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  Abstract  

 Elastomers and gels can often deform multiple times their original length. The 

stretchability is insensitive to small cuts in the samples, but reduces markedly when the cuts are 

large. We show that this transition occurs when the depth of cut exceeds a material-specific 

length, defined by the ratio of the fracture energy measured in the large-cut limit and the work 

to rupture measured in the small-cut limit.  This conclusion generalizes a result in the fracture 

mechanics of hard materials.  For an acrylic elastomer and a polyurethane, we measure the 

stretch to rupture as a function of the depth of cut, and show that the experimental data agree 

well with the prediction of the nonlinear elastic fracture mechanics.  In a space of material 

properties we compare many materials (elastomers, gels, ceramics, glassy polymers, 

biomaterials, and metals), and find that the material-specific length varies from nanometers to 

centimeters.     
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1. Introduction 

 Stretchable materials, such as elastomers and gels, have long been used in tires, seals, 

gloves, and contact lenses. Under development are new fields of applications, including tissue 

regeneration [1], drug delivery [2], artificial muscles [3-5], stretchable electronics [5-9], and soft 

robots [10, 11]. Stretchable, transparent, ionic conductors (e.g., hydrogels and ionogels) enable 

devices of unusual functions, such as transparent loudspeakers [12], artificial skins [13], 

artificial axons [14, 15], and electroluminescence of giant stretchability [16-18].  The interest in 

the mechanics of stretchable materials has surged [19-32]. 

 This paper focuses on a specific issue in the mechanics of stretchable materials:  the 

reduction of stretchability by cuts. A cut can be introduced either intentionally using a razor 

blade, or unintentionally during fabrication.  In the latter case, the cut is commonly called a flaw.  

The reduction of stretchability by cuts and flaws is called flaw sensitivity.  For example, an 

acrylic elastomer, VHBTM, commonly used in the development of artificial muscles [3], can 

deform beyond ten times its original length [33]; however, a VHB sample containing a cut of a 

few millimeters ruptures when deforming 3-5 times its original length [34]. As another example, 

a recent tough hydrogel can deform more than twenty times its original length, and a 

centimeter-long cut reduces the stretchability to seventeen times. [26]  

 Two approaches exist to predict the rupture of a stretchable device.  In one approach, the 

designer assumes a flawless device, calculates the field of deformation using the nonlinear 

theory of elasticity, and predicts rupture if any material point in the device reaches a critical 

state of deformation [35-43]. In the other approach, the designer identifies a flaw in the device, 

calculates the energy release rate using the nonlinear theory of elasticity, and predicts rupture if 

the energy release rate reaches the fracture energy [44-47]. 

 The two approaches work well in two limits. The first approach requires no knowledge of 

flaws, and is applicable in the limit of small flaws. The second approach requires the knowledge 

of flaws, and is applicable in the limit of large flaws. The transition from flaw-insensitive to flaw-
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sensitive rupture has been discussed in the literature [48-50], but the size of the flaws over 

which the transition occurs is vague for stretchable materials. 

 Here we study the transition from flaw-insensitive rupture to flaw-sensitive rupture of 

highly stretchable materials. For an uncut sample, we measure the work to rupture,   W* , which 

has the dimension of energy per unit volume.  For a sample with a large cut, we measure the 

fracture energy, Γ , which has the dimension of energy per unit area.  The ratio of these two 

parameters,   Γ /W* , defines a material-specific length, which we call the length of flaw 

sensitivity. Using a combination of experiment and calculation, we show that this material 

length marks the transition from flaw-insensitive to flaw-sensitive rupture.  When the depth of 

cut c is small compared to   Γ /W* , the stretchability is insensitive to the cut. When c is large 

compared to   Γ /W* , the stretchability reduces markedly as the depth of the cut increases. 

Furthermore, we show that flaw sensitivity depends on the stretch-stiffening behavior of 

elastomers, and that the experimental data agree well with the prediction of nonlinear elastic 

fracture mechanics.  The concept of flaw sensitivity is applicable to all materials, including 

metals, ceramics, biomaterials, and polymers. We represent the lengths of flaw sensitivity of 

various materials in a space of material properties, with   W*  and Γ  as axes.  

 The length   Γ /W
*

 has been used to characterize the intrinsic diameter of the crack tip in 

elastomers [51, 52], but has not been used to characterize flaw sensitivity. We next compare 

  Γ /W
*  to other material lengths commonly used in fracture mechanics. A length, 

  
Γ / σ *

2 / E( ) , 

appears in the crack-bridging model, where  σ *  is the maximum stress in the traction-separation 

curve. [53-58] In the crack-bridging model, the region outside bridging zone is linearly elastic 

with Young’s modulus E. The work to rupture near the crack tip is given by the   W*
=σ

*
2 /2E .  

For highly stretchable materials, however, the material outside the bridging zone is nonlinearly 
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elastic. The material length   Γ /W*  generalizes 
  
Γ / σ *

2 / E( )  
when linear elasticity does not apply.  

(We have dropped any numerical factor.)  Another frequently discussed material length is the 

ratio of fracture energy and elastic modulus,   Γ / E . [32] [59]  This length overestimates the 

length of flaw sensitivity by orders of magnitude. For a highly stretchable material, the 

stretchability  λ*
 is on the order of ten, so that    W*

≫ E .  Consequently, the length of flaw 

sensitivity   Γ /W*  is much smaller than   Γ / E .  

 

2. Transition from flaw-insensitive to flaw-sensitive rupture 

Flaw-insensitive rupture 

 To focus on essentials, we consider the stretchability of a thin sheet of a material under a 

uniaxial force.  The length and the width of the sheet are much larger than the thickness of the 

sheet and the depth of the cut.  Using an uncut sample, we measure the applied force as a 

function of the associated displacement.  The area under the force-displacement curve divided 

by the volume of the material defines the energy density, W.  Let λ  be the stretch, namely, the 

length of the deformed sheet (in the direction of the applied force) divided by the length before 

stretch. The energy density is a function of stretch, 
 
W λ( ) .  

 For an uncut sample, let  λ*
 be the stretch to rupture and   W*

 be the work to rupture.  

The two parameters are related by the function 
 
W λ( ) : 

  
  
W* =W λ*( ) . (1) 

The stress to rupture 
 
σ*  is defined by the applied force at rupture divided by the deformed 

cross-sectional area (perpendicular to the applied force).  Criterion (1) also applies to samples 

containing cuts small compared to a material length (to be specified).  
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 The stretchability of elastomers is insensitive to small flaws.  Table 1 summarizes the 

experimental data from the literature and from this work. The reported stretch, stress, and work 

to rupture are within variations 5%-20% of their means. These data were measured using uncut 

samples. Yet flaws exist inevitably, either as small cracks or as heterogeneities of materials [50]. 

The small scatter in the data indicates that the stretchability of these materials is insensitive to 

the small flaws. This observation on elastomers differs from that on brittle hard materials, e.g., 

silica glass, in which a micron-sized flaw reduces the strength by orders of magnitude [44]. 

 

Table 1: Flaw-insensitive rupture of various elastomers. 

Source Material Stretch Stress (MPa) Work (MJ/m3) Loading Rate 

Sharma, 1965 [36] Hycar Aluminum  1.035  0.01%/s 

Sharma, 1966 [37] 
Hycar Aluminum 1.179 0.76±0.14*  345 Pa/s 
Cellulose Acetate 

Butyrate 1.096 30.2  6.9 kPa/s 

Hamdi, 2006 [40] 

Filled Natural 
Rubber 7.12±0.35* 174.56±20* 64.55±12* 

100%/min 

Filled Styrene-
butadiene Rubber 6.88±0.25* 169.88±15* 72.07±18* 

Unfilled 
Polyurethane 8.38±0.6*   

Thermoplastic 
Elastomer 6.26±0.5*   

Schmidt, 2012 [33] VHB 9.27±0.23 3.01±0.47 0.73±0.07 0.43%/s 

This work 
VHB 11.93±0.35 56.8±16.8# 5.58±1.22# 

100%/min 
Polyurethane 6.08±0.13 271±47# 144±20# 

* The standard deviation estimated through data points in graphs of the source.  
# Data calculated through extrapolating stress-stretch curves to the stretch to rupture based on 
the Gent model  (Fig. 6). 
 
 
Flaw-sensitive rupture 

 Flaw-sensitive rupture is predicted by fracture mechanics [47].  Consider a sheet 

containing a cut. The elastic energy of the sample is a function 
  
U Δ,c( ) , where c is the depth of 

the cut in the undeformed state, and Δ  is the displacement associated with the applied force.  
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The reduction in the elastic energy when the cut extends a unit area defines the energy release 

rate, 
  
G = −∂U Δ,c( )/ t ∂c( ) , where t is the thickness of the sheet in the undeformed state.  The 

energy release rate can be determined by solving the boundary-value problem of nonlinear 

elasticity.  When other sizes of the specimen are much larger than the cut, the depth of cut c is 

the only length scale in the boundary-value problem.  Dimensional considerations dictate that 

the energy release rate should take the form, 
  
G λ,c( ) = k λ( )W λ( )c , where 

 
k λ( )  is a 

dimensionless function determined by solving the boundary-value problem.  The function 
 
k λ( )  

depends on the model of nonlinear elasticity [47, 60]. The sample ruptures at stretch  λR  when 

the energy release rate reaches the fracture energy, 
  
G λR ,c( ) = Γ . When the cut is large and the 

sample ruptures at a small applied strain,  λ → 1 , linear elasticity applies, and the small-

deformation limit for an edge cut is known, 
  
k 1( ) ≈2 1.1215( )2π ≈ 7.9 [61]. The criterion of rupture 

becomes  

  
  
W λR( ) = Γ

k 1( )c . (2) 

This result is the Griffith limit [44]. Thus, we characterize the flaw-sensitive rupture by the 

fracture energy Γ  in the limit of large flaws. 

 

The transition from flaw-insensitive rupture to flaw-sensitive rupture  

 We have characterized the rupture of an uncut sample by the work to rupture,   W*
, which 

has the dimension of energy per unit volume. For a sample containing a cut, the state   W*
 

prevails ahead the front of the cut when the sample is near rupture.  We have also characterized 

the rupture in the limit of large cuts by the fracture energy, Γ , which has the dimension of 
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energy per unit area.  The ratio of these two material parameters defines a material-specific 

length,   Γ /W
*

.  

 We argue that the material length   Γ /W*  marks the transition from flaw-insensitive to 

flaw-sensitive rupture. When a sample of a small cut ruptures, except for the unstrained region 

behind the front of the cut, the entre sample reaches the state of   W*
 (Fig. 1a). When a sample of 

a large cut ruptures, only a small zone around the front of the cut reaches the state of   W*
 (Fig. 

1b).  Inside this zone, fracture process occurs. Outside this zone, the field of deformation is well 

characterized by the nonlinear theory of elasticity. The length scale of the fracture process zone 

is estimated as follows.  A dimensional consideration dictates that energy density W should scale 

with the energy release rate G, and inversely scale with the distance to crack tip r, namely, 

  W ~ G /r . This scaling appears in the analytical solutions of the nonlinear elastic field around 

the front of cut. [25] When the sample ruptures, the energy release rate G reaches Γ , and the 

energy density W in the fracture process zone attains   W*
. Consequently, the size of the fracture 

process zone scales with the material length   Γ /W
*

. 

 A flaw-sensitivity diagram displays the stretch to rupture  λR  as a function of the depth of 

cut c (Fig. 1c). The transition occurs when the depth of cut c is comparable to the material length 

  Γ /W
*

. When the depth of the cut c is small compared to   Γ /W
*

, the stretch to rupture is 

insensitive of the depth of the cut, and the small-cut limit (1) applies.  When the depth of cut is 

large compared to the material length, the stretch to rupture decreases as the depth of the cut 

increases, and approaches the large-cut limit (2).   
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Fig. 1.  The transition from flaw-insensitive to flaw-sensitive rupture.  (a) When a sample of a 
small cut ruptures, except for the region behind the front of the cut, the entire sample reaches 
the state of   W*

.  (b) When a sample of a large cut ruptures, only a small zone around the front of 

the cut reaches the state of   W*
. The size of this zone scales with the material length   Γ /W

*
.  (c) A 

flaw-sensitivity diagram sketches the stretch to rupture as a function of the depth of cut.  The 
diagram shows the small-cut limit, the large-cut limit, and the transition between the two limits. 
 

 The material length   Γ /W
*

, together with the depth of the cut c, defines a dimensionless 

number: 

  
  
χ = c

Γ /W
*

, (3) 

which we call the number of flaw sensitivity. We write the relation between the stretch to 

rupture  λR  and the depth of the cut c in the form:  

  
  
W λR( ) =W* f χ( ) . (4) 
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The function 
 
f χ( )  approaches the two limits:  the small-cut limit   f → 1  as  χ →0 , and the 

large-cut limit 
  
f → χk 1( )( )−1

 as χ →∞ .  The transition occurs at  χ ~ 1 . Many functions satisfy 

these requirements.  As an illustration, we propose a function,  

    
W λR( ) = W*

1+ k 1( )cW* /Γ
 , (5) 

which conforms to the form of (4), matches the two limits (1) and (2), and marks the transition 

at   c ~Γ /W* .  However, to predict the exact flaw-sensitivity diagram, we need to model the 

fracture process and the nonlinear elastic deformation. 

 

3. Experimental determination of flaw-sensitivity diagrams 

 We measure the flaw-sensitivity diagrams of two elastomers:  an acrylic elastomer VHB 

4905 (3MTM) and a polyurethane (PU, 90A Durometer), both purchased from McMASTER-

CARR. In experiment, we pull a dogbone-shaped sample with a cut to rupture by a uniaxial force. 

We measure the stretch to rupture  λR  as a function of the depth of cut c.  

 To prevent rupture at the loading fixture, we prepare samples in the shape of a dogbone, 

so that the stress is high in the narrow region of the sample, away from the loading fixture (Fig. 

2a). We use a razor blade to cut the sample to a depth c ranging from ~0.05mm to 50mm.  We 

mark two lines close to the ends of narrow region with distance L. The thickness of the sheet t = 

0.5 mm. The width of the dogbone w is at least 5 times the depth of cut c, and the distance L is 

at least twice the width w, varying case by case.  When the cut is small, we take a photo to 

measure its depth (Fig. 2f). The sticky VHB sample is rolled to two steel rods. We also roll the 

rods during pulling to further alleviate stress concentration at the installation region (Fig. 2c). 

The PU samples are knotted to the steel rods (Fig. 2d). Then we pull the specimen at a strain 

rate of 100% per minute (Fig. 2b). The stretch of ligament to rupture is  λR .  During stretching, 
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the initial sharp cut (Fig. 2f) blunts with a visible growth of millimeters before rupture (Fig. 2g). 

This stable growth of cut gives rise to the fracture resistance curve.  

 

 

Fig. 2.  The experiment to determine the flaw-sensitivity diagrams of a VHB and a PU.  (a) In 
the undeformed state, a dogbone-shaped sample is cut to depth c. Two red lines mark the region 
of uniform width w and length L. (b) When the sample is stretched by a uniaxial force, the 
distance between the marked lines becomes  λL . (c) The sticky VHB is rolled to steel rods. (d) 
The PU with slippery surface is knotted to the steel rods. (e) A photo of a cut PU sample before 
stretching. (f) A photo of a submillimeter cut before stretching. (g) A photo of the stretched PU 
sample. The cut blunts, and the growth of the cut before rupture is visible. 
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Fig. 3.  Flaw-sensitivity diagrams of two elastomers: (a) a VHB and (b) a PU.  In experiments, 
dogbone-shaped specimens are cut to a certain depth and pulled to rupture.  Each run of the 
experiment records a stretch to rupture  λR . The error bar shows the standard deviation of 
stretches to rupture with at least three measurements. The scatter shows the stretch to rupture 
when the depth of cut is smaller than 0.2mm. The experimental data are compared to the 
prediction of the nonlinear elastic fracture mechanics (marked as Gent), and to the fitting 
formula (marked as Equation (5)).   The stretches to rupture of uncut samples are marked red. 
The vertical error bar is the standard deviation of ten measurements, and the horizontal error 
bar is an estimation of the range of flaw size. 
 

 We plot the measured stretch to rupture  λR  as a function of the depth of cut c (Fig. 3). 

The error bars for ruptures with c≥0.2mm are the standard deviations of at least three 
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measurements with the same depth. When the depth c is smaller than 0.2mm, we are unable to 

control the depth of cut precisely. We show the scatters directly.  

 Also included in Fig. 3 are the stretches to rupture determined using uncut samples. The 

experimental setup is similar to that described previously, but no cut is introduced before 

stretching. The statistics of stretch to rupture involves ten tests. The vertical error bar indicates 

the standard deviation of these measurements. Since there is no intentional cut in the specimens, 

the flaws exist in microscale, smaller than the minimum depth of intentional cut. As an 

illustration, the horizontal error bar shows the range of flaw size. 

 We include the limits of small flaws and large flaws in Fig. 3. In the small-flaw limit, the 

work to rupture,   W* , characterizes rupture of specimens without an intentional cut. To obtain 

  W* , we measure stress-stretch curves, fit them to the Gent model (9) (Fig. 6, described later), 

and estimate 
  
W* =W λ*( ) . The work to rupture is 5.58 MJ/m3 for VHB, and 144.3 MJ/m3 for PU. 

In the large-flaw limit, we fit the measured stretch to rupture to the Griffith theory (2) to 

determine the fracture energy. The fracture energy is 2.1 kJ/m2 for VHB and 13.5 kJ/m2 for PU. 

The ratio   Γ /W*  gives the lengths of flaw sensitivity: 0.37 mm for VHB, and 0.093 mm of PU. 

We label the values of   Γ /W*  on the horizontal axes in Fig. 3, showing   Γ /W*  agrees with the 

transition of flaw sensitivity in the experiment. 

 Flaw sensitivity is evident through comparison between experimental data and the two 

limits (Fig. 3). When the depth of cut c is large compared to   Γ /W
*

, the cut significantly reduces 

the stretch to rupture  λR . In the large-flaw limit, when rupture occurs at a small applied strain, 

the stretch to rupture reduces to the Griffith limit (2). When the stretch of rupture is beyond 

small strain, the flaw-sensitive rupturing stretches deviate from (2). We will elaborate this effect 

in the next section using nonlinear elastic fracture mechanics. In the small-flaws limit, the 

stretch to ruptures approaches a constant  λ*  with small variations; rupture is flaw insensitive, 
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and (1) is applicable.  The interpolation of the two limits, Equation (5), of course works well in 

the two limits, but underestimates the stretches to rupture for samples containing cuts of 

intermediate depths.   

 

4. Flaw-sensitivity determined by nonlinear elastic fracture mechanics 

 When the cut in a sample is not very deep, the prediction of the Griffith theory deviates 

from the experimental data (Fig. 3).  This deviation is not surprising. To predict the flaw-

sensitivity diagram accurately, we need a model of fracture process, as well as a model of 

nonlinear elasticity with large deformation.  A model of fracture process is beyond the scope of 

this paper.  Here we focus on the effect of nonlinear elasticity.   

 A stretchable material is a three-dimensional network of crosslinked polymer chains. 

Each polymer chain is an entropic spring. [62] When the elastomer is under no external forces, 

the chain coils to maximize its entropy.  When the elastomer is subject to external forces, the 

chain uncoils, and eventually stiffens upon approaching its contour length. Macroscopically, this 

behavior yields a stiffening stress-stretch curve, and the stress becomes unbounded at a limiting 

stretch.  Arruda and Boyce [63] developed an eight-chain model, which shows that the energy 

density W is solely determined by one invariant of the deformation, 

  
  
I = λ1

2 + λ2
2 + λ3

2 −3 , (6) 

where  λ1
,  λ2

, and 
 
λ

3
 are the principal stretches. The shear modulus of a stretchable material is 

often orders of magnitude lower than bulk modulus.  Subject to external forces, the material 

distorts much more than it dilates.  Consequently, the stretchable material is assumed to be 

incompressible,  

  
 
λ

1
λ

2
λ

3
= 1 .  (7) 

Particularly, stretched by the uniaxial force to λ , the invariant of deformation   I = λ2 +2λ−1 −3 .   

 We adopt a functional form of the energy density proposed by Gent [64]: 
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W I( ) = −

EIlim
6

log 1− I
Ilim

⎛

⎝⎜
⎞

⎠⎟
. (8) 

This model only involves two material parameters: Young’s modulus E at small strain, and Ilim, 

the limit of the invariant I in (6).  

 The material model of chosen elastomers is identified in Section 6. For each material, we 

measure the stress-stretch curve and fit it to the Gent model (Fig. 6). Both VHB and 

polyurethane show significant stiffening effect when stretch approaches to limit. The stress-

stretch measurements confirm that the Gent model is capable to describe the deformation of 

chosen elastomers (Fig. 6).  

 We use a finite element software, ABAQUS, to calculate the energy release rate. ABAQUS 

does not support the Gent model directly, and we use the UHYPER subroutine to implement the 

Gent model in ABAQUS. We calculate the energy release rate using the J-integral. [65] The 

geometry is a large sheet with a cut. The cut exists at the middle of one edge with depth c, which 

is 1/10 of the width of sheet w, and 1/20 of length L (Fig. 4a). We assume the thin sheet in plane 

stress condition. Because of the symmetry of the geometry, we model a half of the sheet with a 

symmetric boundary in crack plane. To avoid the singularity at the crack tip in calculations, we 

model a blunt tip with a small radius   ρ = c /1000  before stretching. We use the CPS8R element 

in ABAQUS (Fig. 4b). The calculations choose the material parameter Ilim according to 

experiments of the chosen materials, i.e., Ilim =150 for VHB, and 39 for PU. (Fig. 6) The 

normalized energy release rate 
  
G / Ec( )  is plotted as the applied stretch λ  (Fig. 4c). 

 We determine the stretch to rupture by fracture mechanics. With the prescribed fracture 

energy of material, Γ , we pull the sheet to stretch λ  by a uniaxial force. When the energy 

release rate reaches fracture energy,  G = Γ , the corresponding stretch to rupture  λR  is 

determined. 



9/12/2016 15 

 

Fig. 4. Finite element calculations of energy release rate of the Gent materials. (a) Schematics 
of a sheet with a cut. In the undeformed state, the depth of the cut is c, the width of the sheet w 
= 10c, and the length L = 20c.  In the deformed state, the sheet is pulled to a length  λL  by a 
uniaxial force. (b) Finite radius ρ  of the tip. The mesh of the sheet is modeled by the CPS8R 

element. (c) The normalized energy release rate 
  
G / Ec( )  is plotted as a function of the applied 

stretch λ . 
 

  We include the finite element results in Fig. 3. When rupture occurs at large 

deformation, the nonlinear elastic fracture mechanics predicts flaw-sensitive rupture, while the 

linear Griffith prediction (2) deviates from experiment. When rupture occurs at small strain, the 

nonlinear prediction reduces to Griffith limit (2). The limiting stretch  λlim  of the Gent model is 

also marked as the dashed horizontal lines, but is slightly higher than the stretch to rupture  λ*  

in the small-cut limit.  
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 The discrepancy in the small-cut limit is not surprising. The limiting stretch  λlim  is 

determined by fitting the stress-stretch curve to the Gent model, and is a parameter to describe 

the elasticity of the material.  On the other hand,  λ*  is the stretch to rupture measured using 

uncut samples. The rupture process is distinct from elastic behavior. Elastic behavior represents 

a homogeneous stretching of polymer chains, which share load fairly. But when the material is 

stretched to its limits, short chains carry load more. Thus rupture behavior is dominated mostly 

by weaker chains, and deviates from elastic prediction.  

 

5. Flaw sensitivity of various materials 

 The notion of flaw sensitivity applies to all materials. We collect data of fracture energy 

Γ  and work to rupture   W*  of various materials, e.g. ceramics, polymers, biomaterials, metals, 

etc. The fracture energy is the required work to propagate a crack front by unit area. Some 

literature reports fracture toughness, KC. In this case, we convert to fracture energy through 

  Γ = KC
2 / E . The area under the stress-stretch curve to failure defines the work to rupture   W* . 

This parameter is not commonly reported in literatures. An estimation is 
  
W* =ασ * λ* −1( ) , 

where α  is a numerical factor depending on the shape of the stress-stretch curve. When the 

majority of the stress-stretch curve is linear,  α ~ 1 /2 , and   W* ~σ *
2 /2E . When the stress-stretch 

curve shows a long plateau,  α → 1 . Particularly, the work to rupture for brittle hard materials is 

estimated through the theoretical bond energy of covalent bonds. 

 We plot the data for various materials in a material space with   W*  and Γ  as axes (Fig.5). 

The dashed slashes mark the constant values of the length of flaw sensitivity   Γ /W
*

. The length 

of flaw sensitivity has a large range, from nanometers for brittle materials to centimeters for 

tough materials.  
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Fig. 5. A space of material properties, with the two axes being the fracture energy Γ  and the 
work to rupture   W* . Also included are the slashes of constant values of the length of flaw 

sensitivity   Γ /W* . The stretchable materials in the current work are compared with other 
materials, e.g., natural rubbers [47, 66], polyacrylamide hydrogels [26], alginate hydrogels [26, 
67], and tough hydrogels, [26, 68], as well as steels, aluminum, bone, human skin, acrylic glass, 
epoxy, aluminum oxide, and silica glass. [69] 
 

 For brittle hard solids (e.g., a silica glass), measuring  σ *  and   W*  in the small-flaw limit 

is a difficult experimental task, and is rarely done in practice, because the small-flaw limit is 

reached when the flaws approach the atomic scale.  In practice, brittle hard solids nearly always 

operate in the large-flaw limit, where the Griffith fracture mechanics applies.  By contrast, for 

elastomers and gels, the small-flaw limit is readily reached when the flaws are below millimeters.  

In practice, elastomers and gels can operate in the small-flaw limit, the large-flaw limit, and 

anywhere in between.  As we have commented before, the scatter of the rupture data measured 

using uncut samples is large for brittle hard solids, but is small for elastomers and gels. 

 Additional insight into the length of flaw sensitivity is gained by comparing two ideal 

models of fracture.  In these ideal models, the work to rupture   W*
 is the energy per unit volume 
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stored in the chemical bonds in a material.  The rupture of an ideal hard solid (e.g., silica glass) 

dissipates the chemical energy of a layer of atomic bonds, so that   Γ ≈W
*
a , where a is length of 

the chemical bond, corresponding to the thickness of the atomic layer.  By contrast, the rupture 

of an ideal elastomer dissipates the chemical energy of a layer of polymer chains, so that 

  Γ ≈W
*
a n , where a is the length of a monomer, and n is the number of monomers in the chain. 

[70]  Consequently, the length of flaw sensitivity   Γ /W*  is estimated by the atomic size a for an 

ideal hard solid, and by the polymeric mesh size  a n  for an ideal elastomer.  These ideal 

models neglect other mechanisms of dissipation and underestimate the fracture energy.  But 

these models do bring out a fundamental cause for the large difference in the lengths of flaw 

sensitivity of the two types of materials.    

 

6. Stress-stretch curves 

 We measure the stress-stretch curves of the two elastomers. The experimental setup is 

similar with the measurement of flaw-sensitivity diagrams. We prepare samples in the shape of 

a dogbone. The thickness of sheet is t = 0.5 mm. The width of the dogbone ligament is w = 1 mm. 

The area of cross-section is A=wt. We mark two lines close to the ends of the uniform ligament 

with a distance L = 10mm. To prevent slip from the grips, the sticky VHB sample is rolled to two 

steel rods, while the smooth PU samples are knotted to steel rods. Then we pull the samples 

uniaxially in an Instron machine. The pulling force F is recorded in Instron. Simultaneously we 

take videos to record the distance of between the lines l. The nominal stress is F/A, and the 

stretch of the ligament λ  is l/L. We plot the nominal stress as a function of stretch in Fig. 6.  

The area under the curve gives the energy density as a function of the stretch, 
 
W λ( ) .  

 Under the uniaxial tensile force, the Gent model predicts the relation between the 

nominal stress and the stretch:  
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F
A
=

E λ2 − λ−1( )
3 1− λ2 +2λ−1 −3

I lim

⎛

⎝⎜
⎞

⎠⎟

. (9) 

The experimental data fit to the Gent model with E = 84 kPa and Ilim = 150 for VHB, and E = 10.5 

MPa and Ilim = 39 for PU (Red dashed lines in Fig. 6). The fitting of PU is excellent in the entire 

range of stretch. The fitting of VHB underestimates the stress when the strain is small. Yet the 

sacrifice of fitting accuracy at small strain contributes to a better overall match, and captures the 

stress-stiffening effect.  
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Fig. 6. Stress-stretch curves of a VHB and a PU under uniaxial forces. The samples are in the 
shape of a dogbone. In undeformed state, the ligament in the sample is with uniform width w. 
The thickness of sample is t=0.5mm. The cross-sectional area is A = wt. The distance between 
marked lines is L=10mm. Subject to an uniaxial force F, the distance between lines becomes  λL . 
The experimental stress-stretch curves  (solid curves) fit to the Gent model (dashed curves), 
giving the material parameters: E and Ilim. (a) Stress-stretch relation of VHB (w = 2 mm), (b) 
and of PU (w = 1 mm).  
 

 

7.  Concluding remarks 

 This work analyzes the flaw sensitivity of highly stretchable materials. We measure the 

work to rupture   W*  using uncut samples, and measure the fracture energy Γ  using samples 

containing large cuts.  We identify a length of flaw sensitivity,   Γ /W
*

.  A combination of 

experiment and calculation shows that the stretch to rupture is nearly a constant when the depth 

of cut is small compared to   Γ /W
*

, and reduces markedly when the depth of cut is large 

compared to   Γ /W
*

.  Furthermore, we represent the stiffening stress-stretch curves to the Gent 

model, and use the finite element method to calculate the energy release rate.  The nonlinear 

elastic fracture mechanics predicts the transition from flaw-insensitive to flaw sensitive rupture.  

The length of flaw sensitivity is a property of materials of various kinds, varying from 

nanometers to centimeters.  We display these data in a material property space with   W*  and Γ  

as axes.    
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