electron donor uptake produces the relationships 48 

seen in experimental studies: a MM relationship with sulfate concentration, and a hyperbolic 49 

relationship with growth rate. 50 

Since both environmental and biological factors influence the fractionation recorded in 51 

geological samples, understanding their relationship is critical to interpreting the sulfur isotope 52 

record. As the acquisition machinery for sulfate and electron acquisition has been subject to 53 

selective pressure over Earth history, its evolution may complicate efforts to uniquely reconstruct 54 

ambient sulfate concentrations from a single sulfur isotopic composition. 55 

Patterns of SRB S-isotope fractionation 2 



 

 56 

Keywords: co-limitation and threshold effects; Michaelis-Menten; marine sulfate concentration; 57 

Archean seawater 58 

 59 

 60 

  61 

Patterns of SRB S-isotope fractionation 3 



 

INTRODUCTION  62 

Evolution of the marine sulfate reservoir is a key parameter in modeling Earth’s 63 

surface oxidation state through time (Berner and Canfield, 1989; Canfield, 2004). Today, 64 

seawater sulfate represents an oxidant reservoir ten times the size of atmospheric O2 65 

(Hayes and Waldbauer, 2006). One of the most powerful tools for understanding the 66 

evolution of the sulfate reservoir, and by proxy the surface sulfur cycle, is the ratio of stable 67 

sulfur isotopes in sulfur-bearing minerals found in marine sedimentary rocks. Marine 68 

sulfate concentrations are linked to geological isotope records largely via microbial 69 

metabolism, most notably by microbial sulfate reduction (MSR), a metabolic process that 70 

couples organic carbon or hydrogen oxidation to sulfate reduction. Details of isotopic 71 

records permit the quantification of seawater sulfate through Earth history, but such 72 

inferences are predicated on a fundamental understanding of the broad suite of factors that 73 

influence the fractionation of sulfur isotopes during MSR. 74 

MSR can yield a large mass-dependent fractionation between sulfate and sulfide 75 

(Chambers et al., 1975; Harrison and Thode, 1958; Leavitt et al., 2013; Sim et al., 2011c); 76 

the product sulfide is depleted in heavy isotopes, leaving the residual sulfate enriched. Both 77 

environmental and physiological factors contribute to the expressed fractionation. For 78 

example, Habicht et al. (2002) presented data suggesting that 34S/32S fractionations greater 79 

than 5‰ are expressed only when ambient sulfate concentration exceeds 200 µM – 80 

approximately one percent of the modern seawater sulfate concentration. This 81 

concentration threshold is similar in magnitude to the sulfate half-saturation 82 

concentrations (Ks) associated with growth kinetics of some MSR strains (Pallud and Van 83 

Cappellen, 2006; Tarpgaard et al., 2011). When paired with Precambrian sedimentary 84 

sulfur isotope record, this fractionation threshold value was taken to imply an increase in 85 

seawater sulfate concentrations near the Archean – Proterozoic boundary, where a 86 

dramatic expansion of S-isotope fractionation is preserved (Habicht et al., 2002).  This, in 87 

turn, suggests a strong physiological control on the geological isotope record (Habicht et al., 88 

2002; Habicht et al., 2005; Szabo et al., 1950) and implies that as microbial physiologies are 89 

better understood, more refined geological storylines are possible. 90 
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Microbial physiology provides the context for mechanistically evaluating how low sulfate 91 

concentrations limit sulfur isotope fractionation. Extensive work on the sulfate uptake half-92 

saturation constant (Ks) demonstrates a range of uptake capacities in natural communities and 93 

pure cultures alike (see compilations in (Pallud and Van Cappellen, 2006; Tarpgaard et al., 94 

2011). For instance, it was originally intuited that microbes that evolved in and adapted to 95 

lacustrine environments with low ambient sulfate concentrations will have low Ks values, with 96 

the opposite posited for marine strains (Bak and Pfennig, 1991; Holmer and Storkholm, 2001). 97 

However, in natural samples, measured Ks values show no clear relationship with salinity; 98 

freshwater and marine sediments have apparently similar ranges of Ks (see review in Tarpgaard 99 

et al. (2011)). That said, low Ks values have been observed more frequently in freshwater 100 

cultures than in marine cultures (Tarpgaard et al., 2011).  Further, Tarpgaard et al. (2011) 101 

demonstrate that individual microbial strains within a community can have different apparent Ks, 102 

values for sulfate, lessening the validity of using the realized Ks as a proxy for the all members 103 

of a given environment. This is also consistent with genomic analyses (Hauser et al., 2011; 104 

Heidelberg et al., 2004), which suggest that individual microbial strains may carry multiple 105 

sulfate transporters, possibly of varying sulfate Ks and Vmax (maximal transport rate). Such 106 

complexity suggests that a single measure of cellular Ks is an imperfect guide to the 107 

concentration-dependence of fractionation. As such, the relationship between sulfate 108 

concentration/activity, transport, and isotope fractionation is likely more complex than a simple 109 

and universal sulfate concentration threshold value and related step-function change in sulfur 110 

isotope fractionation.  111 

It should also be noted that sulfate transporters enable sulfate-reducing microorganisms 112 

to compete for sulfate as a function of both the cellular half-saturation constant, Ks, and of the 113 

maximum rate of cellular sulfate uptake, Vmax.  It is important to appreciate that Vmax itself is also 114 

a function of the number and characteristics of sulfate ion transporters in the cell membrane 115 

(Aksnes and Egge, 1991). Much work suggests that the appropriate parameter to describe the 116 

cellular uptake efficiency for any ion – including sulfate – is the affinity parameter As, which is 117 

Vmax /Ks (Aksnes and Egge, 1991; Button, 1985; Healey, 1980; Smith et al., 2009).  This term 118 

captures the influence of both the maximal rate of transport and the half-saturation constant. As 119 

strains with a higher As are able to import sulfate more efficiently into the cell, the opportunity 120 

for isotope fractionation should increase; at low transport velocities (i.e. sulfate import rates), 121 
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transported sulfate is likely to be quantitatively reduced to sulfide, which due to mass balance 122 

would minimize isotopic fractionation. 123 

In this study we report results from two sets of continuous-culture experiments, 124 

each employing an axenic strain of sulfate-reducing bacteria. We examine pure strains 125 

rather than enrichment cultures or diverse sedimentary communities in order to avoid 126 

complexities introduced by multiple competing strains, each with potentially different 127 

sulfate affinities and transport kinetics.  In each set of experiments, the bacterial population 128 

was cultivated at steady state under a range of different sulfate concentrations (0.1 to 6 129 

mM) in order to assay the relationship between sulfate concentration and isotope 130 

fractionation. The freshwater (Desulfovibrio vulgaris str. Hildenborough) and marine 131 

(Desulfovibrio alaskensis str. G20) strains selected are among the most well studied sulfate 132 

reducers (Hansen, 1994; Pereira et al., 2011; Wall et al., 1993). Each strain has a fully 133 

sequenced genome (Hauser et al., 2011; Heidelberg et al., 2004), is genetically tractable, 134 

and is biochemically well-characterized (Grein et al., 2013; Venceslau et al., 2014), 135 

providing a wide range of tools for follow-up investigations.  136 

To date, previous physiological work has reported one sulfate Ks for D. vulgaris at 137 

0.032 mM (Ingvorsen and Jørgensen, 1984). The genome of D. vulgaris 138 

(http://www.ncbi.nlm.nih.gov) further contains three annotated sulfate transport proteins. 139 

In contrast, D. alaskensis has no reported Ks; however, closely related strains have values 140 

ranging from 0.005 mM to greater than 0.250 mM (Dalsgaard and Bak, 1994; Fukui and 141 

Takii, 1994; Okabe et al., 1992).  The D. alaskensis genome contains at least 10 sulfate 142 

transporters; unknown transport proteins are also present and may increase this estimate.  143 

Such redundancy is consistent with the notion that a range of sulfate affinities can be 144 

exhibited in a single strain or environment (Tarpgaard et al., 2011). Here we present the 145 

experimental design and results, consider potential physiological and environmental 146 

factors that can explain the observed differences, and discuss the ramifications of these 147 

data on interpretations of the geological sulfur isotope record. 148 

 149 

MATERIALS AND METHODS SUMMARY 150 
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Each strain (D. alaskensis and D. vulgaris) was grown in stirred continuous culture 151 

vessels held at room temperature (25 °C) for roughly 40 days. We employed a continuous flow 152 

bioreactor to avoid the complexities of closed-system Rayleigh distillation effects incurred 153 

during growth in batch culture (Leavitt et al., 2013). In continuous culture at steady state, 154 

concentration of the limiting substrate (in this case, lactate) remains invariant and is a function of 155 

dilution rate; the growth rate (day-1) is also constant and equal to the dilution rate 156 

(Dday-1). This design allowed us to match D. vulgaris and D. alaskensis growth rates at 157 

0.037 ± 0.003 and 0.034 ± 0.001 (days-1), respectively. Growth rate and biomass yield were 158 

modulated with lactate as the limiting substrate. Any variability recorded in these experiments 159 

should, thus, primarily reflect the isotopic response to changing sulfate concentrations. Our 160 

approach allows us to measure the fractionation behavior of MSR at constant growth rates over a 161 

range of sulfate concentrations  (0.1 to 6.1 mM). 162 

Sulfate and lactate were supplied to the bioreactors at rates necessary to achieve media 163 

concentrations from 0.5 to 10 mM.  As the limiting nutrient, standing lactate concentrations in 164 

the chemostats were a function of dilution rate. The reactor vessel was continuously purged with 165 

a pre-conditioned (O2-free and hydrated) anaerobic gas mixture (N2:CO2, 90:10), which also 166 

served to carry gas phase sulfide out of the reactor to a series of zinc acetate traps. Reactor pH 167 

was maintained at 7.0±0.02 via a pH-probe activated titration pump, which dosed either 1M HCl 168 

or 1M NaOH as appropriate (N2-degassed and autoclave-sterilized). From the effluent, 169 

concentrations of lactate/acetate and sulfate/sulfide were measured daily along with optical 170 

density and all (gas and liquid) flow rates. Our reported concentrations are those measured from 171 

the chemostat effluent, and represent the effective concentration of sulfate in the reactor. Steady-172 

state sulfate concentrations were measured directly from the bioreactor effluent, and represent 173 

the concentration available to the population (lower than the concentration of the inlet media). 174 

The fractionations of interest (34ε and 33λ) are thus between reactant sulfate and product sulfide, 175 

both collected from the effluent. For isotopic analysis, all samples were measured for δ34S via 176 

SO2 and select samples were fluorinated to SF6 and measured for high precision δ33S analysis 177 

(Johnston et al., 2005).  Carbon and sulfur mass balances were always satisfied to within 2%. 178 

Growth rate was determined given growth data (cells/mL or A600/mL) with respect to the 179 

dilution rate (Dday-1), and only samples satisfying a steady-state flow regime (see 180 

Patterns of SRB S-isotope fractionation 7 



 

Supplemental Information) were included in the final analysis. All chemical, biological, and 181 

isotopic methods are described in the supplemental materials.  182 

 183 

 184 

RESULTS AND DISCUSSION 185 

CHEMOSTAT EXPERIMENTS 186 

The isotopic fractionation between sulfate and sulfide is plotted in Figure 1 as a function 187 

of the standing sulfate concentration in the chemostat for both D. vulgaris and D. alaskensis.   188 

Experiments with D. vulgaris yielded a range of 34εD.vulgaris from 18.0 to 32.7‰ over the targeted 189 

sulfate concentrations. Specifically, 34εD.vulgaris shows no significant covariance between sulfate 190 

concentration and fractionation (p = 0.19), meaning that there is no first-order dependence of 191 

fractionation on sulfate concentration between 0.1 and 5 mM. Furthermore, D. vulgaris 192 

demonstrates the capacity for significant isotope fractionation (34εD.vulgaris greater than 25‰, 193 

although with significant scatter) at sulfate concentrations as low as 0.1 mM. These data are 194 

consistent with a Michaelis-Menten type relationship between substrate concentration and 195 

fractionation (Habicht et al., 2005), with a Km-frac  = 0.0027 mM (95% CI is 0 to 0.036 mM) 196 

and 34εmax = 25.8‰ (95% CI is 23.4 to 28.3‰). Km-frac is defined as the sulfate concentration at 197 

which expressed fractionation is one-half of the maximum fractionation under constant 198 

conditions excepting variable sulfate concentrations (Habicht et al., 2005). 199 

In contrast, experiments with strain D. alaskensis produce a 34εD.alaskensis that varies 200 

systematically from near 0 to 13‰ as steady-state sulfate concentrations are increased.  These 201 

data show strong co-variance, via the linear regression model: 34ε = (2.2 ± 0.1)*[SO4
2-] + (1.2 ± 202 

0.3), with a p-value less than 0.001.  This result is consistent with a first-order dependence 203 

of 34εD.alaskensis on sulfate concentration over the range tested (0.1 to 6.1 mM). The data could also 204 

be fit with a Michaelis-Menten type relationship, with a half-saturation constant of Km-frac = 8.9 205 

mM (95% CI is 2.2 to 15.7 mM) and 34εmax of 34.5‰, 95% CI is 16.8 to 52.3 ‰). Although 206 

comparison of the two models using a corrected Akaike’s (AICc) information criterion favors the 207 

linear model (62% likelihood), mechanistic considerations (see ‘Evaluation of cellular Ks’) 208 

suggest that the Michaelis-Menten formulation is preferable. Taking the D. vulgaris and D. 209 

alaskensis experiments together, the strains exhibits strikingly different patterns in both the 210 
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magnitude of 34ε and its dependence on ambient sulfate concentration (i.e. the Michaelis-Menten 211 

fitting parameters).   212 

The relationship between sulfate concentration and isotopic fractionation (34ε) described 213 

above and elsewhere (Habicht et al., 2002; Habicht et al., 2005) can be extended to include 33S. 214 

These data are presented in Figure 2 using two complementary minor isotope notations§: 33λ 215 

andΔ33S. The ∆33S notation is common in geological applications and is the deviation (in ‰ 216 

units) from a theoretical reference frame defined using the calculated low temperature 217 

thermodynamic equilibrium relationship between 32S, 33S, and 34S where 33λ = 0.515. However, 218 

since 33λ is not constant across various processes a calculation of its value provides another 219 

measure of minor isotope variance – it can be envisioned as approximately the slope of the curve 220 

on a plot of δ33S vs. δ34S.  Non-equilibrium processes can have slopes different than 0.515, most 221 

commonly less than 0.515 (Farquhar et al., 2003; Johnston et al., 2007). As both terms are 222 

widely used, we plot both Δ33S and 33λ versus 34ε (Fig. 2).  223 

Previous studies targeting 33λ in open-system MSR experiments suggest that 33λ varies 224 

linearly with δ34S as a function of metabolic rate (Sim et al. 2011; Leavitt et al. 2013(Wu and 225 

Farquhar, 2011)). As these slopes carry a metabolism-specific component (Johnston et al 2005), 226 

the inclusion of 33S extends the biogeochemical utility of S isotopes.  Including 33S allows the 227 

effects of sulfate reduction to be discerned from those of sulfide oxidation or sulfur 228 

disproportionation. For example, the 34εD.alaskensis values (0-13‰) expressed in our experiments by 229 

strain D. alaskensis are not unique to MSR, as sulfide oxidation reactions often produce 34ε less 230 

than 10‰.  However, the inclusion of 33S provides an additional isotopic constraint that can be 231 

used to trace the origin of sulfate and sulfide (Johnston et al., 2005). In our experiments, Δ33S 232 

and 33λ both show a strong relationship with 34ε (Fig. 2), and for Δ33S: Δ33S = (0.0031 ± 233 

0.0003)*( 34ε) + (0.20 ± 0.01), p-value less than 0.0001. In this case AICc favors a Michaelis-234 

Menten type fit (89% likelihood) with a Km-frac = 20.1‰ [7.6 to 32.6 ‰] and Δ33Smax = 0.169 ‰, 235 

(95% CI 0.110 to 0.228 ‰). The 33λ – 34ε results for D. alaskensis and D. vulgaris fit within the 236 

context of previous work in which 33λMSR (dimensionless) spans a range from 0.508 to 0.514 237 

§ We use standard isotope notation, where δ3xS is the ratio of 3xS to 32S in a sample relative to a standard.  
We use 34ε to capture the isotopic difference between sulfate and sulfide (=[34α -1] 1000).  Minor isotope 
notation includes ∆33S (=δ33S + 1000[δ34S/1000 +1]0.515 -1), which relates a composition to a theoretical 
reference line, and 33λ (=ln[33α]/ln[34α]), which is approximately the slope of the tangent to the curve of 
δ33S vs. δ34S. 
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(Farquhar et al. 2003; Johnston et al. 2005; 2007; Sim et al. 2011; Leavitt et al. 2013).  In 238 

contrast, sulfide oxidation and sulfur disproportionation reactions result in 33λ greater than 239 

0.5145 (Johnston et al., 2005; Zerkle et al., 2009). Therefore, these data support minor sulfur 240 

isotopes as a quantitative indicator of specific metabolism, despite control on fractionation of 241 

other experimental parameters like sulfate (e.g., temperature, MSR strain, etc.).   242 

 243 

EVALUATION OF CELLULAR KS AS A PREDICTOR OF FRACTIONATION 244 

These experiments demonstrate that different strains of sulfate reducing bacteria can 245 

show distinct relationships between sulfate concentration and isotope fractionation. The observed 246 

differences prompt a reexamination of previous data and reinvigorate the search for similar 247 

patterns.  Harrison and Thode (1958) demonstrated a correlation between sulfate concentration 248 

and sulfur isotope fractionation with D. desulfuricans.  More recent work using modified flow-249 

through reactors (Habicht et al., 2002) and a recirculating chemostat (Habicht et al., 2005) shows 250 

a relationship in which 34ε increases with sulfate concentration, and can be interpreted as 251 

asymptotically approaching a maximum value.  This later work targeted the MSR Archaeoglobus 252 

fulgidus, a hyperthermophilic Archaea.  In those studies, growth and cell specific sulfate 253 

reduction rate (csSRR) were controlled through organic carbon limitation, and the threshold 254 

effect of sulfate concentrations (i.e., a step function) was observed.  The authors modeled this 255 

asymptotic behavior with an equation identical in form to a Michaelis-Menten equation although 256 

a linear fit to these data cannot be excluded without a theoretical justification (see below). The 257 

half-saturation constant in this fractionation equation (Km-frac) is then defined as the 258 

concentration of sulfate at which the modeled fractionation was one-half the maximum 259 

fractionation. The value of Km-frac for sulfate was similar in magnitude to the Michaelis-Menten 260 

half-saturation constant (Ks) for sulfate-limited growth. The similarity in these constants inspired 261 

the proposition that Km-frac and Ks are directly (linearly) related, implying that the half saturation 262 

constant carries an isotopic – and perhaps geologic – fingerprint (Habicht et al., 2002).   263 

A Michaelis-Menten -like mathematical relationship correctly predicts the fractionation 264 

pattern displayed by D. vulgaris. Previous work indicates a Ks for sulfate in D. vulgaris near 265 

0.03 mM (Ingvorsen and Jørgensen, 1984), well below the sulfate concentrations in our 266 

experiments.  If Km-frac is of a similar magnitude, as predicted by our measurements at millimolar 267 

sulfate, then at our minimum sulfate concentration of 0.1 mM, we expect to observe more than 268 
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90% of the maximum fractionation under the specific experimental conditions (i.e. csSRR and 269 

chemostat dilution rate) employed (Fig. 1; see Materials and Methods).  Only a modest increase 270 

in fractionation would accompany further increases in sulfate concentrations, consistent with our 271 

observations for D. vulgaris.  Changes in csSRR would have more dramatic consequences.  272 

In contrast, a Michaelis-Menten-like equation can only explain the experimental results 273 

for strain D. alaskensis if the Km-frac is quite large - greater than the experimental window 274 

investigated here (Km-frac = 8.9 mM, 95% CI is 2.2 to 15.7 mM). We are unaware of any 275 

published sulfate Ks values from strain D. alaskensis specifically, although Ks values from 276 

related strains (D. desulfuricans) are consistently less than 0.5 mM (Tarpgaard et al., 2011) – 277 

eighteen-fold lower than would be required if Km-frac and Ks are to be similar. Given that the D. 278 

alaskensis genome contains at least 10 putative sulfate transporters, the cellular Ks for sulfate is 279 

likely highly dependent on growth conditions. One plausible explanation for the observed result 280 

is that under these conditions D. alaskensis expresses only low affinity sulfate transporters, and 281 

that a functional relationship between Ks and Km-frac holds.  Indeed, a sulfate Ks of this 282 

magnitude is within the upper limits of published Ks values for sulfate (Fukui and Takii, 1994; 283 

Ingvorsen et al., 1984; Pallud and Van Cappellen, 2006; Roychoudhury, 2004; Tarpgaard et al., 284 

2011).  285 

These new data highlight the fact that the relationship between cellular Ks for sulfate and 286 

isotope fractionation remains unclear, and affinity (As) may be a more appropriate term to use 287 

when examining MSR in the context of environmental conditions. While Ks values for sulfate 288 

are directly related to the kinetics of growth under sulfate-limited conditions, experiments on the 289 

fractionation of sulfur isotopes are generally executed under electron donor limitation or co-290 

limitation of sulfate and electron donor (e.g., this study, Habicht et al. 2002, 2005). Growth and 291 

sulfate reduction rates are therefore directly related to the affinity (As) for the electron donor 292 

relative to that of sulfate, rather than simply sulfate concentrations. Sulfate Ks pertains only to 293 

the cellular half-saturation constant for sulfate and may affect fractionation, particularly when 294 

sulfate is not growth-limiting. In more detail, sulfate transport in sulfate-reducing 295 

microorganisms is strictly regulated, and is accomplished via numerous possible mechanisms. 296 

These include H+ and Na+ symporters, which rely on concentration gradients and do not require 297 

ATP (Cypionka, 1995), whereas there also exist ATP-dependent ABC-type active transporters 298 

that pump sulfate into the cell against a concentration gradient (Piłsyk and Paszewski, 2009) and 299 
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are homologous to enzymes for assimilatory sulfate transport in other (non-sulfate-reducing) 300 

microorganisms. Energetic considerations favor the symporters as the primary transport 301 

mechanism for dissimilatory metabolism (Cypionka, 1995). Regulation of various transporters 302 

with different affinities (Cypionka, 1995; Tarpgaard et al., 2011) probably allows the cells to 303 

adapt to various sulfate concentrations; with high-affinity transporters up-regulated at low sulfate 304 

concentrations and vice versa. Therefore, one plausible explanation for the apparently divergent 305 

patterns in Fig. 1 is that transport mechanisms differ between D. vulgaris and D. alaskensis. For 306 

example, if under similar conditions D. vulgaris expressed high affinity sulfate transporters, its 307 

intracellular concentration of sulfate could remain elevated and allow fractionation to be 308 

maximized. The pattern seen in D. alaskensis may reflect lower affinity transporters, or a 309 

variation in the affinity of expressed transporters as sulfate concentrations are changed. There 310 

may, of course, be other differences in each strain’s ability to import sulfate and electron donors 311 

that are not represented herein, and future studies should be designed to interrogate the means by 312 

which these and other strains acquire sulfate over a range of environmentally relevant conditions. 313 

Since it has been demonstrated that fractionation is a function both of sulfate 314 

concentration (Habicht et al., 2002) and specific sulfate reduction rate (Chambers and Trudinger, 315 

1975; Harrison and Thode, 1958; Leavitt et al., 2013; Sim et al., 2011c), it would be useful to 316 

understand the interaction of these two variables. Both can be related to the cellular machinery 317 

for sulfate reduction by comparing the independent rates of sulfate and electron supply to the cell 318 

(Bradley et al., 2011). Sulfur isotope fractionation will be maximized when intracellular sulfate 319 

concentrations are unlimited and electron supplies are limited. This is the situation that occurs at 320 

very low growth rates: electron donor limits the growth rate, but if sulfate is not limiting then 321 

cellular transport of sulfate should not be limiting either. We can conceptualize this growth state 322 

as a high supply of sulfate relative to electrons. 323 

Conversely, sulfur isotope fractionation will be minimized if sulfate supply is limiting. If 324 

cells are able to obtain sufficient electrons to quantitatively reduce sulfate to sulfide, then 325 

expressed fractionation will be zero.  This situation occurs when cells import electrons (via 326 

electron donors) sufficiently quickly that all imported sulfate is reduced to sulfide. The 327 

relationship between sulfur delivery and electron delivery is mechistically expressed at key 328 

enzymes in the sulfate reduction pathway. For example, the enzyme dissimilatory sulfite 329 
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reductase requires three components to function (Figure 4): i) electrons, delivered via an 330 

intracellular electron carrier, ii) sulfite  331 

Therefore, to a first order fractionation is proportional to the rate at which sulfate can be 332 

imported into the cell, and inversely proportional to the rate at which electrons are imported into 333 

the cell.  334 

[1]     𝜺𝜺𝟑𝟑𝟑𝟑  ~ 𝝂𝝂𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝝂𝝂𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔

 335 

where 34ε is the expressed fractionation, νsulfate is the rate at which sulfate is supplied to 336 

the cell. This rate is dependent on the kinetics of sulfate transporters, and is classically 337 

approximated as an Michaelis-Menten relationship: 338 

[2]    𝝂𝝂𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑽𝑽𝒎𝒎𝒔𝒔𝒎𝒎
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔[𝐒𝐒𝐒𝐒𝟑𝟑

𝟐𝟐−]

𝑲𝑲𝒔𝒔
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔+ [𝐒𝐒𝐒𝐒𝟑𝟑

𝟐𝟐−]
. 339 

The rate of sulfate reduction is similarly controlled, in a cell with excess sulfate, by the 340 

rate of electron supply to the reduction machinery. The rate that electron donors are imported can 341 

similarly be modeled as a Michaelis-Menten relationship, with different kinetic parameters for 342 

different electron donors. However, for the purposes of understanding fractionation the important 343 

parameter is the rate that electrons are supplied for the reduction of sulfate. This rate is 344 

proportional to the cell-specific sulfate reduction rate: 345 

[3]    𝝂𝝂𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 ~ 𝒆𝒆𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄 346 

 347 

Combining these two relationships, the observed fractionation is proportional to the MM 348 

relationship for sulfate import, times the inverse of the cell-specific sulfate reduction rate. 349 

[4]    𝜺𝜺𝟑𝟑𝟑𝟑  ~ 𝑽𝑽𝒎𝒎𝒔𝒔𝒎𝒎
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔[𝐒𝐒𝐒𝐒𝟑𝟑

𝟐𝟐−]

𝑲𝑲𝒔𝒔
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔+ [𝐒𝐒𝐒𝐒𝟑𝟑

𝟐𝟐−]

𝟏𝟏
𝒆𝒆𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄

 350 

This relationship has two consequences, both of which have been demonstrated 351 

empirically: first, at a given csSRR the relationship between sulfate concentration and sulfur 352 

isotope fractionation follows a curve that can be represented as a Michaelis-Menten curve 353 

(Habicht et al., 2005); second, at a given sulfate concentration the relationship between csSRR 354 

and fractionation is a nonlinear (hyperbolic) function of csSRR (Desmond-Le Quéméner and 355 

Bouchez, 2014; Leavitt et al., 2013; Sim et al., 2011c; Wing and Halevy, 2014). This equation 356 

can be related to that given by Habicht et al. (2005), where 357 
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[5]    
 

 358 

and where represents a factor for the conversion from rate to fractionation; this may differ 359 

from one strain to another. In this formulation Ks and Km-frac are related, but distinct, values and 360 

the relationship between them depends on both the strains involved and the csSRR. In this 361 

formulation, εmax (and therefore ) is a function of csSRR, with a maximum value at low rates 362 

resulting in a fractionation equivalent to the thermodynamic equilibrium fractionation factor 363 

between sulfate and sulfide.  364 

 Given a single strain and concentration of electron donor, as is the case with our 365 

chemostat experiments, sulfate reduction rate is invariant, and the variation in fractionation 366 

would approximate a Michaelis-Menten curve on sulfate concentration, as shown by Habicht et 367 

al. (2005) (Figure 5A). Moreover, the apparent Km-frac need not be the same from strain to strain, 368 

and this is reflected in the data herein on D. vulgaris and D. alaskensis at the same SRR. The 369 

value primarily depends on both the strain-specific half-saturation constant for sulfate and the 370 

kinetic parameters related to transport of the electron donor. High sulfate concentrations and low 371 

growth rates (as limited by electron donor) both drive fractionations towards maximum 372 

(equilibrium-like) values. At constant sulfate concentrations, the relationship between 373 

fractionation and csSRR would have the hyperbolic relationship shown in Figure 5B and 374 

demonstrated in previous studies (Leavitt et al., 2013; Sim et al., 2011c). This hyperbolic 375 

relationship is conceptually similar to the relationship between carbon dioxide concentrations 376 

and 13ε discrimination against carbon isotopes demonstrated during carbon assimilation (Laws et 377 

al., 1995; Popp et al., 1998). However, that is a linear relationship since CO2 assimilation and 378 

growth rate are directly related.  379 

 380 

FACTORS GOVERNING S ISOTOPE FRACTIONATION BY SRB 381 

We propose that controls on S isotopic fractionation can generally be divided into four 382 

regimes, only a subset of which have been the foci of experimental research to date (Figure 6).  383 

Within each regime, transport and physiological factors will affect observed fractionation.  384 

Sulfate limitation: in this regime, sulfate (terminal electron acceptor) availability limits 385 

the rate of sulfate reduction. Due to quantitative, or near-quantitative reduction of sulfate, 386 
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expressed fractionation is small or may even carry a small inverse isotope effect (Harrison and 387 

Thode, 1958).   388 

Electron donor limitation: In this case, both sulfate concentration and csSRR are relevant 389 

to determining fractionation factors. At lower sulfate concentrations this parameter is still 390 

influential on fractionation so long as sulfate is not being quantitatively reduced (Regime I), 391 

while at higher sulfate concentrations (28mM, i.e. higher than two times the Km-frac), rate is 392 

primarily determined by electron donor availability.  This is the regime that is the focus of most 393 

studies on the magnitude of sulfur isotope fractionation (Chambers and Trudinger, 1975; Kaplan 394 

and Rittenberg, 1964; Leavitt et al., 2013; Sim et al., 2011a; Sim et al., 2011c). 395 

Substrate co-limitation: Concentrations of both sulfate and electron donor are low 396 

relative to the cellular affinities. Growth rate in this case may be a second-order function that 397 

relates to the concentration and affinity of both substrates, or it may be the minimum growth rate 398 

predicted by either parameter (Liebig’s law: (Saito et al., 2008)). Under these conditions, the 399 

expressed fractionation is likely to be a compound function of physiology and environment – 400 

making fractionation difficult to uniquely predict. Moreover, large fractionations are not 401 

excluded from this regime (Wing and Halevy, 2014), and significant fractionations have been 402 

observed at low sulfate concentrations (Canfield et al., 2010; Crowe et al., 2014; Gomes and 403 

Hurtgen, 2013; Nakagawa et al., 2012). If limitation of one constituent exerts ultimate control, 404 

then the system reverts to regime 1 or 2.  405 

Nutrient or physical limitation(s):  There can be other nutrients or factors – such as 406 

nitrogen, iron, or phosphorous limitation (Sim et al., 2012), a physical factor (e.g. 407 

temperature,(Canfield et al., 2006; Johnston et al., 2007)) or an intrinsic organismal factor that 408 

limits growth rate and fractionation. The rate—fractionation relationship has been demonstrated 409 

for electron donor/acceptor (Canfield, 2001; Chambers et al., 1975; Kaplan and Rittenberg, 410 

1964; Leavitt et al., 2013; Sim et al., 2011a; Sim et al., 2011c) and for nutrients (Sim et al., 411 

2012), and can plausibly extend to other parameters. Where growth rates are controlled by 412 

factors intrinsic to the cell (e.g. in most batch culture experiments, during early log-phase 413 

growth), expressed fractionations are likely to reflect rates of intracellular electron transport to 414 

electron-accepting sulfur intermediates, described above (Bradley et al., 2011). Under severely 415 

limited conditions it may be possible to approach equilibrium isotope fractionations (Wing and 416 

Halevy, 2014).  417 
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These regimes indicate that multiple interactions ultimately control the sulfur isotope 418 

fractionation expressed by any given organism in any particular environment. As mentioned 419 

above, one physiological component not yet explored is the potential for organisms to carry 420 

multiple sulfate uptake machineries of varying affinities. For example, as sulfate is consumed 421 

through a typical marine sedimentary early diagenetic profile (Jorgensen, 1979), the sulfate 422 

concentrations available for MSR vary from 28 to less than 1 M.  Possessing high affinity 423 

sulfate transporters may confer a selective advantage at low concentrations, whereas low affinity 424 

transporters may confer an advantage at high ambient sulfate. A recent study identified both high 425 

and low affinity uptake mechanisms through a sulfate-methane transition zone profile in marine 426 

sediments (Tarpgaard et al., 2011), showing that large differences in affinity are possible even 427 

within the microbial community from a specific environment. Optimization of cellular 428 

machinery for the acquisition of metabolites is observed in other metabolic processes. For 429 

example, carbon fixation by RuBisCO is optimized to intracellular CO2/O2 ratios (Tcherkez et 430 

al., 2006). The genome of D. vulgaris (Heidelberg et al., 2004) contains three annotated sulfate 431 

transport proteins, while the genome of D. alaskensis contains at least ten (Hauser et al., 2011). 432 

This redundancy is consistent with a potential range of affinities and could be further extended if 433 

unknown transport proteins are also present. In a microbial community with a mixture of 434 

organisms, each with a potential range of transporters, the overall observed fractionation will 435 

depend on how each member of the community processes sulfate and discriminate against its 436 

heavier isotopes.  437 

An apparent range in affinities of enzymatic machinery for sulfate sets in place a 438 

prediction for an affinity continuum at the organismic level. The Vmax/Ks expressed under any set 439 

of conditions is physiologically dependent and may incorporate feedbacks sensitive to sulfate 440 

concentration. The presence of both high and low affinity uptake mechanisms, at the cellular and 441 

community scales, is relevant to interpretation of the geochemical record. Continuing research 442 

will need to identify the full genetic and enzymatic controls on sulfate affinity in a variety of 443 

organisms, as well as the selective pressures to which these controls respond. In the future, more 444 

robust geochemical interpretations of sulfur isotopes may be achieved by furthering our 445 

understanding of how sulfate affinity has evolved in response to changing marine redox 446 

conditions and oxidant budgets (i.e. sulfate availability due to oxidative weathering), and how 447 

this evolution has influenced the sulfur isotope record. A high affinity for sulfate would have 448 
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been particularly advantageous early in Earth history, with the requirement becoming more 449 

relaxed as the Earth’s surface became more oxidizing and sulfate more plentiful. That is, natural 450 

selection has likely altered dominant patterns of sulfur isotope fractionation over the course of 451 

Earth history.  A genomic memory of ancient high affinity machinery may still be present in 452 

modern lacustrine environments, or other factors such as ecological competition may continue to 453 

select for those capacities. As new genomes and tools for analyzing molecular evolution become 454 

available, these questions become more tractable.   455 

 456 

CONCLUSIONS 457 

Understanding the paleoenvironmental information encoded in sulfur isotopes during 458 

sulfate reduction requires an understanding of how growth and physiology affect stable isotope 459 

fractionation (Bradley et al., 2011; Rees, 1973). De-convolving these effects becomes tractable 460 

through experimental and theoretical exploration, such as further elucidating the Vmax/Ks 461 

relationship (As) with Km-frac, which serves as a practical means of comparing fractionation data 462 

from different strains.  It is clear that there is no unequivocal sulfate threshold concentration 463 

related to a step function in sulfur isotope fractionation across all strains, and it is unclear which 464 

strains, adapted to the modern environment, are the best proxies for Archaean microbial 465 

processes.  Described here as a physiological and kinetic phenomenon, our framework for 466 

understanding fractionation helps explain recent observations of large 34ε in low sulfate lake 467 

systems (Gomes and Hurtgen, 2013; Nakagawa et al., 2012). If the fractionation by MSR is in 468 

fact linked to multiple environmental and physiological variables, where each exhibit complex 469 

and non-linear (MM-like) responses, then articulating a clear heuristic for interpreting geological 470 

records is more challenging. Using sulfur isotopes to constrain sulfate concentrations in the 471 

Archean ocean is challenging, since the physiological parameters (affinity towards sulfate and 472 

electron donor) of Archaean microbes is unknown. Sulfate concentrations less than 200 μM are 473 

one explanation for small fractionations. It is also possible that small fractionations resulted from 474 

microbes with physiologies more like D. alaskensis than like D. vulgaris. Another alternative for 475 

small fractionations in Achaean seawater is that biological fractionations may have been large, 476 

but reservoir effects suppressed fractionation through reservoir effects {Crowe, 2014 #4561}. 477 

Independent approaches for understanding the chemistry of Archean seawater (Jamieson et al., 478 

2012) (Halevy et al., 2010; Halevy et al., 2012) can help constrain sulfate concentrations and 479 
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shed light on the interpretation of sulfur isotopes in light of both seawater chemistry and 480 

evolution. A more complete understanding of the sulfur isotope record will rely on building a 481 

better understanding of the relevant enzymes, their expression and isotope fractionation in 482 

response to environmental variables, and their evolution over the course of Earth history.  483 

 484 

  485 

Patterns of SRB S-isotope fractionation 18 



 

 486 

ACKNOWLEDGMENTS 487 

Many thanks to Gill Geesey and Inês Cardoso-Pereira for providing cultures of D. alaskensis 488 

G20 and D. vulgaris Hildenborough, respectively. Andy Masterson, Erin Beirne, and Madeline 489 

Higgins provided expert analytical assistance. The authors acknowledge funding from NASA 490 

Exobiology Grant NNX07AV51G (to AHK, PRG and DTJ), NASA Astrobiology Institute (DTJ, 491 

AHK), the Microbial Sciences Initiative at Harvard (DTJ), NSF EAR Instrument and Facilities 492 

as well as Low Temperature Geochemistry and Geobiology (to DTJ), NSF Graduate Research 493 

Fellowship (WDL) and the Agouron Institute (ASB).  494 

 495 

SUPPLEMENTAL INFORMATION:  496 

Materials & Methods 497 

Supplemental File 1 – D. vulgaris growth data 498 

Supplemental File 2 – D. alaskensis growth data 499 

 500 

  501 

Patterns of SRB S-isotope fractionation 19 



 

REFERENCES CITED 502 

Aksnes, D.L., Egge, J.K., 1991. A theoretical model for nutrient uptake in phytoplankton. 503 
Marine Ecology Progress Series 70, 65-72. 504 

Bak, F., Pfennig, N., 1991. MICROBIAL SULFATE REDUCTION IN LITTORAL 505 
SEDIMENT OF LAKE CONSTANCE. Fems Microbiology Ecology 85, 31-42. 506 

Berner, R.A., Canfield, D.E., 1989. A new model for atmospheric oxygen over Phanerozoic time. 507 
American Journal of Science 289, 333-361. 508 

Bradley, A.S., Leavitt, W.D., Johnston, D.T., 2011. Revisiting the dissimilatory sulfate reduction 509 
network. Geobiology 9, 446-457. 510 

Button, D.K., 1985. Kinetics of nutrient-limited transport and microbial growth. Microbiological 511 
reviews 49, 270-297. 512 

Canfield, D., E., 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. 513 
65, 1117-1124. 514 

Canfield, D.E., 2004. The evolution of the Earth surface sulfur reservoir. American Journal of 515 
Science 304, 839-861. 516 

Canfield, D.E., Farquhar, J., Zerkle, A.L., 2010. High isotope fractionations during sulfate 517 
reduction in a low-sulfate euxinic ocean analog. Geology 38, 415-418. 518 

Canfield, D.E., Olesen, C.A., Cox, R.P., 2006. Temperature and its control of isotope 519 
fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta 70, 520 
548-561. 521 

Chambers, L.A., Trudinger, P.A., 1975. Are thiosulfate and trithionate intermediates in 522 
dissimilatory sulfate reduction? Journal of Bacteriology 123, 36-40. 523 

Chambers, L.A., Trudinger, P.A., Smith, J.W., Burns, M.S., 1975. Fractionation of sulfur 524 
isotopes by continuous cultures of Desulfovibrio desulfuricans. Canadian Journal of 525 
Microbiology 21, 1602-1607. 526 

Crowe, S.A., Paris, G., Katsev, S., Jones, C., Kim, S.-T., Zerkle, a.L., Nomosatryo, S., Fowle, 527 
D.A., Adkins, J.F., Sessions, A.L., Farquhar, J., Canfield, D.E., 2014. Sulfate was a trace 528 
constituent of Archean seawater. Science 346, 735-739. 529 

Cypionka, H., 1995. Solute transport and cell energetics. In: L. Barton (Ed.), Sulfate-Reducing 530 
Bacteria, pp. 151-184. Plenum Press, New York. 531 

Dalsgaard, T., Bak, F., 1994. NITRATE REDUCTION IN A SULFATE-REDUCING 532 
BACTERIUM, DESULFOVIBRIO-DESULFURICANS, ISOLATED FROM RICE 533 
PADDY SOIL - SULFIDE INHIBITION, KINETICS, AND REGULATION. Applied 534 
and environmental microbiology 60, 291-297. 535 

Desmond-Le Quéméner, E., Bouchez, T., 2014. A thermodynamic theory of microbial growth. 536 
The ISME Journal 8, 1747-1751. 537 

Farquhar, J., Johnston, D.T., Wing, B.A., Habicht, K.S., Canfield, D.E., Airieau, S., Thiemens, 538 
M.H., 2003. Multiple sulphur isotopic interpretations of biosynthetic pathways: 539 
implications for biological signatures in the sulphur isotope record. Geobiology 1, 27-36. 540 

Fukui, M., Takii, S., 1994. Kinetics of sulfate respiration by free-living and particle-associated 541 
sulfate-reducing bacteria. Fems Microbiology Ecology 13, 241-247. 542 

Gomes, M.L., Hurtgen, M.T., 2013. Sulfur isotope systematics of a euxinic, low-sulfate lake: 543 
evaluating the importance of the reservoir effect in modern and ancient oceans. Geology 544 
41, 663-666. 545 

Patterns of SRB S-isotope fractionation 20 



 

Grein, F., Ramos, A.R., Venceslau, S.S., Pereira, I.A.C., 2013. Unifying concepts in anaerobic 546 
respiration: insights from dissimilatory sulfur metabolism. Biochimica et Biophysica 547 
Acta 1827, 145-160. 548 

Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., 2002. Calibration of sulfate 549 
levels in the Archean Ocean. Science 298, 2372-2374. 550 

Habicht, K.S., Salling, L., Thamdrup, B., Canfield, D.E., 2005. Effect of Low Sulfate 551 
Concentrations on Lactate Oxidation and Isotope Fractionation during Sulfate Reduction 552 
by Archaeoglobus fulgidus Strain Z. Applied and environmental microbiology 71, 3770-553 
3777. 554 

Halevy, I., Johnston, D.T., Schrag, D.P., 2010. Explaining the structure of the Archean mass-555 
independent sulfur isotope record. Science 329, 204-207. 556 

Halevy, I., Peters, S.E., Fischer, W.W., 2012. Sulfate Burial Constraints on the Phanerozoic 557 
Sulfur Cycle. Science (New York, NY) 337, 331-334. 558 

Hansen, T., 1994. Metabolism of sulfate-reducing prokaryotes. Antonie van Leeuwenhoek 66, 559 
165-185. 560 

Harrison, A., Thode, H., 1958. Mechanism of the bacterial reduction of sulphate from isotope 561 
fractionation studies. Transactions of the Faraday Society 54, 84-92. 562 

Hauser, L.J., Land, M.L., Brown, S.D., Larimer, F., Keller, K.L., Rapp-Giles, B.J., Price, M.N., 563 
Lin, M., Bruce, D.C., Detter, J.C., Tapia, R., Han, C.S., Goodwin, L.A., Cheng, J.F., 564 
Pitluck, S., Copeland, A., Lucas, S., Nolan, M., Lapidus, A.L., Palumbo, A.V., Wall, J.D., 565 
2011. Complete Genome Sequence and Updated Annotation of Desulfovibrio alaskensis 566 
G20. Journal of Bacteriology 193, 4268-4269. 567 

Hayes, J.M., Waldbauer, J.R., 2006. The carbon cycle and associated redox processes through 568 
time. Philosophical Transactions of the Royal Society B-Biological Sciences 361, 931-569 
950. 570 

Healey, F.P., 1980. Slope of the Monod equation as an indicator of advantage in nutrient 571 
competition. Microbial Ecology 5, 281-286. 572 

Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay, J.F., Eisen, 573 
J.A., Ward, N., Methé, B., Brinkac, L.M., Daugherty, S.C., Deboy, R.T., Dodson, R.J., 574 
Durkin, A.S., Madupu, R., Nelson, W.C., Sullivan, S.A., Fouts, D., Haft, D.H., Selengut, 575 
J., Peterson, J.D., Davidsen, T.M., Zafar, N., Zhou, L., Radune, D., Dimitrov, G., Hance, 576 
M., Tran, K., Khouri, H., Gill, J., Utterback, T.R., Feldblyum, T.V., Wall, J.D., 577 
Voordouw, G., Fraser, C.M., 2004. The genome sequence of the anaerobic, sulfate-578 
reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology 22, 579 
554-559. 580 

Holmer, M., Storkholm, P., 2001. Sulphate reduction and sulphur cycling in lake sediments: a 581 
review. Freshwater Biology 46, 431-451. 582 

Ingvorsen, K., Jørgensen, B.B., 1984. Kinetics of sulfate uptake by freshwater and marine 583 
species of Desulfovibrio. Archives of Microbiology 139, 61-66. 584 

Ingvorsen, K., Zehnder, A.J.B., Jorgensen, B.B., 1984. KINETICS OF SULFATE AND 585 
ACETATE UPTAKE BY DESULFOBACTER-POSTGATEI. Applied and 586 
environmental microbiology 47, 403-408. 587 

Jamieson, J.W., Wing, B.A., Farquhar, J., Hannington, M.D., 2012. Neoarchaean seawater 588 
sulphate concentrations from sulphur isotopes in massive sulphide ore. Nature 589 
Geoscience 6, 61-64. 590 

Patterns of SRB S-isotope fractionation 21 



 

Johnston, D., Farquhar, J., Canfield, D., 2007. Sulfur isotope insights into microbial sulfate 591 
reduction: When microbes meet models. Geochimica et Cosmochimica Acta 71, 3929-592 
3947. 593 

Johnston, D.T., Farquhar, J., Wing, B.A., Kaufman, A.J., Canfield, D.E., Habicht, K.S., 2005. 594 
Multiple sulfur isotope fractionations in biological systems: A case study with sulfate 595 
reducers and sulfur disproportionators. American Journal of Science 305, 645-660. 596 

Jorgensen, B.B., 1979. Theoretical model of the stable isotope distribution in marine sediments. 597 
Geochimica et Cosmochimica Acta 43, 363-374. 598 

Kaplan, I., Rittenberg, S., 1964. Microbiological fractionation of sulfur isotopes. Journal of 599 
General Microbiology 34, 195-&. 600 

Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C., Macko, S.A., 1995. Dependence of 601 
phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical 602 
considerations and experimental results. Geochimica et Cosmochimica Acta 59, 1131-8. 603 

Leavitt, W.D., Halevy, I., Bradley, A.S., Johnston, D.T., 2013. Influence of sulfate reduction 604 
rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of 605 
Sciences, in press. 606 

Nakagawa, M., Ueno, Y., Hattori, S., Umemura, M., Yagi, A., Takai, K., Koba, K., Sasaki, Y., 607 
Makabe, A., Yoshida, N., 2012. Seasonal change in microbial sulfur cycling in 608 
monomictic Lake Fukami-ike, Japan. Limnology and Oceanography 57, 974-988. 609 

Okabe, S., Nielsen, P.H., Characklis, W.G., 1992. FACTORS AFFECTING MICROBIAL 610 
SULFATE REDUCTION BY DESULFOVIBRIO-DESULFURICANS IN 611 
CONTINUOUS CULTURE - LIMITING NUTRIENTS AND SULFIDE 612 
CONCENTRATION. Biotechnology and Bioengineering 40, 725-734. 613 

Pallud, C., Van Cappellen, P., 2006. Kinetics of microbial sulfate reduction in estuarine 614 
sediments. Geochimica Et Cosmochimica Acta 70, 1148-1162. 615 

Pereira, I.A.C., Ramos, A.R., Grein, F., Marques, M.C., da Silva, S.M., Venceslau, S.S., 616 
2011. A comparative genomic analysis of energy metabolism in sulfate reducing 617 
bacteria and archaea. Frontiers in Microbiology 2, Article 69. 618 

Piłsyk, S., Paszewski, A., 2009. Sulfate permeases—phylogenetic diversity of sulfate transport. 619 
Acta Biocimica Polonica 56, 375-384. 620 

Popp, B.N., Laws, E.A., Bridigare, R.R., Dore, J.E., Hanson, K.L., Wakeham, S.G., 1998. Effect 621 
of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et 622 
Cosmochimica Acta 62, 69-77. 623 

Rees, C.E., 1973. Steady-state model for sulfur isotope fractionationin bacterial reduction 624 
processes. Geochimica et Cosmochimica Acta 37, 1141-1162. 625 

Roychoudhury, A.N., 2004. Sulfate respiration in extreme environments: A kinetic study. 626 
Geomicrobiology Journal 21, 33-43. 627 

Saito, M.A., Goepfert, T.J., Ritt, J.T., 2008. Some thoughts on the concept of colimitation: Three 628 
definitions and the importance of bioavailability. Limnology and Oceanography 53, 276-629 
290. 630 

Sim, M.S., Bosak, T., Ono, S., 2011a. Large Sulfur Isotope Fractionation Does Not Require 631 
Disproportionation. Science (New York, NY) 333, 74-77. 632 

Sim, M.S., Ono, S., Bosak, T., 2012. Effects of Iron and Nitrogen Limitation on Sulfur Isotope 633 
Fractionation during Microbial Sulfate Reduction. Applied and environmental 634 
microbiology 78, 8368-8376 %R 10.1128/AEM.01842-12. 635 

Patterns of SRB S-isotope fractionation 22 



 

Sim, M.S., Ono, S., Donovan, K., Templer, S.P., Bosak, T., 2011c. Effect of electron donors on 636 
the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochimica et 637 
Cosmochimica Acta 75, 4244-4259. 638 

Smith, S.L., Yamanaka, Y., Pahlow, M., Oschlies, A., 2009. Optimal uptake kinetics: 639 
physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the 640 
ocean. Marine Ecology Progress Series 384, 1-12. 641 

Szabo, A., Tudge, A., Macnamara, J., Thode, H.G., 1950. The distribution of S-34 in nature and 642 
the sulfur cycle. Science 111, 464-465. 643 

Tarpgaard, I.H., Røy, H., Jørgensen, B.B., 2011. Concurrent low- and high-affinity sulfate 644 
reduction kinetics in marine sediment. Geochimica et Cosmochimica Acta 75, 2997-3010. 645 

Tcherkez, G.G.B., Farquhar, G.D., Andrews, T.J., 2006. Despite slow catalysis and confused 646 
substrate specificity, all ribulose bisphosphate carboxylases may be perfectly optimized. 647 
Proceedings of the National Academy of Sciences 103, 7246-7251. 648 

Venceslau, S.S., Stockdreher, Y., Dahl, C., Pereira, I.A.C., 2014. The "bacterial heterodisulfide" 649 
DsrC is a key protein in dissimilatory sulfur metabolism. Biochimica et Biophysica Acta 650 
1837, 1148-1164. 651 

Wall, J.D., Rapp-Giles, B.J., Rousset, M., 1993. Characterization of a small plasmid from 652 
Desulfovibrio desulfuricans and its use for shuttle vector construction. Journal of 653 
Bacteriology 1775, 4121-4128. 654 

Wing, B.A., Halevy, I., 2014. The sulfur isotope phenotypes of sulfate-respiring bacteria and 655 
archaea. Proceedings of the National Academy of Sciences, in press. 656 

Wu, N., Farquhar, J., 2011. Metabolic rates and sulfur cycling in teh geologic record. 657 
Proceedings of the National Academy of Sciences 110, 11217-11218. 658 

Zerkle, A.L., Farquhar, J., Johnston, D.T., Cox, R.P., Canfield, D.E., 2009. Fractionation of 659 
multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by 660 
a green sulfur bacterium. Geochimica et Cosmochimica Acta 73, 291-306. 661 

  662 

Patterns of SRB S-isotope fractionation 23 



 

FIGURE CAPTIONS 663 

 664 

Figure 1. Sulfate concentrations in each chemostat experiment at steady-state and the 665 

resulting strain-specific major isotope fractionation between sulfate and sulfide (34εSO4/H2S). 666 

Samples for isotope measurements are taken at steady-state sulfate concentrations. Strain 667 

Desulfovibrio vulgaris Hildenborough (red) exhibits larger isotope effects across the full range of 668 

sulfate concentrations, whereas strain Desulfovibrio alaskensis strain G20 (blue) shows strong 669 

concentration dependence.  670 

 671 

Figure 2. Triple isotope data for variable sulfate chemostat experiments. The left y-axis 672 

indicates 33λ, again plotted against 34ε for D. vulgaris (blue circles) and D. alaskensis (green 673 

closed squares). The right y-axis shows Δ33S, plotted against 34ε for D. vulgaris (red open 674 

circles) and D. alaskensis (red closed circles).  675 

 676 

Figure 3. Comparison between our data (D. vulgaris in red and D. alaskensis in blue) and those 677 

generated in a semi-continuous culture apparatus by Habicht et al. (2002, 2005) (in black 678 

symbols), along with values from D. desulphuricans (green) from Harrison and Thode, (1958), 679 

from closed-system experiments. Data from Habicht et al. (2002, 2005) include enrichment 680 

(mixed) cultures from freshwater (diamonds) and marine (squares) environments, as well as pure 681 

culture studies on the hyperthermophilic Arcahaea, Archaeoglobus fulgidis strain Z (triangles).  682 

 683 

Figure 4: The operation of sulfite reduction by Dsr: sulfite and electrons are supplied to the 684 

enzyme DsrAB, which is complexed with DsrC. Partially reduced sulfur is removed by DsrC, 685 

which cycles to membrane-bound DsrMKJOP where cellular energy is conserved. During this 686 

cycle, reduced S is released as H2S.  687 

 688 

Figure 5: The relationship between sulfate concentration, csSRR, and expressed isotope 689 

fractionation. A) relationship between sulfate concentration and isotope fractionation for a 690 

variety of sulfate reduction rates. The maximum fractionation at lowest csSRR approaches the 691 

equilibrium isotope fractionation between sulfate and sulfide. Concentrations are expressed in 692 

multiples of Km-frac. B) Relationship between maximum fractionation and csSRR, for a variety of 693 
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sulfate concentrations. the x-axis in (B) is equivalent to a vertical line intersecting the x-axis in 694 

(A). inset shows the relationship between the curves at different concentrations. This relationship 695 

follows a Monod curve (A).    696 

 697 

Figure 6: Four ecological regimes relevant to sulfur isotope fractionation. The x-axis 698 

indicates increasing sulfate concentration while y-axis indicates increasing electron donor 699 

concentration. In growth under sulfate limitation, electron donor is in excess and fractionation is 700 

low. In growth under electron donor limitation, a large fractionation is expected, primarily as a 701 

function of slow growth. Co-limitation of sulfate and electron donor is likely to produce a 702 

complex physiological pattern that is not well understood.  Nutrient or other growth limitation 703 

(e.g. temperature) suggests that both sulfate and donor will be abundant (as is typical at the 704 

beginning of batch growth experiments); isotope fractionations are expected to be intermediate in 705 

magnitude. Boundaries between these regimes are not sharp, and are expected to relate to the 706 

cellular affinity (As) for these substrates.  707 

 708 

 709 
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