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SUMMARY

The 2013–present Western African Ebola virus disease (EVD) outbreak is the largest ever 

recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an 

important role throughout this outbreak; however, relatively few sequences have been determined 

from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome 

sequences from the second wave of the Liberian outbreak and analyze them in combination with 

782 previously published sequences from throughout the Western African outbreak. While 

multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases 

are consistent with a single introduction, followed by spread and diversification within the 

country. Movement of the virus within Liberia was widespread and reintroductions from Liberia 

served as an important source for the continuation of the already ongoing EVD outbreak in 

Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host.

INTRODUCTION

Late in 2013, a novel variant of Ebola virus [EBOV Makona (Kuhn et al., 2014)] emerged in 

the human population of southeastern Guinea to start what would become the largest human 

Ebola virus disease (EVD) outbreak on record (Briand et al., 2014). As of 30 September 

2015, 28,424 EVD cases had been reported in association with this outbreak, including 

11,311 deaths (39.8% case-fatality rate), and new EVD cases were still being reported in 

two of the three most heavily impacted countries: Guinea (3,805 cases, 13.4% of total) and 

Sierra Leone (13,911, 48.9%) (WHO, 2015). The unprecedented scale of this outbreak 

resulted in sustained human-to-human transmission, the ramifications of which are still 

being explored.

High-throughput EBOV genome sequencing has served an integral role in understanding 

and responding to the Western African EVD outbreak. As of 30 September 2015, almost 

1,000 nearly full-length EBOV Makona genome sequences have been determined (Baize et 

al., 2014; Bell et al., 2015; Carroll et al., 2015; Castilletti et al., 2015; Gire et al., 2014; 

Hoenen et al., 2014; Kugelman et al., 2015b; Park et al., 2015; Simon-Loriere et al., 2015; 

Tong et al., 2015). Early sequences from patients in Guinea and Sierra Leone demonstrated 

that the Western African outbreak resulted from a single EBOV introduction event followed 

by sustained human-to-human transmission (Baize et al., 2014; Gire et al., 2014); real-time 

genomic surveillance in Liberia has provided evidence for sexual transmission of the virus, 

resulting in changes to public-health policy (Christie et al., 2015; Mate et al., 2015); and 

continued genomic sequencing throughout the outbreak has provided a detailed view into 

the ongoing spread and diversification of EBOV, thus providing critical information for 

maintaining effective control strategies (Carroll et al., 2015; Kugelman et al., 2015a; Park et 

al., 2015; Simon-Loriere et al., 2015; Tong et al., 2015).

Despite the multi-lateral sequencing efforts, the available genome sequences still represent 

<4% of the reported cases. Lacking in particular are sequences from cases in Liberia 

(deposited genomes represent <0.5% of reported cases). As of 30 September 2015, the 

second highest number of EVD cases among all affected countries (10,672, 37.5% of total) 

and the highest number of EVD-related deaths (4,808, 42.5% of total) were reported from 
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Liberia. The Liberian portion of the outbreak is thought to have consisted of at least two 

distinct waves of EVD cases. The first began in March 2014 and is thought to have been 

relatively short in duration and scope (<20 reported cases), while the second wave, which 

likely started during May 2014, included the vast majority of cases (Arwady et al., 2015). 

Two additional, isolated EVD case clusters have occurred in Liberia, 20–28 March and 28 

June – 22 July 2015. However, current data indicate that both likely represent reemergence 

of transmission chains from the major second wave of EVD cases (Mate et al., 2015) 

(unpublished data). Liberia was declared free of EBOV infections, for the second time, on 3 

September 2015.

Here, we report 140 EBOV genome sequences from the second wave of the Liberian 

outbreak; these sequences were generated as part of our ongoing surveillance efforts 

(Kugelman et al., 2015b). Combined with previously published data, these sequences cover 

13 Liberian counties and enabled us to perform a longitudinal analysis spanning nearly an 

entire year of the outbreak. This analysis provides an in-depth look at the introduction and 

spread of EBOV in Liberia. We further analyzed all Liberian sequences in combination with 

734 genomes from Guinea, Mali and Sierra Leone to place the Liberian cases in the context 

of the entire Western African outbreak and to screen for patterns of EBOV adaptation to the 

human host.

RESULTS

Ebola virus genomes from Liberia

Using high-throughput sequencing technologies, we assembled an additional 140 EBOV 

genomes from 139 Liberian EVD patients. Two different samples were sequenced from one 

patient; these had identical consensus sequences. We also improved genome coverage for 

most of the 25 Liberian EBOV sequences we reported previously (additional 11% on 

average) (Kugelman et al., 2015b). Together, these 165 genomes spanned 23 June 2014 – 14 

February 2015. Genome coverage ranged between 67.6–99.7% with a mean coverage of 

98.5% (Table S1); 115 genomes are coding-complete, the remainder are standard drafts 

according to the nomenclature laid out in (Ladner et al., 2014). In combination with 22 

sequences reported from the European Mobile laboratory (1 April – 22 Aug 2014) (Carroll 

et al., 2015) and one sequence reported from the Centers for Disease Control and Prevention 

(3 Aug 2014) (Albariño et al., 2015), we analyzed a total of 188 Liberian EBOV genomes. 

Together, these samples represent ~1.8% of the reported EVD cases in Liberia (as of 30 

September 2015) (WHO, 2015). They temporally span nearly one year of the epidemic, 

including the period during which 99% of the confirmed and probable cases were reported 

in Liberia (Figure 1). County of origin was reported for 119 (63%) samples. Together they 

covered 13 of the 15 Liberian counties with sample sizes per county roughly proportional to 

the number of reported cases.

To place these Liberian sequences within the broader context of the Western African EVD 

outbreak, we compared them to 734 published sequences from Guinea, Mali and Sierra 

Leone (Table S2), which together spanned 17 March 2014 – 31 January 2015 (Baize et al., 

2014; Carroll et al., 2015; Gire et al., 2014; Hoenen et al., 2015; Park et al., 2015; Simon-

Loriere et al., 2015; Tong et al., 2015). Combined, these 922 samples contained 1,474 single 
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nucleotide polymorphisms (SNPs), 546 (37%) of which were parsimony-informative and 13 

insertions/deletions (indels), 8 (61.5%) of which were parsimony-informative. All of the 

indels were located within non-coding regions. Of the SNPs, 960 were located within coding 

regions, 403 were non-synonymous within at least one open reading frame (ORF), 555 were 

synonymous and two were nonsense mutations. In total, three mutations were predicted to 

result in premature stop codons within at least one ORF [one each in the nucleoprotein (NP), 

the glycoprotein (GP) and the viral protein 30 (VP30) genes] and one in the loss of the stop 

codon at the end of the ORF encoding the small soluble glycoprotein (ssGP) in the GP gene. 

However, with the exception of the previously reported nonsense mutation in VP30 that was 

present in 29 genomes in our analysis (position 9,354 relative to Ebola virus/H.sapiens-

wt/GIN/2014/Makona-C15, GenBank #KJ660346.2) (Kugelman et al., 2015b), all of these 

mutations were only observed in a single sample obtained from a public repository; 

therefore, we were unable to verify these putative ORF disruptions.

Multiple introductions of Ebola virus to Liberia

Phylogenetic analysis revealed the presence of at least three distinct lineages of EBOV in 

Liberia (Figure 2). The earliest Liberian EBOV genome sequence (1 April 2014), and the 

only sequence from the first wave of Liberian EVD cases, was placed within the GN1 

lineage (Carroll et al., 2015) [referred to as GUI-1 in (Simon-Loriere et al., 2015)], 

otherwise exclusively containing sequences from Guinea. The other two EBOV lineages 

observed in Liberia were both associated with samples collected as early as June 2014, 

during the second wave of the Liberian outbreak. Four samples (20 June – 3 July 2014) fell 

within lineage SL1 (Gire et al., 2014), which includes EBOV sequences from Guinea and 

Sierra Leone. The remaining 183 Liberian sequences, including all of the sequences 

obtained during this study, fell within lineage SL2 (Gire et al., 2014). While SL2 also 

includes EBOV sequences from both Sierra Leone and Guinea, the basal haplotype within 

this lineage has previously only been sampled from Sierra Leone; this same haplotype was 

detected in two of our Liberian sequences (LIBR10089 and LIBR10237). Through 

phylogenetic rooting, it has been demonstrated that the SL2 lineage was derived from an 

SL1 virus (Gire et al., 2014). Four nucleotide substitutions differentiate SL1 and SL2 

sequences and thus far no intermediate haplotypes have been uncovered, making it difficult 

to pinpoint the location of the SL1–SL2 transition. However, the presence of the basal 

haplotypes from both SL1 and SL2 during May in Sierra Leone suggests that this transition 

occurred in Sierra Leone, in which case the Liberian SL1 and SL2 sequences represent at 

least two distinct EBOV introductions into Liberia.

One limitation of the current dataset is the lack of sequences from Lofa County after 22 

August 2014. Based on epidemiological data and proximity to the epicenter of the outbreak, 

Lofa County was one of the most likely entrance points into Liberia for EBOV lineages 

originating in neighboring countries (Arwady et al., 2015; Sack et al., 2014). Although the 

number of reported EVD cases in Lofa dropped rapidly starting in September 2014, cases 

were reported as late as mid-November 2014 (WHO, 2015). Additional introductions into 

Liberia may have occurred during this period with limited transmission and spread outside 

of Lofa County.
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Ebola virus diversification and spread within Liberia

Despite multiple early introductions, the vast majority of Liberian EBOV sequences are 

consistent with a single introduction, most likely of an SL2 virus. The SL2 lineage includes 

Liberian sequences from as early as 20 June 2014 and all sequences sampled after 3 July 

2014. Following the initial introduction of an SL2 EBOV into Liberia, the viral population 

rapidly diversified within that country, consistent with the exponential increase in EVD 

cases recorded through August 2014 (Figure 1). The second wave of the Liberian outbreak 

was dominated by eight sub-lineages of SL2 referred to here as LB1–LB8 (Figure 3). 

Together these eight sub-lineages contained ~92% (167/182) of the Liberian samples 

stemming from the SL2-type virus introduction. Each Liberian sub-lineage can be 

distinguished from the basal SL2 haplotype by 1–2 substitution events (Table S3), and mean 

posterior estimates for the origin of each of these sub-lineages ranged from 31 May 2014 for 

LB3 (95% HPD: 9 May – 19 June) to 21 July, 2014 for LB7 (95% HPD: 27 June – 5 Aug) 

(Table S4). Sample testing dates were used to obtain minimum estimates for the duration of 

each sub-lineage in Liberia. On average, each sub-lineage circulated for at least 130 days. 

LB4 viruses exhibited the shortest duration within Liberia, only 46 days, while viruses of 

three different sub-lineages (LB2, LB3, and LB7) each circulated for >180 days. Several of 

these sub-lineages are defined by non-synonymous substitutions (Table S3); targeted 

examinations of these changes will be required to determine whether any led to functional 

changes.

The Liberian outbreak was characterized by a large amount of within-country movement of 

EBOV. In spite of missing metadata from 37% of the samples, all of the major sub-lineages 

were observed in ≥2 Liberian counties; on average, each sub-lineage was observed in 4.25 

counties (Figure 3C). In total, we estimated ~63 instances of between-county exchange of 

EBOV based on 182 Liberian sequences from samples with SL2 lineage viruses (Figures 4 

and S1). The heavily impacted counties near Liberia’s capital, Margibi and Montserrado, 

were the largest exporters of EBOV to the rest of the country followed by Lofa, which 

shares a border with both Guinea and Sierra Leone and is the nearest Liberian county to the 

putative index case of the Western African outbreak (Méliandou, Nzérékoré Region, 

Guinea) (Briand et al., 2014). The high number of predicted Margibi to Montserrado 

movement events is partly due to the inference of Margibi as the most probable county of 

origin for the SL2 lineage in Liberia (Figure 4A). This inference should be interpreted 

cautiously given the limited sampling (relative to the full outbreak) and the large amount of 

missing metadata associated with early Liberian samples; only 31% (8/26) of the samples 

from June–July 2014 are associated with county-level metadata (all from Lofa).

Re-introductions of Ebola virus to Guinea from Liberia

Although we found little evidence for additional movement of EBOV into Liberia following 

the initial appearance of the SL2 lineage, we obtained evidence for several re-introductions 

of SL2-derived EBOV from Liberia into Guinea. Viruses belonging to four sub-lineages of 

the Liberian outbreak were also detected in Guinea (LB1, LB2, LB4, and LB5; Figure 3). 

The Guinean sequences belonging to LB1 and LB4 [GN3 in (Carroll et al., 2015)] each 

formed distinct clades (for defining SNPs see Table S3), suggesting single introductions of 

viruses of each sub-lineage followed by spread and diversification within Guinea. Viruses 
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belonging to LB4 seem to have disappeared from Liberia shortly after spreading into 

Guinea, where they continued to circulate for ~6 months (Figure 3B). Viruses belonging to 

LB2 included two divergent Guinean sequences, suggesting two independent introductions 

each of which resulted in limited, if any, spread within Guinea. Viruses belonging to LB5 

[GN4 in (Carroll et al., 2015), GUI-2 in (Simon-Loriere et al., 2015)] were the most 

successful of the exports into Guinea both in terms of the number of EVD cases and 

geographic breadth. In total, 68 of the Guinean EBOV genomes belonged to LB5, including 

23 from samples collected in western Guinea (Conakry, Dubréka, Coyah and Forécariah). 

The other Liberian sub-lineages that were introduced to Guinea were restricted in our dataset 

to the eastern half of Guinea. The pattern of shared diversity between Guinea and Liberia 

within the LB5 sub-lineage suggests either multiple EBOV importations from Liberia into 

Guinea, or movement back into Liberia from Guinea following the initial introduction.

The four sequences from Mali also fell within the LB5 sub-lineage. Their placement is 

consistent with previous genetic characterization and epidemiological reports (Hoenen et al., 

2015; Kugelman et al., 2015b). These four sequences include representatives from two 

independent introductions of EBOV to Mali, both of which have been traced to the 

movement of infected individuals from Guinea (Hoenen et al., 2015). Our genetic data 

additionally demonstrate that both of these introduction events fall within transmission 

chains that can be traced back to the Liberian portion of the outbreak.

We estimated that viruses from LB1, LB4 and LB5 first entered Guinea in June–July 2014. 

The time to the most recent common ancestor (TMRCA) for all Guinean sequences in each 

of these sub-lineages was estimated to be 22 July, 9 July and 22 June for LB1, LB4 and 

LB5, respectively (Table S5). Circulation of LB1 viruses appears to have subsided around 

the same time in Liberia and Guinea, in late September 2014. LB4 and LB5 viruses, on the 

other hand, continued to circulate in Guinea into January 2015, beyond the last sampled 

genomes from those sub-lineages in Liberia (Figure 3B).

Ebola virus evolution in Western Africa

The ongoing outbreak of EVD in Western Africa is substantially larger than all previously 

recorded outbreaks combined in terms of both the number of cases and the timespan (a 

proxy for the length of transmission chains). Therefore, this outbreak has provided EBOV 

with unprecedented opportunity to evolve within the human host. The non-synonymous 

substitutions that have arisen during this outbreak are non-uniformly distributed across the 

EBOV genome (Figure 5A), with peaks in density at the C-terminus of the NP gene, the 

region of the GP gene encoding the mucin-like domain, and towards the end of the L (RNA-

dependent RNA polymerase) gene. Relative frequencies of non-synonymous substitutions 

across the EBOV genome within the human population are generally consistent with 

patterns of EBOV divergence within its unknown reservoir host, estimated using the earliest 

available genome sequence from each of nine distinct EVD outbreaks (Figure 5A; linear R2 

of 0.72). However, the rate of non-synonymous substitutions, relative to synonymous 

substitutions, is generally elevated across the genome within the Western African outbreak 

(Figure 5), consistent with previous reports of incomplete purifying selection (Gire et al., 

2014; Park et al., 2015; Simon-Loriere et al., 2015). Peaks in non-synonymous divergence 
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largely correspond to regions predicted to be intrinsically unstructured (Olabode et al., 

2015). Therefore, these hotspots for non-synonymous substitution have likely resulted 

primarily from a lower level of functional constraint on encoded viral proteins.

We utilized a Bayesian, phylogeny-based approach to identify signatures of diversifying 

positive selection. This analysis highlighted 11 codons with significant support for positive 

selection (dN>dS posterior probability >0.9; Figure 5, Table S6). One codon was identified 

within each of four ORFs: NP (codon 737), VP30 (codon 248), VP24 (codon 28) and L 

(codon 1,772); the other seven codons were located in the GP1,2 ORF (codons 82, 455, 472, 

479, 480, 493 and 638). Five codons each exhibited two distinct non-synonymous 

substitutions; the rest contained a single non-synonymous change. The frequency of the non-

synonymous variants ranged from 0.11% to 91.7%. Eleven (68.8%) of the sixteen non-

synonymous substitutions at these codons were each only observed in the genome from one 

sample. Five of the significant GP codons and the one L codon are located within regions we 

identified to be intrinsically unstructured and to be hotspots for non-synonymous 

substitution. The most significant codon, GP1,2-82 (dN>dS posterior probability = 0.995), 

includes a non-synonymous substitution (A82V) that arose early in the outbreak, during the 

transition between the GN1 and SL1 lineages. Codon 82 is located in the region of the GP1 

that contains the receptor binding domain [codons 54–201 (Kuhn et al., 2006)]. The 

substitutions at GP2-638 (Q638R or Q638L) are also intriguing because they affect the 

glycoprotein’s tumor necrosis factor-alpha converting enzyme (TACE) cleavage site. The 

sheddase TACE cleaves the membrane-bound GP at the sequence L635-P-D↓-Q removing 

GP1,2Δ from the cell surface. TACE cleavage has been proposed as a mechanism of 

pathogenesis for filoviruses and sequence conservation among filoviral groups suggests that 

TACE-cleavage is important for fitness (Dolnik et al., 2004).

DISCUSSION

Genomic analysis of samples collected over 11 months of the 2013–present Western African 

EVD outbreak has provided a detailed view into the introduction and spread of EBOV in 

Liberia. Porous national borders are thought to have played an important role in the spread 

and maintenance of the ongoing EVD outbreak (Richards et al., 2015; Sack et al., 2014); 

however, despite multiple early EBOV introductions from Guinea and/or Sierra Leone, the 

majority of Liberian EVD cases are consistent with a single introduction, likely of an SL2 

lineage virus. While infected individuals may have continued to enter Liberia from 

neighboring countries, these transmission chains did not substantially contribute to the 

Liberian portion of the outbreak. Several broadly focused measures were taken by the 

Liberian government to minimize and contain the movement of EBOV into Liberia. These 

include the early dispatch of response teams to Liberian counties bordering EBOV-infected 

countries (UNICEF, 2014), an aggressive campaign focused on public outreach and 

education and the official closure of most of the country’s border crossings (MacDougall et 

al., 2014).

The first appearance of EBOV in Liberia involved a GN1 lineage virus. GN1 sequences 

were commonly found in eastern Guinea during March–May 2014 (Carroll et al., 2015), 

consistent with a Guinean source for the first wave of Liberian EVD cases, which began in 
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mid-March 2014 and ended in early-April 2014 (Arwady et al., 2015). This initial wave of 

cases is thought to have been locally contained, and our analysis is consistent with this 

speculation as no second wave Liberian sequences clustered within the GN1 lineage. 

Unfortunately, county-level information was not associated with the only first wave Liberian 

sample included in our analysis (KR817194). However, given the timing, it is likely that this 

sample was part of the transmission chain that began with a woman who died in mid- to late-

March 2014 in Lofa County, which is situated in northwestern Liberia and shares borders 

with both Sierra Leone and Guinea. Six cases from this transmission chain were confirmed 

to be EBOV positive, including four samples from Lofa and two from Margibi (UNICEF, 

2014).

Contact tracing has revealed at least three potential introductions of EBOV to Liberia from 

Sierra Leone in late-May–early-June 2014. The timing of these events is consistent with the 

start of the second wave of Liberian EVD cases, and both lineages we observed in this 

second wave (SL1 and SL2) were present in Sierra Leone at this time (Gire et al., 2014). 

This time period is also consistent with our previous estimate for the TMRCA of all Liberian 

SL2 viruses (Kugelman et al., 2015b). The earliest documented introduction involved a 

patient who traveled to Lofa from Sierra Leone on 23 May 2014; she died in Lofa on 25 

May and her body was returned to Sierra Leone for burial (UNICEF, 2014). This patient has 

been linked to additional EVD cases in Sierra Leone and Liberia, including cases in 

Monrovia (Sack et al., 2014). However, our analysis indicated that this introduction 

involved an SL1 virus, which means that it is unlikely to have led to the majority of 

Liberia’s EVD cases. Two of the sequences analyzed here came from samples that can be 

linked to this transmission chain (KR817231 & KR817233) (S. Fink, personal 

communication), and both belong to the SL1 lineage. A second introduction from Sierra 

Leone to Lofa occurred in early-June 2014 (Sack et al., 2014); it is unclear what lineage of 

virus was introduced in this instance or whether this case resulted in further transmission in 

Liberia.

The third documented introduction is reported to have occurred in late-May or early-June 

2014 when a woman traveled from Sierra Leone to the New Kru Town community in 

Monrovia, Montserrado County. This patient has been linked to several other EVD cases in 

Monrovia, including health care workers at Redemption Hospital (UNICEF, 2014). We 

don’t know the lineage of EBOV involved in this introduction, but this is a good candidate 

for the SL2 introduction that appears to have led to the majority of Liberian EVD cases. Our 

analysis indicated that the success of SL2 lineage viruses in Liberia was likely due in part to 

the establishment of this lineage in high-density neighborhoods around Monrovia 

(Montserrado and Margibi Counties). Approximately 70% of Liberia’s reported cases 

occurred in this region, and it served as an important source of infections in other parts of 

the country. Additionally, New Kru Town was one of two primary epicenters of EVD cases 

(in addition to Foya, Lofa County) during June–early-July 2014, at the beginning of the 

second wave of Liberian EVD cases (UNICEF, 2014).

As a result of demographic transition and internal conflict, Western Africa has become a 

region characterized by high rates of migration (Gnisci et al., 2006), and this movement is 

reflected in the spread of EBOV within Liberia. In the 2008 Liberian census, 54% of the 
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population over the age of 14 reported being internally displaced (Alexander et al., 2015), 

and 22% of the Liberian-born population was enumerated in a county different from that of 

birth (LISGIS, 2009). This high rate of migration has resulted in the establishment of strong 

social ties across geographic regions, and the relatively small size of the country (~111,000 

km2) makes regular travel between many regions feasible. Reflective of this aspect of 

Liberian society, we saw widespread movement of EBOV within Liberia, which is likely to 

have played an important role in the magnitude and longevity of the Liberian portion of the 

EVD outbreak. Regular migration of infected individuals complicates surveillance and 

isolation efforts, which are critical for controlling EVD outbreaks (Lindblade et al., 2015; 

Pandey et al., 2014).

The dominant pathways of EBOV spread within Liberia are broadly consistent with 

expectations based on the distribution of EVD cases and available data on contact tracing. 

Our analysis identified two neighboring counties, Montserrado and Margibi, as the primary 

sources for the spread of EBOV to other Liberian counties. This finding is consistent with 

epidemiological investigations into EVD clusters in remote Liberian villages. Together, 

these two counties were identified as the sources for 90% (9/10) of the EVD case clusters 

for which an index case was successfully identified (Kateh et al., 2015). Montserrado and 

Margibi were also the two worst-affected Liberian counties, respectively, in terms of the 

number of reported EVD cases. Similarly, Lofa was identified as the third most important 

source of EBOV within Liberia, which is consistent with Lofa being the third worst-affected 

county and a major epicenter early in the second wave of Liberian EVD cases (UNICEF, 

2014). However, based on our current dataset, Lofa’s contribution as an EBOV source is 

substantially lower than that of Montserrado and Margibi. This pattern is probably reflective 

of Lofa’s remote location. Lofa is a likely entry point for EBOV to Liberia due to its 

proximity to the putative origin of the Western African EVD outbreak and shared borders 

with Guinea and Sierra Leone. However, Lofa is largely isolated from the highly populated 

regions of Liberia due to poor connecting roads. Therefore, the contribution of human 

movement to and from Lofa was likely overshadowed by more frequently traveled routes 

once EBOV became established in the more densely populated counties of Montserrado and 

Margibi. Our genomic analysis also identified several connections between counties that are 

consistent with documented, but relatively uncommon movement events (Figure S1), thus 

illustrating the utility of genomic sequencing to identify and confirm chains of transmission 

in the absence of good epidemiological data.

The EBOV transmission pattern we deduced for Liberia, driven primarily by within-country 

spread and diversification, is very similar to that described for eastern Sierra Leone during 

May 2014–January 2015 (Park et al., 2015), but distinct from the developing picture of the 

Guinean portion of the outbreak, which appears to have included multiple re-introductions 

of EBOV from both Liberia and Sierra Leone (Simon-Loriere et al., 2015). This difference 

in transmission dynamics may partly explain differences between countries in the 

distribution of EVD cases over time. The portions of the outbreak in Liberia and Sierra 

Leone both exhibited a single primary peak in cases, whereas the Guinean portion of the 

outbreak has been characterized by several distinct peaks of similar magnitude (WHO, 

2015). Our combined analysis of genomic data from samples collected in four Western 

African countries demonstrated that occasional importation of EBOV from Liberia likely 
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played a role in the continuation of the Guinean outbreak and the spread of EBOV to Mali. 

Starting in August 2014, 70% (69/99) of sequences from the eastern half of Guinea and 30% 

of sequences from the western half of Guinea (23/76) belonged to evolutionary sub-lineages 

that originated in Liberia (Figure 6). At least five distinct transmission events from Liberia 

into Guinea are supported by our analysis, and at least three of these led to sustained EBOV 

transmission within Guinea. One of these imported sub-lineages, LB5, was further 

transmitted, on two separate occasions, from Guinea to Mali (Hoenen et al., 2014). We were 

able to place the ancestors of the three most successful imported lineages within June–July 

2014, which is before the official border closings and just before the largest of the peaks in 

Guinean EVD cases (Figure 6).

It is important to note that international movement of EBOV is only visible in our analysis 

when this movement resulted in further transmission of the virus. Therefore, we are unable 

to determine whether the unidirectionality of the international exchange we detected is the 

result of differences in rates of human movement into/out of Liberia or whether this reflects 

discrepancies in detecting and controlling newly introduced EBOV transmission chains. The 

rapid establishment of treatment and isolation facilities was shown to have been effective for 

interrupting EBOV transmission in several isolated portions of the Liberian outbreak 

(Lindblade et al., 2015). A detailed investigation of EBOV control measures throughout 

Western Africa, in light of the movement patterns highlighted in our analysis, will be 

illustrative regarding the effectiveness of different management approaches.

During “species jumps”, viruses are expected to experience a low-fitness valley, the “depth” 

of which will vary depending on the virus and hosts involved (Parrish et al., 2008). The 

absence of EBOV sequences from the unknown reservoir and from infected humans during 

the first few months of the outbreak (Dec 2013–Feb 2014) prevents the identification of the 

initial mutations that occurred during the transition of the EBOV Makona variant to humans. 

However, the large number of EBOV sequences available from the remainder of the 

outbreak allows for an investigation into patterns of incremental (human) host adaptation 

following the initial jump. As a whole, we are seeing little evidence for additional adaptation 

of the virus to humans following the initial transition. We identified 11 codons with 

evidence of diversifying positive selection. However, viruses with substitutions in these 

codons were generally rare within the analyzed dataset, suggesting that they are unlikely to 

have significantly contributed to the magnitude of the Western African EVD outbreak. 

Furthermore, general patterns of divergence within the Western African outbreak are 

consistent with divergence within the reservoir host. This result is consistent with other 

reports on EBOV evolution within Sierra Leone (Gire et al., 2014; Olabode et al., 2015; 

Park et al., 2015). The lack of strong signatures of adaptation may reflect a relatively 

shallow fitness valley for EBOV between the reservoir host and humans. In this case, 

ecological factors determining the frequency of interaction between humans and the 

reservoir may be the dominant factor controlling the frequency of spillover events rather 

than host-specific fitness determinants. Targeted investigations into the earliest substitutions 

that occurred during the Western African EVD outbreak will be critical for understanding 

the transition of EBOV to humans.
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EXPERIMENTAL PROCEDURES

This work was conducted at the Liberian Institute for Biomedical Research (LIBR) as part 

of the EVD response and EBOV surveillance, and informed consent was not obtained. With 

the consent of the National Incident Management System of the Ebola Virus Disease 

Outbreak and the Liberian Ministry of Health and Social Welfare, the work was supervised 

by the LIBR institutional review board. All the information obtained from the participants 

was anonymized for this report.

Genome Sequencing

In total, we processed 399 real-time PCR-confirmed EBOV-positive samples (Ct values 

15.5–26.5) from the Liberian portion of the 2013–present Western African EVD outbreak 

that had been banked at the Liberian Institute for Biomedical Research; 165 of these (from 

164 patients) yielded high-quality consensus genomes. Viral RNA was extracted and 

sequenced on the Illumina platform (San Diego, CA, USA) primarily using an unbiased 

amplification method as previously described (Kugelman et al., 2015b). A subset of the 

samples with low viral coverage were enriched for EBOV sequences using the TruSeq RNA 

Access kit (Illumina) modified with probes specific for EBOV prior to sequencing (Mate et 

al., 2015).

EBOV genomes were assembled by aligning reads to Ebola virus/H.sapiens-wt/SLE/2014/

Makona-G3864.1 (KR013754, missing bases in the reference were replaced with consensus 

calls from complete EBOV genomes); this reference is equivalent to the basal SL2 

haplotype (Gire et al., 2014), which is thought to have been ancestral to most of the Liberian 

transmission chains (Kugelman et al., 2015b). Amplification primers were removed from the 

sequencing reads using Cutadapt v1.21 (Martin, 2011) and low quality reads/bases were 

filtered using Prinseq-lite v0.20.4 (-min_qual_mean 25 -trim_left 20 -min_len 50) 

(Schmieder and Edwards, 2011). Reads were aligned to the reference using Bowtie2 

(Langmead and Salzberg, 2012), duplicates were removed with Picard 

(broadinstitute.github.io/picard) and a new consensus was generated using a combination of 

Samtools v0.1.18 (Li et al., 2009) and custom scripts. Only bases with Phred quality score 

≥20 were utilized in consensus calling, and a minimum of 3x read-depth coverage, in 

support of the consensus, was required to make a call; positions lacking this depth of 

coverage were treated as missing (i.e., called as ‘N’).

Phylogenetic Analysis

922 EBOV genomes from Guinea, Mali, Sierra Leone and Liberia were analyzed in BEAST 

(Drummond et al., 2012) (see Tables S1–S2 for accession numbers). A representative subset 

of these sequences were also analyzed in PopART v1.7.2 (http://popart.otago.ac.nz) using 

the median-joining haplotype network reconstruction method. For the sake of clarity in 

visualizing the haplotype network, only sequences with ≥ 97% coverage were included, and 

only 75 sequences were included from each of the primary lineages in Sierra Leone (SL3 

and SL4). The genomes included from SL3 and SL4 were chosen randomly from the 

available sequences with ≥99.5% genome coverage. This resulted in the inclusion of 175 

Liberian genomes and 466 genomes from Guinea, Mali and Sierra Leone (Tables S1–S2). 
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For BEAST, sites were partitioned into non-coding intergenic regions and codon positions 1, 

2 and 3. The evolution of all 4 site partitions was modelled by independent HKY 

substitution models with gamma(4)-distributed rate heterogeneity with a relaxed molecular 

clock with lognormally distributed rate categories (Drummond et al., 2006). The non-

parametric Bayesian SkyGrid tree prior (Gill et al., 2013) was used. These analyses were 

used to identify the separate EBOV introductions into Liberia and to select a subset of 

isolates for more detailed analysis.

Analysis of the entire Western African EBOV sequence dataset revealed one phylogenetic 

lineage (SL2) that contained the vast majority of Liberian sequences (182/188, 97%). These 

182 genomes were used for more detailed analysis, including the inference of within-country 

migration and the dating of common ancestors. To estimate dates for the movement of 

EBOV between countries, 97 isolates from Guinea and Mali were added to this Liberian 

dataset; in the full analysis, these isolates clustered within Liberian SL2 sub-lineages. These 

analyses used the same model described for the full analysis, but with a prior on the mean of 

the lognormal distribution (N[1.144*10−3, 5.7968*10−3]) informed by the rate estimated for 

the full Western African sequence dataset. To infer viral migration between counties (within 

Liberia) an asymmetric continuous time Markov chain (CTMC) approach was chosen. 

Bayesian stochastic search variable selection (BSSVS) was employed to identify strongly 

supported (Bayes factor > 3) migrations. An uninformative reference prior was used on the 

migration rate. The MCMC chain was run twice for 50 million states, with 9,000 samples 

from each chain combined. For all analyses, the first 10% of the chain (10 million states) 

was discarded as burn-in. Path-O-Gen version 1.4 (Drummond et al., 2012) was used to 

calculate the root-to-tip distances by using the “best-fitting root” option and a maximum-

likelihood phylogeny [PhyML version 3.0 (Guindon et al., 2010); general time reversible 

model].

Molecular Evolution

Sequences were aligned using Sequencher v5.2.3 (Gene Codes, Ann Arbor, MI). Custom 

scripts were used to generate a variant call file (Data S1), which was then annotated with 

SnpEff (v4.1b, build 2015-02-13) (Cingolani et al., 2012) using the genome of Ebola virus/

H.sapiens-wt/GIN/2014/Makona-C15 (KJ660346.2) as a reference. Nine EBOV genome 

sequences (1 per outbreak) were used to explore patterns of divergence between spatially 

and/or temporally distinct outbreaks: NC002549, KC242791, KC242792, KC242796, 

KC242794, KC242785, HQ613402, KJ660346 and KM519951.

All EBOV genomes with ≥93% genome coverage (920 genomes) were used to screen for 

signatures of positive diversifying selection. A maximum-likelihood tree was constructed 

with PhyML using a GTR model and this tree was used to guide positive selection analysis 

with FUBAR (Murrell et al., 2013), part of the HyPhy package, using 20 MCMC chains of 

length 100,000,000 that were sampled 5,000 times each. Codons were predicted to be under 

positive diversifying selection if the posterior probability that dN/dS > 1 at that site was 

greater than 0.9.
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Intrinsically unstructured regions were predicted using the IUPred webserver with long 

disorder settings (Dosztanyi et al., 2005). Regions with a disorder tendency ≥0.4 were 

considered unstructured.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Temporal dynamics of the EVD outbreak in Liberia. (A) Confirmed and probable EVD 

cases in Liberia through time (WHO, 2015). (B) Temporal distribution of the 188 Liberian 

samples analyzed in this study. (C) Relative genetic diversity calculated with BEAST for the 

SL2 lineage in Liberia (SkyGrid reconstruction). The solid line represents the median 

estimate from the posterior probability, and the dashed lines represent the upper and lower 

estimates of the 95% credible interval.
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Figure 2. 
Multiple early introductions of EBOV into Liberia. (A) Phylogenetic and temporal 

placement of 188 Liberian EBOV genomes relative to 734 EBOV sequences from Guinea, 

Mali and Sierra Leone. Three distinct lineages are represented in the Liberian samples: GN1, 

SL1 and SL2. (B) Median-joining haplotype network including 175 Liberian EBOV 

sequences with ≥97% genome coverage and 466 EBOV sequences representative of lineages 

circulating elsewhere in Western Africa.
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Figure 3. 
Eight primary sub-lineages circulated during the second wave of EVD cases in Liberia. (A) 

Median-joining haplotype network based on a full genome alignment of 158 sequences from 

Liberia (SL2 only and with ≥98% genome coverage) and 95 sequences from Guinea and 

Mali that clustered within Liberian sub-lineages. (B) Root-to-tip distance versus testing date 

for each sub-lineage. (C) Geographic distribution of the Liberian sub-lineages, at the county-

level within Liberia (white) and country-level outside Liberia (grey).
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Figure 4. 
Widespread movement of EBOV during the second wave of the Liberian outbreak. (A) 

Temporal maximum clade credibility tree from BEAST analysis. Circles at the nodes 

indicate inferred ancestral location of each lineage. Circles with black outlines at the branch 

tips represent samples with known county of origin; those with white outlines were inferred 

in the analysis as a latent variable over the course of the MCMC. Circle size is proportional 

to the posterior probability of the assigned county. The bar at the root indicates the 95% 

HPD for the estimated root date. (B) Counts of exported vs imported viral lineages between 

locations across the posterior distribution. Vertical black lines indicate 95% HPD. (C) Well-

supported (Bayes Factor ≥ 3) asymmetric rates of viral migration between counties. Arrow 

color indicates magnitude. Counties are colored by cumulative number of cases reported by 

the WHO.

See also Figure S1.
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Figure 5. 
Distribution of synonymous and non-synonymous substitutions within the open reading 

frames (ORFs) of the EBOV genome. Black lines below the ORFs (grey arrows) indicate the 

positions of codons with significant evidence of positive selection (Table S6). (A) Non-

synonymous substitutions that have occurred within the Western African EVD outbreak 

(solid line) and between outbreaks caused by EBOV (dashed line). A sliding window of 

1000 nucleotides (nt) was used with a step size of 250 nt. Each count was normalized by the 

average number of substitutions per window. (B & C) Distribution of dS (synonymous 

substitutions per synonymous site), dN (non-synonymous substitutions per non-synonymous 

site) and dN/dS. For each dataset, dS and dN were both normalized by the average dS per 

window. A sliding window of 999 nt (333 codons) was used with a step size of 249 nt (83 

codons).

Ladner et al. Page 20

Cell Host Microbe. Author manuscript; available in PMC 2016 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Liberian sub-lineages of EBOV contributed substantially to the largest peak in Guinean 

EVD cases. (A) The number of Guinean EBOV sequences through time colored based on 

the geographic origin of the evolutionary lineages to which each sequence belongs. (B) 

Confirmed and probable EVD cases in Guinea through time, according to the WHO’s 

patient database (WHO, 2015).
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