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ABSTRACT

When experimental designs are infeasible, researchers must resort to the use of
observational data from surveys, censuses, and administrative records. Because
assignment to the independent variables of observational data is usually nonran-
dom, the challenge of estimating causal effects with observational data can be
formidable. In this chapter, we review the large literature produced primarily by
statisticians and econometricians in the past two decades on the estimation of
causal effects from observational data. We first review the now widely accepted
counterfactual framework for the modeling of causal effects. After examining
estimators, both old and new, that can be used to estimate causal effects from
cross-sectional data, we present estimators that exploit the additional informa-
tion furnished by longitudinal data. Because of the size and technical nature of
the literature, we cannot offer a fully detailed and comprehensive presentation.
Instead, we present only the main features of methods that are accessible and
potentially of use to quantitatively oriented sociologists.

INTRODUCTION

Most quantitative empirical analyses are motivated by the desire to estimate
the causal effect of an independent variable on a dependent variable. Although
the randomized experiment is the most powerful design for this task, in most
social science research done outside of psychology, experimental designs are
infeasible. Social experiments are often too expensive and may require the
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unethical coercion of subjects. Subjects may be unwilling to follow the experi-
mental protocol, and the treatment of interest may not be directly manipulable.
For example, without considerable power and a total absence of conscience,
a researcher could not randomly assign individuals to different levels of edu-
cational attainment in order to assess the effect of education on earnings. For
these reasons, sociologists, economists, and political scientists must rely on
what is now known as observational data—data that have been generated by
something other than a randomized experiment—typically surveys, censuses,
or administrative records.

The problems of using observational data to make causal inferences are
considerable (Lieberson 1985, LaLonde 1986). In the past two decades, how-
ever, statisticians (e.g. Rubin, Rosenbaum) and econometricians (e.g. Heckman,
Manski) have made considerable progress in clarifying the issues involved when
observational data are used to estimate causal effects. In some cases, this hard-
won clarity has permitted the development of new and more powerful methods
of analysis. This line of research is distinct from the work of sociologists and
others who in the 1970s and 1980s developed path analysis and its general-
ization, covariance structure analysis. Despite their differences, both areas of
research are often labeled causal analysis.

Statisticians and econometricians have adopted a shared conceptual frame-
work that can be used to evaluate the appropriateness of different estimators in
specific circumstances. This framework, to be described below, also clarifies
the properties of estimators that are needed to obtain consistent estimates of
causal effects in particular applications.

Our chapter provides an overview of the work that has been done by statis-
ticians and econometricians on causal analysis. We hope it will provide the
reader with a basic appreciation of the conceptual advances that have been
made and some of the methods that are now available for estimating causal
effects. Because the literature is massive and often technical, we do not at-
tempt to be comprehensive. Rather, we present material that we believe is most
accessible and useful to practicing researchers.

As is typical of the literature we are reviewing, we use the language of exper-
iments in describing these methods. This usage is an indication of the advances
that have been made; we now have a conceptual framework that allows us to use
the traditional experimental language and perspective to discuss and analyze
observational data. Throughout this chapter, we write of individuals who are
subject to treatment, and we describe individuals as having been assigned to ei-
ther a treatment or a control group. The reader, however, should not assume that
the thinking and methods we review apply only to the limited set of situations in
which it is strictly proper to talk about treatment and control groups. In almost
any situation where a researcher attempts to estimate a causal effect, the analysis
can be described, at least in terms of a thought experiment, as an experiment.
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The chapter consists of three major sections. The first presents the conceptual
framework and problems associated with using observational data to estimate
causal effects. It presents the counterfactual account of causality and its associ-
ated definition of a causal effect. We also discuss the basic problems that arise
when using observational data to estimate a causal effect, and we show that
there are two distinct sources of possible bias: Outcomes for the treatment and
control groups may differ even in the absence of treatment; and the potential
effect of the treatment may differ for the treatment and control groups. We then
present a general framework for analyzing how assignment to the treatment
group is related to the estimation of a causal effect.

The second section examines cross-sectional methods for estimating causal
effects. It discusses the bounds that data place on the permissible range of a
causal effect; it also discusses the use of control variables to eliminate potential
differences between the treatment and control groups that are related to the
outcome. We review standard regression and matching approaches and discuss
methods that condition on the likelihood of being assigned to the treatment.
These latter methods include the regression discontinuity design, propensity
score techniques, and dummy endogenous variable models. This section also
discusses the use of instrumental variables to estimate causal effects, presenting
their development as a method to identify parameters in simultaneous equation
models and reviewing current research on what instrumental variables identify
in the presence of different types of treatment-effect heterogeneity.

The third section discusses methods for estimating causal effects from lon-
gitudinal data. We present the interrupted time-series design, then use a rela-
tively general model specification for the structure of unobservables to compare
change-score analysis, differential linear growth rate models, and the analysis
of covariance. The key lesson here is that no one method is appropriate for all
cases. This section also discusses how to use data to help determine which
method is appropriate in a particular application.

The paper concludes with a discussion of the general importance of the
methods reviewed for improving the quality of quantitative empirical research
in sociology. We have more powerful methods available, but more important,
we have a framework for examining the plausibility of assumptions behind
different methods and thus a way of analyzing the quality and limitations of
particular empirical estimates.

BASIC CONCEPTUAL FRAMEWORK

In the past two decades, statisticians and econometricians have adopted a com-
mon conceptual framework for thinking about the estimation of causal effects—
the counterfactual account of causality. The usefulness of the counterfactual
framework is threefold. It provides an explicit framework for understanding
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(a) the limitations of observational data, (b) how the treatment assignment pro-
cess may be related to the outcome of interest, and (c) the type of information
that is provided by the data in the absence of any assumptions.

The Counterfactual Account Of Causality
Discussions of causality in the social sciences often degenerate into fruitless
philosophical digressions (e.g., see McKim & Turner 1997, Singer & Marini
1987). In contrast, the development of the counterfactual definition of causality
has yielded practical value. With its origins in the early work on experimen-
tal designs by Fisher (1935), Neyman (1923, 1935), Cochran & Cox (1950),
Kempthorne (1952), and Cox (1958a,b), the counterfactual framework has been
formalized and extended to nonexperimental designs in a series of papers by
Rubin (1974, 1977, 1978, 1980, 1981, 1986, 1990; see also Pratt & Schlaifer
1984). However, it also has roots in the economics literature (Roy 1951, Quandt
1972). The counterfactual account has provided a conceptual and notational
framework for analyzing problems of causality that is now dominant in both
statistics and econometrics. Holland (1986), Pratt & Schlaifer (1988), and Sobel
(1995, 1996) provide detailedexegeses of this work.

Let Y be an interval level measure of an outcome of interest, either contin-
uous or discrete or a mixture of the two. Examples are earnings, mathematics
aptitude, educational attainment, employment status, and age at death. As-
sume that individuals can be exposed to only one of two alternative states but
that each individual could a priori be exposed to either state. Each state is
characterized by a distinct set of conditions, exposure to which potentially af-
fects the outcome of interestY. We refer to the two states as treatment and
control.1

Assume that one group of individuals is assigned to be observed in the treat-
ment state and that a second group of individuals is assigned to be observed
in the control state. The key assumption of the counterfactual framework is
that individuals assigned to these treatment and control groups have potential
outcomes in both states: the one in which they are observed and the one in
which they are not observed. In other words, each individual in the treatment
group has an observable outcome in the treatment state and an unobservable
counterfactual outcome in the control state. Likewise, each individual in the
control group has an observable outcome in the control state and an unob-
servable counterfactual outcome in the treatment state. Thus, the framework
asserts that individuals have potential outcomes in all states, even though they
can actually only be observed in one state.

1Any two states to which individuals could be assigned or could choose to enter can be considered
treatment and control. The potential outcome framework also can be generalized to any number of
alternative sets of treatment conditions.
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Formalizing this conceptualization, the potential outcomes of each individ-
ual unit of analysis are defined as the true values ofY that would result from
exposure to the alternative sets of conditions that characterize the two states
named treatment and control. More formally, letYt

i andYc
i equal the potential

outcomes for each individuali that would result from exposure to the treatment
and control conditions. We assume that both potential outcomes exist in the-
ory for every individual, although at most only one potential outcome can be
observed for each individual.

The causal effect of the treatment on the outcome for each individuali is
defined as the difference between the two potential outcomes in the treatment
and control states:

δi = Yt
i − Yc

i . 1.

Because bothYt
i and Yc

i exist in theory, we can define this individual-level
causal effect. However, as detailed below, because we cannot observe bothYt

i
andYc

i for any single individual, we cannot observe or thus directly calculate
any individual-level causal effects.

First note that this definition of a causal effect, while intuitively appealing,
makes several assumptions.2 The most crucial assumption among these is that
a change in treatment status of any individual does not affect the potential out-
comes of other individuals. Known as the stable unit treatment value assumption
(SUTVA) (see Rubin 1980, 1986, 1990), this assumption is most commonly
violated when there is interference across treatments (i.e. when there are inter-
actions between treatments). The classical example is the analysis of treatment
effects in agricultural research—rain that surreptitiously carries fertilizer from
a treated plot to an adjacent untreated plot. Aside from simple interference,
the SUTVA may also be violated in other situations, especially when “macro
effects” of the treatment alter potential outcomes (see Garfinkel et al. 1992,
Heckman et al. 1998). Consider the case where a large job training program is
offered in a metropolitan area with a competitive labor market. As the supply of
graduates from the program increases, the wage that employers will be willing
to pay graduates of the program will decrease. When such complex effects are
present, the powerful simplicity of the counterfactual framework vanishes.

Why can we not observe and calculate individual-level causal effects? In
order to observe values ofY, we must assign individuals to be observed in
one of the two states. To formalize this observation rule, defineTi as a dummy
variable equal to 1 if an individual is assigned to the treatment group and equal

2One important assumption that we do not discuss is that the treatment must be manipulable.
For example, as Holland (1986) argued, it makes no sense to talk about the causal effect of gender
or any other nonmanipulable individual trait alone. One must explicitly model the manipulable
mechanism that generates an apparent causal effect of a nonmanipulable attribute.
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to 0 if an individual is assigned to the control group. The observedYi are
equal toYi = Yt

i whenTi = 1 andYi = Yc
i whenTi = 0. As these definitions

reveal, causal inference can be seen as a problem of missing data. The observed
Yi do not contain enough information to identify individual-level causal effects
because individuals cannot be observed under both the treatment and the control
conditions simultaneously.3

The main value of this counterfactual framework is that causal inference can
be summarized by a single question: Given that theδi cannot be calculated for
any individual and therefore thatYt

i andYc
i can be observed only on mutually

exclusive subsets of the population, what can be inferred about the distribution
of theδi from an analysis ofYi andTi ?

Average Effects And The Standard Estimator
Most of the literature has focused on the estimation of the average causal effect
for a population. LetYt be the average value ofYt

i for all individuals if they are
exposed to the treatment, and letYc be the average value ofYc

i for all individuals
if they are exposed to the control. More formally,Yt is the expected value of
Yt

i in the population, andYc is the expected value ofYc
i in the population. The

average treatment effect in the population is

δ = Yt − Yc 2.

or, again more formally, the expected value of the difference betweenYt and
Yc in the population.4

BecauseYt
i and Yc

i are unobservable (or missing) on mutually exclusive
subsets of the population,Yt andYc cannot both be calculated. However,Yt and
Yc can potentially be estimated, although not very well or without considerable
difficulty except in special circumstances. Most methods discussed in this paper
attempt to construct from observational data consistent estimates ofYt andYc

in order to obtain a consistent estimate ofδ.
For example, consider the most common estimator, which we call the stan-

dard estimator for the average treatment effect. LetYt
i∈T be the expected value

of Yt
i for all individuals in the population who would be assigned to the treat-

ment group for observation, and letYc
i∈C be the expected value ofYc

i for all

3When one has longitudinal data, an effective strategy may be to use a person as his own control.
This strategy only works if age does not otherwise affect the outcome and there are no exogenous
period-specific effects. If change with age or period effects is possible, some type of adjustment is
needed. We discuss methods that do this in the section on longitudinal analysis.

4In many presentations of the counterfactual framework, formalE[.] notation is used. The
average treatment effect of Equation 2 is written asE[δ] = E[Yt −Yc]. The standard estimator in
Equation 3 is considered an attempt to estimateE[Yt | T = 1]− E[Yc | T = 0].
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individuals in the population who would be assigned to the control group for
observation. Both of these quantities can be calculated and thus effectively esti-
mated by their sample analogs, the mean ofYi for those actually assigned to the
treatment group and the mean ofYi for those actually assigned to the control
group. The standard estimator for the average treatment effect is the difference
between these two estimated means:

δ̂ = Ŷt
i∈T − Ŷc

i∈C, 3.

where the hats on all three terms signify that they are the sample analog esti-
mators (sample means) of the expectations defined above.

Note the two differences between Equations 2 and 3. Equation 2 is defined
for the population, whereas Equation 3 represents an estimator that can be
applied to a sample drawn from the population. All individuals in the population
contribute to the three terms in Equation 2. However, each sampled individual
can be used only once to estimate eitherYt

i∈T or Yc
i∈C. As a result, the way

in which individuals are assigned (or assign themselves) to the treatment and
control groups determines how effectively the standard estimatorδ̂ estimates
the true average treatment effectδ. As we demonstrate, many estimators are
extensions of this standard estimator that seek to eliminate the bias resulting
from inherent differences between the treatment and control groups.

To understand when the standard estimator consistently estimates the true
average treatment effect for the population, letYt

i∈C andYc
i∈T be defined analo-

gously toYt
i∈T andYc

i∈C above, and letπ equal the proportion of the population
that would be assigned to the treatment group. Decompose the average treat-
ment effect in the population into a weighted average of the average treatment
effect for those in the treatment group and the average treatment effect for those
in the control group and then decompose the resulting terms into differences in
average potential outcomes:

δ = πδi∈T + (1− π)δi∈C

= π(Yt
i∈T − Yc

i∈T

)+ (1− π)(Yt
i∈C− Yc

i∈C

)
= [πYt

i∈T + (1− π)Yt
i∈C

]− [πYc
i∈T + (1− π)Yc

i∈C

]
= Yt − Yc.

4.

The quantitiesYt
i∈C and Yc

i∈T that appear explicitly in the second and third
lines of Equation 4 cannot be directly calculated because they are based on
unobservable values ofY. If we assume thatYt

i∈T = Yt
i∈C andYc

i∈C = Yc
i∈T,
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then through substitution starting in the third line of (4):

δ = [πYt
i∈T + (1− π)Yt

i∈C

]− [πYc
i∈T + (1− π)Yc

i∈C

]
= [πYt

i∈T + (1− π)Yt
i∈T

]− [πYc
i∈C+ (1− π)Yc

i∈C

]
= Yt

i∈T − Yc
i∈C.

5.

Thus, a sufficient condition for the standard estimator to consistently estimate
the true average treatment effect in the population is thatYt

i∈T = Yt
i∈C and

Yc
i∈C = Yc

i∈T. In this situation, the average outcome under the treatment and
the average outcome under the control do not differ between the treatment and
control groups. In order to satisfy these equality conditions, a sufficient condi-
tion is that treatment assignmentTi be uncorrelated with the potential outcome
distributions ofYt

i andYc
i . The principal way to achieve this uncorrelatedness

is through random assignment to the treatment.
By definition, observational data are data that have not been generated by

an explicit randomization scheme. In most cases, treatment assignment will
be correlated with the potential outcome variables. As a result, the standard
estimator will usually yield inconsistent estimates of the true average treatment
effect in the population when applied to observational data.

An important caveat is that the average treatment effectδ is not always the
quantity of theoretical interest. Heckman (1992, 1996, 1997) and Heckman et
al. (1997b) have argued that in a variety of policy contexts, it is the average
treatment effect for the treated that is of substantive interest. The essence of
their argument is that in deciding whether a policy is beneficial, our interest is
not whether on average the program is beneficial for all individuals but whether
it is beneficial for those individuals who are either assigned or who would assign
themselves to the treatment.

For example, if we are interested in determining whether a particular voca-
tional education program in a high school is beneficial, it makes little sense to
ask whether its effect is positive for all high school students. For college-bound
students, the effects of the program may be negative. Even for non–college-
bound students, the program may have positive effects only for some students.
To the degree that students can estimate their likely benefit of enrolling in the
program before actually doing so, we would expect that those students for whom
the expected benefits are positive will be more likely to enroll in the program.
The appropriate policy question is whether the program effects for this group
of “self-selecting” students are positive and sufficiently large to justify the pro-
gram costs. The policy–relevant piece of information in need of estimation is
the size of the treatment effect for the treated. The average treatment effect for
all students in the school is of little or no policy relevance.
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As discussed below, it is also the case that in many contexts the average
treatment effect is not identified separately from the average treatment effect
for the treated. In most circumstances, there is simply no information available
on how those in the control group would have reacted if they had instead received
the treatment. This is the basis for an important insight into the potential biases
of the standard estimator.

Define the baseline difference between the treatment and control groups as
(Yc

i∈T − Yc
i∈C). This quantity can be thought of as the difference in outcomes

between the treatment and control groups in the absence of treatment. With a lit-
tle algebra, it can be shown that Standard estimator= True average treatment
effect+ (Difference in baselineY) + (1−π ) (Difference in the average treat-
ment effect for the treatment and control groups), or in mathematical notation:

Yt
i∈T − Yc

i∈C = δ +
(
Yc

i∈T − Yc
i∈C

)+ (1− π)(δi∈T − δi∈C). 6.

Equation 6 shows the two possible sources of bias in the standard estimator.
The baseline difference, (Yc

i∈T − Yc
i∈C), is equal to the difference between the

treatment and control groups in the absence of treatment. The second source of
bias (δi∈T − δi∈C), the difference in the treatment effect for those in the treat-
ment and control groups, is often not considered, even though it is likely to be
present when there are recognized incentives for individuals (or their agents) to
select into the treatment group. Instead, many researchers (or, more accurately,
the methods that they use) simply assume that the treatment effect is constant in
the population, even when common sense dictates that the assumption is clearly
implausible (Heckman 1997, Heckman et al. 1997b, Heckman & Robb 1985,
1986, 1988; JJ Heckman, unpublished paper).

To clarify this decomposition, consider a substantive example—the effect
of education on an individual’s mental ability. Assume that the treatment is
college attendance. After administering a test to a group of young adults, we
find that individuals who have attended college score higher than individuals
who have not attended college. There are three possible reasons that we might
observe this finding. First, attending college might make individuals smarter
on average. This effect is the average treatment effect, represented byδ in
Equation 6. Second, individuals who attend college might have been smarter
in the first place. This source of bias is the baseline difference represented by
(Yc

i∈T−Yc
i∈C) in Equation 6. Third, the mental ability of those who attend college

may increase more than would the mental ability of those who did not attend
college had they in fact attended college. This source of bias is the differential
effect of treatment, represented by (δi∈T − δi∈C) in Equation 6.

To further clarify this last term in the decomposition, assume that those
who have attended college and those who have not attended college had the
same (average) initial mental ability. Assume further that only those who then
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attended college would have benefitted from doing so. If the treatment and
control groups are of equal size, the standard estimator would overestimate
the true average treatment effect by a factor of two. In this example, and in
many other situations, the standard estimator yields a consistent estimate of the
average treatment effect for the treated, not the average treatment effect for the
entire population.

Equation 6 specifies the two sources of bias that need to be eliminated from
estimates of causal effects from observational data. The remainder of the paper
examines how this goal can be accomplished. Most of the discussion focuses
on the elimination of the baseline difference (Yc

i∈T − Yc
i∈C). Fewer techniques

are available to adjust for the differential treatment effects component of the
bias (δi∈T − δi∈C).

Treatment Assignment Model
To proceed further, we need to develop a basic model for the assignment mech-
anism that generates the treatment and control groups. Our presentation of the
assignment model follows Heckman & Robb (1985, 1986, 1988). Above, we
specified that each individual has two potential outcomes,Yt

i andYc
i , corre-

sponding to potential exposure to the treatment and control. We noted that, in
general, for any one individual only one of these two potential outcomes can
be observed.

To develop an assignment model, we first write the potential outcomesYt
i

andYc
i as deviations from their means:

Yc
i = Yc+ uc

i ,

Yt
i = Yt + ut

i .

Combining these two expressions with the observation rule given by the defi-
nition of the treatment assignment dummy variableTi , the equation for anyYi

is

Yi = Yc+ Ti (Y
t − Yc)+ uc

i + Ti
(
ut

i − uc
i

)
= Yc+ Ti δ + ui ,

7.

whereui = uc
i + Ti (ut

i − uc
i ). Equation 7 is known as the structural equa-

tion. This equation provides another way of thinking about the problem of
consistently estimating the treatment effect. For the standard estimator—which
is equivalent to the coefficient onTi when Equation 7 is estimated by ordinary
least squares (OLS)—to be a consistent estimate of the true average treatment
effect,Ti andui must be uncorrelated.

Consider a supplemental equation, known as the assignment or selection
equation, that determinesTi and is written in what is known as an index structure.
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Let T∗i be a latent continuous variable:

T∗i = Zi a+ vi , 8.

whereTi = 1 if T∗i ≥ 0 andTi = 0 if T∗i < 0, and whereZi is a row vector
of values on various exogenous observed variables that affect the assignment
process,a is a vector of parameters that typically needs to be estimated, andvi

is an error term that captures unobserved factors that affect assignment.
Equations 7 and 8 are general. Additional covariatesXi can be included in

Equation 7, as shown below in Equation 10, andXi andZi may have variables in
common. BothZi andvi may be functions of an individual’s potential outcome
after exposure to the treatment(Yt

i ), an individual’s potential outcome after
exposure to the control (Yc

i ), or any function of the two potential outcomes,
such as their difference(Yt

i − Yc
i ).

We can distinguish between two different ways thatTi and the error term
in Equation 7,ui , can be correlated (Heckman & Robb 1986, 1988; Heckman
& Hotz 1989). WhenZi andui are correlated, butui andvi are uncorrelated,
we have “selection on the observables.” In this case, some observed set of
factors inZi is related toYc

i and/orYt
i . This form of selection results in data

that are sometimes characterized as having ignorable treatment assignment—
the probability of being assigned to the treatment condition is only a function
of the observed variables (Rosenbaum & Rubin 1983, Rosenbaum 1984a,b).
The second case is whereui is correlated withvi , resulting in “selection on the
unobservables.” Known as nonignorable treatment assignment, in this case the
probability of assignment is a function of unobserved variables (and possibly
observed variables as well). In the following sections, we examine methods that
attempt to deal with both types of selection bias. Not surprisingly, remedies
for bias from selection on the observables are easier to implement than are
remedies for selection on the unobservables.

CROSS-SECTIONAL METHODS

Bounds For Treatment Effects
In a series of articles that have culminated in a book, Manski has investigated
the bounds that are consistent with the data when weak assumptions alone are
maintained (Manski 1995; see also Robins 1989). In this section, we point to
the fact that in some circumstances the data, without any auxiliary assumptions,
provide some information on the size of the treatment effect. Our discussion
follows Manski (1994, 1995).

To see that the data can potentially bound a treatment effect, consider a case
with a dichotomous zero-one outcome. The average treatment effect,δ, can-
not exceed 1. The maximum treatment effect occurs whenYt

i∈T = Yt
i∈C = 1
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Table 1 Hypothetical example illustrating the calculation of
bounds on treatment effects

Mean Outcome

Groups Yc
i Yt

i

Observed mean outcomesa

Control Yc
i∈C = 0.3 Yt

i∈C =?

Treatment Yc
i∈T =? Yt

i∈T = 0.7

Largest possible treatment effectb

Control Yc
i∈C = 0.3 Yt

i∈C = 1

Treatment Yc
i∈T = 0 Yt

i∈T = 0.7

Small possible treatment effectc

Control Yc
i∈C = 0.3 Yt

i∈C = 0

Treatment Yc
i∈T = 1 Yt

i∈T = 0.7

aStandard estimator of treatment effect is 0.4.
bImplied upper bound of average treatment effect is 0.7.
cImplied lower bound of average treatment effect is−0.3.

andYc
i∈T = Yc

i∈C = 0. Similarly, the average treatment effect cannot be less
than−1. The minimum treatment effect occurs whenYt

i∈T = Yt
i∈C = 0 and

Yc
i∈T = Yc

i∈C = 1. Thus,δ is contained in an interval of length 2; more specifi-
cally, δ ∈ [−1, 1].

Now assume thatYt
i∈T = 0.7 andYc

i∈C = 0.3, as is shown in the hypothetical
example in Table 1. Both quantities could be estimated from the data, and we
do not consider the problem of sampling error. The standard estimator for the
treatment effect in this case isYt

i∈T − Yc
i∈C = 0.4. The largest possible treat-

ment effect (Table 1) indicates the values ofYt
i∈C andYc

i∈T that would produce
the largest estimate ofδ, 0.7. The smallest possible treatment effect (Table 1)
indicates the values that would produce the smallest estimate ofδ,−0.3. Thus,
the constraints implied by the data guarantee thatδ ∈ [−0.3, 0.7], an interval
of length 1, which is half the length of the maximum interval calculated before
values forYt

i∈T andYc
i∈C were obtained from the data. Manski calls this interval

the no-assumptions bound. Although this bound is still wide, it has substan-
tially reduced our uncertainly about the range ofδ. Manski (1995) shows that
with a zero-one outcome variable, the no-assumptions bound will always be of
length 1.

In general (see Manski 1994), the treatment effect will only be bounded when
the outcome variable itself is bounded or when one is analyzing a function of
the distribution of the dependent variable that is bounded. BecauseYt

i∈C and
Yc

i∈T are both unobserved, in the absence of any restriction they can take on any
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value from minus infinity to plus infinity. Thus, in the absence of any known
restriction onYt

i∈C andYc
i∈T, δ can take on any value from minus infinity to

plus infinity.
The goal of Manski’s research is to analyze how additional assumptions nar-

row the bound for the estimated treatment effect while recognizing that the
more assumptions an analysis entails, the less credible it is. He argues that
researchers should first attempt to learn as much as possible about a treatment
effect maintaining the weakest possible assumptions. Manski shows that weak
and often plausible assumptions can substantially narrow the no-assumptions
bound. For example, in many situations it may be reasonable to assume that
the treatment effect cannot be negative (or alternatively positive) for any indi-
vidual. Manski (1997) labels this assumption the monotone treatment response
assumption. Under this assumption, the lower bound for the treatment effect
is 0. Thus, for the example presented in Table 1, the bound for the treatment
effect would be [0, 0.7].

Another possible assumption is that those who actually receive the treatment
have higher average outcomes under potential exposure to both the treatment
and control (i.e.Yt

i∈T ≥ Yt
i∈C andYc

i∈T ≥ Yc
i∈C). Manski & Pepper (1998)

present this monotone treatment selection assumption with the example of the
effect of education on wages. This case is equivalent to assuming that individu-
als with higher educational attainments would on average receive higher wages
than would individuals with lower educational attainments, even if counterfac-
tually the two groups had the same levels of educational attainment. For the
example presented in Table 1, the monotone treatment selection assumption
implies that the standard estimator would be an upper bound for the average
treatment effect. Therefore, if we invoke the monotone treatment response and
selection assumptions together, the bound on the treatment effect is [0, 0.4],
which is considerably more narrow than the no-assumptions bound. Applica-
tions of Manski’s approach can be found in Manski & Nagin (1998) and in
Manski et al. (1992). We discuss Manski’s work further below.

Regression Methods
The basic strategy behind regression analysis and related methods is to find
a set of control variables that can be included in the regression equation in
order to remove the correlation between the treatment variable and the error
term. In order to understand the relationship between regression and other
cross-sectional methods, it is worth formalizing this idea. Assume that we
are interested in estimating Equation 8 above and that we believe the treatment
indicator,Ti , is correlated with the error term,ui , because treatment assignment
is not random. We could attempt to deal with this problem by controlling for
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various observedXs, estimating a regression equation of the form

Yi = b0+ Ti δ + Xi b+ wi . 9.

Estimating Equation 9 by OLS is equivalent to following the double residual
regression procedure (Malinvaud 1970, Goldberger 1991): (a) RegressYi on
Xi and calculateY∗i = Yi − Ŷi ; (b) regressTi on Xi and calculateT∗i = Ti − T̂i ;
and (c) estimateY∗i = T∗i δ + w∗i , wherew∗i = wi − Xi b. This three step
procedure will yield the same estimate ofδ as OLS on Equation 9. Thus, OLS
regression is equivalent to estimating the relationship between residualized
versions ofYi andTi from which their common dependence on other variables
has been subtracted out.

A number of techniques, all falling under what Heckman & Robb (1985) label
control function estimators, can be understood as variants of this strategy. We
discuss only a few such methods where a control function (i.e. some function
of one or more variables) is entered into a regression equation in an attempt to
eliminate the correlation between the treatment indicator variable and the error
term. As is discussed below, instrumental variable techniques are based on a
strategy that is the mirror image of the control function approach.

ANALYSIS OF COVARIANCE AND MATCHING The analysis of covariance is
probably the most common technique used to adjust for possible differences
between treatment and control groups. Although it was originally developed
to adjust for chance differences in observedXs across treatment and control
groups in randomized designs, it is now routinely used to attempt to control
for differences between treatment and control groups in observational studies.
Technically, the analysis of covariance is just a specific application of regression
analysis. We consider a model somewhat more general than the standard model.

If we had a large data set and believed that eitherYc
i or δi varied as a function

of the Xs, then one approach would be to stratify the sample on theXs and
carry out the analysis separately within each stratum. We could then estimate
separate average treatment effects,δx, for each stratum. If a single treatment
effect estimate was desired, we could then average these estimated effects across
the strata, weighting each estimated treatment effect by the relative size of its
stratum.

An analogous set of analyses could be mounted in a regression framework.
Let the potential outcomesYt

i andYc
i depend on some set of variablesXi :

Yc
i = bc

0+ Xi b+ ec
i 10a.

and

Yt
i = bt

0+ Xi (b+ c)+ et
i . 10b.
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The observed data can be written as a combination of these two equations:

Yi = bc
0+ Ti

(
bt

0− bc
0

)+ Xi b+ Ti (Xi c)+ ei . 11.

For individuals for whomXi = 0, the treatment effect in Equation 11 is equal to
(bt

0 − bc
0). TheXi b term represents how the baseline level ofYi , theYc

i , varies
with the observedXi . The hope is that by including theXi b term, we eliminate
the baseline difference between the treatment and control groups, (Yc

i∈T−Yc
i∈C).

The Xi c term represents how the treatment effect,δi , varies withXi . This
term is not typically included in a standard analysis of covariance model. The
hope is that by including theXi c term, we eliminate the difference in the
treatment effects between the treatment and control groups,(δi∈T − δi∈C). This
may often be an unrealistic assumption, because it implies that the researcher
can forecast an individual’s treatment effect just as accurately as the individual
himself can. If individuals have pertinent information that is unavailable to the
researcher (i.e. information that is not contained in theXs), then it is likely
that there will be differences in the treatment effects between the treatment and
control groups that are not captured by observedXs (Heckman 1989, 1992,
1996, 1997). Note that the treatment effect in Equation 11 is equal to(bt

0 −
bc

0)+ Xi c. Obviously, this is not the treatment effect for the entire population
but rather for individuals with characteristicsXi .

One problem with the regression approach is that it imposes a linearity con-
straint. Nonlinear terms can be added, but it is often difficult to know how the
nonlinearity should be approximated. As White (1981) has shown, polynomial
and related expansions may inadequately model nonlinearity and lead to biased
estimates.

An alternative technique that avoids this problem is matching. Common in
biomedical research but not in social scientific research, matching is closely
related to the stratification procedure described above. Smith (1997) provides
an excellent introduction for social scientists. Matching has several advantages.
First, it makes no assumption about the functional form of the dependence
between the outcome of interest and the otherXs. Second, matching ensures
that only those portions of the distribution of theXs in the observed data that
contain individuals in both the treatment and control groups enter the estimation
of the treatment effect.5 Third, because fewer parameters are estimated than

5In two important empirical papers, Heckman et al (1997, 1998a) show that the bias due to
selection on the unobservables, although significant and large relative to the size of the treatment
effect, is small relative to the bias that results from having different ranges ofXs for the treatment
and control groups and different distributions of theXs across their common range. Matching
solves both of the latter problems, although the average effect is not for the total population but
only for that portion of the population where the treatment and control groups have commonX
values.
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in a regression model, matching is more efficient. Efficiency can be important
with small samples. A major problem with the traditional matching approach
is that unless an enormous sample of data is available and there are more than a
few Xs, it may be difficult to find both treatment and control cases that match.
[See below for the ingenious solution to this problem developed by Rosenbaum
& Rubin (1983)].

REGRESSION DISCONTINUITY DESIGN A key limitation of the analysis of co-
variance and related designs is that they do not directly conceptualize how the
Xs are related to the likelihood of being assigned to the treatment group. Rather,
the approach is to model the determinants ofYi , thereby includingXs that are
believed to affect the outcome and that may also be associated with assign-
ment to the treatment group. By including many determinants ofYi , one hopes
to eliminate all differences between the treatment and control groups that are
related to the outcome but that are not due to the treatment itself.

The philosophy behind regression discontinuity designs and propensity score
methods is quite different from the strategy behind analysis of covariance.
The strategy is to attempt to control for observed variables,Zi , that affect
whether an individual is assigned to the treatment group or the control group. By
controlling forZs that affect the treatment assignment, one hopes to eliminate
any correlation betweenTi andui in Equation 7.

The regression discontinuity design (Cook & Campbell 1979, Judd & Kenny
1981, Marcantonio & Cook 1994) is the simplest way of relating an observed
variable,Zi , to the assignment to a treatment group. The basic strategy is to find
aZi that is related to the assignment of treatment in a sharply discontinuous way,
as in Figure 1. The jump on the vertical axis at the point of treatment on the hori-
zontal axis is the estimate of the main treatment effect. In Figure 1, the treatment
effect is even more complex. The treatment also affects the slope of the rela-
tionship betweenZ andY. Thus, the size of the treatment effect varies with Z.

The strength of the regression discontinuity design is determined by the
accuracy of the estimate of the conditional relationship betweenY and Z in
the absence of treatment over the range ofZ that receives the treatment. If
the relationship betweenZ andY is nonlinear, this can be highly problematic.
Figure 2 provides an example. As can be seen from Figure 2, if we poorly
estimate the values ofY that would be observed in the absence of treatment,
we poorly estimate the effect of the treatment. The problem here is directly
related to matching. One of the strengths of matching is that it ensures that we
have both control and treatment cases over the range ofZ that is relevant to the
analysis. In the regression discontinuity design, the opposite is the case. There
are no values ofZ that contain both treatment and control cases. The power of
the design hinges solely on the ability to extrapolate accurately.
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Figure 1 The regression discontinuity design. Note: If Z ≥ k, the individual receives the treat-
ment. If Z < k, the individual does not receive the treatment. (Solid line) Observed outcome;
(dashed  line) the assumed outcome in the absence of treatment.

Figure 2 The regression discontinuity design with unrecognized nonlinearity.
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PROPENSITY SCORES The essence of the regression discontinuity design is the
direct tie between the treatment assignment and an observed variableZ. The
propensity score method (Rosenbaum & Rubin 1983, 1984, 1985; Rosenbaum
1984a,b, 1995; Rubin 1991; Rubin & Thomas 1996) provides a much more gen-
eral approach that is nonetheless based on the same strategy as the regression
discontinuity design. The propensity score for an individual is simply the prob-
ability that an individual, with a set of observed characteristicsZi , is assigned
to the treatment group instead of the control group, or

P(Zi ) = Prob(T = 1 | Zi ). 12.

If treatment assignment is purely a function of the observedZs (or in the lan-
guage used above, selection is only on the observables), then conditional on
the Zs, assignment is random with respect to the outcomes.6 The importance
of this result is that the analysis can then safely proceed after either matching
or stratifying on the propensity score,P(Zi ). In general, the propensity score
will not be known but can be estimated using standard methods such as a logit
or probit model.

Rosenbaum & Rubin (1983) show that there is nothing to be gained by
matching (or stratifying) in a more refined way on the variables inZ than on
just the propensity scores alone that are a function of the variables inZ. The
propensity score contains all the information that is needed to create a balanced
design—a design where the treatment and control groups do not differ with
respect toZ in any way that is also related to treatment assignmentTi . This
fact is of enormous importance because it means that matching can be done on
a single dimension. As a result, even when there are many variables inZ that
determine treatment assignment, matching is still feasible. Stratification on the
propensity score is typically feasible only with large data sets.

A variety of matching schemes are possible. Nearest available matching on
the estimated propensity score is the most common and one of the simplest (see
Rosenbaum & Rubin 1985). First, the propensity scores for all individuals are
estimated with a standard logit or probit model. Individuals in the treatment
are then listed in random order.7 The first treatment case is selected, and its
propensity score is noted, and then matched to the control case with the clos-
est propensity score. Both cases are then removed from their respective lists,

6See Rosenbaum & Rubin (1983) for a proof. Heckman et al (1997, 1998b) point out that this
proof involves the true propensity score and that in most applications the propensity score needs
to be estimated. It is unclear whether this is consequential.

7In most empirical applications of matching techniques, the treatment group is considerably
smaller than the control group. This need not be the case in all applications, and if the reverse is true,
the nearest available matching scheme described here runs in the opposite direction. Treatment
cases would be matched to the smaller subset of control cases.
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the second treatment case is matched to the remaining control case with the
closest propensity score, and so on, until all treatment cases have received a
matched control case. Other matching techniques that use propensity scores
are implemented by (a) using different methods and different sets ofZs to
estimate propensity scores, (b) matching on some importantZs first and then
on propensity scores second, (c) defining the closeness of propensity scores
andZs in different ways, and/or (d ) matching multiple control cases to each
treatment case (see Rosenbaum 1995, Rubin & Thomas 1996, Smith 1997).

In principle, the propensity score can also be entered as a control variable in
a regression model in a fashion similar to the inclusion ofXi in Equation 9 or
11. Rubin & Rosenbaum have advocated matching because it implicitly deals
with the problem of nonlinearity and uses fewer degrees of freedom, making it
more efficient. To better understand the propensity-score method, it is useful,
however, to consider the approach within a regression framework.

Consider Equations 7 and 8 again. The assumption behind these two equa-
tions is thatZi directly affects treatment assignment but does not directly affect
eitherYt

i orYc
i . Zi , however, is potentially correlated withui , which may include

both observed and unobserved components. In some cases, theZi may overlap
with observed components ofui . However, we do not think of either theZi or the
propensity scoreP(Zi )as being determinants of the outcome. Thus,Zi does not
belong in the structural Equation 7.Zi determines assignment, not the outcome.

What are we doing if we enter the propensity score, or some nonlinear trans-
formation of it, into Equation like 9 or 10, as if it were anX? Heckman & Robb
(1986, 1988) have pointed out that Rosenbaum and Rubin’s propensity-score
method is one example of a control function. As discussed above, the goal when
a control variable, in this case the propensity score, is entered into Equation 7
as a regressor is to make the treatment assignment variable uncorrelated with
the new error term. Above, we noted that conditional on the propensity score,
assignment to the treatment group is random by construction. This means that
by entering the propensity score, or some nonlinear transformation of it, into
regression Equation 9, for example, we are “subtracting out” ofYi andTi that
component of their correlation that is due to the assignment process.

To understand what we are doing further, consider Figure 3 where we are
interested in estimating the effect ofTi onYi , but we are concerned thatTi and
ui might be correlated. There are two reasons they might be correlated. First,ui

andTi might be correlated because theZi or equivalently the propensity score,
P(Zi ), andTi are correlated. This is selection on the observables. Second,
there is a possibility thatTi andui are correlated becauseui andvi are corre-
lated. This is selection on the unobservables. The propensity-score method,
however, assumes that all the selection is on the observables. Thus there is no
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Figure 3 The propensity score strategy for the estimation of a treatment effect when selection is
nonrandom.

arrow connectingui andvi in Figure 3. This is a very strong assumption. It
implies that there are no common omitted variables that determine both treat-
ment assignment and the outcome. Estimation of the propensity-score model
amounts to estimating the effect ofTi on Yi where both variables have been
residualized with respect toP(Zi ). As Figure 3 indicates, conditional onZi , or
equivalently the propensity scoreP(Zi ), Ti andui are assumed to be uncorre-
lated. As a result, estimation by OLS using residualizedYi andTi consistently
estimates the treatment effect.

SELECTION MODELS Heckman’s early work in the late 1970s on selection
bias, particularly his lambda method, has received some attention in sociology.
Since that time, considerable new research has appeared, primarily in the econo-
metrics literature. Winship & Mare (1992) provide a review of much of this
literature. Heckman’s closely related work on dummy endogenous variables,
pursued at the same time as his well-known selection-bias research, has re-
ceived less attention (Heckman 1978). Although his terminology is different,
his work also addresses the estimation of treatment effects when assignment is
nonrandom.

The selection and nonrandom assignment problems are intimately connected.
In essence, the nonrandom assignment problem is two selection problems in
one. If the focus is only onYc

i , we have a selection problem becauseYc
i is only

observed for individuals who are exposed to the control. Similarly, we have
a selection problem if we focus solely onYt

i because it is only observed for
individuals who are exposed to the treatment. In both cases, we are concerned
that individuals have selected (or been selected) on the dependent variable and
thus that treatment exposure is a function ofYt

i ,Y
c
i , or some function of the

two. When this occurs, standard regression techniques yield an inconsistent
estimate of the treatment effect.

Although completed prior to most of Rubin’s and Rosenbaum’s work on
propensity scores, Heckman’s work on the dummy endogenous variable
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problem can be understood as a generalization of the propensity-score ap-
proach. It is also another example of a control function estimator.8 As with
Rosenbaum’s and Rubin’s propensity score method, Heckman focuses on the
selection Equation 9. Heckman, however, is interested in the conditional mean
of T∗i , the latent continuous variable, rather than the probability thatTi = 1.
Specifically, using the linearity of Equation 8, he is interested in

E[T∗i | Zi a, Ti ] = Zi a+ E[vi | Zi a, Ti ]. 13.

Note that the expected value here ofT∗i is a function of bothZi a andTi . This
allows Heckman to take account of selection that may be a function of both the
observablesZi and the unobservablesvi . As shown in Figure 3, we now assume
thatui andvi may be correlated. This correlation would occur if respondents
know more about their potential outcomes under the treatment and control than
the researcher and use their private information when “selecting” themselves
into the treatment or control group.

If vi is only correlated with observed components ofui (i.e. theXs in our nota-
tion), then the selection problem is easily solved. We can adjust for nonrandom
assignment by simply controlling for theseXs when estimating Equation 8, as
in the analysis of covariance and its extensions that are discussed above. How-
ever, ifvi is correlated with unobserved components ofui , a more complicated
solution is required.

If we could observevi , we could enter it into Equation 7 or 11 as a con-
trol variable, adopting a strategy similar in spirit to Rosenbaum’s and Rubin’s
propensity score method. In so doing, we would control for a function of the
assignment process in order to create residualizedYi andTi so that the residu-
alizedTi would no longer be correlated with the new error term. The brilliance
of Heckman’s research was his recognition that although one could not ob-
servevi directly, one could calculate its expected value from Equation 13 and
that this expected value ofvi could be used as a control variable (function) to
consistently estimate Equation 7.

In order to calculate the expected value ofvi in Equation 13, one needs to
make an assumption about the distribution ofvi . Typically, the distribution is
assumed to be normal. Iff (.) is the normal density function andF(.) is the
corresponding cumulative distribution function, then

E[vi | Zi a, Ti ] = f (Zi a)

[1− F(Zi a)]
when Ti = 1 14a.

8The general selection model considered by Heckman (1979) can also be estimated by maximum
likelihood or nonlinear least squares, although this involves stronger distributional assumptions than
does the lambda method discussed here (see Winship & Mare 1992 for a brief discussion).
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and

E[vi | Zi a, Ti ] = − f (Zi a)

F(Zi a)
when Ti = 0. 14b.

Equation 14a simply gives the formula for lambda in a standard sample selection
problem. In the treatment context, one would calculate a lambda for those in
the treatment condition(Ti = 1) using Equation 14a and a lambda for those in
the control equation using Equation 14b. These lambdas would then be entered
into Equation 7 or, similarly, Equation 11 as controls, analogous to the inclusion
of two moreXs. Thus, the procedure here is identical to Heckman’s lambda
method for correcting for selection bias, except that two distinct lambdas, one
for the treatment and one for the control group, are utilized.

As Heckman and many others have come to recognize, estimates from his
method can be sensitive to assumptions about the distribution ofvi . This issue
is discussed in Winship & Mare (1992). Typically, if one is estimating, for
example, Equation 11, there should beZs in the selection equation that are not
alsoXs. Recently, Heckman and his colleagues (1998a) have suggested that
one might, in the spirit of Rubin’s and Rosenbaum’s propensity score method,
match on lambda. This strategy is similar to methods proposed by Powell (1987)
and Honore & Powell (1994) for dealing with sample selection.

Instrumental Variables
When an independent variable in a regression model is endogenous (i.e. cor-
related with the error term), the traditional approach in econometrics is to use
instrumental variables. In our context, if there is some variable (or set of vari-
ables) that affects assignment but does not affect the outcome, then this variable
(or set of variables) can be used as an instrument to deal with the possibility
that assignment to treatment is nonrandom. The power of the instrumental vari-
able approach is derived solely from the assumption that the instrument only
affects the outcome indirectly through the independent variables in the model.
In general, this assumption cannot be tested.

Instrumental variable techniques were first developed by economists to esti-
mate simultaneous equation models with jointly determined supply and demand
equations from a set of competitive markets (Hood & Koopmans 1953). For
any one market, only one point is observed—the competitive equilibrium price
and quantity at the intersection of the supply and demand curves. In order to
estimate the demand curve, a variable is needed that shifts the supply curve.
One can then observe different points of intersection between the demand curve
and the shifted supply curve. Similarly, in order to estimate the supply curve, a
second variable is needed that shifts the demand curve so that one can observe
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Figure 4 The instrumental variable strategy for the estimation of a treatment effect when selection
is nonrandom.

different points of intersection between the supply curve and the shifted
demand curve. Variables that fulfill these functions are instrumental variables
for quantity supplied and quantity demanded, respectively.

TRADITIONAL INSTRUMENTAL VARIABLES In the counterfactual causality
framework outlined above, an instrument is a variable that affects assignment
but does not directly affect eitherYt

i or Yc
i . Consider the simple path model in

Figure 4, analogous to Figure 3, for the observedYi . In order to simplify the
discussion, assume thatui only contains unobserved determinants ofYi (i.e.
there are noXs). Equivalently, assume that the effects of anyXs have already
been conditioned out. In Figure 4, the potential instrumentZ∗i is assumed to be
uncorrelated withui . Contrast this with Figure 3, whereZi or more accurately
the propensity score,P(Zi ), is assumed to be (strongly) correlated withui . In
Figure 3, the strength of the correlation betweenZi andui is sufficiently strong
so thatui andvi , and thusui andTi , are assumed to be uncorrelated. Figures 3
and 4 show thatZi andZ∗i relate toui in totally opposite ways.

Ignoring scale factors, or similarly assuming that all variables have been
standardized, we can see that in Figure 4 the covariance betweenZ∗i andYi

is δa if the covariance betweenZ∗i andTi is a andδ is the direct effect ofTi

on Yi (i.e. the effect ofTi on Yi not including its indirect effect throughui ).
Thus, we can estimate the treatment effect asδ̂ = Cov(Yi , Z∗i )/Cov(Ti , Z∗i ).

One way of understanding instrumental variables is in terms of an exclu-
sion restriction—the instrumental variable only affects the outcome indirectly
through the treatment variable. In the previous section, we discussed the use of
control functions—residualizingYi andTi with respect to someXi andZi (or
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set ofXs andZs) such that the residualizedTi is no longer correlated with the
resulting error term. Instrumental variable techniques attempt to achieve the
same goal of creating a newTi that is uncorrelated with the resulting error term
but do so in the opposite way. Instead of constructing residualized variables,
instrumental variables construct predictedYi andTi where the predictedTi is
uncorrelated with the resulting error term. Analogous to steps (a) through (c)
above, instrumental variable estimates can be obtained by the following two-
stage procedure: (a) RegressYi on Z∗i and calculateŶi ; (b) regressTi on Z∗i
and calculateT̂i ; and (c) estimateŶi = T̂i δ + wi . This three-step procedure
illustrates another way of thinking about instrumental variables. We express
both our dependent variableYi and independent variableTi as functions of a
third variableZ∗i that is uncorrelated with the error term. BecauseZ∗i is un-
correlated with the error term, the new predictedTi , T̂i , is uncorrelated with
the error term. We can then regress the new predictedYi , Ŷi , on T̂i to obtain a
consistent estimate of the treatment effect.

A comparison of alternative strategies based on instrumental variables and
control functions is instructive. When using a propensity score, or more gener-
ally a control function strategy, we look for control variables, as in Figure 3, that
are highly correlated with the error term in the structural equation so that after
conditioning on these variables, the treatment indicator variable is no longer
correlated with any portion of the error term that remains. When using an
instrumental variables strategy, we look for a variable or set of variables, as in
Figure 4, that is uncorrelated with the error term. If we can then express the
outcome and treatment variables as functions of this variable or set of variables,
we can calculate the treatment effect with a simple regression using the new
variables that have been predicted from the instrument(s).

A third way of thinking about instrumental variables is as naturally occurring
randomization (Angrist et al. 1996, Heckman 1996). This perspective is easiest
to appreciate when the instrument is binary, because the standard instrumental
variable estimator takes the simple form

β̂ IV =
(Yi | Z∗i = 1)− (Yi | Z∗i = 0)

(Ti | Z∗i = 1)− (Ti | Z∗i = 0)
. 15.

known in econometrics as the Wald estimator. The numerator is the standard
estimator for the treatment effect ofZ∗i onYi , and the denominator is the standard
estimator for the treatment effect ofZ∗i onTi . If Z∗i is randomly assigned, as in
the case of a natural experiment, then both estimates are consistent. Because
we assume thatZ∗i only affectsYi throughTi , the ratio of these two effects
consistently estimates the effect ofTi onYi .
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WEAKNESSES OF CONVENTIONAL IV TECHNIQUES Instrumental variable (IV)
techniques have three main weaknesses (see Heckman 1997 for a detailed dis-
cussion). First, assumptions that exclusion restrictions are valid are generally
untestable and sometimes unbelievable. Second, the standard errors of IV es-
timates can be large if the instrument is weak or the sample size is not large.
Third, IVs only consistently estimate the true average treatment effect when
the treatment effect is constant for all individuals, an assumption that is often
unreasonable. We discuss each of these problems in turn.

Even within economics, the assumed validity of an exclusion restriction is
often controversial. Consider one of the most celebrated example of IVs—
the draft lottery number as an instrument for veteran status in estimating the
effect of military service on earnings (Angrist 1990). The case for excluding
lottery number from the earnings equation that is the primary interest of the
study is the randomization of the draft lottery (numbers assigned by day of
birth). However, differential mortality patterns may lead to sample selection
that spoils the randomization (Moffitt 1996). In addition, employers may behave
differently with respect to individuals with different lottery numbers, investing
more heavily in individuals who are less likely to be drafted. As a result, lottery
number may be a direct, though probably weak, determinant of future earnings
(Heckman 1995, 1997).

IV point estimates of treatment effects are often accompanied by wide con-
fidence intervals.9 The variance of the IV estimator for a bivariate regression
with a single instrument is

Var(β̂ IV ) =
σ 2

e Var(Z∗i )
n Cov(Ti , Z∗i )2

, 16.

wheren is the sample size andσ 2
e is the variance of the error term. The standard

error of an IV estimate is inversely proportional to both the covariance between
Ti andZ∗i and the sample size. To obtain precise estimates, either the sample
size must be unusually large and/orTi and Z∗i must be strongly correlated.
The latter case has led researchers to describe the perfect instrument as an
apparent contradiction. A valid instrument must be uncorrelated with the error
term but highly correlated with the treatment variableTi . However, becauseTi

is correlated with the error term, motivating the use of instrumental variables
in the first place, any variable that is highly correlated withTi is likely also to
be correlated with the error term, even though this is not necessarily so.

Angrist & Krueger (1991, 1992) have capitalized on the large size of census
datasets, using quarter of birth as an instrument for education when estimating

9IV estimates always have larger variance than OLS estimates. Thus, even if it is known that OLS
estimates are biased, they may be preferred to apparently unbiased IV estimates if the mean-squared
error of OLS estimates is smaller.
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the effect of education on earnings. Because of education laws regarding min-
imum ages for school entry and later voluntary dropping out, individuals born
just before and just after specific cutoff dates (e.g. January 1) are likely to differ
in their levels of educational attainment. Angrist & Krueger (1991, 1992) find
that quarter of birth is indeed (weakly) correlated with educational attainment
and assume that it has no direct effect on earnings. Because of the large size of
the census samples they utilize, they are able to obtain precise IV estimates of
the effect of education on earnings. Their work, however, has received consid-
erable criticism (Bound et al. 1995; also see Winship 1998). All these critics
point out that the covariance of earnings with quarter of birth and the covariance
of educational attainment with quarter of birth are both weak. In this case, the
instrumental variable estimator is essentially the ratio of two very small num-
bers, the covariance between quarter of birth and education and the covariance
between quarter of birth and earnings. As a result, the IV estimate may poten-
tially be unstable. Even if the direct effect of quarter of birth on earnings is
small, it will make a substantial contribution to the covariance between these
two variables. As a result, large biases in the IV estimate will occur. Bound et
al (1995) discuss a variety of reasons that quarter of birth might have a small but
non-zero direct effect on earnings. If this direct effect is non-zero, as they argue,
then Angrist’s and Krueger’s IV estimates are likely to be substantially biased.

As already noted, the instrumental variable estimator only estimates the av-
erage treatment effect when the treatment effect is constant. What does it
estimate when the treatment effect is heterogenous? Recent work by Imbens &
Angrist (1994), Angrist & Imbens (1995), Angrist et al (1996), and Imbens &
Rubin (1997) investigates this issue by extending the potential outcome frame-
work discussed at the beginning of this paper. This extension is accomplished
by assuming that treatment assignment is a function of an exogenous instru-
mentZ∗i .

For simplicity, assume that both the treatment and the instrument are binary,
and that the instrumentZ∗i is a randomly assigned incentive to enroll in the
treatment program (e.g. a cash subsidy). When both the treatment and incen-
tive are binary, individuals eligible to receive the treatment can be categorized
into four mutually exclusive groups. Individuals who would only enroll in the
program if offered the incentive and thus who would not enroll in the program
if not offered the incentive are labeled compliers [i.e. individuals for whom
Ti (Z∗i = 0) = 0 andTi (Z∗i = 1) = 1]. Likewise, individuals who would only
enroll in the program if not offered the incentive are called defiers [i.e. individu-
als for whomTi (Z∗i = 0) = 1 andTi (Z∗i = 1) = 0]. Individuals who would al-
ways enroll in the program, regardless of the incentive, are called always-takers
[i.e. individuals for whomTi (Z∗i = 0) = Ti (Z∗i = 1) = 1]. Finally, individ-
uals who would never enroll in the program, regardless of the incentive, are
called never-takers [i.e. individuals for whomTi (Z∗i = 0) = Ti (Z∗i = 1) = 0].
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Based on the potential treatment assignment function, Imbens & Angrist
(1994) define a monotonicity condition. In the binary-treatment-binary-instru-
ment case, their condition requires that eitherTi (Z∗i = 1) ≥ Ti (Z∗i = 0) or
Ti (Z∗i = 1) ≤ Ti (Z∗i = 0) for all i . In words, the instrument must affect
the treatment assignment of all individuals in the same direction and thus in
a monotone fashion. For all individuals, an increase (decrease) in theirZ∗i
must either leave their treatment condition the same or, among individuals who
change, change them in the same way. There may be either defiers or compliers
but not both among those eligible to receive the treatment. Conventional IV
methods make no assumptions about the coexistence of compliers and defiers.10

When an exclusion restriction is satisfied and when the treatment assignment
process satisfies the monotonicity condition, the conventional IV estimate is an
estimate of what is known as the local average treatment effect (LATE), the av-
erage treatment effect for either compliers alone or for defiers alone, depending
on which group exists in the population.11 LATE is the average effect for the
subset of the population whose treatment assignment is affected by the instru-
ment. The individual-level treatment effects of always-takers and never-takers
are excluded in the calculation of LATE. When the monotonicity condition is
not satisfied and treatment effect heterogeneity seems likely, the conventional
IV estimator yields a parameter estimate that has no clear interpretation.

LATE has three problems: (a) It is defined by the instrument, and thus dif-
ferent instruments define different average treatment effects for the same group
of individuals eligible to receive the treatment; (b) it is an average treatment
effect for a subset of individuals that is inherently unobservable no matter what
the instrument; (c) it is hard to interpret when the instrument measures some-
thing other than an incentive to which individuals can consciously respond by
complying or defying.

BOUNDS WITH INSTRUMENTAL VARIABLES If IV techniques generally do not
provide an estimate of the average treatment effect when there is treatment effect
heterogeneity, then can IVs tell us anything at all about the average treatment
effect? In a recent paper, Manski & Pepper (1998) investigate this question in
some depth showing what can be learned when standard and when weaker IV
assumptions are maintained.

10Note that when an instrument is valid, there must be at least some compliers or some defiers,
otherwise the sample would be composed of only always-takers and never-takers. In this case,Z∗i
would not be a valid instrument because it would be uncorrelated with treatment assignment.

11The exclusion restriction that defines LATE is stronger than the conventional exclusion re-
striction that the instrument be mean-independent of the error term. Instead, Imbens & Angrist
(1994) require that the instrument be fully independent of the error term. Imbens & Rubin (1997)
argue that the strong independence restriction is more realistic because it continues to hold under
transformations of the outcome variable. An assumption about the distribution of the outcome is
thereby avoided.
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Manski & Pepper (1998) define the traditional IV assumption in terms of
mean independence. Specifically, in our notation, for arbitrary valuess ands′

E
[
Yt

i | X, Z∗i = s
] = E

[
Yt

i | X, Z∗i = s′
]

17a.

and

E
[
Yc

i | X, Z∗i = s
] = E

[
Yc

i | X, Z∗i = s′
]
. 17b.

In words, Equations 17a and 17b require that the mean values of the outcomes
in each subpopulation defined by values ofZ∗i be equivalent to those in the
population as a whole. The implication of this assumption is that the bounds
assumption analysis, discussed earlier, and the monotone treatment response
assumption alone also apply within each subpopulation defined byZ∗i . As a
result, the bound on the treatment effect can be defined as the intersection
of the bounds across subpopulations defined byZ∗i (see Manski 1994,1995;
Manski & Pepper 1998). The common bound can only be narrowed with the
aid of an IV if the bounds differ across subpopulations. Because the monotone
treatment selection assumption, discussed briefly above, is an assumption about
how treatment is assigned, it may or may not make sense to assume that it holds
within subpopulations defined by the instrument.

As we and many others have noted, the standard IV assumption is a strong
condition. Manski & Pepper consider a weaker assumption, the monotone IV
assumption (MIV). It states that fors ≥ s′,

E
[
Yt

i | X, Z∗i = s
] ≥ E

[
Yt

i | X, Z∗i = s′
]

18a.

and

E
[
Yc

i | X, Z∗i = s
] ≥ E

[
Yc

i | X, Z∗i = s′
]
. 18b.

Thus, in Equations 18a and 18b, the mean values of both potential outcomes
are weakly increasing functions inZ∗i .

It is easier to demonstrate how the MIV condition bounds the mean of each
outcome than it is to demonstrate directly how the MIV condition bounds
the average treatment effect that is a function of these means. Without loss
of generality, consider the mean ofYt

i in the population. Under the standard
IV assumption, the upper bound for this mean will be equal to the smallest
upper bound across the different subpopulations defined by the instrument.
Under the MIV assumption, the upper bound of the conditional mean within
the subpopulation defined by a particular value,s′, of the instrument will be
equal to the smallest upper bound for all subpopulations defined by values of
the instrument greater than or equal tos′. The upper bound for the overall mean
of Yt

i will simply be the weighted average of the subpopulation upper bounds
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where the weights are equal to the proportions of the sample in the various
subpopulations defined byZ∗i . The determination of the analysis for the lower
bound ofYt

i is analogous, as are the determination of the bounds onYc
i .

Manski & Pepper (1998) use the assumptions of monotone treatment re-
sponse, monotone treatment selection, and MIV to determine the bounds on
the effect of education on the logged wages of respondents to the National Lon-
gitudinal Survey of Youth. When they invoke monotone treatment response
and selection assumptions, they find that the bound for the effect of a twelfth
year of schooling is [0, 0.199], that the bound for the effect of a fifteenth year of
schooling is [0, 0.255], and that the bound for the effect of a sixteenth year of
schooling is [0, 0.256]. When they use the Armed Forces Qualifying Test as a
monotone instrumental variable while still maintaining the monotone treatment
response and selection assumptions, they obtain narrower bounds respectively
of [0, 0.126], [0, 0.162], and [0, 0.167]. Although these bounds are somewhat
broader than one might wish, they are consistent with the range of estimates
typically found in the literature.

LONGITUDINAL METHODS

The use of longitudinal data to estimate treatment effects has a long history. Lon-
gitudinal data are useful because they allow individuals to serve as their own
controls. The treatment effect for an individual can then be estimated as the
change in the pretest and the posttest measurements of their outcome. Of course,
any such estimator implicitly assumes that the outcome would have remained
unchanged in the absence of treatment. As this is often an unrealistic assump-
tion, we need to be able to estimate for those individuals in the treatment group
how their outcomes would have evolved in the absence of treatment.

There are two possible sources of information for constructing this coun-
terfactual trajectory. First, if there are multiple pretest observations, it may be
possible to extrapolate from these observations and estimate what the outcome
would have been in the absence of treatment, assuming that the future is similar
to the past. Second, if there is a control group, then the evolution of its outcome
may be used to model what the outcome would have been in the absence of treat-
ment, assuming that the treatment and control groups are similar in key respects.

In the past two decades, many new techniques have been developed to uti-
lize longitudinal data to estimate causal effects. Five important insights have
emerged from this research: (a) in many circumstances, aggregate cohort-
level data contain sufficient information to consistently estimate a causal ef-
fect (Heckman & Robb 1985, 1986, 1988); (b) whenever possible, the data
should be used to test the appropriateness of alternative models; (c) multi-
ple measurements of the outcome before and after the treatment are essential
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both for estimating sophisticated models and for testing the appropriateness of
alternative specifications; (d ) understanding the underlying behavior that gen-
erates assignment to the treatment and control groups is critical to the proper
modeling of suspected unobservable effects; and (e) it is only possible to es-
timate the average treatment effect for the treated in most longitudinal mod-
els because the average treatment effect for the entire population is typically
unidentified.

Heckman & Robb (1985, 1986, 1988) provide an extensive, although chal-
lenging, review of alternative methods for estimating causal effects using lon-
gitudinal (as well as cross-sectional) data. Space does not permit us to provide
a similar review here. Moreover, we are confident that many readers would find
a full exposition of the technical details of these models more overwhelming
than illuminating. Our aim in this section, rather, is to provide an overview of
commonly used methods, both old and new, and an assessment of their utility.
In so doing, we hope to provide insight into the types of information that are
available in longitudinal data to aid in the estimation of a causal effect. We
discuss five basic models: interrupted time series models, fixed effect mod-
els, differential linear growth rate models, analysis of covariance models, and
covariance stationary models.

Interrupted Time Series Design
Perhaps the simplest data structure for estimating causal effects, the interrupted
time series (ITS) design uses standard time series methods on multiple observa-
tions over time for a single unit in order to estimate a causal effect of a variable.
The core of the method involves the specification and estimation of the error
structure (i.e. the nature of the interdependence of the period-specific error
terms over time). A variety of textbooks provide comprehensive treatments of
time series methods (e.g. Harvey 1990, Hamilton 1994, Judge et al 1985). We
do not review them here.

The logic of the ITS design parallels that of the regression discontinuity
design discussed earlier. In an ITS analysis, time plays the role ofZ, and there
are now multiple measures over time for a single unit of analysis. The unit
might be a country, city, cohort of individuals, or a single person. It is assumed
that the treatment is introduced at a specific time and has an immediate impact.
The goal is then to estimate how the dependent variable would evolve over time
in both the presence and absence of a treatment effect.

We now change notation slightly. LetYt be the outcome at timet . For an ITS
analysis we do not need an “i” subscript because we are only analyzing data
for a single unit of analysis. We continue to denote treatment by the dummy
variableT .
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We can formally represent the ITS model as

Yt = b0t + Ttb1t + et . 19.

Note that both the intercept,b0t , and the treatment effect,b1t , potentially
vary over time. This model is not identified without imposing further structure
on how these two parameters are related to time. Return to Figure 1, which
presents the basic intuition behind both the regression discontinuity design and
the ITS design. For the ITS model, this figure assumes thatYt , under both
treatment and control conditions, grows linearly with time. This implies that
for all t , the differencesb0t+1 − b0t andb1t+1 − b1t are constants. The dashed
line shows the predicted evolution forYt in the absence of the treatment. As
shown in Figure 1, in this particular example, the treatment has caused a shift
in Yt and a change in the slope.

Equation 19 could be augmented by the inclusion of covariates,Xt . A fre-
quent problem with time series analyses (unlike most cross-sectional analyses)
is that the number of parameters in the model may be large relative to the num-
ber of observations. As a result, the amount of information available to estimate
the parameters may be small. This problem can be especially acute when there
is strong dependence among the period-specific error terms,et .

The ITS design has the same potential problems as the regression disconti-
nuity design. An ITS analysis assumes that the future is sufficiently like the
past that the past can be used to estimate howYt would have evolved in the
absence of treatment. As with the regression discontinuity design, Figure 2
illustrates the bias in the estimate of the treatment effect that can result when
this assumption does not hold.

At the beginning of this section, we noted that the availability of aggregated
cohort-level data alone is sometimes sufficient for estimating a treatment effect.
This conclusion can be presented in the framework of an ITS model where we
assume thatYt measures the average value for a cohort of individuals on some
dependent variable (e.g. wages). Equation 19 is consistent with a specification
in which all individuals receive the treatment. In this case,b1t represents the
contemporaneous increase in wages caused by the treatment (e.g. training), and
variation inb1 over time represents the changes in wage growth caused by the
treatment. What if only some known portion of the cohort,π , received training?
As shown by Heckman & Robb (1985, 1986, 1988), we can still consistently
estimate the average treatment effect for those who received training. In the
situation whereb1t does not vary with time, the average treatment effect for the
treated equals(b1t /π).

The time series literature provides a host of sophisticated ways of modeling
data. The core material in this literature is typically covered in a one- or even
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two-semester advanced graduate-level econometrics course. Time and space
limitations prevent us from providing even a brief overview of these models.
The time series literature also contains alternative conceptions of causality to
those considered here. The key ideas are those of Granger causality and cointe-
gration (see Harris 1995 and Hendry 1995 for definitions and further discussion;
see Holland 1986 and Sobel 1995 for connections with the counterfactual frame-
work). Robins (1986, 1987, 1997) provides a full analysis of the estimation of
causal effects when a treatment may be applied repeatedly and at multiple times.

General Model Specification
The methods that we want to consider in the remainder of this section all
assume that we have individual-level data with pretest and posttest values on
the outcome for both treatment and control groups. The goal is to use the control
group (as well as possible multiple pretest measures on the treatment group)
to forecast what the values of the dependent variable would have been for the
treatment group in the absence of treatment. This goal can only be accomplished
if we know or can effectively estimate what the relationship would have been in
the absence of treatment between the pretest and posttest values of the treatment
and control groups.

Consider the simplest but by far the most common situation, where we have
a single pretest and posttest value for the two groups. As Judd & Kenny (1981)
demonstrated, even in a linear world there are at least three possibilities. These
are shown in Figures 5a, b, andc. In all three figures, the observed values are
identical. The estimate of the treatment effect, however, differs substantially,
depending on what we assume would have happened to the treatment group if
they had not been exposed to the treatment.

As is discussed below, Figures 5a, b, andccharacterize three traditional mod-
els for estimating a causal effect with pretest and posttest data. To understand
the assumptions behind each of these models, we first build a general model of
which the three models are special cases. Consider the following model:

Yit = b0t + Tit b1+ (Basic structural parameters)

Xit b2t + Tit Xit b3+ (Observed heterogeneity)

λi t + Titαi + eit (Unobserved heterogeneity),

20.

whereeit = ρeit−1 + vi t . The first term isb0t , the intercept that varies witht
in order to capture the general effects of time;b1 is the treatment effect that we
assume is time invariant. This assumption is not essential. Because we want to
allow for the possibility that the treatment effect may vary across individuals,
we assume thatb1 is the average treatment effect for the population of interest
or the group for whomXit = 0.
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(a)

(b)

Figure 5 The true average treatment effect when unobserved heterogeneity does not differentially
affect the rate of growth for both groups.
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(c)

Figure 5 (Continued)

Xit consists of the values of fixed, current, past, and future values of exoge-
nous control variables that are relevant at timet . The two terms in the second
line of Equation 20, which are interactions of the two terms of the first line
with Xit , represent observed heterogeneity. The coefficients inb2t represent
(possibly time-varying) shifts in the intercept that are a function ofXit . The
coefficients inb3 represent interactions betweenXit and the treatment effect.
We assume that these interactions are time invariant, but this assumption is not
essential.

The next three terms constitute the different components of the error term for
Equation 20. The first two terms are measures of unobserved individual hetero-
geneity that are analogous to the two terms for observed individual heterogeneity
in the second line. The first term,λi t , represents an individual specific intercept
that we allow to vary with time. Thus, the components ofλi t capture both
constant (or fixed) differences between individuals as well as the possibility
that Yit may grow at different rates across individualsi in ways that are not
captured in theXs.

The second term,Titαi , measures the degree to which the treatment differ-
entially impacts each individuali . As with the previous treatment effect terms,
we assume that this treatment effect is time invariant. In general, we would
expect that individuals who are most likely to benefit from the treatment (i.e.
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individuals who have highαi s) would self-select into the treatment. Unfortu-
nately, longitudinal data typically do not provide a way to control for these dif-
ferences. In most cases, it is only possible to estimate the average treatment ef-
fect for the treated, not the average treatment effect for the population as a whole.

The final component of Equation 20,eit , represents an individual-and-period-
specific component of the error term. We want to allow for interdependence
among theeit over time to capture what is known in the time series literature as
transitory effects. We assume an autoregressive structure of order one (AR1),
that iseit = ρeit−1 whereρ is the correlation betweeneit andeit−1. More com-
plicated dependence in the form of an autoregressive moving-average structure
could be assumed. These are reviewed in the standard time series textbooks
cited above.

Finally, vi t is a pure time-specific error that is uncorrelated with anything
else. To simplify the exposition, we assume thatvi t has constant variance across
individuals. In the time series literature,vi t is often referred to as the innovation
in the process. Because it is purely random, it cannot be forecast. Typically, it
is assumed to be a priori unknown to both the individual and the analyst.

How does Equation 20 relate to Figures 5a–c? Assume for the moment
(and for most of our discussion of longitudinal methods below) that all of the
heterogeneity is represented by the unobservables. Standard techniques can be
used to eliminate differences that are a function of observedXs. When esti-
mating the treatment effect, we would like the treatment and control groups to
be identical, at least conditional onX.12 Our concern is that the two groups
may also differ in terms of the unobservable components found in Equation 20
because assignment to the treatment group may be a function of unobservable
characteristics. The question then is whether there are techniques that can elim-
inate potential differences between the treatment and control groups that are
a function of the unobservable components in Equation 20. After eliminating
differences due toX, can we “control out” the effects of the unobservables that
are potentially related to treatment assignment?

In Figure 5a, in the absence of a treatment, the parallel lines for the two
groups indicate that the differences betweenYit for individuals in the treatment
and control groups (on average) remain constant over time. This case is con-
sistent with a model in which unobserved differences between the treatment
and control group are a function solely of aλi that is time invariant or fixed, as
would occur if we had omitted anX that was constant over time and correlated
with the treatment variable. For example, if we were estimating the effects of
additional schooling on wages, there might be unmeasured and thus unobserved
components of family background that need to be controlled.

12In the linear models used in our exposition, it is only necessary that the expected values of the
components on the right-hand side of Equation 20 be identical for the treatment and control groups.
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Figure 5b illustrates a situation in which, in the absence of treatment, the
growth rate forYit differs for individuals in the treatment and the control groups.
Assume that theλi t change linearly with time such thatλi t −λi t−1 = τi , where
τi is a constant for each individuali for all t . In Figure 5b the rate of increase
(in the absence of the treatment) inλi t , τi , is higher for those in the treatment
group than for those in the control group. As an example, more intelligent
individuals may be more likely to continue in school, but whether they are in
school or not (that is, whether they receive the treatment or not), they may still
learn faster than individuals with less intelligence.

Figure 5c might result in two different ways. First, as in Figure 5b, the rate of
increase inλi t , τi , may differ between the treatment and control group. Here,
however, the rate of increase is greater for those in the control group than
for those in the treatment groups. For example, an increase in the incidence
rate of disease might be greater in a control group if willingness to take other
unobservable preventive measures (unrelated to the treatment regime itself) is
greater on average for those in the treatment group.

A second circumstance when Equation 20 is consistent with Figure 5c is
whenρ in Equation 20 is positive. In this case, if assignment to the treatment
group instead of the control group is a function ofeit , then assignment is a
function of transitory components of the unobservables. If assignment is only a
function of transitory components, then over-time differences between the two
groups would shrink to zero in the absence of treatment.

A number of empirical examples exist where assignment to the treatment
group is a function of transitory components of the unobservables. The clas-
sic case, which reverses the labeling of the treatment and control groups in
Figure 5c, is where individuals who are experiencing low wages in the near
term are more likely to enroll in a job-training program because they experi-
ence lower opportunity costs (Ashenfelter 1978, Ashenfelter & Card 1985).
Regression toward the mean in this case produces an apparent training effect
because the wages of individuals who received training would have increased
on average (regressed toward the mean) even in the absence of training. This
case differs from the one presented in Figure 5c in that the treatment program
is compensatory—individuals with the lower wages are in the treatment group.

Several approaches are available to consistently estimate the treatment effect,
b1, in Equation 20. The most obvious, but often difficult method, would be to
use panel data to fully estimate a complicated model specification such as
Equation 20. If the model is properly specified, then the treatment effectb1 can
be consistently estimated. In general, it will only be possible to estimate models
of this type of complexity if one has multiple pretest and post test measures of
Yit . The technical issues involved in estimating models of this type vary across
different model specifications.
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Alternative Methods
Over the years, a number of simple methods for estimating treatment effects
have been proposed. These include charge score analysis, the analysis of co-
variance, and their generalizations. We now consider these models and the con-
ditions under which they give consistent estimates of the treatment effect,b1.
An extensive literature has argued the relative merits of these different ap-
proaches (see Judd & Kenny 1981; Holland & Rubin 1983; Allison 1990).

The appropriateness of a model depends on whether it provides a consistent
estimate of the treatment effect in a particular context. This depends on whether
the model’s assumptions are congruent with the underlying process that gener-
ates the data. The appropriateness of a model for a specific situation can only
be determined through theoretical and empirical analysis. No one statistical
model is a panacea.

The problem of whether a model is consistent with an underlying process that
generatesYit is potentially complicated. As we discuss below, if one is to have
confidence in one’s results, it is essential to test the appropriateness of one’s
model specification. But what constitutes a proper model specification? As
discussed above, one approach to consistently estimating the treatment effect
in a longitudinal model is to attempt to specify and estimate a full model
specification forYit . To accomplish this, it may be necessary to have multiple
pre- and posttest observations onYit .

Our above discussion of Rubin’s and Rosenbaum’s propensity score, how-
ever, suggests that estimation of the full model forYit may not be necessary to
correct for the effects of assignment. We demonstrated that if we could condi-
tion on the probability of assignment (or at least on those factors that determine
assignment), the treatment effect could be consistently estimated even in the
presence of omitted variables.

Does this mean that we can get away with not estimating the full model for
Yit ? As Heckman has argued repeatedly over the years, in many situations this
is not likely to be possible. If individual choice is involved in the assignment
process, it is likely that individuals will choose to be in the treatment and control
group based on the consequences of treatment for their futureYit . In this case,
individuals (at least crudely) use the previous history of theirYit , plus the total
history ofYit for others, both pre- and posttreatment, to project the future values
of theirYit under both the treatment and control. If so, the assignment process
will be a function of the parameters of the model that the individual uses to
predict futureYit .

The question then is what model is the individual using to predict their
futureYit ? If it is simpler than the full model, then it may well be possible to
condition on only those components of the model that determine assignment
and consistently estimate the treatment effect. In many situations, it is unclear
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why an individual would not use something like the full model to predict future
Yit . Thus, we may be stuck with having to try to specify and estimate the full
model that generatesYit . Of course, the greatest concern is that the individual
may be using a prediction model that is more complicated or more accurate than
the one used by the analyst. This might be due to the fact that the analyst has
used too simple a model and/or that the individual has access to information that
the analyst has no way of incorporating into her model—either directly through
observedXs or indirectly through a particular specification of the structure of
the unobservables. In this situation, it may simply be impossible to consistently
estimate the treatment effect.

CHANGE SCORE OR FIXED EFFECTS MODELS Change score or fixed-effect
models are a common and simple method for estimating causal effects when
pretest and posttest data are available for separate treatment and control groups.
The basic model can be formalized in two ways. The standard change-score
model is

(Yit − Yit−1) = c0+ Ti c1+ (Xit−1− Xit−1)c2+ uit , 21.

whereTi = 1 if the individual received the treatment (andTi = 0 otherwise),
c0 = b0t − b0t−1, c1 = b1, c2 = b2, anduit = eit − eit−1. This model can also
be formalized as a fixed effect model making its relation to Equation 20 more
transparent:

Yit = b0t + Tit b1+ Xit b2+ λi + eit , 22.

whereλi is a time invariant or fixed individual specific effect and theeit for
individual i and across time are assumed to be uncorrelated. The fixed-effect
formulation allows for the possibility that multiple pretest and posttest out-
comes may be observed on each individual. The model implies that there are
permanent fixed differences between individuals in theirYit . As a result, as the
process evolves from timet − 1 to timet there will be regression toward the
mean inYit , but the regression will be toward the individual specific mean of
Yit not the overall population mean ofYit .

Because theλi terms represent all fixed, time-invariant differences between
individuals, the effects of constantXs are absorbed intoλi . This is most
apparent in Equation 21, where we see that only the effects ofXs that change
over time are estimated. The fixed-effect model is equivalent to a standard re-
gression model where a separate dummy variable has been included for each
individual, which is then estimated by OLS. Alternatively, Equation 21 can be
estimated by OLS. Heckman & Robb (1985, 1986, 1988) show that if we know
the identity of individuals who will receive the treatment, then the fixed-effect
model can be estimated from cohorts based on repeated cross sections.
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As can be seen from Equation 22, the fixed-effect model is a constrained
version of the general model in Equation 20 because it assumes there is no
transitory component to the error term(ρ = 0) and the effect of theXit are
invariant with respect to time(b2t = b2). The first constraint implies that
any unobserved differences between the treatment and control groups must be
constant over time, as shown in Figure 5a. As with all the longitudinal models
we consider, the fixed-effects model also assumes that the effect of the treatment
is constant across individuals(b3 = αi = 0). If this is not the case, then the
treatment effect estimate is a consistent estimate only of the average treatment
effect for the treated, not the average treatment effect for the entire population.

The fixed-effect model will only provide consistent estimates of the treatment
effect if Equation 22 correctly models the time series structure ofYit or if
the fixed effects,λi , are the only unobservables that determine assignment to
the treatment group. Framed in terms of Heckman’s concern above about the
consequences of assignment due to individual choice, the fixed-effect model
will provide consistent estimates of the treatment effect only if assignment is a
function of the fixed effects in Equation 20. However, it only makes sense for an
individual to make choices this way if in fact Equation 22, the pure fixed-effects
specification, is the correct model forYit .

DIFFERENTIAL RATE OF GROWTH MODELS In many situations it may be the
case that not only are there fixed unobserved individual differences,λi , but that
there are differences across individuals in the rate of change inYit . We allow for
this possibility by permittingλi t to vary with time. The simplest case is where
we assume that theλi t grow linearly but at different rates across individuals
(i.e. λi t − λi t−1 = τi , a constant growth rate for individuali across allt).
Figures 5b andc are illustrative of this type of process. For example, consistent
with Figure 5b, we might believe that some individuals learn faster than others,
or that because of previous education and training some individuals’ wages
would grow faster than others.

The differential growth rate model can be estimated as a standard regression
model using OLS by including a dummy variable for each individual entered
in the equation by themselves and also interacted with time. Alternatively, the
model can be estimated by applying OLS to the double difference of both
the right- and left-hand sides of Equation 20. Ifλi t grows quadratically or as
a function of even a higher-order polynomial in time, this can be dealt with
by differencing further.13 The differential growth rate model will consistently

13In these models, the variance of the outcome or equivalently of the error term may grow without
bound. As a result, these models do not have a typical autoregressive moving-average structure. We
know of no methods for estimating the differential growth rate model when it includes a transitory
auto-regressive component.
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estimate the treatment effect only if it accurately models the process generating
Yit or assignment is only a function of an individual’s fixed effect and individual
growth parameter (Heckman & Robb 1985, 1986, 1988).

ANALYSIS OF COVARIANCE MODELS The most common model used to es-
timate causal effects when both pretest and posttest data are available is the
analysis-of-covariance model. In its simplest form, the model is

Yit = b0+ Yit−1γ + Tit b1+ uit , 23.

whereb1 is an estimate of the treatment effect and Equation 23 is estimated
by OLS.14 The coefficientγ is equal to the pooled within-treatment group
regression ofYit on Yit−1. If uit has constant variance (which is generally
assumed and which we also assume), then in the absence of treatment,γ is
equal to the correlation betweenYit andYit−1, (that is, the intracluster correlation
with each individual considered a separate cluster). As a result, whenuit has
constant variance,γ must be less than or equal to one. It measures the degree
to which each individual’sYit regresses between timest − 1 andt toward the
overall mean ofYit . This regression toward the mean differs from that in the
fixed effects model where the individualYit regress toward individual specific
means.

To simplify the exposition, consider the properties of the analysis-of-covar-
iance model in the absence of treatment for all individuals. If we generalize
to allow for multiple time periods, then the analysis-of-covariance model is
equivalent to an autoregressive model of degree 1:

Yit = b0t + eit , 24.

whereeit = ρeit−1+vi t . Hereρ is the correlation between temporally adjacent
eit , andvi t is pure random error that is assumed to be independent of everything.
b0t is a time-varying intercept that follows the generating equationb0t+1 − b0t =
ρ(b0t − b0t−1). This model is a constrained version of Equation 20. It makes
the strong assumption that all differences inYit across individuals are transitory.
There are no fixed or permanent differences or differences across individuals in
the growth rates of theirYit . Thus, Equation 24 implies that betweenYit−1 and
Yit there will be regression toward the mean of a very strong form.Yit across
all individuals regress toward the same grand mean.

14As written, econometricians would typically interpret Equation 23 as indicating thati is deter-
mined in part by its lagged valueYit−1. Under this interpretation, Equation 23 should be estimated
using instrumental variables, because under almost any reasonable assumption about the error
structure,Yit−1 will be correlated withuit , invalidating OLS. Heckman & Robb (1985, 1986,
1988) point out that equations with laggedYit s can be dealt with by putting them in reduced form.
This strategy then yields equations similar in form to Equation 20 which can be dealt with by the
techniques discussed here and in their papers.
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If Yit is in fact generated by Equation 24, thenρ = γ . In most situations,
however, we would expect thatYit would have both fixed and transitory com-
ponents. A simple specification that captures this idea is

Yit = b0t + λi + eit , 25.

whereeit = ρeit−1 + vi t and whereρ andvi t are as in Equation 24. In this
case,γ = [var(λi ) + ρvar(eit )]/[var(λi ) + var(eit )] which is necessarily
greater than or equal to the correlationρ. If there is no transitory component,
var(eit ) = 0, andγ is still less than one because regression toward the mean is
due to the pure random component,vi t . If there is no permanent component,
thenγ = ρ.

The key to understanding the analysis-of-covariance model is to rewrite
Equation 23 as

(Yit − Yit−1γ ) = b0+ Tit b1+ uit . 26.

Equation 26 shows thatγ is a measure of the degree to whichYit should be
adjusted by its previous pretreatment value,Yit−1. Specifically,γ measures the
degree to which the pretest difference in the treatment and control groupYit−1

should be used to correct the post-treatment difference inYit in estimating the
treatment effect:

Treatment effect= b1 =
(
Yt

i t − Yc
i t

)− γ (Yt
i t−1− Yc

i t−1

)
. 27.

If γ = 0, then no adjustment is needed. The treatment effect is simply
equal to the average difference between the treatment and control group inYit .
This would be appropriate only if theYit were a function of the pure random
component of the unobservables,vi t .

If γ = 1, then theYit are fully adjusted. The treatment effect is then equal
to the difference inYit between the treatment and control groups net of their
initial difference. In the latter case, the analysis of covariance model is equiv-
alent to the change-score/fixed-effect model discussed above. This would be
appropriate if there is no transitory component in Equation 26.

Assume that Equation 25—which modelsYit as a function of fixed, transi-
tory, and random effects—holds and that we estimateγ from the data. In this
case 1> γ̂ > ρ. γ̂ = 1 only if there is no transitory component or random
component, that is,vi t in Equation 25. ˆγ = ρ only if there is no fixed effect
term in Equation 25.15

15If there is measurement error inYit s, the measurement error will bias downward the estimate of
γ , resulting in an underadjustment for pretreatment differences between the treatment and control
groups. This underadjustment will bias the estimate of the treatment effect.
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Consider the assignment of individuals to the treatment and control groups.
If assignment is a function of the fixed effectsλi , then no adjustment is needed
to the pretreatment difference inYit . Using the estimatedγ in Equation 27 will
overstate the treatment effect because the correct adjustment factor isγ = 1.
The analysis-of-covariance model will only give a consistent estimate of the
treatment effect in this situation if the estimatedγ = 1. This will occur, how-
ever, only when there is no transitory term,eit , or random component,vi t in
Equation 25. In this case, the prediction ofYit from previous values is trivial
becauseYit is a constant.

If assignment were a function of only the transitory component,eit , and
Yit depends on a fixed component, using the estimatedγ would result in an
understatement of the treatment effect because the correct adjustment factor is
γ = ρ, which is necessarily less than the estimatedγ . In general, the estimated
γ will be the correct adjustment factor only if selection is onYit−1. In this
case, in the absence of treatment, the expected shrinkage in the difference in
the pretreatment means ofYit for the treatment and control groups and their
posttreatment difference is proportional toγ .

But under what circumstances would it make sense for assignment to be based
only onYit−1? As Heckman has argued, ifYit were generated according to, for
instance, Equation 25 or the even more complicated Equation 20, it would be
reasonable to assume that an individual would want to use values ofYit prior to
Yit−1 to predictYit . In essence, one could imagine an individual (at least crudely)
estimating their individual specific fixed effect and growth rate so that they could
accurately predict what theirYit would be in the absence of treatment. Assum-
ing that is known, values ofYit prior to Yit−1 could be ignored only in the
situation whereYit had a simple AR1 structure, i.e. whereYit is generated by
Equation 24. This leads us to a strong and negative conclusion about the
applicability of the analysis-of-covariance model. An analysis of covariance
generally will only properly adjust for the pretreatment difference in outcomes
between the treatment and control group if treatment assignment is solely a
function of the pretreatment outcome,Yit−1. In general, an individual would
only choose his assignment based onYit−1 if prior values ofYit or other rel-
evant information were not available or ifYit followed an AR1 specification,
as in Equation 24. The latter condition is an extremely strong assumption be-
cause it implies that all unobserved differences between individuals are only
transitory.

COVARIANCE STATIONARY MODELS The change-score and analysis-of-co-
variance models (or, similarly, their specifications respectively as a pure fixed-
effect model and a pure transitory-effect model) represent extreme model
specifications. These two extremes make strong assumptions about how, in
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the absence of treatment, the difference between the pretreatment meanYit for
the treatment and control groups will change during the posttreatment period.
In the change-score model, the assumption is that there will be no change. For
the analysis-of-covariance model, the assumption is that there will be shrink-
age of a specific amount. In particular, the shrinkage will be equivalent to the
amount of regression toward the mean observed at the individual level. Thus,
althoughρ is estimated from the data, the analysis-of-covariance model simply
assumes that this is the correct shrinkage factor.

In most instances, we would like to use a method that allows for both fixed and
transitory effects in the generation ofYit or at least in the assignment process.
Equivalently, we would like to estimate how much adjustment is appropriate
when estimating the treatment effect using pretreatment differences between
the treatment and control groups. The change score and analysis-of-covariance
models simply assume alternative levels of adjustment.

Heckman & Robb (1985) show that it is possible to estimate a model that
combines an individual fixed effect along with a transitory AR1 component. In
fact, all that needs to be assumed is that the process is covariance stationary.16

This model is consistent with most autoregressive moving-average specifica-
tions, including the change-score/fixed effect and analysis-of-covariance mod-
els. Assume that you have at least three equally spaced (in time) measures of
Yit , at least two of which occur prior to treatment. Label these times respec-
tively t − 2, t − 1, andt , with only t occurring after the treatment. Assuming
there are no relevantXs for the moment, it is easy to show through multipli-
cation and two substitutions that the covariance betweenYit andYit−1 is equal
to

Cov(Yit ,Yit−1) = Cov(Yit−1, Ti )b1+ Cov(Yit ,Yit−2), 28.

whereTi is as before a dummy variable treatment indicator andb1 is the treat-
ment effect. All three of these covariances can be estimated from the data,
allowing us to solve out forb1. If additional time periods are available, the
assumption of stationary covariance can be tested. An overall test of the model
can be obtained by comparing alternative estimates of the treatment effect using
different time-period triplets.

Testing Alternative Models
The point of the above discussion is that traditional methods such as change-
score analysis and the analysis of covariance are flawed because they make
strong assumptions that are rarely examined and almost never tested. Without

16A process is covariance stationary if it has a finite mean and finite variance and the covariance
between any twoY over time is only a function of the time elapsed between them.
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confidence that their assumptions are valid, resulting estimates of a causal effect
have no guaranteed validity.

When only a single pretest measure and a single posttest measure are avail-
able, the appropriateness of alternative models cannot be tested. At best one can
only make arguments for one specification as opposed to another on theoretical
grounds. Hopefully, by embedding these models in Equation 20, we have made
it clear to the reader what the nature of these arguments would have to be. With
multiple waves of data, however, it becomes possible to determine whether a
particular specification is appropriate for the data being analyzed.

One approach would be to use both pre- and posttest data to determine
the structure of the unobservables in the data. This is a standard topic in
the analysis of panel data. An extensive collection of relevant papers is pro-
vided in Maddala (1993). We note that it can often be difficult to determine
which among the possible specifications is appropriate because different spec-
ifications can produce similar patterns in the data. Also, standard time se-
ries methods typically will not work because they assume that the error term
consisting of different unobserved components is uncorrelated with any of
the observed right-hand-side variables. In this paper, we are interested in sit-
uations where the treatment variable may be correlated with unobserved
components.

Fortunately, less-sophisticated and more easily applied methods can be used.
In order to consistently estimate the treatment effect, it is not necessary that
we correctly specify the full structure of the unobservables. Rather, we must
only control for those aspects of the unobservables that differ between the treat-
ment and control groups. Heckman & Hotz (1989) discuss an imaginative way
of testing this condition that is also simple. One should take all the pretest
observations and then analyze them as if they consisted of both pretest and
posttest data, testing whether a treatment effect is significant on the pretest
observations alone. Because no treatment has yet occurred, no treatment effect
should be observed. If a pretreatment effect is found, this is strong evidence
that one’s model is misspecified. Whatever procedure has been used to control
for unobserved differences between the treatment and control group has failed
because the significant pretreatment effect indicates that there are still differ-
ences between the two groups that have not been accounted for. The posttest
data can be used in a similar way. In this case, no treatment effect should be
found if the model has been correctly specified, because no additional treatment
has occurred. It may, however, be necessary to account for the possibility that
the treatment effect dissipates over time. A third possible test is to enter past
and future values of the outcome as regressors. If the model is appropriately
specified, they should have no effect on the current outcome (Heckman & Hotz
1989).
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CONCLUSION

We have tapped only a fraction of the methods and literature that has appeared
over the past couple of decades relevant to estimating causal effects. Our inten-
tion has been to focus on methods that are relatively accessible and likely to be
useful to quantitatively oriented researchers. We hope the reader is impressed
by how far the research literature has gone beyond standard regression models.

The appropriateness of alternative models for the estimation of a causal effect
depends both on the structure of the data that are available and on the nature of
the substantive problem. Given the large number of options, it is critical that
researchers, to the degree that it is possible, test for the appropriateness of a
chosen specification. Otherwise, a variety of methods should be implemented
to determine how robust the treatment effect estimate is to alternative methods.

Besides providing the reader with an introduction to a variety of methods that
can be used to estimate causal effects, we hope that we have also presented a
conceptual scheme that will be useful to all researchers in trying to think through
their own particular analysis problems. In particular, we have shown how a
counterfactual interpretation of causality leads to a precise definition of what is
meant by a causal effect. Furthermore, this definition points to two important
sources of bias in the estimation of treatment effects: (a) initial differences
between the treatment and control groups in the absence of treatment, and (b) the
difference between the two groups in the potential effect of the treatment. The
latter component is particularly important in situations where there is likely to be
selection into the treatment group based on the projected effects of the treatment.

The estimation of causal effects continues to be one of the most active areas
of research in both statistics and econometrics. Perhaps one of the most impor-
tant new developments is the investigation of the quality of estimates that are
produced by the different techniques we have discussed. Rubin and Rosenbaum
are actively involved in applying matching methods based on the propensity
score to different problems. Heckman and his coworkers have been examining
matching as well as other methods. It is important to note that they have been
extending the methods discussed here to semi-parametric and nonparametric
approaches. Their findings (Heckman et al 1997a,b, 1998a,b), using the Job
Training Partnership Act data, suggest that at least in some circumstances, the
assumption of specific functional forms can be an important source of bias.
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