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1. Introduction

During the last ten years, the stochastic growth model has become a workhorse
for macroeconomic analysis. Perhaps the most forceful claims for the model have
been made by Prescott (1986), who describes it as “a paradigm for macro analysis —
analogous to the supply and demand construct of price theory”. Prescott also refers
to the predictions of the model as those of “standard economic theory”. In Prescott’s
view the shocks to the economy are random variations in the rate of technical progress,
but the usefulness of the stochastic growth model does not depend on this view of the
sources of business cycles. Other authors have subjected the model to other types of
shocks, for example government consumption (Alyagari, Christiano, and Eichenbaum
1990, Baxter and King 1990a, Christiano and Eichenbaum 1991a), distorting taxation
(Baxter and King 1990a, Greenwood and Huffman 1991, McGrattan 1991), and nominal
shocks in the presence of sticky nominal wages and prices (King 1991) or liquidity
effects (Christiano and Eichenbaum 1991b). The stochastic growth model enables one
to track the dynamic effects of any shock; in this sense it is indeed a paradigm for
Macroeconomics.

Despite the wide popularity of the stochastic growth model, there is no generally
agreed procedure for solving it. The difficulty is the fundamental nonlinearity that
arises from the interaction between multiplicative elements such as Cobb-Douglas pro-
duction with labor and capital, and additive elements such as capital accumulation and
depreciation. This nonlinearity disappears only in the unrealistic special case where
capital depreciates fully in a single period and agents have log utility (Long and Plosser
1983, McCallum 1989). In this case the model becomes loglinear and can be solved
analytically. In all other cases, some approximate solution method-is required.

In a seminal contribution, Kydland and Prescott (1982) proposed taking a linear-
quadratic approximation to the true model around a steady-state growth path. Hansen
and Sargent (1991) have extended this approach. Christiano (1988) and King, Plosser,
and Rebelo (1987) have used a loglinear-quadratic approximation instead. This has at
least two advantages: First, it delivers the correct solution in the special case that can
be solved exactly, and second, it gives a simpler relation between the parameters of the
underlying model and the parameters that appear in the approximate solution. Many

other methods are also available, and have recently been reviewed and compared by
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Taylor and Uhlig (1990). Most of these methods are heavily numerical rather than an-
alytical. While computational costs are no longer an important objection to numerical
methods, the methods are often mysterious to the non-initiate and seem to bear little
relation to familiar techniques for solving linear rational expectations models. A typical
paper in the real business cycle literature states the model, then moves directly to a
discussion of the properties of the solution without giving the reader the opportunity
to understand the mechanism giving rise to these proper’cies.1

In this paper I propose a simple, analytical approach to the stochastic growth
model. I take the model's Euler equations and budget constraints and loglinearize
them in the manner of Campbell and Shiller (1988) and Campbell (1990). This trans-
forms the model into a system of expectational difference equations in the capital stock
and the exogenous variables driving the economy (here taken to be technology or gov-
ernment spending). I solve this system analytically using the method of undetermined
coeflicients.

There are important similarities, but also important differences, between this ap-
proach and the work of Christiano (1988) and King, Plosser, and Rebelo (1987). Chris-
tiano (1988) first substitutes all budget constraints into the objective function to set
the model up as a calculus of variations problem. He then takes a second-order Tay-
lor approximation in logs of the variables. Despite Christianc’s use of a higher-order
approximation, in a homoskedastic setting his method yields the same solution as the
one obtained in this paper. The reason is that only expectations of second-order terms
appear in Christiano’s solution, and these expectations are constant if the model is
homoskedastic. It follows that the evidence of Taylor and Uhlig (1990) and Chris-
tiano (1989) on numerical accuracy applies to the method of this paper as well. King,
Plosser, and Rebelo (1987) write the model’s first-order conditions using the Lagrange
multiplier for the budget constraint as a state variable, and then loglinearize to obtain
a system of expectational difference equations in the capital stock and the Lagrange
multiplier. This is similar to the approach here, except that I use the capital stock and
the exogenous driving variables as the state variables. This enables me to derive more
directly the responses of endogenous variables to shocks in exogenous variables.

Perhaps the most important difference between this paper and previous work is

that I solve the system of loglinear difference equations analytically in order to make the

! The problem is also illustrated by Chapter 7 of Blanchard and Fischer (1989). Quite appropriately, this textbook
confines itself to small macro models that can be solved analytically; lacking an appropriate solution method, Chapter 7
fails to convey the richness of the stochastic growth model or the real business cycle literature.
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mechanics of the solution as transparent as possible. King, Plosser, and Rebelo (1987)
instead solve the system using a general numerical method which can be more easily
generalized to models with multiple state variables, but which obscures the simplicity
of the basic stochastic growth model. '

To illustrate the usefulness of the approach, this paper studies a number of issues in
real business cycle analysis. Section 2 studies the effect of technology shocks in a model
with fixed labor supply, showing how the insights of the literature on the permanent
income hypothesis can be embedded in the stochastic growth model. Section 3 studies
two alternative models of variable labor supply. In both sections the analytical solution
method clarifies how the properties of the model depend on the parameters of the utility
function and the persistence of technology shocks. As an illustration of the importance
of persistence, the paper studies a slowdown in productivity growth of the type that
seems to have occurred in the mid-1970's. Section 4 introduces shocks to government

consurmnption, again emphasizing the importance of persistence. Section 5 concludes.



2. A Model with Fixed Labor Supply

The first equation of the model is a standard Cobb-Douglas production function.
Using the notation ¥; for output, 4; for technology, and K for capital, and normalizing

labor input Ny = 1, the production function is
Y, = (A4N)OKIT® = AfKITe. (2.1)
The second equation of the model describes the capital accumulation process:

Kiyi = 1-8K + Y - C, (

54
[
~

where § is the depreciation rate. Finally, the objective function of the representative

agent is:

0o o 11—.’7
Max By » B U(Cy) = E Y B 1‘_—+’7 (2.3)
=0 i=0

This time-separable power utility function with coefficient of relative risk aversion v
becomes the log utility function when 4 = 1. I define the elasticity of intertemporal
substitution ¢ = 1/7.

I also define a variable Ry 11, equal to the gross marginal product of capital:

Ryl = (1-0a) (%) +(1—=6). (2.4)

The first-order condition for optimal choice, given the objective function (2.3) and the

constraints (2.1) and (2.2), can then be written in the simple form
C7 = BE {C;’GRHI}- (2.5)
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Steady state growth

I now look for a steady state or balanced growth path of this model, in which
technology, capital, output, and consumption all grow at a constant common rate. I
use the notation G for this growth rate: G = Ay11/4;. In steady state the gross
marginal product of capital Ry,] becomes a constant R, while the first-order condition

(2.5) becomes

G" = BR, (2.6)

or in logs (denoted by lower-case letters),

g = ____log(ﬂ’)y T olog(B) + or. (2.7

This is the familiar condition relating the equilibrium growth rate of consumption to
the intertemporal elasticity of substitution times the real interest rate in a model with
power utility.

The definition of R (2.4) and the first-order condition (2.6) imply that the technology-

capital ratio is given by

4 [G8- (-8 _ [r+é]s
T

The first equality in (2.8) shows that a higher rate of technology growth leads to a lower
capital stock for a given level of technology. The reason is that in steady state, faster
technology growth must be accompanied by faster consumption growth. Agents will
accept a steeper consumption path only if the marginal product of capital is higher,
which requires a lower capital stock. The second approximate equality in (2.8) comes
from setting G7/8=R=~1+r.

More generally, one can solve for various ratios of variables that will be constant
along a steady-state growth path. I express these ratios in terms of four underlying
parameters: g, the log technology growth rate; r, the log marginal product of capital
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or log real interest rate; «, the exponent on labor and technology in the production
function, or equivalently labor’s share of output; and §, the rate of capital deprecia-
tion. For purposes of “calibration” in a quarterly model, benchmark values for these
parameters might be ¢ = 0.005 (2% at an annual rate), r = 0.015 (6% at an annual
rate), a = 0.667, and § = 0.025 (10% at an annual rate).? Note that the rate of time
preference B and the coefficient of risk aversion v need not be specified, although (2.7)
defines pairs of values for # and v that are consistent with the assumed values of ¢
and 7.

Using the production function (2.1) and the formula for the technology-capital

ratio (2.8), we have that the output-capital ratio is

Y; ANE 1)
o (A o rhe (2.9)
I I l—-a

Similar reasoning shows that the consumption-output ratio is

Cy _ C't/IQ N (1—0:)(_(7—{»—5) o
i T Wi ol r+é 210)

At the benchmark parameter values given above, the output-capital ratio ¥; /Ky = 0.118
(0.472 at an annual rate), and the consumption-output ratio Cy/Y; = 0.745. These are

fairly reasonable values.?
A loglinear model of fluctuations

Outside steady state, the real business cycle model is a system of nonlinear equa-
tions in the logs of technology, capital, output, and consumption. Nonlinearities are
caused by incomplete capital depreciation (§ < 1 in (2.2) and (2.4)), and by time-
variation in the consumption-output ratio. Thus ezact analytical solution of the model
is only possible in the unrealistic special case where capital depreciates fully in one
period, and where agents have log utility so the consumption-output ratio is constant
(Long and Plosser 1983, McCallum 1989). The strategy of this section is instead to

seek an approzimate analytical solution by transforming the model into a system of

2 The most controversial of these benchmark parameter values is probably the 6% real interest rate. This is intended
to represent the rate of return to capital, and not the rate of return to a nominally riskless short-term asset.
3 Simon (1990) briefly surveys alternative estimates of these ratios.
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approximate loglinear difference equations. For simplicity, all constant terms will be
suppressed in the approximate model; the variables in the system can be thought of as
zero-mean deviations from the steady-state growth path.

The Cobb-Douglas production function (2.1) needs no approximation; it can be

written in loglinear form as

o= aa + (1 — a)ky, (2.11)

where as always lower-case letters are used for log variables.
The capital accumulation equation (2.2) is unfortunately not loglinear. Dividing

by Kt and taking logs, (2.2) becomes

log|exp(Akiy1) — (1-8)| = w—k + log|l —exp(e; — ). (2.12)

The strategy proposed here is to take first-order Taylor approximations of the functions
on the left and right hand sides of (2.12) around their steady state values, and then to
substitute out y; using the log production function (2.11). Calculations summarized in

Appendix A yield the following loglinear approximate accumulation equation:

Fipr = Atk + A 4 (1= A = Ag)ey, (2.13)
where
1+4r a(r +96)
A\ = L g = rro) 2.14
e G (214)

At the benchmark parameter values discussed above, A; = 1.01, A3 = 0.08, and
1—~ A1 — Ay = —0.09.
I now turn to the general first-order condition (2.5). If the variables on the right

hand side of (2.5) are jointly lognormal and homoskedastic, then one can rewrite the
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first-order condition in log form as By Acyy1 = 0F;ripq, where ryqp = log(Rt+1).4
From the definition of the marginal product of capital R4 in equation (2.4), the log
marginal product r,4] is a nonlinear function of the log technology-capital ratio. The

loglinear approximation of this function (caleulated in Appendix A) is

repl & A3(aggn = k), (2.15)
where
a(r+6)
g = ——=, 2.16
3 1+7r ( )

At the benchmark parameter values discussed above, A3 = 0.03. Changes in technology
have only small proportional effects on the marginal product of capital because capital
depreciates only slowly, so most of the marginal product is undepreciated capital rather
than output from the Cobb-Douglas production function. The log first-order condition

becomes

EiAcipr = od3Ei{agy1 — kegt). (2.17)

To close the model, it only remains to specify a process for the technology shock

ue. I assume that technology follows a first-order autoregressive or AR(1) process:

@ = a1 + e, -1<¢<1L (2.18)

The AR(1) coeflicient ¢ measures the persistence of technology shocks, with the extreme
case of ¢ = 1 being a random walk for technology.”
Equations (2.13), (2.17), and (2.18) form a system of log-linear expectational dif-

ference equations in technology, capital, and consumption. The parameters of these

4 This uses the standard formula for the expectation of a lognormal random variable X 41: log{EiX,41) = E; log(Xe41)+
{1/2) Var;log(X;41). Note that the assumption that the variables in the first-order condition are jointly lognormal and
homoskedastic is consistent with a lognormal homoskedastic preductivity shock and the approximations proposed here Lo
solve the model.

5Equation (2.18) suppresses a deterministic technology trend growing at rate g, since all variables in this section are
measured as deviations from the steady-state growth path.
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equations include Ay, Ag, and A3, which are functions of the underlying growth pa-
rameters 7, g, «, and §; the intertemporal elasticity of substitution o; and the AR(1)
coefficient ¢ that measures the persistence of technology shocks. The “calibration” ap-
proach to real business cycle analysis takes Aj, Ag, and A3 as known, and searches for
values of ¢ and ¢ (and a variance for the technology innovation) to match the moments

of observed macroeconomic time series.
The method of undetermined coefficients

Equations (2.13), (2.16), and (2.18) can be solved using any of a number of stan-
dard methods. Here I use the method of undetermined coefficients. I use the notation
nyz for the partial elasticity of y with respect to z, and guess that log consumption

takes the form

¢t = nekkt + 7Mcaar, (2.19)

where 7. and 7¢q are unknown but assumed to be constant. I verify this guess by
finding values of 7., and n¢q that satisfy the restrictions of the approximate loglinear
model.

The conjectured solution can be written in terms of the capital stock, using (2.13),

kivr = mpkkt + npaa, (2.20)

where

A+ (1= A1 — A9) ncq. (2.21)

Il

Nk = AL+H(1—= A1 = A2) e, Nka

Also, substituting the conjectured solution into (2.16), I obtain

(o]
1~
=~
~

Nek Dkip1 + nea Eeldagyy = odzEappy — orgkigg. (2
~9-



Next I substitute (2.20) and {2.21) into (2.22) and use the fact that Bya;1; = ¢ay.
The result is an equation in only two state variables, the capital stock and the level of

technology:

MeklA =1+ (1= Ay = dodnaelkt + merlho + (1= A = Adncalar + nealp — Dy =

orzpar — oAz[Ar+ (1= A1 = Agngplke — oAg[Ao + (1 = A = Ag)7ealay. (2.23)

To solve this equation I first equate coefficients on k; to find 7., and then equate
coefficients on a; to find 7.4, given ngg.

Equating coefficients on & gives the quadratic equation

Qang + Qinee + Qo = 0, (2.24)

where

Qy=1—-A1 — Ay, QL= —14+0A3(1 =X — Ag), Qo =or3A1.  (2.25)

The quadratic formula gives two solutions to (2.24), one of which is positive as required

by the nature of the problem:

Nek = 2—1‘2{—% - /@3- 4@0@2}- (2.26)

Note that 7., depends only on o and the A parameters, and is invariant to the persis-
tence of the technology shock as measured by ¢. Solution of the model is completed

by finding 1.4 as

—Tek A2 + oAg(d — Ag) 5
_ . 2.97
T = TTTE (1= A = Mg + oha) 2.27)
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Time-series implications

The consumption elasticities 7, and 7cq, and the capital elasticities 7z and 7,
derived from them, determine the dynamic behavior of the economy. Using lag operator

notation, equation (2.20) gives the capital stock as

Nka

kiy1 = ———ay. (2.28)
(1 —nreL)
Rewriting equation (2.18) in the same notation, the technology process is
a = 1 €. (2.29)
(1-9¢L)
These two equations imply that the capital stock follows an AR(2) process:
Tka (2.30)

el = DD

Two points are worth noting about this expression. First, the roots of the capital
stock process are ngg and ¢, which are both real numbers. Thus, unlike the multiplier-
accelerator model (Samuelson 1939), the real business cycle model does not produce
oscillating impulse responses. Second, the shock to capital at time t+1 is the technology
shock realized at time t. The capital stock is known one period in advance because it
is determined by lagged investment and by a nonstochastic depreciation rate.

The stochastic processes for output and consumption are somewhat more com-
plicated than the process for capital. The log production function (2.11) determines
output as yy = (1 —a)k;+aa. In the fixed-labor model the partial elasticities of output
with respect to capital and technology are trivially (1 — &) and a. Substituting (2.29)

and (2.30) into this expression, I obtain:

_ (1 =)L @ _ oo+ {1~ a)nge — angell
Yyt = £t €.
(1 — e L)(1 ~ 6L)

I-e0)" = T (Q—-umD)1-9L)
(2.31)
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The first equality in (2.31) shows that technological shocks affect output both directly,
and indirectly through capital accumulation. The second equality shows that the sum
of the two effects is an ARMA(2,1) process for output.

The solution for consumption is obtained by substituting (2.29) and (2.30) into
the expression ¢; = 7.t kt + 7cq ag. This too is an ARMA(2,1) process:

E Tha L kg — b ) L

o = Mek Nka b e Tea t (Tekka = Meaer)L o 5oy
(I—meL)(1—9L) " (1-4L) (1 =g L)1 - ¢L)

The capital, output, and consumption processes all have the same autoregressive roots

nee and ¢.
Interpretation of the elasticities

Table 1 reports numerical values of the elasticities n,; and 1.4, and gy and n,, for
the benchmark parameters discussed above and for various choices of the parameters
o and ¢. o is set equal to 0, 0.2, 1, 3, and oo to cover the whole range of possibilities.
These choices for ¢ correspond to values for the discount factor 8 of oo, 1.010, 0.990,
0.986, and 0.985 respectively, since equation (2.7) implies a discount factor greater than
one if o is less than g/r = 1/3.7 The persistence parameter ¢ is set equal to 0, 0.5,
0.9, and 1, again to cover the whole range of possibilities. Variation in ¢ has more
important effects on the model when ¢ is close to one, which is why both ¢ = 0.95 and
¢ =1 are included.

Several points are worth noting. First, the coefficient 1.3 does not depend on the
persistence of technology shocks ¢ but is increasing in the elasticity of intertemporal
substitution . To understand this, recall that n.. measures the effect on current
consumnption of an increase in capital with a fixed level of technology. Such an increase
has a positive income effect on current consumption that does not depend on the value
of o. It also lowers the real interest rate, creating a positive substitution effect on
current consumption that is stronger the greater the parameter o.

Second, the coefficient 7¢, is increasing in persistence ¢ for low values of o, but

decreasing for high values of o. To understand this, recall that 1., measures the effect

© These results can easily be generalized for more complicated technology processes. For example an AR(p) technology
process generates an ARMA (p + 1,p — 1) for the capital stock and an ARMA(p + 1, p} for output, consumption, and the
real interest rate. All these variables have common autoregressive roots.

" Kocherlakota (1988) argues for a small value of ¢ and a time discount factor greater than one.
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on current consumption of an increase in technology with a fixed stock of capital. At low
values of o, substitution effects are weak and the agent responds primarily to income
effects. A technology shock has an income effect which is stronger when the shock is
more persistent, hence 7¢4 increases with ¢. At high values of o, substitution effects are
important. A purely temporary technology shock (¢ = 0) does not directly affect the
real interest rate; it is like a windfall gain in current output. The agent is deterred from
saving this windfall by the increase in the capital stock and reduction in the interest
rate that would result, hence n¢q is large. A persistent technology shock, on the other
hand, increases the real interest rate today and in the future. This encourages saving,

making 7., small or even negative.
Special cases

It is worth discussing explicitly some special cases of the general model. The
case ¢ = 1, in which log technology follows a random walk, is often assumed in the
literature (Christiano and Eichenbaum 1991a, King, Plosser, Stock, and Watson 1991,
Prescott 198G). In this case the model solution has the property that nyt +7cq = 1 and
Nkt + kg = 1. One can then show that although log technology, capital, output, and
consumption follow unit root processes, they are cointegrated because the difference
between any two of them is stationary. To see this for log technology and capital, note
that (2.32) gives the stochastic process for Ag times the log technology-capital ratio.
When g + kg = 1, the unit autoregressive root cancels with a unit moving average
root and we have an AR(1) for the log technology-capital ratio with cocfficient 7.
The real interest rate, of course, follows the same process.

Another interesting special case has o = oo or equivalently v = 0, so that the rep-
resentative agent is risk-neutral. In this case the model solution simplifies considerably
because the quadratic coefficient (09 in equation (2.24) becomes negligibly small relative
to the other coefficients. (2.24) becomes a linear equation that can e solved to obtain
Tek = —At/(1 — A] — Ag) = 11.3, the steady-state value of the capital-consumption
ratio. Risk-neutrality fixes the ex ante real interest rate, and hence the level of capital
for a given level of technology. With fixed technology any increase in capital is simply
consumed, so the derivative of consumption with respect to capital is-one and the elas-
ticity n.p is the capital-consumption ratio. It follows that an increase in capital today
does not increase capital tomorrow, so g = 0. Finally, ng, = ¢ because the capital

stock changes proportionally with the level of technology. Capital is an AR(1) process
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with coefficient ¢, while output and consumption are ARMA(1,1) processes.

The opposite extreme case has ¢ = 0. Here intertemporal substitution is entirely
absent from the model. Again the solution simplifies because the intercept Qg = 0 in
the gquadratic equation (2.24) for 7)., which therefore collapses to a linear equation.
We have ng = (1 —A1)/(1 — A; = A2) = 0.11. In this case an increase in capital, with
fixed technology, stimulates only as much extra consumption as can be permanently
sustained. The derivative of consumption with respect to capital is the annuity value
of a unit increase in capital, —(1 ~ A;)/A; = (r — g)/(1 + r), and the elasticity is
this derivative times the steady-state capital-consumption ratio. It follows that a unit
increase in capital today generates a unit increase in capital tomorrow, so gy = 1.

It 1s straightforward to show that when ¢ = 0 log consumption follows a random
walk, while log output and log capital follow unit root processes cointegrated with log
consumption. This model differs from the ¢ = 1 case in that the stationary linear
combination of log consumption and log capital is not the log ratio ¢; — Ay, but is
instead ¢t —nephy = ¢ —0.11%;. An increase in capital does not lead to a proportional
increase in consumption in the long run, because the marginal product of capital is less
than the average product. Associated with this, there are some technical difficulties
with the o = 0 model. First, equation (2.7) implies that as o approaches zero, the time
discount factor must increase to infinity to maintain a realistic steady-state interest
rate. Second, when ¢ = 0 and technology is stationary (¢ < 1), the log technology-
capital ratio is nonstationary. This invalidates the loglinear approximations used to
obtain the solution. Thus strictly speaking the discussion above applies only to very
small but nonzero values of o.

Despite these problems, the stochastic growth model with o = 0 deserves attention
because it is a general equilibrium version of the permanent income model of Hall (1978)
and Flavin (1981).8 In this model temporary technology shocks cause temporary vari-
ation in output but not in consumption, so output is more variable than consumption
and the consumption-output ratio forecasts changes in output. Fama (1991) advocates
a model of this type, but does not provide a formal analysis. Hall (1988) and Campbell
and Mankiw (1989) demonstrate the empirical relevance of the model with small

by showing that predictable mmovements in real interest rates have been only weakly

8 Christiano, Eichenbaum, and Marshall (1991) present an alternative general equilibrium permanent income model in
which utility is quadratic and production is Leontief in labor and capital. The model developed here uses more standard
assumptions.
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associated with predictable consumption growth in postwar U.S. data.’

The o = 0 case also plays an interesting role in welfare analysis of the model. The
maximized welfare of the representative agent can be written as a loglinear function of
capital and technology by approximating Bellman's equation. I write the maximized
objective function defined in (2.3) as th_-y/(l —7), so that 1} has the same units as
consumption. The loglinear approximation of Bellman’s equation (derived in Appendix
A) is then

(1-2A)et —v) = Ewgqr — v (2.33)

This equation implies that vy can be written as an expected discounted value of future
log consumption, where the discount factor is 1/A; = 0.99 at benchmark parameter
values. The solution for v; takes the form vy = n,i k¢ + 7va az. For any parameter
values 7,4 = (1 — A1)/(1 — A; — A9) = 0.11, the value of 5. in the ¢ = 0 case. The
elasticity with respect to technology, nyqa, varies with the persistence parameter ¢ but
not with the intertemporal elasticity of substitution ¢. For any o, nyq is always equal
to the value of n¢g in the ¢ = 0 case.

The interpretation of these results is straightforward. A 1% increase in capital
increases the welfare of the representative agent by the same amount as an n,; =
0.11% permanent increase in consumption. n,; does not depend on the parameters
of the agent's utility function, and it can be measured by looking at the permanent
consumption increase that the agent optimally chooses in the ¢ = 0 case. Similarly, a
1% increase in technology has the same welfare effect as an 7y, % permanent increase
in consumption. 7,4 can be found by locking at the permanent consumption increase
chosen in the ¢ = 0 case. A 1% temporary increase in technology has a welfare
effect equivalent to a 0.01% permanent increase in consumption, while a 1% permanent
increase in technology has a much larger welfare effect equivalent to a 0.89% permanent

increase in consumption.

9 Campbell and Mankiw also arguc that there is a predictable component of consumplion growth correlated with
predictable income growth, a phenomenon not modelled here.
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Longer-run dynamics

Pigures la, 1b, and lc illustrate the consequences of alternative parameter values
for the dynamic response of output to technology shocks. In each case the initial
response of output to a unit technology shock is just @ = 0.667, the exponent on
technology in the production function. Figure la shows responses to a technology
shock with persistence ¢ = 0.5. The different response lines correspond to the five
values of ¢ studied in Table 1. None of the responses are very different from the
underlying AR(1) technology shock itself, because a transitory technology shock does
not generate sufficient capital accumulation to have an important effect on output.
To the extent that there is variation across o values, higher values give higher output
initially but lower output in the long run. The reason is that an agent with a high
value of & accumulates capital aggressively in response to the initial technology shock
and then decumulates it rapidly when the technology shock disappears. An agent with
a low value of o, on the other hand, accumulates less capital but holds onto capital
longer. In the extreme case o = 0, capital and output are permanently higher in the
wake of a temporary technology shock.

Figures 1b and lc show output responses to technology shocks with persistence
¢ = 0.95 and ¢ = 1 respectively. Figure 1b is similar to Figure la except that the
different lines are further apart and output has a hump-shaped impulse response when
o is sufficiently high. Capital accumulation can now make the medium-run output
response higher than the short-run response. In Figure 1c the long-run output response
is one for any positive value of o, because of the cointegration property of the ¢ = 1
model discussed above. The adjustment to the long run is more rapid when o is larger;

in the extreme case of infinite o, the adjustment takes place in one period.
More general technology processes and the “productivity slowdown”

An important feature of the loglinear model is that the solutions for simple AR(1)
technology shocks can be combined to obtain solutions for more complicated tech-
nology processes. Suppose that log technology a; is the sum of two components
aj; and ag;, each of which follows an AR(1) and is observed by the representative
agent. It is straightforward to show that any endogenous variable z; obeys z; =
Mok kt + n21 011 + 120 a9, where 7,1 is the solution already obtained for 1.4 when
log technology equals ajy, and 7,2 is the solution for n;4 when log technology equals

— 16~



a9s. This result generalizes in the obvious way to any number of separately observed
components, which may have arbitrary correlations.

As an empirically relevant example, suppose that aj; and ay; have persistence
parameters 0.95 and 1 respectively, and that their innovations have the same variance
and are perfectly negatively correlated. Then a unit technology shock consists of a
positive shock that decays at rate 0.95, combined with a negative permanent shock.
Such a shock causes technology (measured relative to its previous steady-state growth
path) to decline gradually to a new, permanently lower level. It therefore approximates
a “productivity slowdown” of the type experienced in the U.S. in the 1970’s.

Figure 2 illustrates the effects of such a shock on output, consumption, and capital
over a 10-year period. The figure assumes that ¢ = 1. Technology is represented
by a dotted line declining geometrically towards its new permanent level 1% below
the old permanent level. The half-life of the technology decline is just over 3 years,
and almost 90% of the decline is completed after 10 years. The long dashed line
represents consumption. Because the technology decline is anticipated, permanent
income considerations immediately reduce consumption by about 0.8%. This initially
leads to capital accumulation, as shown by the short dashed line for the capital stock.
In less than 2 years, however, the capital stock starts to decline towards its new steady-
state level. Because capital is high relative to technology during the transition to the
new steady state, output (shown by a solid line) is also high relative to technology.

It 1s sometimes argued on permanent income grounds that a productivity slowdown
should unambiguously increase saving. It is true that throughout the transition shown
in the figure for the ¢ = 1 case, consumption is unusually low relative to output.
However this corresponds to faster rapital accumulation only for the first two years.
After that, capital is decurnulated despite the low consumption-output ratio because
output is low relative to capital. This decumulation must occur (for any strictly positive
g), so that the economy can reach its new steady-state growth path with the same
ratio of capital to technology that it had on the old growth path. Furthermore, if the
elasticity of intertemporal substitution is large enough, consumption can actually rise
relative to output at the onset of a productivity slowdown. This occurs for any value
of o such that 7., declines with the persistence parameter ¢. Table 1 shows that an
elasticity of intertemporal substitution of 5 is already large enough to produce this

behavior.
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Summary

Before moving on to the variable-labor model, three characteristics of the fixed-
labor model deserve particular note. First, capital accumulation has an important
effect on the dynamics of the economy only when the underlying technology shock is
persistent, lasting long enough for significant changes in capital to occur. This is very
clear from the impulse responses plotted in Figures 1a, 1b, and 1¢.10

Second, technology shocks do not have strong effects on ex post or ex ante real
interest rates. The reason is that the marginal product of capital largely consists of
undepreciated capital rather than the net output that is affected by technology shocks.
The ex post real interest rate equals Az times the log technology-capital ratio, and
Az = 0.03 at benchmark parameter values. Thus a 1% technology shock changes the ex
post return to capital by only 3 basis points, or 12 basis points at an annual rate. The ex
ante real interest rate is even more stable (and literally constant when the representative
agent is risk-neutral) because capital accumulation lowers the marginal product of
capital one period after a positive technology shock occurs, partially offsetting any
persistent effects of the shock.

Third, capital accumulation alone does not generate a “multiplier” in the sense
of an output response to a technology shock that is larger (in percentage terms) than
the underlying shock itself. None of the output responses shown in Figures 1a, 1b, or
lc exceed one. This means that slower-than-normal technology growth can generate
only slower-than-normal output growth and not actual declines in output. The model
with fixed labor supply can explain output declines only by appealing to implausible

declines in the level of technology.

19 Blanchard and Fischer {1989) emphasize this poiat.
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3. Variable Labor Supply

I now consider two models with variable labor supply. These models leave the
production function (2.1) unchanged, but allow labor input Ny to be variable rather
than constant and normalized to one. The capital accumulation equation (2.2) is also
unchanged. However the objective function (2.3) now has a period utility function
involving both consumption and leisure. The first model assumes that period utility
is additively separable in consumption and leisure, while the second model has non-

separable period utility.
An additively separable model

In the first model, the representative agent has log utility for consumption and

power utility for leisure:

1- Nt)1_7"

U(C,1-Ny) = log(Cy) + 6
1—7n

(3.1)

King, Plosser, and Rebelo (1988a) show that log utility for consumption is required to
obtain balanced growth in a model with utility additively separable over consumption
and leisure. The form of the utility function for leisure is not restricted by the balanced
growth requirement. I use power utility for convenience and because it nests two pop-
ular special cases in the real business cycle literature: log utility for leisure in a model
with divisible labor , and linear derived utility for leisure in a model with indivisible
labor in which workers choose lotteries over hours worked rather than choosing hours
worked directly (Hansen 1985, Rogerson 1988). The former case has v, = 1, and the
latter has v, = 0. Christiano and Eichenbaum (1991) and King, Plosser, and Rebelo
(1988a) explicitly compare these two special cases. By analogy with the notation of
the previous section, I define o, = 1/7p, the elasticity of intertemporal substitution
for leisure.

The first-order condition for intertemporal consumption choice remains the same
as before, except that the gross marginal product of capital now depends on labor
input as well as technology and the capital stock. Equation (2.5) is unchanged, but

(2.4) becomes
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Ry = (1-a) <%+I+1) + (1= (3.2)

The new feature of the variable-labor model is that there is now a static first-order

condition for optimal choice of leisure relative to consumption at a particular date:

9(1 - Nt)—‘y"

Mo AR <ﬁ)““ (33)

¢, - YT\

The marginal utility of leisure is set equal to the wage W; times the marginal utility of
consumption. With log utility for consumption, this is just the wage divided by con-
sumption. The wage in turn equals the marginal product of labor from the production
function (2.1).

Analysis of the steady state from the previous section carries over directly to the
variable-labor model. The relation (2.7) between g and r, and the steady-state values
of the ratios 4;/ Ky, Y;/I;, and C4/Y}, are all the same as before.

Fluctuations with separable utility

Much of the analysis of fluctuations also carries over directly from the fixed la-
bor supply model. The loglinear version of the capital accumulation equation (2.13)

becomes

ki1 o= Atk 4+ Mla4+m) + (1= A1 = Ag)ey, (34)

where A and A9 are the same as before. (3.4) differs from (2.13) only in that Ay
multiplies ny as well as a;. The interest rate is now ry41 = Ag(ag+1 + ng41 —kis1), and

the loglinear version of the intertemporal first-order condition (2.16) becomes

EiAciy1 = A3Ei(ar41 +neg1 ~ ki) (3.5)

Equation (3.5) differs from (2.16) only in that o is now equal to one and ny4] appears

in the equation. The technology shock process (2.18) also remains the same as before:

T



a = da_1 + €. (3.6)

These expressions contain an extra variable n¢, so to close the model one needs an
extra equation which is provided by the static first-order condition (3.3). Loglinearizing

in standard fashion (details are given in Appendix A), I find that

ng = (1 ;VN)gn [aat + (1= a)(k = ny) = cifs (3.7)

where N is the mean of labor supply. If, as Prescott (1986) asserts, households allocate
one-third of their time to market activities, then N is one-third and (1 - N)/N =2. 1
shall take this as a benchmark value.

It will be convenient to rewrite equation (3.7) to express labor supply in terms of

capital, technology, and consumption:

ng = v|(1—a)k+aa —clf, (3.8)
where

(1= N)on
N+(1—-a)(l—N)og’

(3.9)

v = viog) =

The coefficient v 1s a function of oy,. It measures the responsiveness of labor supply to
shocks that change the real wage or consumption, taking into account the fact that as
labor supply increases the real wage is driven down. Thus even when utility for leisure
is linear (o = 00), the coefficient v is not infinitely large. Instead, v = 1/(1 —a) =3
in this case. As the curvature of the utility function for leisure increases, v falls and
becomes zero when vy, is infinite. This corresponds to the fixed-labor case studied in
the previous section.

Equation (3.8) can be used to substitute ny out of equations (3.4), (3.5), and (3.6).
The system is then in the same form as before, and can be solved using the same
approach. Once again log consumption is linear in log capital and log technology, with

coefficients 7, and 1¢q. The coefficient 7. solves the quadratic equation (2.24), where
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the coeflicients ()9, Q1, and (g are more complicated than before and are given in
Appendix B. The solution for 7., can be obtained straightforwardly from 7.t and the
other parameters of the model. These solutions are the same as in the previous section

when labor supply is completely inelastic so that v = 0.
Dynamaic behavior of the economy

The dynamics of the economy take the same form as in the fixed-labor model.
Once again the log capital stock is a linear function of the first lags of log capital and
log technology, kir1 = mpik: + Mpqae. But now the coefficients ny, and ng, are given
by

Mk = AL+ Ag(l—a)v + Uck[l_/\l_/\Q(l“{“V)]

it

Mke = A1+ av) + ne [1 = A= A1+ V)J- (3.10)

Log labor supply can also be written as a linear function of log capital and technology.

Substituting the expression for consumption into (3.8), log labor supply is

ng = v(l—a—-ng)k + via—new)ay = ik + Mna - (3.11)

Increases in capital raise the real wage by a factor (1 — a); this stimulates labor supply,
but capital also increases consumption by a factor 7., and this can have an offsetting
effect. Similarly, increases in technology raise the real wage by a factor «, but the stim-
ulating effect on labor supply is offset by the effect n¢q of technology on consumption.
I use the notation 7,,;, and 7,4 for the overall effects of capital and technology on labor
supply.

Finally, log output can also be written as a linear function of log capital and

technology:

y = (1—a)+au(1—a—nck)Jkt + [a-}-au(a—nca) a = ik + nyaar (3.12)



As before, this is an ARMA(2,1) process. However capital and technology now affect
output both directly (with coefficients 1 —« and a respectively) and indirectly through
labor supply. The initial response to a technology shock is now a + av{a —1j¢q) rather
than a. Thus the varjable-labor model can produce an amplified output response to
technology shocks, even in the very short run.

Tables 2 and 3 illustrate the solution of the model for the same values of op
and ¢ that were used for o and ¢ in Table 1. Table 2 shows the consumption and
capital elasticities that were reported in Table 1. Table 3 gives employment and output
elasticities.

When o, = 0 (the first column of Tables 2 and 3), the model is the same as the
model with fixed labor supply and log utility over consumption (the third column of
Table 1). In this case the coefficients 77,1 and nnq are both zero. As oy increases, the
coefficient 7, becomes increasingly negative while 7, becomes increasingly positive.
Thus an increase in capital lowers work effort because it increases consumption more
than 1t increases the real wage. A positive technology shock increases work effort. The
coefficient 7,1 is independent of the persistence of technology ¢, but the coefficient 1,4
declines with ¢. The reason isthat a persistent technology shock increases consumption
more than a transitory one does (this is shown by the fact that 7. increases with ¢
in the table). The increase in consumption lowers the marginal utility of income and
reduces work effort. Put another way, transitory technology shocks produce a stronger
interternporal substitution effect in labor supply.

Once again several special cases of the model are worth attention. The random
walk model for log technology (¢ = 1) is cointegrated just as in the fixed-labor model.
Again we have .4 +n¢q =1 and 74y, + 154 = 1, but also g, + 7ne = 0. In this model
labor supply effects are quite weak: Even with linear utility for leisure (an infinite oy,), a
1% increase in technology stimulates only a 0.49% increase in work effort. As mentioned
above, the case op = 0 is the fixed-labor model with log utility for consumption.
The opposite extreme case op = o0 solves relatively easily because (1 — ajv = 1
so the intercept term Qg in the equation for 5. is zero and this equation becomes
linear. However the coefficients obtained in this case do not have any straightforward
interpretation.

Tables 2 and 3 can also be used to calculate the elasticities of gross factor returns
with respect to capital and technology. The ex post real interest rate ry11 = Az(a41 +

ny+1 — k1), so its response to capital is Ag(n,r — 1) and its response to technology
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is A3(1 + nnq). These responses are small, just as they were in the fixed-labor model.
The largest possible effect of a 1% technology shock on the ex post real interest rate
1s 8 basis points at a quarterly rate, or 32 basis points at an annual rate, when the
technology shock is purely temporary and the utility function is linear in leisure. The
ex ante real interest rate is also stable for similar reasons.

The log real wage rate equals y; — n¢, so its response to capital is 7y — 7, and
its response to technology is 17yqa — 7ng. Inspection of Table 3 shows that the elasticity
of the wage with respect to technology is smallest when utility is linear in lelsure. In
this case (the right hand column of Table 3) the real wage elasticity is the same as the
consumption elasticity 7.q, because linear utility in leisure fixes the wage-consumption
ratio, Depending on its persistence, a 1% technology shock can raise the real wage by
0.11% to 0.50%. Somewhat greater real wage effects are obtained when labor supply
is inelastic. In the extreme fixed-labor case (the left hand column of Table 3), a 1%
transitory or persistent technology shock raises the real wage by 0.67%. As Christiano
and Eichenbaum (1991) emphasize, in this model the marginal product of labor is
proportional to the average product, so elasticities for labor productivity are the same
as those for the real wage.

Variable labor supply has important implications for the clasticity of output with
respect to technology, nyq. Recall that when labor supply is fixed (v = 0), this elasticity
is just a = 0.667. With variable labor supply, 7yq = o + av{a ~n¢q). This can exceed
one, reaching a maximum of 1.78 when v = 3 and ¢ = 0. The elasticity falls with ¢,
however, and when ¢ = 1 it cannot exceed 0.99. This is important because an elasticity
greater than one allows absolute declines in output to be generated by positive but
slower than normal growth in technology; this is surely more plausible than the notion
that there are absclute declines in technology. The elasticity is illustrated in Figure 3,

a contour plot of 7y, against the parameters v and ¢.
A nonseparable model

An alternative specification that is consistent with balanced growth is the non-

additively-separable Cobb-Douglas utility function,

U(Cy, Ny) = [CF(1 = NP7 /(1 — ). (3.13)
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This is used by Eichenbaum, Hansen, and Singleton (1988) and Prescott (1986). When
v = ¢ = 1, this utility function is the same as the additively separable utility function
with o, = 1.

The steady state for this model is similar to that for the previous model. The
equation relating the growth rate, the utility discount rate, and the interest rate is

slightly altered from (2.7) to

- loglf) + 1 (3.14)
1-p(1-7)
However the steady-state output-capital and consumption-output ratios are the same
as before.

The approximate loglinear model of fluctuations has the same capital accumulation
equation as before. The static first-order condition for optimal labor supply does not

depend on the curvature of the utility function and is
ng = v(1)|(1-a)k+eaeqg —cql, (3.15)

where v(1) is given by (3.9) setting ¢, = 1. The intertemporal first-order condition is

somewhat more complicated than in the separable case. It takes the form

N
[1—P(1~7)]E1A0t+1+(1—p)(1—7)(m)EtAnt+1 = A3Ei(aip1+ni41—keg1)-
(3.16)

Solution of the nonseparable model proceeds in standard fashion, described explic-
itly in Appendix B. Consumption and capital elasticities for this model are given in
Table 4, and employment and output elasticities are given in Table 5. Comparing Ta-
ble 4 with Table 2, the nonseparable model allows a much wider range of consumption
elasticities because it does not fix the curvature of the utility of consumption. How-
ever this does not have a major effect on output elasticities. Comparing Table 5 with
Table 3, the output response to technology shocks covers roughly the same range in

the nonseparable model as it did in the separable model. The largest possible response
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to a temporary technology shock is slightly smaller in the nonseparable model, but
the largest possible response to a permanent shock is slightly larger. This means that
the nonseparable model can produce a multiplier slightly greater than one even when

technology shocks are permanent.
The productivity slowdown with variable labor

Just as in the fixed-labor model, the solutions obtained above can be combined to
describe responses to more general technology processes. Figure 4 shows the response
of the economy to a productivity slowdown (a positive shock with persistence 0.95,
combined with a negative shock with persistence 1), under the assumption of log utility
for consumption and leisure. As noted above, this utility specification can be obtained
from the separable model with o, = 1, or from the nonseparable model with o = 1.

The dynamics shown in figure 4 are similar to those in figure 2. Consumption drops
immediately, which leads to a period of capital accumulation before capital gradually
declines to its new steady-state value. There are however two new features in figure
4. First, in the later stages of the transition the consumption-output ratio is above its
steady-state level because low real interest rates stimulate consumption. Second and
more important, the initial drop in consumption is accompanied by an increase in work
effort (since the technology shock has no immediate impact on the real wage, and the
marginal utility of consumption is higher). This raises output initially, and leads to
a more pronounced accurmulation of capital than in figure 2. Qutput falls below its
old steady-state level 1 year after the initial shock, but capital does not fall below this
level until 4 years after the shock. It is straightforward to verify from tables 3 and 5
that this effect is robust: The initial output response to the productivity slowdown is
positive for any possible value of ¢ or oy,

This example illustrates an important point. In a model with variable labor sup-
ply, the responses of employment and output to a technology shock decline with the
persistence of that shock. If the shock is more persistent than a random walk, so that
its ultimate effect is larger than its initial effect, then it is possible to get a perverse
initial response of employment and output. The reason is that a highly persistent shock
has a large initial effect on the marginal utility of consumption relative to its initial

effect on the real wage.



4. Government Consumption

The stochastic growth model can also be subjected to other types of shocks. In this
section I briefly review how the solution technique of this paper can be used to study the
effects of government spending. For simplicity I assume that taxes are lump-sum and
that government consumption does not enter the utility function of the representative
agent. Then all first-order conditions are the same as before and government spending

affects only the capital accumulation equation. This becomes

Ky = 1-68)K + Y7 — G — Xy, (4.1)

where Xy is the level of government consumption. Note that the time path of spending
is what is relevant, not the time path of taxes, because Ricardian equivalence holds in
this model.

The steady state of the economy with government spending is very similar to the
steady state described previously. In particular the relation between the growth rate
and the interest rate is the same, and the output-capital ratio is the same. The ratio
of private plus government consumption to output is also unchanged, which means
that the private consumption-output ratio is reduced by the government consumption-
output ratio.

The addition of government spending does not have an important effect on the
economy’s response to technology shocks. The only effect comes from the fact that the

loglinear approximate capital accumulation equation is now

kt+1 ~ /\lkt -+ /\2(a5+nt) -+ /\411 + (1—/\1—)\2——/\4)61, (4.2)
where
—(r+ &)XY
Ay = ————1 4.3
tE Aoy 3

If the steady-state government consumption-output ratio is 0.2, then Ay = 0.02 at the

benchmark values of the other parameters. The effect of log consumption on log capital
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is therefore reduced by 0.02. The previous analysis of technology shocks applies if one
replaces (1 — A; — A9) by (1 — A} — Ay — A4) throughout,

Similar reasoning shows that the technology shock process does not affect the
economy’s response to government spending shocks. For simplicity, I shall therefore
ignore technology shocks in the remainder of this section. Assuming an AR(1) process
for government spending, the loglinear model with separable utility over consumption

and leisure becomes (4.2) with a; set to zero, together with

Eihcprr = ME(nie1 — k1), (4.4)
T = dz_] + e, (4.5)
g = v|(1—a)k—c, (4.6)

where v = v(op) is as defined in equation (3.9).

This model can be solved in the standard fashion. (Details are given in Appendix
B.) Once the elasticities of consumption 1. and n¢; have been found, the other elas-
ticities follow straightforwardly from (4.2), (4.6), and the production function. Table
6 gives the consumption and capital elasticities and Table 7 gives the employment and
output elasticities for the standard range of parameter values.

Table 6 shows that private consumption falls when government consumption in-
creases, It falls by more when government consumption is more persistent, for per-
manent income reasons. It falls by less when labor supply is more elastic, for then
increased labor supply (shown in Table 7) can meet some of the increased tax burden.
Labor supply increases with government consumption, since the real wage is unchanged
by a government consumption shock and the marginal utility of consumption increases.
Labor supply increases by more when labor supply is more elastic, and when a more
persistent change in government consumption leads to a greater decline in consumption
and increase in the marginal utility of consumption.

It follows from this that the output effect of government consumption increases

with the persistence of government consumption. This is directly contrary to the
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claims of Barro (1981) and Hall (1980). Aiyagari, Christiano, and Eichenbaum (1990)
and Baxter and King (1990a) have already established the correct result in a real
business cycle framework, but the analytical approach here may make the result more
transparent. Figure 5 is a contour plot of the output elasticity against the persistence
¢ of government consumption and the parameter » measuring the elasticity of labor
supply. As ¢ and v approach their maximum possible values, the output elasticity
approaches its maximum of 0.29. Dividing by the steady-state ratio of government
spending to output (assumed to be 0.2}, this implies that an extra dollar of government
consumption generates at most 1.45 dollars of output. The elasticity declines very
rapidly with ¢; even when ¢ = 0.95 the largest possible elasticity is only 0.18, implying
that an extra dollar of government spending generates less than an extra dollar of

output.



5. Conclusion

In this paper I have argued that an analytical approach to the stochastic growth
model helps to generate important insights. I have assumed plausible benchmark values
for model parameters describing the steady state growth path of the economy, and have
used an approximate analytical solution to explore the effects of other parameters — the
intertemporal elasticity of substitution in consumption, the elasticity of labor supply,
the persistence of technology shocks, and the persistence of government consumption
shocks — on the dynamic behavior of the model. Some of the main results of this
exploration are as follows.

First, a model with fixed labor supply and a very small intertemporal elasticity of
substitution in consumption is a general equilibrium version of the permanent income
theory of consumption. It has many of the properties discussed informally by Fama
(1991); in particular, temporary technology shocks cause temporary fluctuations in
output and investment, but not in consumption.

Second, with variable labor supply it is possible for the elasticity of output with
respect to technology shocks to exceed one. This seems to be important if output fluc-
tuations are to be explained by technology shocks, because it permits output to decline
when technology grows more slowly than normal; with a smaller than unit elasticity,
on the other hand, technology declines are needed to produce output declines. Un-
fortunately, an elasticity greater than one depends both on highly elastic labor supply
(as is well understood) and on low persistence of technology shocks. If technology is
a random walk and utility is separable over consumption and leisure, then even with
infinitely elastic labor supply the output elasticity cannot exceed one.

Third, the basic analysis in this paper assumes an AR(1) log technology shock.
However different solutions can be combined to obtain the solution for any linear com-
bination of AR(1) processes. This enables me to calculate the response of the economy
to a highly persistent technology shock of the type that may have occurred in the
“productivity slowdewn” of the 1970’s. The output elasticity with respect to such a
shock can actually be negative, because low technology growth today signals even lower
technology (relative to trend) in the future, and this stimulates output today rather
than dampening it.

Fourth, all the models examined have the feature that expected and realized

marginal products of capital are extremely stable. A 1% technology shock moves the
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realized marginal product of capital by no more than 12 basis points (at an annual rate)
in a fixed-labor model, and by no more than 32 basis points in a separable variable-
labor model; and for most parameter values the marginal product of capital is much
less responsive to technology shocks. The reason for this stability is that most of the
marginal product of capital is undepreciated capital rather than the output which is
affected by technology. This feature of the stochastic growth model makes it hard for
the model to explain the observed variability of real interest rates.

Finally, the paper follows recent work showing that permanent shocks to govern-
ment consumption have larger output effects than temporary shocks. With sufficiently
elastic labor supply and sufficiently persistent government consumption, it is possible
for a dollar of government spending to stimulate more than a dollar of additional out-
put; however this requires an AR(1) process for government spending with a persistence
parameter above 0.96.

The analytical approach of this paper can be adapted to study a number of other
interesting issues. It should be straightforward, for example, to allow for convex adjust-
ment costs in investment {Baxter and Crucini 1989), technology “spillovers” (Baxter
and King 1990b), distortionary taxation (Baxter and King 1990a, Greenwood and Huff-
man 1991, McGrattan 1991), or “rule-of-thumb” consumption behavior (Campbell and
Mankiw 1989). More challenging will be to allow for real and nominal macroeconomic
rigidities of the type emphasized by recent work in the Keynesian tradition. Ultimately,
a stochastic growth model incorporating such rigidities holds out the promise of a new

synthesis in macroeconomics.
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Appendix A: Taylor Approximations

To obtain equation (2.13) I proceed as follows. On the left hand side of (2.12) is
the nonlinear function fi(Akir1) = loglexp(Aki41) — (1 —6)]. This is approximated
as fi(Akep1) = filg) + f1(9)(Aki41 = g), where

/ _ exp(g) . l+g
file) = s -(1-8 ~ Trg (A1)

On the right hand side of (2.12) is the nonlinear function fo(cj41 —w41) = log[l —
exp(ct —yo)]- 11 Thisis approvimated as fo(erp1 ~vi41) & fale—y) + fhle—y)ers1 —
Yt+1 — (¢ — y)), where

r+46

e T} 42

fle—y) = 1

Substituting these approximations into (2.12) and dropping constants, I obtain a log-

linear approximate accumulation equation,

l+yg r+6
Akpp1 = y—k + |1 = ———— (et ~ ). A
(5+9> s o ' (1-a)(g+9) (&~ w) (4-9)

The log production function (2.11) can be used to substitute out y from this equation,
yielding (2.13).
To obtain equation (2.16), I take logs of (2.4) to obtain

rel = faless — k1) = log[l—¢ + (1-a)explaarys — k)] (A4)

The function fy(ary1—kiy1) is approximated as f3(az41 — ki) = fala—k) + fila—
k)at+1 — ky41 — (a — k)), where

fila=k) = HED,

! Connoisseurs will recognize this as the function approximated in Campbell and Shiller (1988) and Campbell (1990).

(A.5)
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Substituting these expressions into (2.15) yields (2.16).

To obtain equation (2.33), I proceed as follows. Bellman's equation states that
VT = Max ¢l o+ BEVEY. (A.6)

It is straightforward to show that in steady state,

v r—g

Ctl—*r T4

(A.T)

Taking logs of (A.6) and dropping constants, I obtain fo((1 —v)(¢s — v¢)) = log(l —
exp((1=y)cz—vt)]) = (1=7)E;(ve41 —vt). On the left hand side is the same function

approximated above in (A.2), where now

B=De=v) » ~f0 = 1=k (A.8)

To obtain equation (3.7) I take logs of (3.3), dropping constants, and obtain

~ynlog[l —exp(n¢)] = aar + (1 — a)(kt —ny) ct, (A.9)

On the left hand side of (A.9) is the nonlinear function f4(ns) log[1l — exp(n¢)].

This is approximated as fg(ny) = fy(n) + fi(n)(ry — n), where

exp(n) N N
1—-exp(n) 1-N’

fi(n) = (A.10)

Substituting into (A.9) and rearranging, I obtain (3.7) and (3.8).
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Appendix B: Complete Solutions for the Variable-Labor Models

In the separable variable-labor model with technology shocks, the solution for 744

is the solution to the quadratic equation (2.24), an?k + Q17ck + @o = 0, where now

Qq = [1 + /\31/] [1 — A= (14 y)]

Q) = [1+A3y] [/\1+A2(1~a)u] - Ag[(l—a)u—l] [1—/\1—/\2(1+u) _1

Qo —/\3[(1 —a)y — 1] [A1+A2(1-a)u]. (B.1)

The solution is given by the quadratic formula (2.26), as before. Given 7., the solution

for 77¢q follows as

(14 @) 306 = da{nen(1 + 3g%) = (3 — ey 1)

{na@+20) = 2@ - v - D1 -0 -2 +0)} - {1- 40+ 290))
(B.2)

Mea =

In the nonseparable variable-labor model with technology shocks, the solution for
consumption elasticities is more complicated. It is easiest to state by defining some

intermediate parameters:
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b= (-0 =) (o))

§1 = 1—p(l—7v)—b+A3v(1)
9 = —(1-p(1~7)—-1)
&3 = P(1 - o) = Ag[v(1)(1 - a) - 1]

£ = —¥(l-a)
& = Yo — A3(l+v(1)a]
¢ = —a

Kl = /\1+/\2(1—a)1/(1)
kg = 1= = 2g(1+ (1))
k3 = Ag(1 4+ av(l)). (B.3)

Then again 5.t solves QQ"c?k + Q1mek + Qo = 0, where now

Qa2 = £1Ky, Q1 = 1K1 + 3R + £y, Qo = &3K1 4 &4, (B4)

The solution is given by the quadratic formula (2.26), as before, Given 7, the solution

for n¢q follows as

_ 965+ &6 + m3l€amek + €3l (B.5)

T T T e+ ot mal€inek + €3]

In the separable variable-labor model with government consumption shocks, the
quadratic equation for 7. has the same parameters as before, except that 1 — A —
Ag(1+4v) is replaced by 1 — A1 —Ag(1+v) — Aq everywhere. The solution for 7. follows

as

Y [Aa((l ) 1~ yngy) - nck}

Nex = - .
1+ M) —1— [/\3((1 —a)y—1-wvng) - ﬂck] (T=X=2(1+v)—Ay)

(B.6)
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Table 1

Consumption and Capital Elasiicities for the
Fized-Labor Model with Technology Shocks

g =
b= 0 0.2 1 5 o0
000 | 011, 001 | 0.30, 002 | 059, 0.05 | 1.21, 0.10 [ 1130, 0.89
) 1.00, 0.08 | 0.98, 0.08 | 0.96, 0.07 | 0.90, 0.07 | 0.00, 0.00
050 | 911, 0.02 | 0.30, 0.04 | 0.59, 0.06 | 1.21, 0.06 | 11.30, —4.69
: 1.00, 0.08 | 0.98, 0.07 | 0.96, 0.07 | 0.90, 0.07 | 0.00, 0.50
095 | 011,015 [ 0.30, 025 | 0.59, 023 | 1.21,~0.12 | 1130, —9.70
: 1.00, 0.07 | 0.98, 0.06 | 0.96, 0.06 | 0.90, 0.09 | 0.00, 0.95
1.00 0.11, 0.89 | 0.30, 0.70 | 0.59, 0.41 | 1.21,-0.21 | 11.30,-10.30
: 1.00, 0.00 | 0.98, 0.02 | 0.96, 0.04 | 0.90, 0.10 | 0.00, 1.00

The model is ¢; = nepki + ncaar, k141 = merke + ka0
This table reports 1.4, 7ea above M, Miq-




Table 2

Consumption and Capital Elasticities for the
Separable Variable-Labor Model with Technology Shocks

On, V(Un) =
6= 0,000 | 02,035 | 1,1.20 5,2.31 0, 3.00
0.00 0.59, 0.05 | 0.57, 0.05 | 0.54, 0.07 | 0.51, 0.10 | 0.50, 0.11
: 0.96, 0.08 | 0.95, 0.09 | 0.94, 0.13 | 0.93, 0.18 | 0.93, 0.20
050 | 0-59, 0.06 | 0.57, 0.08 | 0.54, 0.10 | 0.51, 0.12 | 0.50, 0.14
’ 0.96, 0.07 | 0.95, 0.09 | 0.94, 0.13 | 0.93, 0.17 | 0.93, 0.19
0.95 0.59, 0.23 | 0.57, 0.25 | 0.54, 0.29 | 0.51, 0.33 | 0.50, 0.35
’ 0.96, 0.06 | O. 95, 0.07 | 0.94, 0.09 | 0.93, 0.11 | 0.93, 0.12
1.00 0.59, 0.41 | 0.57, 0.43 | 0.54, 0.46 | 0.51, 0.49 | 0.50, 0.50
’ 0.96, 0.04 | 0.95, 0.05 | 0.94, 0.06 | 0.93, 0.07 | 0.93, 0.07

The model is ¢; = 71kt + Neates kil = Mepke + Tpas-
This table reports 7.z, 7ca above Mgp, Ngg-

Table 3

Employment and Qutput Elasticities for the
Separable Variable-Labor Model with Technology Shocks

onyv(on) =

¢ = 0, 0.00 0.2, 0.35 1,1.20 5,2.31 o0, 3.00

000 | 0-00,0.00 [ ~0.08, 022 [ —0.24, 0.71 | —0.40, 1.32 | —0.49, 1.67
. 0.33, 0.67 0.28, 0.81 0.17, 1.14 0.06, 1.54 0.01, 1.78
050 | 000, 0.00 | ~0.08, 0.21 [ —0.24, 0.68 | —0.40, 125 | ~0.49, 1.58
' 0.33, 0.67 | 028 0.81 | 017 1.12| 006 1.50 | 0.01, 1.72
0.95 0.00, 0.00 | —0.08, 0.15 | —0.24, 0.45 | —0.40, 0.78 | —0.49, 0.95
: 0.33, 0.67 | 028, 0.77 | 017, 0.97 | 0.06, 1.18 | 0.01, 1.30
1.00 0.00, 0.00 | —0.08, 0.08 | —0.24, 0.24 | —0.40, 0.40 | —0.49, 0.49
: 0.33, 0.67 0.28, 0.72 0.17, 0.83 0.06, 0.94 0.01, 0.99

The model is n¢ = 0y 1kt + Mnaar, ye = Nyekt + Nyas-

This table reports n,t,nnq above nyg, nya-




Table 4

Consumption and Capital Elasticities for the
Nonseparable Variable-Labor Model with Technology Shocks

o =
¢ = 0 0.2 1 5 00
0.00 | 923,035 0.37, 0.28 | 0.54, 0.07 | 0.71,~0.30 | 0.82, —0.62
’ 1.00, 0.08 | 0.97, 0.09 | 0.94, 0.13 | 0.91, 0.20 | 0.89, 0.26
0.50 0.23, 0.35 | 0.37, 0.29 | 0.54, 0.10 | 0.71,—-0.24 | 0.82,—0.53
’ 1.00, 0.08 | 0.97, 0.09 | 0.94, 0.13 | 0.91, 0.19 | 0.89, 0.24
0.95 0.23, 0.42 | 0.37, 0.42 | 0.54, 0.29 | 0.71, 0.09 | 0.82, —0.06
) 1.00, 0.07 | 0.97, 0.07 | 0.94, 0.09 | 0.91, 045 | 0.89, 0.16
100 | 023,077 1037, 0.63 | 0.54, 0.46 | 0.71, 0.29 | 0.82, 0.18
i 1.00, 0.00 | 0.97, 0.03 | 0.94, 0.06 | 0.91, 0.09 | 0.89, 0.11
The model is ¢; = 1kt + caty, kel = Mpikt + Megar-
This table reports 7., 7ea above ngp, Nig-
Table 5
Employment and Output Elasticities for the
Nonseparable Variable-Labor Model with Technology Shocks
g
¢ = 0 0.2 1 5 _ oo
000 | 013, 0.38 | —0.05, 0.46 [ —0.24, 0.71 | —0.45, 1.16 | —0.58, 1.54
’ 0.42, 0.92 0.30, 0.98 0.17, 1.14 0.03, 1.44 | —0.05, 1.69
0.50 0.13, 0.38 | —0.05, 0.45 | —0.24, 0.68 | —0.45, 1.09 | —0.58, 1.44
: 0.42, 0.92 0.30, 0.97 0.17, 1.12 0.03, 1.40 | —-0.05, 1.63
0.95 0.13, 0.30 | —0.05, 0.29 | —0.24, 0.45 | —0.45, 0.70 | —0.58, 0.88
’ 0.42, 0.87 0.28, 0.86 0.17, 0.97 0.03, 1.13 | —-0.05, 1.25
Lo | 013013 | ~0.05, 0.05 | ~0.24, 0.24 | —0.45, 0.45 | —0.58, 0.58
: 0.42, 0.58 0.30, 0.70 0.17, 0.83 0.03, 0.97 | —0.05, 1.05

The model is n¢ = n, ke + Mnaat, v = Nykkt + Nyaas.

This table reports 7,,7na above Nyk> Tya-




Table 6

Consumption and Capital Elasticities for the Separable
Variable-Labor Model with Government Consumption Shocks

Tn, V(Un) =
¢ = 0, 0.00 0.2, 0.35 1,1.20 5, 2.81 oo, 3.00
0.00 0.70,-0.02 | 0.66,—-0.02 | 0.60,—0.01 | 0.55,—0.01 | 0.53, —0.01
' 0.96, -0.02 | 0.96, —-0.02 | 0.95,-0.02 | 0.93,-0.02 | 0.93,—0.02
0.50 0.70,—-0.03 | 0.66,—0.03 | 0.60, —0.03 | 0.55, —-0.02 | 0.53,—0.02
’ 0.96, —-0.02 | 0.96,—-0.02 | 0.95,—-0.02 | 0.93 —0.02 | 0.93,—-0.02
0.95 0.70,-0.18 | 0.66,-0.16 | 0.60,—0.12 | 0.55,—0.10 | 0.53,-0.09
’ 0.96,-0.01 | 0.96,—-0.01 | 0.95,—0.00 | 0.93, 0.00 | 0.93, 0.00
1.00 0.70,-0.36 | 0.66,—-0.30 | 0.60,-0.21 | 0.55,-0.16 | 0.53,—0.14
’ 0.96, 0.00 | 0.96, 0.00 | 0.95, 0.01 | 0.93, 0.02 | 0.93, 0.02

The model is ¢; = nopki + nezt, ki1 = Teeki + ez
This table reports 1,5, ez above Mg, Mpg-

Employment and Oulput Elasticities for the Separable

Table 7

Variable-Labor Model with Government Consumption Shocks

on,v(on) =

o= 0, 0.00 0.2, 0.35 1, 1.20 5, 2.31 0, 3.00

0.00 0.00, 0.00 | —0.11, 0.01 | —0.81, 0.02 | —0.51, 0.03 | —0.60, 0.04
’ 0.33, 0.00 0.26, 0.00 0.12, 0.01 | —0.01, 0.02 | —0.07, 0.02
0.50 0.00, 0.00 | —0.11, 0.01 | —0.81, 0.03 | —0.51, 0.05 | —0.60, 0.06
: 0.33, 0.00 0.26, 0.01 0.12, 0.02 | —-0.01, 0.04 | —0.07, 0.04
095 | 0-00,0.00 | 011, 0.05 | ~0.31, 0.15 | —0.51, 0.23 | —0.60, 0.27
' 0.33, 0.00 0.26, 0.04 0.12, 0.10 | —0.01, 0.16 | —0.07, 0.18
Loo | 000,000 [ —0.11, 011 | —0.31, 0.26 | ~0.51, 0.38 | —0.60, 0.43
' 0.33, 0.00 0.26, 0.07 0.12, 0.17 | —0.01, 0.25 | —0.07, 0.29

The model is ny = 1,1k + nzze, 1t = Nykkt + TyzTi-

This table reports n,;,mnz above Ny, nya.
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Figure 1a: Output Response to a Technology Shock
With Fixed Labor Supply and ¢ = 0.5

The solid line gives the percentage response of output to a 1% technology shock in a model with fixed labor
supply when the intertemporal elasticity of substitution o = 0. The long dashed line gives the respouse
when o = 0.2. The short dashed line gives the response when o = 1. The dashed and dotted line gives the
response when o = 5. The dotted line gives the response when ¢ = co. In all cases the initial response is

a = 0.667.
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Figure 1b: Output Response to a Technology Shock
With Fixed Labor Supply and ¢ = 0.95

The solid line gives the percentage response of output to a 1% technology shock in a model with fixed labor
supply when the intertemporal elasticity of substitution ¢ = 0. The long dashed line gives the response
when o = 0.2. The short dashed line gives the response when ¢ = 1. The dashed and dotted line gives the
response when ¢ = 5. The dotted line gives the response when ¢ = co. In all cases the initial respouse is
a = 0.667.
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Figure 1c: Output Response to a Technology Shock
With Fixed Labor Supply and ¢ =1

The solid line gives the percentage response of output to a 1% technology shock in a model with fixed labor
supply when the intertemporal elasticity of substitution ¢ = 0. The long dashed line gives the response
when ¢ = 0.2. The short dashed line gives the response when o = 1. The dashed and dotted line gives the
response when ¢ = 5. The dotted line gives the response when ¢ = co. In all cases the initial response is

a = 0.667.
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Figure 2: Response of the Economy to a Productivity Slowdown
With Fixed Labor Supply

This figure shows the percentage responses of several variables to a 1% permanent negative decline in
technology, accompanied by a 1% transitory increase in technology with persistence ¢ = 0.95. The dotted
line gives the implied path of technology. The responses of other variables are calculated in a model with
fixed labor supply and intertemporal elasticity of substitution o equal to one. The long dashed line gives
the response of consumption, the short dashed line gives the response of the capital stock, and the solid line
gives the response of output.
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Figure 3: Initial Output Response to a Technology Shock
With Variable Labor Supply and Separable Utility

The contours show the elasticity of output with respect to technology in a model with variable labor supply
and additively separable utility over consumption and leisure. The model is specified in equations (3.1)-(3.9)
in the text. The elasticity is plotted for different values of the parameters v and ¢, where v is a function of
the elasticity of labor supply defined in equation (3.9), and ¢ is the persistence of technology shocks. The
contour lines are 0.1 apart. Note that the smallest value of ¢ shown is 0.5, and that when v = 0 the elasticity
is & = 0.667 for any value of ¢. :
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Figure 4: Response of the Economy to a Productivity Slowdown
With Variable Labor Supply and Separable Utility

This figure shows the percentage responses of several variables to a 1% permanent negative decline in
technology, accompanied by a 1% transitory increase in technology with persistence ¢ = 0.95. The dotted
line gives the implied path of technology. The responses of other variables are calculated in a model with
variable labor supply and additively separable utility over consumption and leisure. The model is specified
in equations (3.1)-(3.9) in the text. The elasticity of labor supply &, is assumed to equal one. The long
dashed line gives the response of consumption, the short dashed line gives the response of the capital stock,
and the solid line gives the response of output.
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Figure 5: Initial Output Response to a Government Consumption Shock
‘With Variable Labor Supply and Separable Utility

The contours show the elasticity of output with respect to government consumption in a model with vari-
able labor supply and additively separable utility over consumption and leisure. The model is specified in
equations (4.1)-(4.6) in the text. The elasticity is plotted for different values of the parameters v and ¢,
where v is a function of the elasticity of labor supply defined in equation (3.9), and ¢ is the persistence of
government consumption shocks. The contour lines are 0.04 apart. Note that the smallest value of ¢ shown
is 0.8, and that when » = 0 the elasticity is zero for any value of ¢.





