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BOND AND STOCK RETURNS IN A
SIMPLE EXCHANGE MODEL¥*

JOHN Y. CAMPBELL

This paper studies asset pricing in a general equilibrium representative agent
exchange model. The assumptions of isoelastic period utility and lognormal en-
dowment allow the derivation of closed-form solutions for asset returns without
restricting the serial correlation of the log endowment. Risk premiums on stocks
and real bonds are found to be simple functions of relative risk aversion, the
variance of the log endowment innovation, and the weights in the moving average
representation of the log endowment. The paper analyzes the sign of term pre-
miums, the size of the equity premium, and the effect of taste shocks on asset
prices.

Some long-standing puzzles in economics concern the rela-
tionship between bond and stock returns and the macroeconomy.
What forces determine expected excess returns on long bonds over
short bonds? Is there any presumption that such term premiums
tend to be positive, negative, or zero? Why are common stock
returns so much higher on average than returns on short-term
assets?

In this paper I use a “representative agent” model of general
equilibrium to approach such questions.! The model aggregates
heterogeneous agents and prices assets from the first-order con-
ditions of a representative agent’s intertemporal optimization
problem. The formal conditions for this to be valid are restrictive,
but the results elucidate fundamental forces that one would expect
to be at work in the actual economy.

I measure all quantities and prices in real terms, and study
assets with real payoffs. Presumably the same forces operate in
a monetary economy, but I do not attempt to analyze monetary
factors here.

The model is set in discrete time. It provides closed-form
solutions for asset prices and returns as functions of current, past,

*] am grateful to Olivier Blanchard, Steve Cecchetti, Rich Clarida, Ian Jewitt,
Steve LeRoy, Greg Mankiw, Jim Poterba, Matthew Shapiro, Kim Schoenholtz,
Bob Shiller, Larry Summers, James Tobin, Ken West, and Susan Woodward; and
seminar participants at the National Bureau, Princeton, M.I.T., and Wharton for
helpful comments on earlier versions of this paper.

1. This type of model has recently been popular; applications to asset pricin,
include Breeden [1979, 1986], Hansen and Singleton [1582, 1983], Grossman an
Shiller [1981], Lucas [1978, 1982], LeRoy [1982], Donaldson and Mehra [1984],
Mehra and Prescott [1985], Michener [1982, 1984], and Cox, Ingersoll, and Ross
[1985].
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and future consumption levels. Since consumption levels are treated
as given, it is easiest to think of the model as an exchange model
in which the representative agent consumes a nonstorable en-
dowment each period, and all assets are in zero net supply. This
interpretation is required for comparative static exercises in which
I discuss the effects of changing the time series behavior of con-
sumption, while holding fixed the other parameters of the model.

It is important to note, however, that the asset pricing for-
mulas are also valid for assets in positive net supply in a pro-
duction economy; for example, they apply to the model of Mich-
ener [1984]. In such an economy the existence of investment
possibilities affects the equilibrium, but given equilibrium con-
sumption levels, investment opportunities and assets that are in
zero net supply can both be priced using the methods of this paper.

The model remains highly special in some dimensions—no-
tably the utility function of the representative agent and the
distribution of shocks to the economy—but it allows a very general
specification of the time series behavior of consumption. Con-
sumption is assumed to follow a univariate stochastic process,
which must be stationary in either log levels or log first differ-
ences,? but is otherwise unrestricted. The key contribution of the
paper is to use the moving average representation of univariate
stationary processes to characterize asset prices. The generali-
zation to multivariate processes is straightforward, but is omitted
here for reasons of space.

It is worth clarifying the relationship between this approach
and that of previous work. The existence proofs of Lucas [1978],
Donaldson and Mehra [1984], and others apply to models in which
the state of the economy evolves according to a vector Markov
process. In general, such processes have K state variables and K
independent shocks or sources of uncertainty. This formulation
is too general to yield closed forms without further restrictions,
so authors such as LeRoy [1982], Michener [1982], and Mehra
and Prescott [1985] have analyzed exchange models in which the
endowment follows a univariate Markov process. Here there is
one state variable and one source of uncertainty.

The univariate stationary processes considered here can be
thought of as special vector Markov processes in which there is
only one source of uncertainty, but there can be many state vari-

2. Nelson and Plosser [1982] offer evidence that many macroeconomic vari-
ables are well modeled as stationary in log first differences.
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ables. Each state variable is a linear combination of lagged values
of consumption, and is updated each period using current and
lagged innovations in consumption.?

The number of sources of uncertainty is also the number of
independent assets that are required to hedge aggregate risk in
the economy. Thus, when consumption follows a univariate pro-
cess, the one-period returns on all the assets priced in this paper
are perfectly correlated, even though there may be many state
variables. Despite this low dimensionality of the asset return
space, the derivation of expected returns on different assets is not
trivial and has considerable economic interest.

In the first section of this paper, I lay out the assumptions of
the model formally. I then study various applications, including
the sign and magnitude of risk premiums in a term structure of
real bonds (Section II); risk premiums on equity (Section III); and
the effect on asset pricing of random shocks in the utility function
(Section IV). In Section V, I summarize the results.

I. ASSUMPTIONS

The first assumption of the model concerns the representative
agent’s utility function. This is assumed to be time separable with
isoelastic period utility; it has two free parameters: « the coeffi-
cient of relative risk aversion, and B the discount factor.* In Sec-
tion IV the utility function is extended to include multiplicative
“taste shocks”; for the present, I simply write the representative
agent’s problem as

<5 o B Gk
(1) max E, > B* ulcin) = E; D

k=0 fmp B

The second assumption of the model is that future levels of
the representative agent’s endowment are distributed lognor-
mally conditional on the agent’s current information.

3. Cox, Ingersoll, and Ross [1981] discuss Markov processes of this type in a
continuous time setting.

4. This utility function is one of the simplest members of a class characterized
by Eichenbaum, ilansen. and Richard [1984], which allows aggregation over het-
erogeneous consumers under certain rather s(s)ecial circumstances. Heterogeneity
here means that individual consumers have different endowments and may have
individual “taste shocks” to their utility functions. Aggregation is possible when
the consumers have common information, common parameters a and B, and op-
erate in a complete markets setting.
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The third assumption is that the log of the endowment can
be characterized by one of the following two statements:

(a) The log endowment follows a univariate, stationary, in-
vertible stochastic process about a deterministic trend. (For ex-
positional convenience I shall assume that the trend is linear.)
By Wold’s Decomposition Theorem, one can write a unique in-
vertible moving average representation of the log endowment,
which in equilibrium equals log c;, as

(2) loge, = gt + &L)e, = gt + >, Exer—s,

k=0

where L is the lag operator and &, is normalized to equal one.
Assumption 2 of the model requires that the innovation e, be
normally distributed; I assume that it is i.i.d. with mean zero and
standard deviation s,.’

Stationarity and invertibility impose restrictions on the sum
of squares of & and the sum of &, respectively. For stationarity,
one must have

2 &<
k=0

a condition that guarantees that the variance of log ¢, is finite,
and by the Cauchy-Schwartz Inequality, that all its autocovari-
ances are finite. From the finite sum of squares, it follows that

lim & = 0.

—x

The requirement for invertibility® is that all the roots of £(z) = 0
lie outside the unit circle. It follows that £(z) > 0 when evaluated
atz = 1. But

ED) = &, so > &>0.
k=0 £=0

5. Time variation in the standard deviation of e is ruled out by the assumption
that the log endowment is stationary. However, the model could be modified fairly
easily to allow this standard deviation to vary through time, as long as it does so
in a deterministic manner that is known to the representative agent. If the stan-
dard deviation varied stochastically, assumption 2 would be violated, and the
model would become intractable.

6. Invertibility is a necessary and sufficient condition for the innovation in
the Wold representation of a stationary time series to be interpretable as the
difference between the current realization of the series and its best linear forecast
conditional on lagged values of the series. This interpretation of the innovation
e is required for the analysis of the paper.
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Finally, the constant trend growth rate of the endowment is
g.

(b) As an alternative to (a), one may assume that the first
difference of the log endowment follows a univariate, stationary,
invertible stochastic process with a constant drift. The unique
invertible Wold representation for the change in the log endow-
ment is written as

(3) Aloge, =g+ v(L)e, = g + 3 Vaer—s
k=0
where, as before, y, = 1 and e, is normally distributed with mean

zero and standard deviation s,. Stationarity and invertibility im-
ply that

> vi<e and Y v >0.
k=0 k=0
Equation (3) can be rewritten to express the level of the log
endowment in terms of current and lagged innovations to the
endowment growth rate. Adding log ¢, ; to the left- and right-
hand sides of (3), and recursively substituting out log ¢,
i =1,2,3, ..., one obtains

4) loge:=g+ voer + 8+ (Yo + Y)eemy + ...

=gt + 2 Exer—p»
k=0
where now & = X, _; v so lim;... §& > 0from invertibility of (3).

The two versions of assumption 3 incorporate (within the
lognormal context) all the special cases studied in the existing
literature. For example, LeRoy [1982] works with a two-state
version of (a), and Michener [1982, 1984] presents AR(1) and
AR(2) special cases of (a). Mehra and Prescott [1985] work with
a two-state version of (b).

This paper will not be much concerned with the problem of
existence of equilibrium. Its assumptions are essentially special
versions of those made by Lucas [1978].7 However, when the log
endowment is nonstationary, it is important to check that ex-
pected utility is finite for any state of the system (history of log
c¢,). From equation (1) this requires that the growth rate of the

7. As Michener [1982] notes, however, the constant relative risk aversion
utility function is not bounded, which violates one of Lucas’ assumptions.
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expected utility of consumption at time ¢ + i, not be faster than
1/B in the limit as i — . The required condition is

i E,C,} i 1
(5) lim ———— < =

ix BeCiify B
To evaluate the left-hand side of equation (5), I apply the well-
known formula for the expected value of a lognormal random
variable: log E(X) = E(log X) + (1/2)var(log X) when X is log-
normal. This formula will be applied repeatedly in the course of
the paper in solving for closed-form asset prices and returns. The
limit is found to be (1 — a)g in case (a), and

= ) b 2
1 - a)g + (u) [Z ‘Yk] s2
2 =0

in case (b). Thus, for expected utility to be finite, the mean rate
of endowment growth cannot be too high and in the nonstationary
case the sum of the v, coefficients cannot be too large. Intuitively,
the log endowment cannot be “too nonstationary.”

II. A TERM STRUCTURE OF REAL BONDS

In this section real discount bonds are priced from the first-
order conditions of the representative agent’s maximization prob-
lem (1). The first-order condition for any asset is just that its
marginal utility cost today equal the expected marginal utility
of its future payoffs. For an i-period real discount bond, which
costs P;, units of the consumption good today and returns one unit
of the good in period ¢ + i,

(6) E{{Bj (Cr+,'/Cr)_"] = Pit - (1 i R”)ii;,

where R, is the net return per period (or yield) on the i-period
bond. The term in square brackets is conditionally lognormal, and
thus one can apply the formula for the expected value of a log-
normal random variable to obtain

(7) ilog(l + R;) = ilog(1/B) + aEllog c;.; — log c,]

— (a®/2)var,[log ¢,,; — log ¢,]

= i.log(%) + log + a[ 2 (Exaz = &) ee—k:l

3 (%) I:k':O E%] SE‘
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The first part of this equation is equivalent to expressions in
Mankiw [1981], Hansen and Singleton [1983], and Breeden [1986];
the second part follows from the representation of consumption
in equation (2).

For given i, the real interest rate on a real bond is inversely
related to the discount factor B and therefore positively related
to the rate of time preference. The interest rate rises with the
expected increase in log consumption from time ¢ to time ¢ + i
this expected increase has trend and stochastic components.

The real interest rate on a real bond falls as the variance of
the endowment shock increases.® This can be explained as follows:
Miller [1976] has shown that a sufficient condition for saving to
increase with labor income uncertainty, in a multiperiod model
with a known return to saving, is that u'(¢) is positive and convex.
The isoelastic utility function satisfies this condition. But the
equilibrium interest rate is just that rate at which the agent is
content to save exactly zero; therefore it falls with endowment
uncertainty.? Equivalently, note that the expected value of a con-
vex function of a random argument increases with the variance
of the argument: therefore the left-hand side of equation (6) in-
creases with the variance of consumption, driving asset prices up
and interest rates down.'®

Risk premiums are most conveniently defined in this log-
normal model to be the log of the ratio of expected gross returns
on alternative investment strategies. These “log ratio” risk pre-
miums are constant through time.

Defined this way, Campbell and Shiller’s [1984] holding pe-
riod premium on an i-period bond held for j periods, over a j-
period bond, is

(b‘l:,t - llog(l + Rig) e log E;[(l + Rl_j.t+j)_“_jj]
— jlog(1 + R,,).

Given ¢, it is trivial to obtain the conventional “difference” risk

8. This is a comparative static statement. The variance of the endowment
was assumed to be constant through time in the derivation of (7).

9. There are no income effects in this model to offset the substitution effect
of a fall in the interest rate, because saving is zero in the model. In the standard
two-period Fisher diagram, the budget line is rotated around the consumption
point, not the intersection of the budget line with the horizontal (first-period) axis
as in the standard experiment. Stiﬁlitz [1970] presented a partial-equilibrium
model of the term structure in which income ang substitution effects offset each
other. In general, he was unable to sign the combined result of these two effects.

10. See Breeden [1986] for further discussion of this effect.
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premium, the difference between expected j-period gross returns
on i-period and j-period bonds, as

(1 + R;)’ (expldy] — 1).

The difference risk premium varies in proportion with the gross
j-period interest rate, and has the same sign as ¢, since gross
interest rates are always positive.

Straightforward but tedious calculation shows that

i-1
(8) by = o [2 Er(&e — E.ﬁk)] &%
k=0

Equation (8) expresses the holding premium as the product of
three terms. Unsurprisingly, the premium is proportional to the
variance of the innovation in the log endowment. It is proportional
to the square of the coefficient of relative risk aversion, indicating
that it is of second order for « close to zero, but is of first importance
for large o values.!! Finally, the holding premium is proportional
to a complicated function of the moving average parameters of
the log endowment process.

In the special case of a unit holding period, (8) implies that

(9) b = a®[l - &-1] Sf

The one-period holding premium for an i-period bond is posi-
tive whenever ¢_; < 1. The intuition behind this result is simple.
When ¢, < 1, a positive endowment shock between ¢ and ¢ + 1
raises the ¢ + 1 endowment more than it raises the expected en-
dowment at ¢ + i when the bond matures. Thus, a positive en-
dowment shock lowers the yield on the bond and gives a capital
gain to bondholders. Capital gains on such bonds are positively
correlated with the ratio of consumption at ¢ + 1 to consumption
at ¢, and negatively correlated with the corresponding ratio of
marginal utilities. These bonds must therefore have a higher
expected return at .

In general, there will be some i for which & > 1, and thus
some negative term premiums.'? But if the endowment is sta-
tionary, there is a presumption that term premiums are positive.

11. LeRoy [1983] notes an equivalent result in a two-state model.

12. LeRoy [1982] finds that term premiums are always positive in his model.
This is because his model has only two states, so that if the state is currently
good, it cannot improve further (€ < 1 for all i).
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Since
> B <,
i=0
it must be the case that
no 2
lim>» >==0 and limg = 0.
n—% ;_q n %

The first limit implies that the proportion of maturities i for which
the square of ¢, exceeds unity, in a sample of the first n maturities,
must go to zero as n— =, A fortiori the proportion of negative
one-period holding premiums must go to zero. The second limit
implies that one-period holding premiums approach

a’s? as i— =,

Two simple examples of stationary stochastic processes for
the log endowment may help to clarify the implications of the
model.'® When the log endowment follows an AR(1) with param-
eter a such that —1 <a < 1, then

and one-period holding premiums are always positive. They in-
crease monotonically with maturity when 0 < a < 1. When the
log endowment follows an AR(2) with positive real roots, then
output may have a “hump shape” [Blanchard, 1981], and there
will be some negative one-period holding premiums at the short
end of the term structure.

Figure I is a graphical illustration of the determination of
one-period holding premiums in the stationary case. It displays
a typical impulse response function, & as a function of i, and the
regions of negative and positive holding premiums. The slope of
a line between the points (0,&) and (i — 1,§_;) determines the
response of the yield on an i-period bond to a unit positive in-
novation in the endowment. When this slope is positive, the hold-
ing premium is negative, and vice versa.

When the endowment is univariate stationary in first differ-
ences (version (b) of assumption 3), the formulas for risk premi-
ums derived above are still valid. However, now £; is reinterpreted
as the sum from 0 to i of parameters y,. The v, and not the &
have the stationarity properties.

13. These examples are studied in Michener [1982] and [1984], respectively.
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It is still the case that & approaches some limit as i — %, but
from invertibility this limit is strictly greater than zero. If it is
less than one, then premiums approach a positive limit that is
strictly less than for the stationary case. This type of nonstation-
ary process can be thought of as “mean-reverting” (even though
its unconditional expectation is undefined), because some fraction
of any shock is eventually offset. If lim §; is greater than one,
then term premiums approach a negative limit as i increases.
This type of nonstationary process is “mean-abandoning,” in that
the ultir.ate effect of any shock on the level of the endowment is
greater than the initial impact. The borderline between these two
types of nonstationary processes is the random walk, for which
vo =1 and v, = 0 for all k> 0, so & = 1 for all i. Here the ul-
timate effect of any shock equals the initial effect, and all term
premiums are zero. (In fact, interest rates are nonstochastic, as
can be seen from equation (7).)

The expected excess return on an i-period bond held to ma-
turity, over a sequence of one-period bonds, is what Campbell and
Shiller [1984] call the rolling premium. For the purposes of this
model, it is written as

&' = idog(l + R;) — log EJ[(1 + Ry) ... (1 + Ry 0]

As in the case of the holding premium, the conventional “differ-
ence” rolling premium can be obtained from this and always has
the same sign.

It turns out for the univariate case that

i—1
(10) dire = o [Z &(1 - &H]SE-
k=0

To understand the intuition of this result, consider the case
where i = 2. Then

(1D baye = a? [£,(1 — gl)]sza

where &'5;, can be negative if £, > 1, a case already discussed, or
if &, is negative. To understand the latter condition, note that the
return on a two-period rollover strategy is particularly high when
short rates are higher than expected in period ¢t + 1. With & < 1,
this occurs when there is a negative endowment shock in period
t + 1. If &, is negative, the endowment will on average rebound
to a higher level in period ¢ + 2 than the level that was expected
in period t; thus, returns on the rollover strategy are positively
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correlated with the ratio of period ¢ + 2 consumption to period ¢
consumption, and must be higher on average than the returns on
a “safe” strategy of holding a two-period bond for two periods. In
other words, when &, is negative, the two-period bond has a neg-
ative risk premium. If &, is positive, however, a negative endow-
ment shock at ¢ + 1 will tend to be followed by a lower endowment
at t + 2 than was originally expected, and the above conclusions
are reversed.

A comparison of equations (9) and (11) shows that it is not
possible to have a negative one-period holding premium and a
positive rolling premium on a two-period bond.!* More generally,
there is no presumption from stationarity alone that rolling pre-
miums are positive. Under the strong condition that 0 < & < 1,
all i, rolling premiums are positive for all i (as are all holding
premiums).

III. STOCKS

I now consider the pricing of stocks, defined simply as (pos-
sibly levered) claims to a share of the random endowment at some
period in the future.'® The final payoff or dividend on a stock that
matures at ¢, d,, is specified as

(12) log d; = mlog c,.

Here m measures the extent to which a stock is levered with
respect to the endowment. A random payoff shock, uncorrelated
with log ¢, could be added to the right-hand side of (12); this
would change the equilibrium prices of stocks but not their ex-
pected returns, so the formulas for risk premiums in this section
would remain valid.

Define P%,; as the real time ¢ price of an i-period stock. The
real log return on the stock over j periods, j <, is log Pf ,.;
— log P%,, and the real log return over i periods is mlog ¢;.;
— log P%, = ilog(1l + R%,.

Solve for the i-period log expected real return on an i-period
stock:

14. This result was stressed by Woodward [1983]. Woodward used the terms
“solidity premium” for minus the one-period holding premium on a two-period
bond and “liquidity premium” for the rolling premium on a two-period bond.

15. I do not explicitly consider a more realistic “consol-like” stock, a claim to
the whole stream of future endowments. The price of such a stock is the sum over
i of the prices P* in equation (18). Unfortunately, the formula for this price is
messy, since the model generates simple solutions for log rather than natural
prices.




BOND AND STOCK RETURNS 797

i—1
(13) log E,[(1 + R%,)] = ilog(l + R;) + na[z E'ﬁ]s?.

k=0

Over i periods the real return on an i-period stock for m > 0 is
always expected to be higher than the real return on an i-period
real bond. This result is unsurprising, since the payoff and there-
fore the return on the stock are perfectly positively correlated
with consumption at time ¢ + i. The difference between the log
expected returns increases monotonically with maturity i. How-
ever, note that this “payoff uncertainty premium” is proportional
only to « and not to o as is the real term premium.

Equation (7) showed that an increase in the variance of the
endowment innovation lowers expected real bond returns. It low-
ers expected stock returns only if na < «?/2; that is, if a > 2.
For these high values of «, the fall in the real bond return out-
weighs the increase in the payoff uncertainty premium.

Although for m > 0 an i-period stock is always expected to
yield more than an i-period real bond over i periods, this result
does not carry over to other holding periods or real bonds of other
maturities. The expression for the j-period holding premium on
an i-period stock, over a j-period real bond, is

Jj-1
(14) &% = by + na[ >, Em‘;_”k] £
k=0

The j-period holding premium on an i-period stock is the sum
of the j-period holding premium on an i-period real bond, and a
term resulting from the payoff uncertainty on stocks. Neither
term is unambiguously positive or negative in general. This il-
lustrates the basic point that, for assets with a single payoff,
payoff uncertainty translates directly into uncertainty about re-
turns only when the holding period equals the maturity of an
asset. Over other holding periods, an asset whose payoff is posi-
tively correlated with consumption may have a return that is
negatively correlated with consumption and thus a negative hold-
ing premium.

Equation (14) may be used to determine the size of the “equity
premium”—the expected one-period excess return on stock over
a one-period real bond—for given parameters of the model. When
J = land n = 1, (14) simplifies to

(15) ¥ie = (@1 — & 4] + a&;_,)s2.

The equity premium is the sum of two terms: a real term premium
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that is proportional to the square of « and falls with §_;, and a
payoff uncertainty premium that is proportional to o and rises
Wlth &,-_1.

Mehra and Prescott [1985] have recently argued that histor-
ically observed equity premiums in the United States, on the order
of 6 percent annually, are too high to be explained by a repre-
sentative agent model with plausible parameter values. There
are important differences between their model and the present
one; notably, their model has only two states, and they price a
more realistic “consol-like” stock rather than a single-payoff in-
strument.'® However the two models are sufficiently similar that
a comparison is worthwhile.

Mehra and Prescott’s consumption process is equivalent to
an ARIMA(1,1,0) with negative serial correlation in log endow-
ment changes. The serial correlation parameter is —0.14, so

v, = (=014  and & = X v lim§ = e 0.8717.

k=0 i—x 114
For these parameter values, the limit as i increases of the term
in brackets multiplying the endowment innovation variance is 1
fora = 1, 2.25 for a = 2, 5.48 for a = 4, and 21.07 for o = 10,
the largest « value considered to be plausible by Mehra and Pres-
cott. Since the endowment innovation variance is only 0.00032,
the risk premium at « = 10 is only 0.0068 or 0.68 percent. This
is larger than Mehra and Prescott’s maximum value of 0.35 per-
cent, but still in the same general area and much smaller than
the observed equity premium.

These calculations are admittedly primitive, and may omit
some important determinants of the measured equity premium.
But the analytic formula (15) does clarify the reasons why a low
equity premium is obtained from the estimated consumption pro-
cess even at high o values. The limit of &_, is close to 1, so the
term premium, proportional to the square of «, is multiplied by
a small number, while the payoff premium—proportional to a—
is multiplied by a large one. If consumption were actually sta-
tionary around a deterministic trend, the limit of &_; would be
zero, and the equity premium would be five times larger at « = 10
(but smaller for a < 1).

16. One cost of greater realism in their notion of a stock is that Mehra and
Prescott must solve for the equity premium numerically, rather than presenting
a simple analytic formula as here.
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IV. TASTE SHOCKS

In this Section I modify the basic model by introducing mul-
tiplicative “taste shocks” to the representative agent’s utility
function. There are two reasons why this is a worthwhile exercise.

First, in the traditional literature on the term structure,'” it
was sometimes asserted that investor preferences for consumption
at a particular date would lower yields on bonds due to mature
at that date, and furthermore would cause such bonds to have
negative term premiums. The introduction of taste shocks brings
the present model to bear on this question.

Second, there has recently been concern that econometric
tests of the representative agent asset pricing framework, such
as those of Hansen and Singleton [1982, 1983] are invalidated by
taste shocks. Garber and King [1984] have argued this point with
particular force. The estimates of the coefficient of relative risk
aversion that are generated in the econometric literature are
implausibly high (this is closely related to the equity premium
puzzle discussed in the previous section). Introduction of taste
shocks into the model of this paper allows one to see whether they
have the effect of biasing upwards estimates of relative risk aver-
sion which ignore taste shocks.

If multiplicative shocks A, are added to the utility function,
equation (1) becomes

o= = l-a
(16) max 3 Bulc,) = S Bhess 1“’:‘
=0 i=0
The first-order condition for pricing a real discount bond, (6),
becomes

(17) E;[Bi U\¢+,'II)\¢)(C(+I‘/C3)7H] = P“g — (1 + R“t)ii.

Note that when « = 1, that is, when the agent has a log utility
function, taste shocks enter the first-order condition (17) in ex-
actly the same way as endowment shocks.'®

If taste shocks are to generate risk premiums in this model,
they must be random and therefore contribute a conditional vari-

17. See, for example, Modigliani and Sutch [1966].

18. The effect of taste shocks should not be confused with the effect of a
nongeometric discount function. The latter would cause expected changes through
time in the relative valuation of consumption at two dates, and thus would gen-
erate a time inconsistency problem. Taste shocks, however, are indexed by time
¢ + i rather than by distance from the present time i, and so do not lead to time
inconsistency.
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ance term to the formula for the interest rate. Suppose that the
log of the taste parameter A, follows a stationary stochastic pro-
cess, in a manner analogous to the process for the endowment:

(18) ]Og A; = 2 ¢ku,_k.
k=0

As before, assume that u, is i.i.d. normal with mean zero and
standard deviation s,. For simplicity, assume that u, and e, are
independent. Then the formula for the one-period holding pre-
mium on an i-period bond becomes

(19) a'.l[l = ngllsg A [1 = ‘bi—l]s‘ﬁ;

and similar terms are added to other risk premium concepts.
However, the risk premiums on stocks over real bonds are not
increased by taste shocks because stock payoffs are unaffected by
these shocks.

An important feature of the taste-shock components of risk
premiums is that they do not depend on the coefficient of relative
risk aversion a. By contrast with the endowment-shock compo-
nents, they do not vanish as this coefficient goes to zero. Random
preferences may generate predictable excess returns even when
agents are risk neutral, which provides a counterexample to the
traditional view that such premiums are zero under risk neu-
trality.'® The reason is that taste shocks cause randomness in the
marginal utility of consumption (and therefore in interest rates),
and premiums arise from randomness in marginal utility rather
than from curvature of the utility function per se.

The taste shock components of one-period holding premiums
may in general be positive or negative, but stationarity of taste
shocks generates a presumption that they are positive. Thus, the
analysis of both endowment shocks and taste shocks in the sta-
tionary case lends some support to Hicks’s [1939] proposition that
risk premiums on long bonds are positive.

The preceding analysis leads to the conjecture that taste shocks
bias upwards estimates of a which ignore them, since they create
risk premiums even when o = 0. This conjecture is correct as
long as taste shocks and consumption levels are uncorrelated, but
follow stochastic processes of similar form.

19. Cox, Ingersoll, and Ross [1981] provide an alternative counterexample in
which interest rates are random because of shocks to the marginal productivity
of capital. They also discuss deterministic preferences for consumption at one
particular date, but do not consider random taste shocks.
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Suppose that an econometrician knows the values of s, and
£, and estimates the square of a from the one-period holding
premium on an i-period real bond as

dadl — &_1]s8Z.
From (19) this estimate equals
af + [1 = P3}elfl — & ile;,

which is greater than the square of « as long as s, ; and &,_; have
the same sign. If both ¢, and \, are stationary, the bias approaches
the square of s,/s, as i increases. This is not very large for plausible
values of s,/s,, but a much larger bias can be generated if taste
shocks are close to white noise, while consumption is nonstation-
ary and close to a random walk as in the model of Mehra and
Prescott [1985].

The above analysis relies heavily on the assumption that
taste shocks are uncorrelated with consumption levels. This as-
sumption is not implausible in an exchange model with a non-
storable endowment, but it is unlikely to hold in a production
model. When taste shocks are positively correlated with con-
sumption, they may bias downwards estimates of a which ignore
them. To see this, consider the case where a = 1 and A, = ¢,. Then
interest rates are nonrandom from (32), and there are no term
premiums from (19), so an econometrician would estimate « = 0
which is below the true value. It remains to be seen whether a
plausible taste shock process could explain the equity premium
puzzle and the empirical results of Hansen and Singleton [1982,
1983].

V. CONCLUSION

In this paper I have presented a simple exchange model and
discussed its implications for asset pricing. The model restricts
the form of the representative agent’s utility function and the
distribution of shocks in a way that enables the derivation of
closed-form solutions for asset prices and returns. In a significant
generalization of previous work, the representative agent’s en-
dowment is modeled as a general univariate stochastic process,
stationary and invertible in levels or first differences, rather than
as a univariate Markov process. The further generalization to
multivariate stationary processes is conceptually straightforward
but is not undertaken here.
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The model sheds light on a number of issues. Some of the
most important conclusions are the following:

1. The model shows under what conditions term premiums
on long bonds are positive as conjectured by Hicks [1939]. When
consumption is stationary, or follows a nonstationary process such
that some fraction of any shock is eventually offset, then there
is a presumption that one-period holding premiums on long bonds
are positive. The premium on a bond of any particular maturity
i may be negative, but the limit as i increases is positive.

2. Stocks are not necessarily expected to yield more than real
bonds except when both assets have the same maturity date and
are held to maturity. In general, an asset with greater payoff
uncertainty need not have greater uncertainty of return over some
short holding period.

3. The “equity premium” of stocks over a single-period risk-
less real rate can be decomposed into a component due to payoff
uncertainty and proportional to the coefficient of relative risk
aversion, and a term premium component that is proportional to
the square of the coefficient of relative risk aversion. The relative
weights of these two components depend on the stochastic process
for consumption; for the process proposed by Mehra and Prescott
[1985] to describe the U. S. economy, the former component dom-
inates so that the equity premium does not increase rapidly with
risk aversion.

5. The model does not support the contention of Modigliani
and Sutch [1966] that investor preferences for consumption at a
particular date lower risk premiums on bonds maturing at that
date. Random taste shocks do generate risk premiums, however;
and as above, when taste shocks are stationary, there is a pre-
sumption that the premiums are positive for long bonds. This
effect is independent of the agent’s degree of relative risk
aversion.

6. Tests of the representative agent asset pricing framework are
invalidated if there are aggregate taste shocks. Econometric esti-
mates of the coefficient of relative risk aversion that ignore taste
shocks are biased upwards if taste shocks and consumption levels are
uncorrelated, but they may be biased downwards if there is positive
correlation between taste shocks and consumption.

PRINCETON UNIVERSITY
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