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Rules of Thumb for Social Learning

Glenn Ellison and Drew Fudenberg

Harvard University

This paper studies agents who consider the experiences of their
neighbors in deciding which of two technologies to use. We analyze
two learning environments, one in which the same technology is
optimal for all players and another in which each technology is bet-
ter for some of them. In both environments, players use exoge-
nously specified rules of thumb that ignore historical data but may
incorporate a tendency to use the more popular technology. In some
cases these naive rules can lead to fairly efficient decisions in the
long run, but adjustment can be slow when a superior technology
is first introduced.

I. Introduction

This paper presents two simple models of how economic agents de-
cide which of two technologies to use when the relative profitability
of the technologies is unknown. In both models, agents base their
decisions, at least in part, on the experience of their neighbors; this
is what we mean by “social learning.” We believe that social learning is
frequently an important aspect of the process of technology adoption,
where “technology” should be broadly construed: Although our main
examples concern the adoption of agricultural technology, we believe
that the models may also be applicable to the diffusion of new man-

We thank Abhijit Banerjee, Roland Benabou, Mathias Dewatripont, Sara Fisher
Ellison, and Bengt Holmstrém for helpful comments. We are happy to acknowledge
financial support from National Science Foundation grant SES 90-08770, the John
Simon Guggenheim Foundation, and the Sloan Foundation Graduate Program and
the hospitality of the Institut d’Economie Industrielle (Toulouse).

[Journal of Political Economy, 1993, vol. 101, no. 4}
© 1993 by The University of Chicago. All rights reserved. 0022-3808/93/0104-0008$01.50

612

Copyright © 1993. All rights reserved.



‘

SOCIAL LEARNING 613

agement practices and to parents’ decisions whether to send their
children to a public or a private school.!

The learning environments we study have three main features:
First, agents observe both their neighbors’ choices and the payoffs
that these choices generate. Second, agents periodically reevaluate
their decisions, as opposed to making a once-and-for-all choice.
Third, we consider the possibility that players may be sufficiently
heterogeneous that under full information they would not all make
the same choice.

Instead of assuming that the adoption process is described by the
equilibrium of a game played by fully rational agents, we suppose
that players use exogenously specified, and quite simple, “rules of
thumb.” We have several reasons for proceeding in this fashion. First,
in some of the environments we consider, fully Bayesian learning
requires calculations that may be too complicated to be realistic. A
second motivation for our approach is that, to the extent that the
technology choice may be substantially different from previous deci-
sions the players have faced, we would be uncomfortable with the
assumption that the technology adoption process is described by an
equilibrium. A somewhat different motivation is simply technical ex-
pediency: we did not see an easy way to incorporate various consider-
ations we feel are important into a rational-actor equilibrium model.

The paper is structured around two simple models of learning
environments. The first model has a homogeneous population of
players choosing between two competing technologies, with the pay-
off to each technology subject to an aggregate independent and iden-
tically distributed (i.i.d.) shock. Each period, only some fraction of
the players have the opportunity to revise their choices; the other
players continue using whichever technology they used in the previ-
ous period.

Our analysis begins with a particularly “naive” rule of thumb in
which players ignore all historical data and simply choose whichever
technology worked better in the previous period. This rule will lead
the popularity of the two technologies to fluctuate unless one of the
technologies has a higher payoff for all values of the shock. We subse-
quently consider rules that incorporate “popularity weighting,” a ten-
dency to choose a more popular technology even if it was somewhat
less profitable last period. We find that the appropriate use of popu-
larity weighting leads players to adopt and stick with the better tech-

! See Rogers and Shoemaker (1971) for an extensive discussion of empirical research
on adoption processes, especially in development. Mansfield (1968) and Ryan and
Gross (1943) are classic studies of technology adoption in basic industries and in agri-
culture, respectively.
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nology, provided that the technology with the higher mean payoff is
also the more likely to have the higher payoff ex post. Intuitively, a
strategy that is more popular today is likely to have done well in the
past, so that the relative popularity of the technologies can serve as
a proxy for their historical performance. Thus it is fairly clear that
popularity weighting rules can lead to better decisions. We find that
one particular choice of popularity weights picks out the better tech-
nology in the long run, regardless of the initial state of the system
or the size of the payoff difference; however, this gain in long-run
efficiency may have the cost of slowing the adoption of technological
improvements.

Our second model has a heterogeneous population, with each tech-
nology better for some of the players. Thus the question here is not
whether the better technology will be adopted, but rather whether
the new technology will be adopted by the appropriate players.2 We
suppose that there is a continuum of players distributed uniformly
over a line and that nearby players have similar payoffs to the two
technologies. Moreover, we suppose that players base their decisions
on the relative performance of the two technologies at locations that
are within one “window width” of their own. This window width,
which is exogenous in our model, can be thought of either as the
result of an informational constraint—players may not observe out-
comes at faraway locations—or as the result of the players’ prior
belief that faraway locations are sufficiently different that experiences
there are not relevant to their own decisions.

Once again, players revise their technology choices using simple
rules of thumb. In particular, we suppose that players do not know
exactly how location influences relative payoffs and thus simply com-
pare the average payoffs of the two technologies in their window, as
opposed to using more sophisticated statistical methods.

The heterogeneous population model provides a number of pre-
dictions about the types and magnitudes of the errors that are likely
to be made. The spatial nature of the process allows some degree of
social learning even without popularity weighting, and the long-run
state of the system is approximately efficient when the window width
is small. However, small window widths imply that the system con-
verges more slowly, which can be costly if the initial state is far from
the optimum. Roughly speaking, increasing the popularity welghtmg
in the sp'mal model has about the same effect as decreasing the win-
dow width, improving long-run performance while slowing conver-

2 Note that when the players are heterogeneous, a central planner would need to
know the relative payofts of the competing technologies for every player in order to
implement the optimum by fiat.
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gence. In contrast to the homogeneous-population model, no amount
of popularity weighting will lead to an exactly efficient long-run state.

The assumptions of our models are perhaps most descriptive of
the diffusion of agricultural technologies. We would expect that
farmers are able to observe, at least roughly, the output of their
neighbors as well as their neighbors’ choices of crops and techniques.
Further, farmers’ payoffs are subject to aggregate stochastic shocks
due to the weather. Concerning inertia, it has been frequently noted
that farmers as a group seem very hesitant to try new technologies.
These comments do not suggest that all farmers are equally hesitant;
for example, Slicher von Bath (1963, p. 243) notes that during the
English agricultural revolution, “land tilled in very ancient ways lay
next to fields in which crop rotations were followed.” Even during
the twentieth century, there is typically a substantial lag between the
date farmers first learn of the existence of a technology and the date
they adopt it: Ryan and Gross (1943) found that farmers in two rural
communities on average adopted hybrid seed corn 7 years after they
first heard of the innovation, with adoption spread over a 5-10-year
period; studies cited in Rogers and Shoemaker (1971, p. 129) report
lags of 2—4 years for the adoption of weed spray in Iowa and fertilizer
in Pakistan.? Finally, when capital and insurance markets are poorly
developed, it seems plausible that farmers’ technology decisions will
be determined primarily by short-term considerations, and that farm-
ers will be unlikely to experiment with a technology with a lower
expected return.

As for the assumptions of the heterogeneous model, it seems plau-
sible that the payoffs to various crops may differ at different loca-
tions, depending on the soil, climate, and terrain of each farm, and
that when a new technology is first introduced there may be consider-
able uncertainty about where it should be used. Consequently, the
fact that the technology did well in one area or country may not
provide much reason to adopt it in another.?

These various features seem particularly clear in the diffusion of
the agricultural practices known as the “new husbandry” during the
English agricultural revolution. (The new husbandry refers to a vari-

3 Note that the spread of literacy and modern communication media will speed up
the rate at which farmers become aware of a new technology’s existence, but they do
not seem to have eliminated the lag between becoming informed and deciding to
adopt.

* Centrally based agricultural reformers are often hampered by their lack of under-
standing of the variation in farmers’ tastes and production costs. For example, Apodaca
(1952) describes how a planner tried to induce a New Mexico community to adopt a
hybrid corn. The innovation was adopted and then discontinued despite doubling
yields since the villagers decided that the taste and consistency of the corn were inap-
propriate for making tortillas.
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ety of new crops and new crop rotations that arrived in England from
Flanders in the seventeenth century, based on the idea of growing
crops such as clover or turnips instead of leaving the land fallow;
see, e.g., Kerridge [1967], Timmer [1969], and Mingay [1977].) In
particular, the new husbandry was attempted and then abandoned
at a number of locations, which shows both that the returns to the
technology varied with location and that the form of this dependence
was not known.

The spatial structure of the heterogeneous-population model can
be taken literally when the model is applied to agricultural innova-
tions. We believe that the model can also be applied to other settings,
such as the diffusion of management practices in large industries or
the choice of private schools; the location variable should be inter-
preted as a point in characteristic space, and individuals with similar
characteristics believe that their payoffs are similar.

Turning from the assumptions of the models to the conclusions,
we note that the homogeneous-population model predicts that the
speed with which a new technology is adopted is correlated with the
extent of the payoff difference. Such a correlation between the extent
of improvement and the speed of adoption has been noted in the
empirical discussions of Mansfield (1968) and Rogers and Shoemaker
(1971), but has not, as far as we know, been addressed in the learning
literature.®* The homogeneous-population model also predicts that
new technologies that result in a small probability of a big improve-
ment and a large probability of a small loss will be adopted slowly, if
at all; this is consistent with the slow diffusion of seat belts and vacci-
nations noted by Rogers and Shoemaker (1971, p. 139). Further, the
fact that the combination of inertia and popularity weighting can lead
to efficient long-run behavior in the homogeneous-population model
may make the apparent occurrence of these phenomena less puz-
zling. Likewise, in the heterogeneous-population model, the parame-
ter values that favor long-run efficiency—namely, small window
widths and high popularity weights—lead to slow diffusion. This may
help to explain the observed slow diffusion of some agricultural tech-
nologies.°

There have been several previous models of the role of social learn-
ing in technology adoption. Perhaps the earliest is the contagion pro-
cess, which' models adoption as a random matching process in which
players switch to the new technology the first time they meet someone

3 However, the correlation is easy to explain as the result of an optimal investment
policy under complete information if adopting the innovation requires investing in a
capital good.

6 The most striking case of slow diffusion may be that of the new husbandry, which
diffused at a rate of 1 mile per year both in England and in France.
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who is using it. This process yields the familiar “S-shaped curve” for
the time path of adoption that has been widely used in empirical
work, for example by Griliches (1957) and Mansfield (1968).

Recent papers by Banerjee (1992, in press), Bikhchandani, Hirsh-
leifer, and Welch (1992), and Smith (1992) study more sophisticated
models of social learning in homogeneous populations, in which play-
ers must decide which of two choices is better. The primary question
of interest in these models is whether social learning implies that
the population eventually identifies the better choice. These papers
suppose that players observe one another’s choices, but that players
do not observe the payoffs that these choices generate.” Manski
(1990) considers estimation procedures for an individual agent in a
heterogeneous population; he does not analyze the resulting social
dynamics.

Although we believe that the models we develop, based on bounded
rationality and players’ observance of their opponents’ payoffs, are a
useful supplement to this previous work on social learning, we should
say that we are not completely satisfied with the precise form of the
rules we consider. In particular, in the first model, use of history does
not seem so complicated as to be unreasonable.® Our purpose is not
to argue that any one of these models is particularly compelling, but
rather to identify general properties that seem to occur in some of
the more obvious formulations. One recurrent conclusion is that in
a number of cases the long-run state of the system is fairly efficient,
even though the individual decision rules are quite naive.

II. A Simple Model of Homogeneous Populations

Before we consider social learning in systems with a heterogeneous
population, it is interesting to consider the simpler case in which the
same technology is optimal for all players. This model can be thought
of as describing behavior at a single site in the model we consider
later on, where the relative payoffs vary with location. Suppose that
there is a large (continuum) population of players at a single site,
each of whom must choose whether to use technology f or technology
g- In each period, all players using the same technology receive the
same payoff.® We suppose that the payoffs to the two technologies at
date ¢, uf and uf, are related by the equation

uf —ul=0+e¢, (1)

7 Cross (1983) develops a model of boundedly rational adaptive choice with a similar
information structure.

# In the second model the environment is complicated enough that a great many
periods would be required to obtain good estimates, as we discuss in Sec. I11.

® Given our assumption that players observe one another's payoffs, nothing would
be changed if we allowed each player’s payoff to be subject to idiosyncratic shocks.
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where 0 is a fixed but unknown constant parameter and the ¢, are
i.i.d. shocks with zero mean and cumulative distribution function H.
We shall assume thatp =1 — H(—0) = prob[uf — uf = 0] is strictly
between zero and one.

In the initial period, denoted zero, a fraction x, of the players are
using technology g. After each period, a fraction « of the players are
selected at random to have the opportunity to revise their choices.!
We suppose that the players who are revising their choices can ob-
serve the average payoffs of both technologies in the previous period.
The simplest behavior rule we consider is the “unweighted” rule un-
der which all players who revise their choice pick the technology that
did best in the preceding period. Under this adjustment rule, the
evolution of the system is described by

(1 — a)x, + @ with probability p = prob[uf = uf], .
Frer = {(1 — a)x, with probability 1 — p = prob[uf <u{],
so that
E@x;qlx) = (1 — a)x, + ap. 2"

Note that players treat the adoption and discontinuance decisions
symmetrically, which corresponds to the case in which the costs of
“transition” are small. This symmetry is probably extreme, but we
think that it may be preferable to the standard practice in modeling
technology diffusion, which supposes that once agents try the new
innovation they continue using it forever: Studies of the English ag-
ricultural revolution, as well as studies of more recent innovations
cited in Rogers and Shoemaker (1971, p. 115), suggest that the
amount of discontinuance is an important factor in the diffusion
process.

Our model supposes that players do not have access to the entire
history of payoff observations. To justify this assumption, we suppose
that individual players revise their choices too infrequently to want
to keep track of each period’s results and, more strongly, that the
market at this particular “location” is too small for a record-keeping
agency to provide this service. Also, the private gain from using his-
tory may be small in'the cases, detailed below, in which the system
without history converges to the efficient outcome.

The following result is standard,; it follows from, for example, theo-

10 As mentioned in the Introduction, this inertia is consistent with the empirical
evidence that there is often a substantial lag between the time individuals first learn of
the existence of a new technology and the time they adopt it. The inertia might come
from decision costs; it would also arise if the choice of a technology is embodied in a
costly capital good that will not be replaced until it wears out.
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rem 10 of Norman (1968). (It is also a consequence of part b of
proposition 2 below.)

ProrosiTioN 1. The system (2) is ergodic; that is, the time average
of x, converges to its expectation with respect to its unique invariant
measure p. Moreover, E, (x) = p, and var,(x) = p(1 — p)a/(2 — a).

III. A Single Location with Popularity Weighting

Proposition 1 says that observing the long-run fraction of players
using technology g reveals the fraction of the time in which g has
been the better choice. If the distribution H of € is symmetric or
nearly so, the technology that is more often better has the higher
expected payoff.!! This suggests that if all other players in the popu-
lation are choosing whichever technology has the highest current
score, each player could gain by considering the relative popularity
of the two technologies as well as the recent payoffs. Intuitively, the
current popularity provides some information about the past history
of the process and, thus, can serve as a proxy for it.

Of course, if all players consider popularity in guiding their
choices, the level of popularity becomes less informative, and in the
extreme case in which players consider only popularity, the popular-
ity conveys no information at all. This leads us to consider the behav-
ior of the system when all players give popularity an intermediate
weight. As we shall see, there are popularity weights that, if used by
all players, lead them all to adopt the better technology. One way to
interpret this result is that in this case, even when popularity
weighting is used by all players, the popularity remains a “sufficient
statistic” for the history.

To explore the idea of popularity weighting, we develop a simple
parametric model. As above, we consider a continuum of players and
suppose that only a fraction a of them update their choices each
period. Now, though, instead of choosing the technology that did
best last period, the choice rule is

choose gifuf — uf=m(l — 2x,). (3)

Under this rule, the probability that those players who revise their
choices choose g is prob[8 + €, = m(l — 2x)] = 1 — H(m(l — 2x,)
— 0); when all players use rule (3), the fraction using g evolves ac-

cording to
_ {(1 — a)x, + o with probability 1 — H(m(1 — 2x,) — 0), 4
171 - a)x, with probability H(m(1 — 2x,) — 0). @

" This conclusion holds provided that the degree of asymmetry of H is small com-
pared to |8).

Copyright © 1993. All rights reserved.
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The parameter m indexes the amount of popularity weighting; the
case m = 0 corresponds to the unweighted case discussed above.
When x, = %, both technologies are equally popular; in this case
players choose the technology with the highest current payoff for any
value of m. As m grows, players become more willing to choose the
currently popular technology even if its current payoff is lower.!?
Note that the expression 1 — 2x is unitless, so the parameter m is
measured in the same units as the payoffs are. Thus to preserve the
same decision rule when the payoff functions are multiplied by a
constant A, the parameter m must be multiplied by the same con-
stant."

We use the linear specification of popularity weighting primarily
for analytic convenience. It combines nicely with a second simplifying
assumption that we make in this section, that the distribution H of
the shocks per period ¢, is uniform on [—o, o). This allows us to
explicitly compute the long-run behavior of the system for any m. It
also ensures that the linear class of weighting rules we consider in-
cludes one rule that leads the asymptotic distribution to concentrate
on the optimal choice, namely m = o.

To analyze the dynamics of the system, we first identify situations
in which it is certain to converge. Since the lowest possible value of
€, is —a, the lowest possible observation of u§ — u/is 8 — o. Hence,
if x, is sufficiently large that 6 — o = m(l — 2x,) or, equivalently, if
x, = x5 = (m — 6 + 0)/2m, the fraction using technology g is certain
to increase. Likewise, if x, = H=@m-0- 0)/2m, the fraction using
fis certain to increase. (Note that o > 0 implies ¥/ < x*.) Because the
probability of an upward step is minimized at x, = 0, this probability
must be at least prob[0 + ¢, =m] = (6 — m + 6)/20 = —(m/a)x/.
Thus when %/ < 0, so that the system cannot “lock on” to downward
steps, the probability of an upward step is uniformly bounded away
from zero. Similarly, if x¢ > 1, the probability of a downward step is
uniformly bounded away from zero.

The discussion above shows that (with knife-edge cases ignored)
there are four possibilities for the long-run behavior of the system:
(1) If 8 < 1 and %/ < 0, the system is certain to eventually make
enough upward jumps that x, > x&, so that from any initial position

12 The empirical literature suggests that popularity weighting is a factor, but reliable
estimates of m are hard to come by. Rogers and Shoemaker (1971, p. 142) say that
“many students of peasant life feel” that innovations must be 20-30 percent better to
be adopted; they also cite a President’s Science Advisory Committee figure of 50-100
percent. From our reading, it is not clear whether these premia reflect popularity
weighting or switching costs.

13 An alternative explanation of the need for rescaling is to use the fact that the rule
m = o yields the optimal long-run decision. Since o is the standard deviation of the
payoff differences per period, rescaling the utility function rescales o in the same way.
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the system converges with probability one to x, = 1. (2) If x¢ > 1 and
x/ > 0, the system converges to x, = 0 from any initial position. (3)
If 0 < ¥/ and x¢ < 1, the system will converge (with probability one)
to zero if xo, = X/ and will converge to one if xo = x¥; for x, € (/, x8),
the system will also eventually converge to a steady state, but it has a
positive probability of ending up at each of the two steady states of
the system. (4) If */ < 0 and x& > 1, the system will not converge to
either steady state. Instead, the fraction x, will continue to fluctuate.
These observations do most of the work required to establish the
following claims. '
ProrosiTION 2.

a) Popularity weighting m = o is “optimal” in the sense that from
any x, the system converges with probability one to the state in
which everyone uses the better technology.

b) m> o is “overweighting” in that the system converges with proba-
bility one to a steady state; which steady state is selected may
depend on the initial condition x,. More precisely, the system
converges to the better technology if |6] = m — o, whereas for
[8] < m — o the behavior of the system depends on the initial
condition x,. If xo = (m + o — 6)/2m, the system converges to
one with probability one; if xo < (m — o — 0)/2m, the system
converges to zero with probability one. If |6] <m — o and x, €
(n — o — 6)/2m, (m + o — 6)/2m), the system will eventually
converge to one of the steady states, but both steady states have
a positive probability.

¢) With “underweighting,” that is, m < o, the system need not con-
verge to a steady state. It does converge (with probability one) to
the better technology if [8] = ¢ — m, but for [8] < ¢ — m, the
system has a nondegenerate invariant distribution ., with

0

1
E”x~2+2(o—m)

and

acE xE (1 — x)
@Q-a)o—-2(1 —a)ym’

Proof. (a) If m = @, then x8 = (2m ~— 0)/2m is less than one iff § >
0, and X/ = —6/2m is greater than zero iff 8 < 0. The conclusion
now follows from the argument in the text. (b) If suffices to check
thatfor8 >m — > 0,x <0andx! < l;for —0>m — o > 0,5/
>0and x¢ > 1; and form — o > |0],%/ > 0 and xf < 1. (¢) A similar
computation shows that when |8| > o — m, the system must converge.
Appendix B establishes that the system has a unique invariant distri-

Vill'.L X =
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bution when o — m > |8| and computes the corresponding mean and
variance. Q.E.D.

CoroLLARYy. For any prior distribution over 6 with a finite expected
value whose support contains [ -, o], the expected long-run payoff
is continuous and increasing in = on the interval [0, o].

Proof. Increasing m increases the set of 6’s for which the system
converges to the better choice and increases the “tilt” of the mean
toward the better choice for smaller 6’s. Q.E.D.

Proposition 2 shows that the system is certain to converge to the
correct choice if the popularity weight m = o and that the payoff loss
from a wrong choice must be small if m is close to this level. Thus it
is interesting to ask whether there is any particular reason to suppose
that popularity weights equal or close to o are likely to be used or,
conversely, whether there are forces in the model that would drive
the players to use different weights. As a partial response, our work-
ing paper (Ellison and Fudenberg 1992) considers a game in which
players simultaneously choose their individual popularity weights,
and it shows that the optimal weight m = o is its unique equilibrium
outcome. This result is only a partial response because it supposes
more sophistication in the determination of the popularity weights
than we find compelling. However, the result does show that popular-
ity weighting need not conflict with individual incentives. We conjec-
ture that optimal popularity weighting might emerge from an adap-
tive process because individuals have a private incentive to increase
m whenever m < .

The reader may be concerned that the results in proposition 2
seem to rely on the fact that the uniform distribution has compact
support: an observation that uf — uf > o implies that 8 > 0. However,
similar conclusions can be obtained without compact support. Appen-
dix A shows that the nonlinear rule “switch only if the observed pay-
off difference is large compared to the popularity” leads to a long-run
distribution that places most of its weight on the better choice when-
ever the distribution of errors is “infinitely revealing in the tails.” This
nonlinear rule has the additional advantage that it does not depend
on the exact form of the distribution of the noise, whereas the optimal
linear rule for the uniform distribution must be tailored to the distri-
bution’s support. Appendix A also reports simulations of a more com-
plex rule that seems to work well even when the tails are not infinitely
revealing.

While our formal results concern the eventual steady state of the
system, the speed of convergence is of some interest as well. In partic-
ular, consider an initial position in which x is small, so that g corre-
sponds to a “new” technology, and suppose that 6 > 0, so that the new

Copyright © 1993. All rights reserved.
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technology is in fact an improvement. Then the share of technology g
increases whenever 6 + €,> m(l — 2x,); since the probability of this
event increases with 0, so does the expected rate of adoption.!* As we
noted in the Introduction, such a correlation between the extent of
improvement and the speed of adoption has been noted in empirical
work.

Note also that for fixed 6, the speed of convergence decreases as o
increases, so that each period’s observation becomes less informative.
Furthermore, if the new technology usually does slightly worse than
the old one but occasionally does much better (i.e., if the new technol-
ogy has a higher mean payoff but a lower median), then naive learn-
ing rules that look only at the recent relative performance will be
biased toward the wrong choice. This is consistent with the observa-
tion that seat belts, insurance, and vaccinations have been slow to
diffuse.

Finally, before leaving the homogeneous-population framework,
we would like to report simulation results for one simple modification
of popularity weighting that seems to improve the short-run perfor-
mance of the system without changing its long-run behavior. We now
suppose that players consider “trends” in the relative popularity of
the two technologies as well as the popularity itself.

More precisely, suppose that players now choose technology g iff
the realized difference in payoffs uf — uf exceeds the expression
m(l — 2x,) — ¢(x;, — x,_,), where x, — x,_, is the trend in popularity.
Since the trend variable converges to zero along any path in which
the system converges to a steady state, the system still converges to
the better technology with probability one when m = o. However,
if the initial state is far from the optimum, as is the case when a
superior technology is first introduced, one would expect that respon-
siveness to trends would help to increase the speed with which the
new technology is adopted.

To test this intuition, we ran three simulations, each with the noise
term € uniformly distributed on [—o, o] and popularity weighting
m = o. In the first, the fraction a who adjust each period was .5,
and the mean payoff difference 6 was .50; in the second, a@ = .5
and 0 = .lo; in the third, o« = .1 and 6 = .020. In all cases, we
counted the number of periods required for the system to move from
initial state xo = .050 to x = .990. The results, reported in table 1,
show that trends can improve the speed of convergence.

" Unless the payoff difference is so extreme that & — & > m, in which case the rate
of adoption is independent of 8. Note that the rate is also an increasing function of 8
when m = 0, provided that 6 is smaller than o.
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TABLE 1

TREND WEIGHTING AND THE SPEED OF CONVERGENCE

a=.50=.5c a=.50=.lc a=.,0=.020
c=0 11 39 940
¢c=5 10 26 710
¢ =10 10 28 470

Note.—On the basis of estimated standard errors, the first two digits are correct at the .95 level.

IV. Heterogeneous Populations with Linear
Technologies

Now we turn to the study of heterogeneous populations, in which
different technologies may be optimal for different individuals. As
before, we suppose that there are only two technologies, denoted f
and g, with the mean difference in payoffs, E(uf — uf), equal to 6.
Now though, we think of 6 as representing a location along a line, so
that players at different locations have different 6’s. In particular, the
optimal rule (both socially and privately) is for players with positive
0 to use g and players with negative 6 to use f, so that the distribution
of technology choice has a cutoff or break point at 6 = 0.

It will be important in what follows that the relative advantage of
using technology g at location 6 may be correlated with the “absolute
advantage” of location 6, for example, the productivity of the “land.”
To capture this, we suppose that the payoffs to the technologies have
the following linear form:

uf(0) = 0 + BO + €,

5
u/(0) = BO + ey, ©

With this parameterization, § > 0 implies that technology g does
better at “good” locations, and B < 0 implies that g does better at bad
ones. The player’s location in 6-space determines his average payoff
to the two technologies. We suppose that players base their decisions
on the average performance of the two technologies at locations in
their “observation windows”; the observation window of the player at
0 1s the interval [6 — w, 0 + w]. We call w the “window width.”

As in the study of a homogeneous population, we begin by analyz-
ing the simple rule in which players use whichever technology did
better in their window last period; later we shall enrich the model to
allow for popularity weighting. To define this rule formally, suppose
that the distribution of players over locations has a constant density,
which we normalize to equal one, and let u§(0) be the average score
realized by those players in the interval [ — w, 6 + w] who used g
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at period ¢, with the convention that u§(8) = — if every player in
the interval used f; the average %/(6) is defined analogously.
The (unweighted) decision rule for the player at 6 is then

play g at period ¢ + 1iff u§(8) — u{(0) = 0. (6)

In the previous sections we considered a model with a continuum
of players and inertia, so that the fraction of players using each strat-
egy can never shrink all the way to zero in finite time. In our study
of spatial models, though, we shall suppose that there is no inertia at
individual locations, so that all players at each location revise their
choices each period. We do so in part for reasons of convenience and
in part because learning seems too easy when all players observe
the payoffs to both technologies in every period. Moreover, it seems
plausible that in rural areas with low population density a technology
could be abandoned by everyone in an observation window after a
few bad draws in succession.

We have two interpretations in mind for this model. First, the loca-
tion parameter 6 may correspond to geographical location, with the
performance of the technologies linked to variables such as climate
or terrain that are in turn correlated with location. Second, the model
may describe adoption decisions at a single village, where players are
differentiated by idiosyncratic payoff-relevant characteristics such as
wealth and household size. We want to think of the payoff-relevant
variables as being unobservable but correlated with the observed loca-
tions. The idea is that players do not know exactly which aspects of
their locations are payoff-relevant or how these aspects influence
their payoffs. This is why we do not allow the players to regress the
observed payoffs of each technology on the corresponding values of
0. When one is studying geographic diffusion, the observation win-
dow might reflect the player only observing the outputs of his neigh-
bors, and the window width w might be fairly small. When one is
studying adoption at a single site, the observation window corre-
sponds to the players’ beliefs about which other players are suffi-
ciently similar for their experiences to be relevant, and players might
well observe the actions and outcome of others who are outside of
their window. To the extent that the relevant characteristics are diffi-
cult to determine, the window widths in this interpretation might be
fairly large.!®

As a first step in analyzing the decision rule (6), suppose that the
noise terms €, and €y, are identically zero, so that the system is deter-

13 In both interpretations, players might prefer to weight observations of their imme-
diate neighbors more heavily than those of players who are farther away but still
within the observation window; this may be particularly attractive when the observation
window is large.
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ministic. Suppose further that the current state of the system is de-
scribed by a cutoff rule. That is, suppose that there is a §, such that
all players with 0 = 8, choose g and all those with 8 < §, choose f.
Then the period ¢ + 1 state will be described by a cutoff rule as well.
To see this, note that all players at 8 > 6§, + w see only g being played
and, hence, will play g in the next period; similarly, all players at 6

< 8, — w play f. Players at every 6 € [§, — w, §, + w] see both f and
g bemg played, with

f;”’(s + 1)sds

_B+DHO+w+b)

—-ge = t _
L e — 2
8
' (7)
2y = e _BO=w+ D)
! 6, +w—6 2

Thus for §, — w < 8’ < 0" < §, + w, we have

—gran —fran - ’ - ’ 6" — 0’
uf(8") — w[(0") = wf(0") — wj(v) + 5

so that if the player at 6’ plays g in period ¢ + 1, then so does the
player at 6”. Hence the state at period ¢ + 1 is described by a cutoff
rule.

Our analysis restricts attention to the evolution of these cutoffs.
Given our assumption that the payoff difference between the two
technologies is monotone in location, cutoff rules seem natural; one
might suspect that even if the initial state is not a cutoff rule, the
system will converge to one. However, we have not attempted to
verify this result because in the absence of a cutoff rule the system is
much harder to analyze.

A steady-state cutoff rule must have the property that the player
at the steady-state cutoff is indifferent between f and g given his
observations. Thus the steady state is the unique solution of u§(6*)
= %f(6%). This gives (B + 1)[6* + (w/2)] = B[6* — (w/2)] and thus

ox = (2B + Dw ®
2

Note that although the optimal cutoff is § = 0 for any value of 8,
the steady-state cutoff equals zero only if B = —12. When B = 0, for
example, so that the payoff to f is identically zero and the payoff to
gis equal to 0, the steady state occurs at —w/2 (see fig. 1). The discrep-
ancy between the steady state and the optimum arises from our as-
sumption that players do not directly observe 6 and, hence, use only
the average payoffs received by the two technologies in making their
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i
¥
8 4w wp2 f(e) = 0

Fic. 1

decisions. Note that the maximum steady-state payoff loss at any loca-
tion is the absolute value of 6*, which is small if B is not too large (in
absolute value) and the window width w is small.

Having determined the steady-state cutoff, we next examine the
behavior of the system away from the steady state. It is easy to show
that, from an initial cutoff 0y, the cutoff will move toward the steady
state 6* at a distance of w each period until it is within w/2 of 6*.
Once 6, is within this interval, the system typically enters a stable
two‘penod cycle about 6*. For ease of reference, we summarize this
as a proposition.

ProrosiTioN 3. From an initial cutoff 8, the system determined by
(6) and (7) evolves according to

[ . R
6, + w b,<or - &
2
) = A A w w .
t+1 -8, + 20 6,€ [0* —5,6* +§). 9
w
\é,—w 6,_>.e*+§.

Proof. If uf(8, — w) — wf(§, — w) > 0, then all phyers who observe
both technologles bemg played (i.e., all players in the interval [§, —
w, §, + w]) use g in period ¢ + 1. Substituting 6, = §, — w into
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equauon (7), we see that this is the case if (8 + 1)6, = B(§, — w) or

= —Bw = 0% + (w/2). Similarly, if §, < 0* — (w/2), all players who
see both technologies being played choose fin period ¢ + 1. Finally,
ifd, € (6* - (w/2), 6* + (w/2)), O,H will sausfy B+ DBy + 6, +
w) = B4, + 0, — w),sothatd,,, = -, — (2B + Dw = -, +
20*. Q.E.D.

Next we consider the behavior of the model with noise, that is, with
€, and €y, nondegenerate i.i.d. random variables. Let z, = €;, — €,
denote the difference in the two shocks, and let 6} = 0% + z,; 8F is
the steady state of the system when €,, — €, is identically equal to z,
for all 7. Because behavior rule (6) depends only on the difference
between the payoffs to f and g and not on their levels, the evolution
of the system from 8, when the shock is z, is the same as that given
in equation (9), with the term 6* replaced everywhere by 6.

ProrosiTioN 4. If the perxod t cutoff is , and the period ¢ shock is
z,, the period ¢t + 1 cutoff is given by

[ A a
b, + w q<w—%,
. - . w w
0,={ —0+ 20 6,6[6;“—5,9,*+§), (10)
b, —w b,z 0F + =.
\ 2

Proof. For locations 6 € [6, — w, 6, + w], the difference between
the average payoffs of the two technologles in 0’s observation window
(the interval [ — w, 6 + w]), that is, %§(0, €;,) — @/(0, €y,), is

0+0+ (28 + Hw 0 + 6, — 20
o —z,= 9 .

Since 6, > 0¥ + (w/2) implies 6 +-0, = 20 forall 6 = §, — w, §, >
0* + (w/2) implies that all players who observe both technologies
choose g. Similarly, 8, < 6 + (w/2) implies that all players who see
both technologies choose f Finally, if 0, € [6F — (w/2), 0F + (w/2)),
the period ¢ cutoff is given by 6,+1 = -0, + 20¥. Q.E.D.

ProrosiTION 5. When the z, are i.i.d. draws from a distribution that
has a strictly positive density on a compact support, the dynamic
process generated by (10) has a unique invariant distribution F, and
the expected probability distribution at date ¢ converges to F uni-
formly over initial probability distributions p.

Proof. Appendix C shows that the system is a random contraction
in the sense of Norman (1972) and satisfies uniqueness condition 2.11
of Futia (1982).

Copyright © 1993. All rights reserved.



SOCIAL LEARNING 629

TABLE 2

STEADY-STATE VARIANCE FOR UNIFORM NOISE

VARIANCE OF

wlo System (10) System (11)
5 2134 25

A .0483 .05

.05 0246 025

.01 .0050 005

We have not been able to characterize this distribution directly.
Instead, we have computed an invariant distribution of the simpler
system generated by

. 0 +w 8=0F
041 = { A Iy
b, —w 6,>0%
Note that system (11) differs from (10) only when 0, falls in an interval
of width w. Normally we think of the variance of z, as being much
larger than the window width; in this case it may be reasonable to
guess that the invariant distributions of (10) and (11) are close to-
gether.

We should point out that the simplified system (11), unlike (10),
does not have a unique invariant distribution: Because all steps have
size w, from initial position 6y, the support of (11) is concentrated on
the grid 8, = kw, and so different initial conditions lead to different
invariant distributions. Moreover, the supports of the date ¢ distribu-
tion are different for t even and for t odd. Despite these qualitative
differences between systems (10) and (11), the absolute magnitude of
the effect of the initial condition is small when w is small, which
supports the conjecture that the two systems are similar. Table 2
provides further support for this belief by comparing Monte Carlo
estimates of the steady-state variance of (10) with the variance of the
particular invariant distribution of (11) that is computed in proposi-
tion 6 below. As conjectured, the two variances are close when w is
small. .

To examine the invariant distributions of (11), suppose that the
noise terms z, are i.i.d. with mean zero and cumulative distribution
function H. Then 6, follows a Markov process with the transition from
8, to 6, + w having probability prob[0* + z,= 8] = 1 — H(§, — 6%).
The invariant distribution has a particularly simple form when the z,
are uniform on [—o, o] and the grid {8, = kw} contains the points
0*, 6* — o, and 0* + o.
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ProrosITION 6. Suppose that the z, are uniform on [—o, o] and
that M = o/w is an integer. Then one invariant distribution of (11)
is the binomial prob(6 = 6* = kw) = [2MU/(M — K)I(M + k)112°2%;
this is the Iimit of the time average distribution when the initial condi-
tion belongs to the grid 6* * kw.

Remark.—Recall that the mean of this distribution is 6%, its variance
is ow/2, and the distribution is asymptotically normal as w tends to
zero.

Proof. To show that f is an invariant distribution, it is sufficient to
verify that it meets the “detailed balance condition” that, for all 6
and 6’, the (unconditional) probability flow from 6 to 6’ equals the
probability flow in the reverse direction. Thus we shall verify that

f(®)prob(6,,, = 9'|9, = 0) = f(0') prob(6,,, = 0]9, =0
or, equivalently, that
f(0) _ prob(6,,, = 0|6, = ')
f®) ~ prob(8,,, = 6'[6, = 6)°
Since the probability of a jump of more than w is zero, it suffices
to check that this condition holds between adjacent states, so take
6 = 0* + kwand 8" = 0* + (k + 1)w for some integer k between
—M/wand (M — 1)/w. For such states, we have
fO)  2MPMUM +RHM ~R]  _M+k+1
0  272MPMUM + k+ DIM — k= 1] M-k

and

prob(8,,, = 0]0, = 0) _ [0 + (k + Dwl/20 _ (M +k+ Dw
prob(6,,., = 0'|6, = 0) (o = kw)/20 M-hw ’
so detailed balance holds. Q.E.D.
As one would expect, the variance of the steady state is increasing
in w because small w corresponds to small steps in each period. Note

that the social optimum is the constant 6 = 0 and that the expected
welfare loss (compared to § = 0) when the cutoff is 8, is

92
N

Hence, in the long run the average welfare loss per period (from the
invariant distribution computed in proposition 6) is

2
SE@®) = S [EO + 3var(0) = [QB—“’—‘” + E] w,

Gd

8 4
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so that steady-state welfare is decreasing in w. For small w, despite
the lack of either memory or popularity weighting, the spatial nature
of the process allows the long-run outcome to be approximately effi-
cient.'®

While small w’s are thus desirable from the viewpoint of the time
average payoff, they entail a significant short-run welfare loss when
the initial state is far from the optimum, because in this case the
system will take a long time to approach the neighborhood of the
optimum. This is true for two reasons: First, 0, is limited to move at
most w per period. Second, in the presence of noise, a typical path is
likely to take far more than 6,/w periods to reach a neighborhood of
6*, because many steps will be taken in the wrong direction.

For a fixed initial condition and social discount factor, the socially
optimal window width will trade off the speed of convergence and
the steady-state variance, with larger w’s being optimal the farther
the initial condition is from zero. If the social planner does not
know the initial condition or the location of the social optimum, the
size of the optimal w will depend on the planner’s prior beliefs. This
trade-off between speed of adjustment and the variance of the steady
state seems a natural feature of the sorts of model we consider."

At this point we would like to make a few observations about how
the conclusions might change if the players did keep records of their
past observations. Since players at locations within o of 8* will play
both technologies infinitely often, they could eventually learn which
technology is better for themselves by keeping such records. How-
ever, a few calculations suggest that this learning process will be fairly
slow if the random shock to the payoffs has a sizable common compo-
nent and w is small.

To see this, suppose that the payoffs to each technology are subject
to a common shock 7, as well as the idiosyncratic shocks we assumed
before, so that system (5) is replaced by

uf0) =0+ PO + €, + 1,

(5"
uf(6) = PO + €y + m,.

16 Although our leading example of very small window widths is the English agricul-
tural revolution, small window widths should not be seen as requiring illiterate agents.
Anecdotal evidence suggests that farmers often distrust the information of central
authorities and experts, and prefer to see how innovations work out in their neighbor-
hood. As noted earlier, Ryan and Gross (1943) found that the experiences of neighbors
were an important factor in the adoption of hybrid seed corn by twentieth-century
lowa farmers.

Although we have not checked the details, it seems that a combination of large
window widths with a rule of proximity-weighted averages could combine faster con-
vergence with a small long-run variance.
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If the variance of m, is relatively large, then observations of only one
technology at date ¢ are not very informative, and only observations of
both technologies in the same period will be helpful. Players at loca-
tions far from 6* rarely see both technologies played and hence would
need a very long memory to learn. Players at locations 6 closer to 6*
do see both technologies played more often. For these players the
systematic payoff difference between the technologies is smaller, and
hence it may require many observations to be fairly confident that
one is better. Our informal approximations, reported in Appendix
E, suggest that this is indeed the case and, in particular, that the
number of periods required to be fairly confident which technology
is better is on the order of (o/w)*?% when w is small, a very long
history would be required for players to do much better than with
our simple rule. Of course, players could use history even when the
advantage to doing so is slight or slow to develop, but in these cases
it seems less obvious that players would be led to abandon simple
rules.

V. Examples of Nonlinear Technologies

Before considering the implications of popularity weighting in a het-
erogeneous population, we would like to discuss some examples of
what can happen without popularity weighting when the payoffs as
a function of location do not take the linear form presumed in equa-
tion (5). Suppose, for example, that the “old” technology f has returns
that are identically zero, and g(6) = cos(8), so that regions in which
g is optimal alternate with regions in which f is. If there is no noise
in the system and the window width is relatively small, then even if
all players in locations & € [~m/2, /2] adopt the new technology g,
the new technology will not spread to the other regions in which it is
optimal. In this example there are substantial social gains from having
the new technology “tested” at a number of diverse locations. It may
also be interesting to note that when the local process may fail to
spread as widely as it should, random shocks to payoffs can increase
social welfare; that is, welfare can increase as the variance of the noise
term z, increases from zero. Suppose that the technologies are f(6) =
0 and g(8) = cos(8), and that the initial state has all players to the
right of 6, using g and players to the left using f. Without noise, the
cutoff will move to 6* = 3%/2 and stay there (see fig. 2). When
the support of z, is sufficiently large, there will eventually be enough
consecutive draws of very negative z, that the cutoff reaches w/2.
From this point, the system may no longer have a single cutoff, since
players to the left of w/2 will tend to switch to g and those to the right
switch back to f. Essentially, the noise leads the players in region 11
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8(0) = cos@

(o) =0

-2x -

FiG. 2

to use the new technology long enough that it can spread from region
I to region III.

The next example shows that in certain extreme cases the specifi-
cation error involved in ignoring how payoffs vary with “location”
can allow a technology that is everywhere inferior to completely drive
out a better one. This is the case depicted in figure 3, in which f(6)
= 0 and g(0) = 6 — e. If the current cutoff occurs at 8, then the
playerat6 € [0 — w, § + w] computes 76(0) = 6 — e + {[6 — (6 -
w)}/2}, and @/(0) = & — w + {{6 — (& — w)}/2}. Since TE(B) — /()

b {C)

g(6)

Fic. 3
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= w — ¢ if w > e all players who observe both technologies choose
technology g. Hence 6,,;, = 6, — w, and eventually g will take over
the entire population.

We should point out that these technologies are quite special: an
inferior technology can drive out a better one only if the difference
in payoffs |f — g| is small compared to the errors caused by estimating
the payoffs by their average values in the window. These errors have
magnitudes of w(df/d6) and w(dg/d6), which bound the difference
between the payoffs at 6 — w and 8 + w. Thus if w is small, the
difference in payoffs |f — g| must be small as well in order for the
inferior technology to dominate; hence even though the wrong tech-
nology is adopted everywhere, the payoff loss at each location is not
substantial. (In the example above, the payoff loss at each location is
€, and € must be less than w in order for g to dominate.)

For small window widths, a more substantial payoff loss arises when
the new technology is not adopted in a region in which it is a substan-
tial improvement. This was the case in the example in which g =
cos(8) and f = 0, so that the regions in which g should be adopted
are disconnected. We can also modify the example of figure 3 so that
g is better than f at every location (and so in particular is better on a
connected set) and yet a substantial payoff loss results from g failing
to spread. In figure 4, the payoffs to f and g are such that g is much
better than f in the neighborhood of 8 = 0 but is only slightly better
than f for extreme 6 values. Hence, if technology g is first introduced

/

Fic. 4
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at these extreme values, it will be driven out of the population before
it can be tried in the center region.

VI. Heterogeneous Populations and Popularity
Weighting

Our analysis of social learning in homogeneous populations showed
that popularity weighting could improve the aggregate performance
of the learning process. We shall now investigate the implications of
popularity weighting in our model of a heterogeneous population
with linear technologies.

To model popularity weighting, let x,(6) be the fraction of players
in the interval [0 — w, 6 + w] who use technology g. In the spirit of
the popularity weighting rule (3), we now modify the decision rule
(6) used in Sections 1V and V and suppose that players use the deci-
sion rule

play gat period ¢ + 1iff7$(0) — w{(0) = m[l — 2x,(0)], (12)

where, as before, the parameter m indexes the importance of popu-
larity in the players’ decisions.

Since the analysis of this system is quite close to that of the system
without popularity weighting, we shall give the results without proof.
As in Section 1V, if the state in period ¢ corresponds to a cutoff rule,
so will the state in period ¢ + 1. In addition, without noise terms the
system has the same, unique, steady-state cutoff 6* = —(2B +
I)w/2. However, the introduction of popularity weighting does
change the dynamics in two ways. First, in the absence of noise terms,
the system converges to the steady-state cutoff from any initial cutoff;
the oscillations described in proposition 3 do not arise. Second (and
relatedly), movements of less than one window width become more
common since players are more hesitant to use a less popular tech-
nology.

The following proposition gives a more precise description of the
dynamics.

ProposiTiON 7. From an initial cutoff 8, the system described by
decision rule (12) and payoffs (5) evolves according to

a

041 =
[ . . w
0, +w if6,<0,*—(m+§),
2m —w . cra w w
e,*+[2m+w(e,—e;*)] 1f0,€[0;“—<m+§),0,"‘+(m+-2-)],
b - w ifé,>e;*+<m+§).
\

(13)
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Proof. The proof is omitted. The calculations involved are straight-
forward and quite similar to those of proposition 3. Note that the
dynamics above reduce to those of proposition 3 whenm = 0, as they
should do.

To see that, in the absence of noise, the system converges to 6*
from any initial cutoff, note that the cutoff moves a full window width
as long as |6, — 0*) > m + (w/2). Eventually, then, |8, — 0| =m +
(w/2), and from then on 8,,, — 0* = [(2m — w)/(2m + w)](B, — 6%),
so that the system converges to 6* at a geometric rate.

Note also that for a given 8, the system will move less than a full
window width whenever the realization of 6} is in an interval of width
2m + w. This shows that popularity weighting makes the system more
“sluggish” and suggests that it will reduce the variance of the long-run
distribution. To verify this intuition and determine the extent to
which popularity weighting reduces the variance, we characterize the
long-run distribution in one special case.

ProrosiTION 8.

a) If the z, are i.i.d. draws from a distribution that has a strictly
positive density on a compact support, the dynamic process de-
fined by (5) and (12) has a unique invariant distribution.

b) If the z, are 1.1.d. draws from the uniform distribution on [-o,
o] and m = 20, the invariant distribution fis concentrated on the
interval [6* — o — (w/2), 6% + o + (w/2)] and satisfies EI(G)
6* and \arf(e) o2w/6m.

Proof. The proof of part a is omitted; the argument is very close
to that for proposition 5. For part b, Appendix D shows that there is
a deterministic, finite time T for which the cutoff §; is in the inter-
val [6* — o = (w/2), 6* + o + (w/2)], and that once this interval
is reached, 67,, remains in the interval for all subsequent periods
T + s

Given a T satisfying these claims, we have

‘61'4-: 9T+:|<|9T+x_e*|+|0T+:_e*|<<o+%) + o,

which is less than m + (w/2) from our assumption that m > 20. Hence,
the evolution of 87, from T on is determined by the second case in
proposition 7. Writing ¢ = (2m — w)/(2m + w) and applying this rule
repeatedly, we find that

s—1
bres=(1 - C)Z €0F 4 ey O
=0
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Hence,
s=1
E@rvldp) = (1= 0) > C"E@©%) + by — E(8%
=0
and

s—1

var(fr,,]00) = (1 = ¢)? Z c¥ var(6*) —

=0

(1 -0o®_2uwe?_odw

3(1+¢) 12m  6m’

.E.D.

QComparing the steady-state distributions for m > 20 with that for
no popularity weighting, we see that popularity weighting reduces
the long-run variance by a factor of a/3m.

The welfare consequences of increasing m for fixed w are similar
to those of decreasing w for fixed m: in both cases, the steady-state
distribution becomes more efficient, whereas the speed at which the
system converges decreases. It may be interesting to note, however,
that in this simple model there is one way to change the parame-
ters to speed up the rate of convergence (when the initial cutoff is
far from the optimum) without altering the steady-state variance,
namely, increasing the window width w while holding the ratio of
w/m fixed.!8

VII. Concluding Remarks

The various models we have presented suggest that even very naive
learning rules can lead to quite efficient long-run social states, at least
if the environment is not too highly nonlinear. Moreover, popularity
weighting can contribute to this long-run efficiency, and the use of
popularity weighting passes a crude first-cut test of consistency with
individual incentives. Of course, there are many other plausible speci-
fications of behavior rules for social learning, so it is interesting to
speculate about the robustness of our conclusions.

We discussed one extension, the use of trends, in Section 111. There
are a number of other extensions that we have not considered but
that seem important. Players might use rules of thumb that make
some use of historical data. Also, players might be arranged in more
complex networks than the simple linear structure we have consid-
ered. In addition, our results suppose that rules of thumb are exoge-
nous. It would be interesting to complement these results with an

18 However, as w increases, the specification bias grows. When w is large, it may be
more natural to suppose that players weight the experience of those nearby more than
that of those who are farther away but still within their window.
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analysis of a dynamic process by which players adjust their rules of
thumb along with their choice of technology.

Finally, we should point out that popularity weighting is not always
as beneficial as our results might suggest. Consider the problem of
children in a poor neighborhood choosing whether to pursue higher -
education. If students who have done so in the past tend to move out
of the neighborhood and past residents are underrepresented in the
observation window, then the choice of higher education will appear
less popular than it really is, and decisions based on popularity may
be biased against this choice.!®

Appendix A
Optimal Popularity Weighting with Other Distributions

To better understand the forces generating part a of proposition 2—that a
single choice of popularity weight yields the optimal long-run distribution
uniformly over all values of 6—we show that analogous results obtain when
the per period noise term ¢, has distribution F with unbounded support.

Suppose first that « = 1, so that the entire population adjusts every period,
and hence the state x, takes on only the values zero and one. If we let s,
denote the vector [prob(x,) = 0, prob(x,) = 1], we have s,,, = s,A, where
the transition matrix is

A_[nm—m 1—Hm—m]
T F(-m -8 1-F(-m-0)]

Since this matrix is strictly positive, the system is ergodic; the unique invariant
distribution p* is given by

- m = F(—m -~ 8)
We=0 = T I Fm=0

If F is the standard normal distribution, then as m increases, the ratio
F(—m — 0)/[1 ~ F(m — 6)] converges to zero if 8 > 0 and converges to
infinity if 6 < 0, Hence for large m, the ergodic distribution of the system
places probability near one on the correct choice. Moreover, the same is true
for any distribution for which the ratio F(—m — 0)/[1 — F(m — 0)] converges
to zero if 6 > 0 and to infinity if ® < 0. (This is what is'meant by saying that
the tails of the distribution are “infinitely revealing.”)

With a more involved argument, we have shown that the same conclusion
holds for any o« € (0, 1) when players use the (discontinuous) popularity
weighting “if x, = ', choose g iff uf — uf = —m; if x, < ', choose g iff
uf — uf = m.” The details are available on request; the intuition for the result
follows.

Note first that when m = « the system is deterministic with stable steady
states at zero and one. If m is finite but very large compared to a and to
the standard deviation of the distribution, then steps the “wrong way” (i.e.,
decreasing steps when x, > '%) are rare “innovations,” and when the distribu-

19 We thank Roland Benabou for this observation.
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TABLE Al
problx, = 110 = .20, xy = .20]

Distribution a=.2 a=.,1 a = .05
Normal .53 ki .95
Laplace .55 .79 94
Logistic .53 .78 .96
Standard error .0005 .0004 .0002

tion is symmetric, transits from zero to one-half and from one to one-half
both take the same number of innovations. If the tails of the distribution are
infinitely revealing, then as m —  innovations toward the better technology
become infinitely more likely than innovations toward the inferior one. The
analysis of Freidlin and Wentzell (1984) suggests that the limit of the ergodic
distributions will be concentrated on the better technology. To establish this
formally, we partition the interval into a large number of (appropriately
chosen) small subintervals and approximate the original system by two finite-
state Markov processes, whose ergodic distributions will serve as bounds on
the ergodic distribution of the original system. We then use the discrete-time,
finite-state translation of Freidlin and Wentzell’s results (Kandori, Mailath,
and Rob 1993; Young 1993) to confirm the intuition above; that is, the limits
of the ergodic distributions of the finite-state process are concentrated on
the subinterval corresponding to the better choice.

The discussion above suggests that infinitely revealing tails are sufficient
for there to be a single popularity rule that is approximately optimal for all
6. Moreover, this rule has the nice feature that it need not be tailored to the
exact form of the distribution. Even when the tails are not infinitely revealing,
however, there is another popularity rule that seems to perform very well,
namely

choose giffuf — uf=F~(1 - x,). (Al)
With this rule,

E(xlx) = (1~ o)x, + a prob[d + €, = F~I(1 — x,)]
=x,+ a[l = F(—0 + F~Y(1 - x)) - x],

so that E(x,+,|x,) > x,if and only if 8 > 0; the system drifts toward the correct
choice. Although the system may converge to the wrong technology with
positive probability, simulations for the logistic and Laplace distributions
(which both have nonrevealing tails) suggest that when o is small the system
is very likely to converge to the right choice. Table Al displays one set of
simulations, for the case 8 = .20, x, = .20. The table suggests that the
behavior for all three distributions is similar, even though the latter two do
not have infinitely revealing tails. Intuitively, when « is small, the system
evolves through a series of small steps that allow the drift to outweigh the
random forces. We conjecture that there may be a general result along these
lines.
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Appendix B
Proof of Part ¢ of Proposition 2

If o — m > |0/, then neither zero nor one is an absorbing state. Our first
step is to show that there is a unique invariant distribution. To do so, we first
note that the stochasuc system (4) is a random contraction in the sense of
Norman (1972).2° A random contraction is a stochastic system in which the
realization of an i.i.d. auxiliary variable (call it w) is used to determine which
of a family of mappings ¢ € V is used to send x, to x,,,, and each ¢, is a
contraction “on average.” In our context, o corresponds to the realized dif-
ference in payoffs, and there are only two maps ¢,: ¢.(x) = (1 — a)x, +
a and ¢_(x;) = (1 — a)x, both of which are contractions, so that (4) is indeed
a random contraction. Norman’s results then imply that the Markov opera-
tor associated with system (4) is quasi-compact. We next note that when
|8] < 0 — m, the system (4) satisfies the uniqueness criterion 2.11 of Futia
(1982): for any neighborhood U of the point x = ' and any point x’ in
[0, 1], there is an n such that the probability that the system starting at x' is
in U exactly n periods later is strictly positive. (If m = o, the uniqueness
condition fails since both x = 0 and x = 1 are absorbing.)

The last step is to compute the mean and variance of the invariant distribu-
tion p. Using E (x,) = E, (x;41), we have

E () = (1 - )E,(x) + o[ p(x)dp.(x),

where p(x) = [(c — m + 0)/20] + (m/o)x, is the probability that & + ¢, =
m(1 — 2x,), which is the probability thatx,,; = (I — a)x, + a. Simple algebra
then shows that E,x = % + [6/2(c - m)].

To compute the variance, we first write the identity

E, (x?) = {1 = p@I = a)x]* + p®)[(1 — @)x + o]?}dp(x)
2a(l —
= E“(x2)|:(l —a)?+ %]

+ E,(x)

%a(l —a)o —m+0)  oim a(c —m+0)
2B 20 RTY.
20 o 20

solving for E ,(x?) and computing var(x) = E, (x?) — [E,(x)]® give the desired
result. Q.E.D.

Appendix C
Proof of Proposition 5

To begin we rewrite (10) in the following equivalent form:
6. o {min[é, + w,2(0% +z) — 6] ifo*+z,=8,
17 I max[f, — w, 2(6*% + z,) — 8] ifo* + z,<¥,.

To show that the system (10) is a “random dynamical system” as described
by Futia (1982), we note that the auxiliary events are the z,. The probability

(10°)

2 See Futia’s (1982) survey for a summary of Norman’s results and other techniques
for establishing that the invariant distribution is unique.
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distribution Q on the 2’s does not depend on the current state, and so in
particular it is continuous in the state, and the map ¢(#, z) defined by 6,,, =
¢(0, z,) is easily seen to be continuous in 8 for fixed z, so that (10) is indeed
a random dynamical system.

Next we check that 1t is a random contraction, as in Futia’s definition 6.2.
Because the map Q is constant in 6, the constant M in part a of the definition
can be taken to equal zero. Next we must show that for all z and all 6 # ',
d(¢(6, 2), ¢(0', 2)) = d(8, 6'), and for all 6 and ', there is a positive probability
of z such that d(g(8, z), (0’, 2)) < d(0, 6').

To show that d(p(8, z), ¢(0’, z)) = d(6, 6"), we note that for all 8 and 0’ and
all z, either (a) both 0 and 6" move in the same direction (e.g., {¢(8, z) —
0l[p(0',2) — 6’1 > 0) or () ¢(6,2) — 6 =0 = (0, z) — 0'. Case a has three
subcases: (1) ¢ moves both locations by w, so that d(¢(8, z), ¢(6', 2)) = d(0,
6'); or (2) the location closer to 8* + z moves less than w, and the state farther
away moves w, so that d(¢(8, z), ¢(8', z)) < d(8, 0'); or (3) both locations move
by less than w, in which case the two locations are reflected about the point
6* + z, and d(9(0, 2), ¢(0', 2)) = d(6, 0').

In case b, suppose without loss of generality that © < 8'; then case b implies
that 6 = 6* + z = @', and so d(6, 0') = d(0, 0% + z) + d(6* + z, 8'). With
the triangle inequality, this implies that

d(9(8,2), ¢(6', 2)) — d(6, 0') = d(((6, 2), 0% + 2) + d(6* + z, ¢(6’, 2))
— d(, 0% + z) — d(0* + z,0)
= [d(¢(8, 2), 0* + z) — d(8, 0* + 2)]
+ [d(0* + z,9(0",2)) — d(0* + z,0")],

and inspection of (10') shows that each of the terms in brackets is nonpositive.
Thus d(¢(8, z), ¢(8', 2)) = d(8, 0') for all z, 6, and 0'.

To show that for all 8 and 6’ there is a positive probability that d(e(®, 2),
@(0', 2)) < d(6, 8°), let 6 < 6", and suppose first that 06 — 6* > ~o + (w/2).
Then for sufficiently small € > 0, there is a positive probability that z lies in
any sufficiently small neighborhood of 6 — 0* + € — (w/2), and for s in
this neighborhood, 8 moves less than w to the left and 8’ moves w, so that
d(e(8, 2), @(0',2)) < d(®, 0'). If6 — 6* < —g + (W/2) but §' — 6* < ¢ ~
(w/2), a similar argument establishes the existence of a range of z’s such that
both 8 and 6’ move to the right, with 8’ moving less than 6. Finally, if  —
0*=< -0 + (w/2)and 8’ - 0* = ¢ ~ (w/2), then 6’ — 6 > w, and d(¢(#, z),
¢(6', 2)) < d(8, 8') for s in a neighborhood of ® + (w/2). Thus (10') is a
random contraction.

The last step in the proof is to verify that (10’) satisfies Futia’s uniqueness
condition 2.11, which requires that there be a point 6° such that, for any
neighborhood U of 6° and any 6, there is an n such that when the system
begins at 6, it has a positive probability of being in U in period n. It is easy
to see that, for example, 6° = 0* satisfies this condition. Q.E.D.

(C1)

Appendix D

Proof of Part b of Proposition 8
To complete the proof, we must show that there exists a deterministic, finite

time T such that (i) |67 — 0*] < o + w/2) and (ii) [8r., — 0*| < o + (W/2)
for all subsequent dates T + 5. Define d, = |6, — 6*|. Note that since (6} —
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) and I é,) have the same sign and |8} — 6*| = o, (6* — 8,) and (6,+l
— 8,) have the same sign whenever d, > o + (w/2). Hence,

dr = ld, = (18,4, = 6, (D1)

whenever d, > o + (w/2).

As a first step toward proving claim i, we show that for any initial condition
there exists a finite T’ such that, regardless of the sample path, either dr. <
o + (w/2) or dp < |87, — 81| To see this, note that (D1) implies that until
such a T' is reached, d, — d,,, = |8,,, — §,|, and from proposition 7,

o Al = o 2w H — g% i 2w =
= 0= minfe, (G575 5) - o} =minfo (5225 5)

Thus, until the conditions defining T’ are satisfied, the decrease in d, is
bounded below by a positive constant that is independent of the sample path.

If dpo = 0 + (w/2), setting T = T’ completes the proof of claim i. The
remaining case is ¢ + (w/2) < dp. < |67, — 0p|. In this case, (D1) implies
that dp,y = |074y — 87| — d,, which is less than w — [0 + (w/2)] = (w/2)
— o0 < (w/2) + 0. Hence we can set T = T’ + 1 to complete the proof of
claim i.

To prove claim ii, note that when |6r = 0%] <o + (w/2), we have |6, —
0%| = [0 + (w/2)] + o, which is less than m + (w/2) from the assumption
that m > 2¢. From proposition 7 we then have

2m — w
2m + w

)(ér - 67),

and since both 8% and 0 lie in the interval [6* — ¢ — (w/2), 6* + o +
(w/2)], so does 85, ;. The claim now follows from induction on s. Q.E.D.

ér+1=e¥+(

Appendix E

This appendix gives a rough approximation of how many periods a player
using the entire history of observations would need to identify the better
technology with a confidence level of 85 percent. Suppose that €, = €, —
€9, is uniform on [—o, 0], so that var(uf — uf) = o%/3. Then the player at
location @ will need about 0%/36% observations of the payoff difference to
have an 85 percent confidence level. (Recall that we have assumed that only
observations of the payoff difference are used since the levels are subject to
a common shock.)

Now the player at location 6 will not observe both technologies in every
period; he observes both at ¢ only if 6, € [0 ~ w, 6 + w]. We approximate
the distribution of 6, by an N(0, ow/2) random variable and approximate the
probability of the event 6, € [6 — w, 8 + w] by 2w times the density of this
variable at 8.The expected wait for 02/36? observations of both technologies
simultaneously is then approximately

(5) () (252) ()

302/ \2w 2 P\ow/

This expression is minimized at 8 = (ow)'?, where its value is (ew'/2/6)
X (o/w)372,
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