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Abstract 20 

A spring phenology model that combines photoperiod with accumulated heating and 21 

chilling to predict spring leaf out dates is optimized using PhenoCam observations and coupled 22 

into the Community Land Model (CLM) 4.5. In head-to-head comparison (using satellite data 23 

from 2003-2013 for validation) for model grid cells over the Northern Hemisphere deciduous 24 

broadleaf forests (5.5 million km
2
), we found that the revised model substantially out-performed 25 

the standard CLM seasonal-deciduous spring phenology sub-model at both coarse (0.9×1.25 26 

degree) and fine (1km) scales. The revised model also does a better job of representing recent 27 

(decadal) phenological trends observed globally by MODIS, as well as long-term trends (1950-28 

2014) in the PEP725 European phenology dataset. Moreover, forward model runs suggested a 29 

stronger advancement (up to 11 days) of spring leaf out by the end of the 21
st
 century for the 30 

revised model. Trends towards earlier advancement are predicted for deciduous forests across the 31 

whole northern hemisphere boreal and temperate deciduous forest region for the revised model, 32 

whereas the standard model predicts earlier leaf out in colder regions, but later leaf out in 33 

warmer regions, and no trend globally. The earlier spring leaf out predicted by the revised model 34 

resulted in enhanced gross primary production (up to 0.6 Pg C yr
-1

) and evapotranspiration (up to 35 

24 mm yr
-1

) when results were integrated across the study region. These results suggest that the 36 

standard seasonal deciduous submodel in CLM should be reconsidered, otherwise substantial 37 

errors in predictions of key land-atmosphere interactions and feedbacks may result. 38 

  39 
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1. Introduction 40 

 The vast boreal and temperate deciduous forests of the Northern Hemisphere are thought 41 

to account for a substantial fraction of the terrestrial carbon sink (Houghton, 2007; Luyssaert et 42 

al., 2007; Pan et al., 2011).  In these ecosystems, vegetation phenology controls numerous land 43 

surface characteristics including albedo (Hollinger et al., 2010), microclimate (Richardson & 44 

O’Keefe, 2009), canopy roughness and conductance (Blanken & Black, 2004), and the 45 

exchanges of carbon and water between land and atmosphere (Richardson et al., 2013). 46 

Phenology thus plays an important role in mediating vegetation feedbacks to the climate system 47 

(Peñuelas et al., 2009). For deciduous trees, phenological transitions are usually modeled as a 48 

function of air temperature and photoperiod, and sometimes soil temperature and soil moisture 49 

(Richardson et al., 2012). However, existing land surface models generally employ poor 50 

phenological sub-models for deciduous forests, which leads to biased estimates of forest-51 

atmosphere fluxes and feedbacks (Keenan et al., 2012; Richardson et al., 2012). 52 

 The Community Land Model (CLM) simulates land surface processes in the Community 53 

Earth System Model (CESM) and is one of the most widely used land surface models for 54 

regional and global simulations of land-atmosphere exchanges. In CLM, vegetation phenology 55 

plays an essential role in almost all biophysical and biogeochemical processes on the land 56 

surface. In the most recently released version, CLM 4.5, three different vegetation phenology 57 

submodels are used for natural ecosystems (Lawrence et al., 2011). First, the seasonal-deciduous 58 

submodel, which is used for boreal and temperate deciduous forests, has distinct growing and 59 

dormant seasons, and temperature and photoperiod determine the periods of leaf development 60 

and senescence, each of which occurs only once per year. Second, the stress-deciduous submodel, 61 

which applies to grasslands, shrublands, and tropical drought-deciduous forests, is similar to the 62 
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seasonal-deciduous model, but vegetation activity is limited by water availability and/or 63 

temperature, and there may be multiple growing cycles per year. Third, in the evergreen 64 

submodel, which is used for evergreen forests and shrubs, carbon allocation to new foliage 65 

occurs whenever photosynthesis occurs, while in parallel, a background rate of litterfall results in 66 

continuous shedding of foliage. Although limitations of the phenology submodels in CLM have 67 

been acknowledged for some time (Lawrence et al., 2011), to date there have been only limited 68 

efforts to improve them (e.g., Dahlin et al., 2015). 69 

 In this study we aim to improve CLM’s seasonal-deciduous spring phenology submodel 70 

using a new formulation derived for boreal and temperate deciduous broadleaf forests in the 71 

Northern Hemisphere, and more importantly, we focus on evaluating how the new spring 72 

phenology algorithm may influence carbon and water cycles in these forests under future climate 73 

scenarios. We conduct simulations and compare the results from the standard version of CLM 74 

4.5 with results from a revised version that incorporates the improved phenology submodel. We 75 

investigate the following questions: (1) How do the two submodels compare in regard to 76 

predictions of spring leaf out across Northern Hemisphere deciduous broadleaf forests? What are 77 

the spatial patterns, and which submodel agrees best with remotely sensed land surface 78 

phenology? (2) Does either model predict significant trends towards earlier or later dates of 79 

spring leaf-out under future climate scenarios? (3) How are model estimates of land-atmosphere 80 

carbon and water exchanges in the coming century affected by choice of phenology submodel? 81 

 82 

2. Materials and Methods 83 

2.1 CLM seasonal-deciduous spring phenology 84 
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 The seasonal-deciduous phenology algorithm in CLM 4.5 is directly adapted from an 85 

earlier ecosystem model, Biome-BGC v. 4.1.2 (Thornton et al., 2002). The timing of spring leaf 86 

out is triggered when the accumulated Growing Degree Days (GDD) exceed a threshold GDDcrit. 87 

The GDD temperature sum is calculated using the 3
rd

-layer soil temperature (Ts, in K), with a 88 

base temperature equal to the water freezing temperature (Tf, 273.15 K). The accumulation of 89 

GDD begins at the winter solstice. Thus for time step n, where ∆t is the duration of the time step 90 

(in seconds), and DL is the day length (86400 seconds): 91 

  GDDn=GDDn-1+max(Ts-Tf,0)×(∆t/DL) (1) 92 

Once GDDn > GDDcrit, leaf out is triggered, effectively activating the growing season. Here, we 93 

refer to this date as the start of spring (SOS). In the CLM 4.5 seasonal-deciduous phenology 94 

algorithm, GDDcrit is calculated from the annual average of 2 m air temperature (T2mavg,ann) in the 95 

preceding year: 96 

  GDDcrit=exp[4.8+0.13(T2mavg,ann-Tf)] (2) 97 

 98 

2.2 PhenoCam spring phenology model 99 

 The PhenoCam network (http://PhenoCam.sr.unh.edu) was established to provide 100 

automated, near-surface remote sensing of vegetation phenology across North America using 101 

repeat digital photography (Sonnentag et al., 2012). For a designated region of interest within 102 

each camera field of view, image time series are processed to the Green Chromatic Coordinate 103 

(GCC) index, from which estimates of SOS (in this context, defined as the spring date at which 104 

GCC reaches 50% of its seasonal amplitude) can been derived using curve-fitting methods, as 105 

described by Klosterman et al. (2014).   106 
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 In a previous paper, Melaas et al. (2016) parameterized 13 different spring phenology 107 

models using Klosterman et al.’s (2014) PhenoCam dataset, which includes observations from 108 

13 deciduous forest sites located across a 12°C gradient in mean annual temperature and a more 109 

than 800 mm year
-1

 gradient in annual precipitation. The “best” model was selected using the 110 

small-sample corrected Akaike Information Criterion (AICc) (Burnham & Anderson, 2002) 111 

based on the residual sum of squared errors for observations (55 site-years of data). Here, we use 112 

the “best” model from Melaas et al. (2016), but re-parameterized it using an additional two years 113 

of data (2010 and 2012) that were originally withheld for model testing. We refer to this model 114 

as the “PhenoCam spring phenology model”. In total, 80 site-years of data were used to 115 

parameterize our model. 116 

 Similar to the CLM seasonal-deciduous spring phenology submodel, leaf out in the 117 

PhenoCam model is predicted to occur when the accumulated GDD exceed a threshold GDDcrit. 118 

However, similar to the classic Alternating model (Cannell & Smith, 1983), in the PhenoCam 119 

spring phenology model, GDDcrit varies as a function of the accumulated chilling units (CU), and  120 

GDD and CU both accumulate beginning on date t0 (optimized, conditional on the PhenoCam 121 

observations, to day of year 74, or March 14), relative to a single base temperature Tc (optimized 122 

to -3.32 °C). CU accumulate only if the daily mean air temperature Ta < Tc: 123 

  CU = CU + 1 (3) 124 

where GDD accumulate only if Ta > Tc: 125 

  GDD = GDD + (Ta - Tc) (4) 126 

and GDDcrit is calculated as: 127 

  GDDcrit = a + b ×exp(c ×CU) (5) 128 

where a = 207.87, b = 244.72 and c = -0.013 are optimized parameters.  129 
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 We used the PhenoCam spring phenology model to replace the seasonal-deciduous spring 130 

phenology submodel in CLM and used CLM’s daily mean air temperature to drive the submodel. 131 

In this paper, we refer to CLM runs using this new submodel as “CLM-PhenoCam” runs.  132 

 133 

2.3 Model evaluation and forward runs 134 

 We conducted two sets of model runs using the CLM spring phenology submodel and the 135 

PhenoCam spring phenology submodel. The first runs were for model evaluation, and were 136 

conducted using a combination of coupled (i.e. with the phenology submodels embedded within 137 

CLM) and offline (i.e. just the phenology submodels on their own) runs. For the forward runs, 138 

from 2014-2100, the phenology submodels were embedded within CLM so that we could 139 

evaluate the impacts of future phenological change on global carbon and water cycling.  140 

Model evaluation 141 

 For model evaluation we conducted a number of different hindcast analyses. To evaluate 142 

the phenology submodel predictions against global grid-scale estimates of SOS, derived from 143 

satellite remote sensing, we ran CLM from 2000 to 2013, starting from initial conditions in 2000 144 

provided by the standard release of CESM 1.2.0, and using the transient Climate Research Unit – 145 

National Centers for Environmental Prediction (CRUNCEP) meteorological forcing data 146 

(http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm). We then evaluated predicted SOS 147 

dates from both phenology models against SOS dates determined from Moderate Resolution 148 

Imaging Spectroradiometer (MODIS, using data from 2003-2013) satellite imagery. Previous 149 

work (e.g. Hufkens et al., 2012; Klosterman et al., 2014), has shown that SOS dates derived 150 

from visual inspection of PhenoCam images are highly correlated with SOS dates derived from 151 

PhenoCam GCC thresholds (with little or no bias), which are in turn in good agreement with 152 
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start-of-spring dates derived from MODIS thresholds. We used OGI (onset of greenness increase, 153 

corresponding to 10% of the seasonal amplitude in the logistic-function-fitted EVI time series) 154 

and MAT (greenness maturity, corresponding to 90% of the seasonal amplitude in the logistic-155 

function-fitted EVI time series) dates from the MODIS Collection 5 Land Cover Dynamics 156 

product (MCD12Q2) (500 m resolution, calculated from the Enhanced Vegetation Index (EVI)) 157 

(Zhang et al., 2003; Ganguly et al., 2010). To account for a small bias in OGI relative to surface 158 

observations (Klosterman et al., 2014), we calculated on a pixel-by-pixel basis, by linear 159 

interpolation, MODIS-derived SOS as the date at which 20% of the seasonal amplitude was 160 

achieved (Melaas et al., 2016). We excluded pixels where the interannual variation (as measured 161 

by the standard deviation of the SOS) was more than 20 days, which is more than double the 162 

typical standard deviation observed in budburst dates at either Harvard Forest (Richardson & 163 

O’Keefe, 2009), or in the PEP725 dataset (described below). We further excluded pixels where 164 

the mean SOS date was later than day of year 200, assuming that dates after this day would tend 165 

to suggest either bad MODIS retrievals, or that the pixels are not actually temperate deciduous 166 

forest.  167 

 Within each model grid cell, we calculated the mean SOS only using the pixels classified 168 

as deciduous broadleaf or mixed forest by the MODIS Collection 5 Land Cover product 169 

(MCD12Q1) (Friedl et al., 2010). However, we evaluated model predictions only for grid cells 170 

where at least 5% of the pixels were classified as deciduous broadleaf forest or mixed forest.   171 

 To address concerns about scale mismatch and uncertainties associated with aggregating 172 

MODIS data to coarse model grid cells, we also evaluated both phenological models at a much 173 

finer spatial resolution (1km). For these offline (i.e. not embedded within CLM) runs, conducted 174 

for the eastern United States, we used Daymet (Thornton et al., 2014) meteorological forcing 175 
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data, and we calculated the mean SOS for pixels classified as deciduous forest across a 3×3 176 

MODIS pixel window centered on the Daymet grid cell. Following Melaas et al. (2016) we only 177 

evaluated the models for those grid cells where at least 3 of 9 MODIS pixels were classified as 178 

deciduous broadleaf or mixed forest.  179 

Finally, for evaluation against long-term ground observations, we conducted an analysis 180 

using the Pan-European Phenology Project dataset, known as PEP725 (http://www.pep725.eu).  181 

Because of the length of the available time series, this dataset is well suited to trend analysis. We 182 

used records of leaf unfolding (code 11) for the common tree genera of northern Europe 183 

(including Acer, maple; Betula, birch; Fagus, beech; Fraximus, ash; Juglans, walnut; Populus, 184 

aspen; Quercus, oak; and Tilia, basswood), including those sites where data were available for 185 

90% (or more) of the years between 1950 and 2014. Offline runs of both phenology submodels 186 

were driven by daily mean temperature from the E-OBS 0.25-degree gridded dataset (Haylock et 187 

al., 2008), and we averaged all species within a model grid cell for further analysis.  188 

The above analyses were conducted at various spatial scales therefore meteorological 189 

forcing data (i.e., CRUNCEP, Daymet and E-OBS) with different spatial resolution were 190 

employed. In each of the above analyses, we calculated the Root Mean Square Error (RMSE), 191 

Mean Bias Error (MBE), and Pearson correlation coefficient (r) between data (i.e. MODIS or 192 

PEP725) and model predicted SOS at each model grid cell. For the grid-scale MODIS runs and 193 

the PEP725 runs we also calculated the slopes of the linear trends of the SOS time series for both 194 

the observational data and for each of the two phenology submodels.  195 

Forward runs 196 

 For the forward model runs (2014-2100), we used transient meteorological forcing and 197 

atmospheric CO2 concentrations simulated by CCSM under Representative Concentration 198 
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Pathways (RCP) scenarios 8.5 (high emissions) and 4.5 (medium emissions) (Meehl et al., 2013). 199 

Our objective with the forward runs was to investigate how future shifts in spring phenology 200 

might influence land-atmosphere exchanges of carbon and water under future climate regimes. 201 

We used the system state variables at the end of 2013 from our hindcast standard CLM run as the 202 

initial conditions for the forward runs.  203 

 CLM runs were conducted at a spatial resolution of 0.9×1.25 degrees and a time step 30 204 

minutes with the “BGC” option turned on to incorporate the newest biogeochemistry 205 

developments in CLM 4.5 (Oleson et al., 2013).  Our analyses of model output focuses on SOS 206 

dates as well as carbon (gross primary production, GPP; net primary production, NPP; and 207 

autotrophic respiration, AR) and water (evapotranspiration, ET) fluxes integrated over Northern 208 

Hemisphere deciduous broadleaf forests (including both boreal and temperate broadleaf 209 

deciduous forests), the range of which is based on the prescribed plant functional type (PFT) 210 

distributions in CLM 4.5 default settings (Oleson et al., 2013), as derived from the Advanced 211 

Very High Resolution Radiometer (AVHRR) continuous fields tree cover dataset (Defries et al., 212 

2000). Grid cells that contain any fraction of deciduous forest are included into the CLM domain 213 

for further analysis. Our study domain is therefore larger than the spatial extent of deciduous 214 

broadleaf forests in MCD12Q1 (Fig. 1).  215 

 216 

3. Results  217 

Model evaluation 218 

 The spatial patterns of SOS predicted by the CLM and CLM-PhenoCam phenology 219 

submodels are broadly similar to MODIS-derived SOS dates (Fig. 1). Over the period from 2003 220 

to 2013, SOS occurred later in mid- and high-latitude regions, and earlier at lower latitudes. This 221 

Page 10 of 42Global Change Biology



 11

spatial pattern is largely driven by the strong temperature gradient from north to south. SOS from 222 

CLM was generally earlier than SOS from CLM-PhenoCam (0.7 ± 1.0 days, mean ± 1 SD across 223 

years), with the models in closest agreement in middle latitudes between 30 °N and 40 °N and 224 

showing largest disagreement in lower (20 °N to 25 °N) and higher latitudes (65 °N to 70 °N) 225 

(Fig. 2a). More specifically, differences are small in mid-latitude regions of eastern North 226 

America and Eastern Europe, but are particularly large in boreal North America and subtropical 227 

regions of Southern Asia (Fig. 1d).  228 

 229 

Figure 1. Average SOS (start of spring) dates predicted by CLM and CLM-PhenoCam, compared with 230 

MODIS-derived SOS, over the period 2003-2013: (a) CLM predicted SOS; (b) CLM-PhenoCam 231 

predicted SOS; (c) MODIS-derived SOS; (d) Differences between CLM and CLM-PhenoCam SOS [(a)-232 

(b)]; (e) Differences between CLM and MODIS SOS [(a)-(c)]; (f) Differences between CLM-PhenoCam 233 

and MODIS SOS [(b)-(c)]. 234 

 235 
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 236 

Figure 2. Latitudinal mean of the SOS dates predicted by CLM and CLM-PhenoCam: (a) hindcast 237 

predictions, 2001-2013; (b) CLM predictions at the beginning (2014-2023) and end (2091-2100) of the 238 

forward runs under RCP 4.5 and 8.5; and (c) CLM-PhenoCam predictions at the beginning (2014-2023) 239 

and end (2091-2100) of the forward runs under RCP 4.5 and 8.5. 240 

 241 

 At the model grid scale (0.9×1.25 degree), SOS predictions from CLM are somewhat less 242 

consistent with MODIS-derived SOS than are SOS predictions from CLM-PhenoCam. Across all 243 

Northern Hemisphere deciduous broadleaf forests, the mode RMSE is 8 days (median, 10 days) 244 

for CLM, compared with a mode of 4 days (median, 6 days) for CLM-PhenoCam (Fig. 3a). SOS 245 

dates for CLM are also biased early (mode, -7 days; median, -3 days) compared to MODIS-246 

derived SOS. SOS bias for CLM-PhenoCam is much smaller (mode, -2; median, -1 days) (Fig. 247 

3b). Finally, the correlation coefficient between predicted and MODIS-derived SOS dates is 248 

generally weaker for CLM (mode, r = 0.7) than CLM-PhenoCam (mode, r = 0.9) (Fig. 3c).  249 

 250 
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 251 

Figure 3. Probability density estimates of the root mean square error (RMSE), mean bias error (MBE), 252 

and Pearson correlation coefficient (r), for start of spring (SOS) predicted by two models: CLM and 253 

CLM-PhenoCam. (a)-(c): comparison against Moderate Resolution Imaging Spectroradiometer 254 

(MODIS)-derived SOS across the Northern Hemisphere deciduous broadleaf forest (0.9×1.25 degree grid 255 

cells); (d)-(f): comparison against PEP725 data (0.25 degree grid cells); (g)-(i): comparison against 256 

MODIS-derived SOS across the eastern US deciduous forest (1km grid cells). 257 

 258 

 We obtained similar results when the two phenology models were run at finer spatial 259 

resolution and evaluated at that scale. For example, forced with Daymet data at 1km resolution 260 

for the eastern US, and evaluated against MODIS data aggregated to 3×3 pixel windows, the 261 

PhenoCam spring phenology model has a lower RMSE (mode, 4 days; median, 5 days) than the 262 

standard CLM spring phenology model (mode, 7 days; median, 8 days). The PhenoCam model 263 

also performs better in terms of smaller bias (mode MBE of 2 days vs. -5 days, for the two 264 

models respectively) and higher correlation coefficient (mode r of 0.9 vs. 0.8, again for the two 265 

models respectively) (Fig. 3g-i). And, when run with E-OBS data at 0.25° resolution for northern 266 
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Europe, and evaluated against PEP725 data, the PhenoCam spring phenology model again 267 

predicts substantially more accurate SOS, in terms of lower RMSE, smaller bias, and higher 268 

correlation coefficient (Fig. 3d-f) than the standard CLM spring phenology model.   269 

Our trend analysis showed that the PhenoCam spring phenology model performed better 270 

than the standard CLM phenology model when evaluated against decadal trends in MODIS data, 271 

and multi-decadal trends in the PEP725 data. For example, using MODIS data upscaled to the 272 

CLM model grid as the reference, there is large spatial variability in the observed trends over the 273 

period 2003-2013. Overall, 60% of grid cells (68% on an area-weighted basis) show a trend 274 

towards earlier spring; the median rate of advancement is -0.13 d yr
-1

 (-0.24 d yr
-1

 on an area-275 

weighted basis) but there is enormous variability among grid cells (interquartile range = 0.65). 276 

The PhenoCam spring phenology model does a better job in capturing the global variation in 277 

these trends than the standard CLM spring phenology model (Fig. S1; Pearson correlation 278 

between PhenoCam and MODIS, r = 0.50; Pearson correlation between CLM and MODIS, r = 279 

0.07). Additionally, for 1563 of 2274 grid cells, the PhenoCam spring phenology model predicts 280 

the correct sign on the observed MODIS trend, whereas this was the case for 1467 of 2274 grid 281 

cells for the CLM spring phenology model.  282 

Similarly, in the PEP725 data, there are significant (p ≤ 0.05) phenological trends for 83% 283 

of the 308 model grid cells. Of these, 1 trend is positive (toward later leaf unfolding) and 254 are 284 

negative (toward earlier leaf unfolding). The standard CLM spring phenology model predicts 285 

significant trends that are of the same sign as the trend in the data for only 13% (39 of 308) of 286 

the model grid cells. By comparison, the PhenoCam spring phenology model predicts significant 287 

trends that are of the same sign as the trend in the data for 74% (224 of 308) of the model grid 288 
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cells. And, the PhenoCam spring phenology model incorrectly predicts significant trends that are 289 

different in sign from the trends in the data for only 1% (4 of 308) of the model grid cells.  290 

Aggregating the data and model predictions to a regional average, the PEP725 data 291 

indicate a trend towards earlier leaf unfolding of -0.18 ± 0.04 d yr
-1

 (slope ± 1 SE) over the 292 

period 1950 to 2014. However, break-point analysis shows that this trend is not consistent over 293 

time (Fig. S2). Rather, there is a slight but not significant trend towards later leaf unfolding (0.03 294 

± 0.11 d yr
-1

) in the PEP725 data from 1950 to 1982, and then a much stronger and more 295 

significant trend towards earlier spring (0.39 ± 0.08 d yr
-1

) from 1983 to 2014. By comparison, 296 

the CLM spring phenology model shows a small but non-significant trend towards earlier SOS 297 

(-0.04 ± 0.23 d yr
-1

) from 1950 to 1982, and then a stronger but still non-significant trend 298 

towards earlier SOS (-0.19±0.26 d yr
-1

) from 1983 to 2014. The main reason that the latter trend 299 

is insignificant is that the CLM spring phenology model predicts about twice as much 300 

interannual variability in SOS as is actually observed to occur, with modeled SOS varying by 301 

over 7 weeks from year-to-year. The PhenoCam spring phenology model is more consistent with 302 

the PEP725 data; it correctly predicts a slight but non-significant trend towards later spring (0.10 303 

± 0.08 d yr
-1

) over the period 1950 to 1982, and a stronger and significant trend towards earlier 304 

spring (-0.21±0.06 d yr
-1

) from 1983 to 2014. While we acknowledge that over the period from 305 

1983 to 2014 the PhenoCam spring phenology model trend is a little more than half that of in the 306 

PEP725 data, we note that the confidence intervals on these slopes overlap substantially, i.e. 0.55 307 

to -0.23 d yr
-1

 for PEP725, -0.33 to -0.09 d yr
-1

 for PhenoCam spring phenology model. 308 

Together, these results suggest that, across the Northern Hemisphere deciduous broadleaf 309 

forest, the revised phenology submodel incorporated into CLM-PhenoCam represent a 310 

substantial improvement over the standard seasonal-deciduous spring phenology submodel in 311 
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CLM. By reducing errors and biases associated with SOS prediction under current climate 312 

regimes, and by doing a better job at reproducing both recent (decadal) and longer-term (multi-313 

decadal) phenological trends, the PhenoCam spring phenology submodel should, therefore, give 314 

us greater confidence in model predictions under future climate scenarios. 315 

 316 

Figure 4. Differences of SOS dates predicted by CLM and CLM-PhenoCam of forward model runs under 317 

the RCP 4.5 (the first row) and 8.5 (the second row) scenarios. (a) Changes of SOS dates predicted by 318 

CLM between 2014-2023 and 2091-2100 under RCP 4.5 (calculated by using 2091-2100 results minus 319 

2014-2023 results); (b) Same as (a) but from CLM-PhenoCam results; (c) Differences between (b) and (a) 320 

[(a)-(b)]; (d)-(f): Same as (a)-(c), respectively, but under RCP 8.5 scenario. 321 

 322 

Forward runs 323 

 Comparing the end of the 21
st
 century to the beginning of the 21

st
 century, CLM predicts 324 

earlier SOS in colder, higher-latitude regions such as boreal North America, northeastern China, 325 

Siberia and Northern Europe, but later spring onset dates in warmer, lower-latitude regions (Fig. 326 
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2b) including the southeastern United States, Mediterranean Europe, southeastern China and 327 

northern India (Fig. 4a,d). These patterns are most readily apparent in the RCP 8.5 model runs. 328 

In contrast, CLM-PhenoCam generally predicts earlier SOS by the end of the 21
st
 century across 329 

the entire Northern Hemisphere deciduous broadleaf forest (Fig. 2c, 4b,e). At the end of the 21
st
 330 

century, differences between predictions from the two phenology submodels are greatest in low 331 

latitudes (Fig. 2b-c), including the southeastern United States, southeastern China and northern 332 

India (Fig. 4c,f).  333 

 334 

Figure 5. Global area-weighted mean start of spring (SOS) date predicted from 2014 to 2100 under (a) 335 

Representative Concentration Pathway (RCP) 4.5 and (b) RCP 8.5 scenarios, for CLM’s standard 336 

seasonal-deciduous phenology submodel and a revised phenology submodel calibrated to PhenoCam data. 337 
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 338 

Figure 6. Impacts of start of spring (SOS) submodel on globally-integrated carbon (GPP: gross primary 339 

production; AR: autotrophic respiration; NPP: net primary production) and water (QVEGT: vegetation 340 

transpiration; QVEGE: vegetation evaporation; QSOIL: soil evaporation) fluxes for 2014 to 2100 under 341 

RCP 4.5 (left column) and RCP 8.5 (right column) scenarios. The direct effects are calculated from 342 

differences between CLM and CLM-PhenoCam model runs in springtime-integrated fluxes, while the 343 

direct+indirect effects are calculated from differences between CLM and CLM-PhenoCam model runs in 344 

annually-integrated fluxes.  345 
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 For the current decade (2014-2023), the global mean (area-weighted) SOS predicted by 346 

CLM, roughly day 118 under both climate scenarios, is very similar to that predicted by CLM-347 

PhenoCam (Fig. 5). However, model predictions clearly begin to diverge around 2050. Under 348 

RCP 4.5, CLM-PhenoCam predicts SOS just 4 days earlier than CLM by 2100, but under RCP 349 

8.5 the difference is 11 days by 2100 (Fig. 5). Thus, the two models predict very different trends 350 

in SOS over the 85 years of our forward runs. CLM predicts little change in SOS under either 351 

RCP 4.5 (slightly earlier by 0.004 d yr
-1

, r=-0.04, trend not significant) or RCP 8.5 (slightly later 352 

by 0.02 d yr
-1

, r=-0.21, trend not significant). In contrast, CLM-PhenoCam predicts a statistically 353 

significant trend toward earlier SOS under both RCP 4.5 (earlier by 0.05 d yr
-1

, r
 
= -0.60, p < 354 

0.001) and RCP 8.5 (0.10 d yr
-1

, r
 
= -0.87, p < 0.001).   355 

 Differencing model predictions of CLM and CLM-PhenoCam shows that the earlier SOS 356 

predicted by CLM-PhenoCam results in increased carbon assimilation (GPP) and forest 357 

productivity (NPP), but also increases in autotrophic (plant) respiration (AR) across the Northern 358 

Hemisphere deciduous broadleaf forest biome (Fig. 6). With future climate warming and the 359 

associated advancing SOS predicted by CLM-PhenoCam, the phenologically-driven 360 

enhancement of GPP reaches 0.28 ± 0.07 and 0.60 ± 0.12 Pg C yr
-1

 by the end of the 21
st
 century 361 

for RCP 4.5 and 8.5, respectively. This is partially offset by enhanced AR, which reaches 0.14 ± 362 

0.03 Pg C yr
-1 

for RCP 4.5
 
and 0.28 ± 0.04 Pg C yr

-1
 for RCP 8.5, by 2100. Thus by 2100, CLM-363 

PhenoCam predicts about 0.14 ± 0.04 Pg C yr
-1

 more NPP under RCP 4.5, and 0.32 ± 0.08 Pg C 364 

yr
-1

 more NPP under RCP 8.5, compared to CLM run with the standard seasonal-deciduous 365 

submodel.  366 
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 367 

Figure 7. Scatterplots of the direct and indirect differences of annual carbon and water fluxes from CLM 368 

and CLM-PhenoCam vs. the SOS differences from the forward model runs under both RCP 8.5 senario. 369 

The relationships are essentially identical for RCP 4.5.  370 

 371 
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 Phenology also affects model predictions for ecosystem water fluxes. The earlier SOS 372 

predicted by CLM-PhenoCam results in more evapotranspiration compared to the CLM run with 373 

the standard seasonal-deciduous submodel. At the end of the 21
st
 century, both vegetation 374 

evaporation (QVEGE) and transpiration (QVEGT) are predicted by CLM-PhenoCam to be 375 

higher (by 3 ± 1 mm yr
-1

 and 18 ± 3 mm yr
-1

, respectively, under RCP 4.5; and by 7 ± 1 mm yr
-1

 376 

and 38 ± 5 mm yr
-1

, respectively, under RCP 8.5) compared to CLM. At the same time, soil 377 

evaporation (QSOIL) is predicted by CLM-PhenoCam to be lower (by 9 ± 3 mm yr
-1

 and 22 ± 4 378 

mm yr
-1

 under RCP 4.5 and 8.5, respectively) compared to CLM, because the longer duration 379 

canopy results in lower radiant energy fluxes incident on the soil surface. Together, the net effect 380 

of these changes in transpiration and evaporation leads to an overall increase (12 ± 2 mm yr
-1

 and 381 

24 ± 3 mm yr
-1

 under RCP 4.5 and 8.5, respectively) in ecosystem ET by the end of the 21
st
 382 

century for CLM-PhenoCam compared to CLM, resulting in drier soils and reduced runoff in 383 

CLM-PhenoCam model runs.   384 

 Overall, compared to the standard CLM predictions for Northern Hemisphere deciduous 385 

broadleaf forests under RCP 8.5, CLM-PhenoCam predicts 9 ± 2 % more GPP, 8 ± 2% more 386 

NPP, 10 ± 2% more AR, 8 ± 1% less soil evaporation, 6 ± 1% more vegetation evaporation, and 387 

12 ± 2% more transpiration, over the years 2090-2100. 388 

 Further, our analysis reveals evidence for both direct and indirect effects of earlier spring 389 

onset on processes related to ecosystem carbon and water cycling. We quantified direct effects 390 

by aggregating model differences strictly between the SOS day of year predicted by CLM-391 

PhenoCam and the SOS day of year predicted by CLM. We quantified “direct+indirect” effects 392 

by aggregating model differences over the entire year, and indirect effects by the difference 393 

between direct and direct+indirect effects. The magnitudes of direct and the indirect effects of 394 
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earlier spring onset were linearly correlated with the difference in predicted onset date, and these 395 

relationships were essentially invariant over the course of the 85 years of our forward runs. Thus, 396 

these “phenological sensitivities” can be used for back-of-the-envelope estimates of how global 397 

deciduous forest carbon and water cycling would be altered under different assumptions (i.e. 398 

larger or smaller advance in phenology) about future phenological change. As shown in Table 1 399 

and Fig. 7, a one-day advancement of spring in CLM-PhenoCam (relative to CLM) was overall 400 

associated with a direct 0.03 Pg C yr
-1

 d
-1

 increase in GPP, a 0.02 Pg C yr
-1

 d
-1

 increase in NPP, 401 

and a 0.01 Pg C yr
-1

 d
-1

 increase in AR. Indirect effects of earlier spring were slightly smaller for 402 

GPP and larger for AR (both were about 0.01, but because these tended to cancel out, there was 403 

relatively little indirect effect (< 0.01 Pg C yr
-1

 d
-1

) of earlier spring on NPP. Overall, a one-day 404 

advancement of spring in CLM-PhenoCam was associated with a direct 1.25 mm yr
-1

 d
-1

 increase 405 

in vegetation transpiration, a 0.32 mm yr
-1

 d
-1

 increase in vegetation evaporation, and a 0.85 406 

decrease in soil evaporation. Indirect effects of earlier spring were similar: a one-day 407 

advancement of spring in CLM-PhenoCam was associated with an indirect 1.14 yr
-1

 d
-1

 increase 408 

in vegetation transpiration, a 0.23 mm yr
-1

 d
-1

 increase in vegetation evaporation and a 0.75 mm 409 

yr
-1

 d
-1

 decrease in soil evaporation. Together, a one-day advancement of spring in CLM-410 

PhenoCam would result in a 1.34 ± 0.05 mm yr
-1

 d
-1

 (r=0.90, p < 0.001) increase in the 411 

ecosystem ET. 412 

 413 

 414 

 415 

 416 

 417 
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Table 1. Sensitivities of carbon and water fluxes in the Northern Hemisphere broadleaf 418 

deciduous forest to a one-day advancement of SOS, calculated by the difference in globally-419 

integrated carbon and water fluxes between CLM-PhenoCam and CLM using the standard winter 420 

deciduous spring phenology submodel. The sensitivities were calculated based on the linear 421 

slopes of differences in fluxes against differences in SOS date, under both RCP 4.5 and 8.5 422 

scenarios.  The statistical significance of these relationships is all p < 0.001. Units are Pg C yr
-1

 423 

d
-1

 for GPP, AR and NPP; and are mm yr
-1

 d
-1

 for QVEGT, QVEGE and QSOIL.  424 

  Direct effect  Indirect effect 

 
 

mean 
Standard 

Error 
r  Mean 

Standard 

Error 
r 

GPP (Gross Primary 

Production) 
0.03 <0.01 0.97  0.009 <0.001 0.82 

AR (Autotrophic 

Respiration) 
0.01 <0.01 0.97  0.007 <0.001 0.84 

NPP (Net Primary 

Production) 
0.02 <0.01 0.97  0.001 <0.001 0.35 

QVEGT (Vegetation 

Transpiration) 
1.25 0.03 0.95  1.145 0.055 0.84 

QVEGE (Vegetation 

Evaporation) 
0.32 0.01 0.92  0.232 0.013 0.81 

QSOIL (Soil 

Evaporation) 
-0.85 0.03 -0.92  -0.754 0.035 -0.85 

 425 

4. Discussion 426 

 Stimulated by concerns related to climate-change impacts on terrestrial ecosystems, there 427 

has been substantial effort devoted to improving the accuracy of many widely-used land surface 428 

models (Williams et al., 2009), including CLM (Bonan et al., 2011; Levis et al., 2012). However, 429 

it has also been demonstrated that phenology is one area where the performance of existing land 430 

surface models is particularly poor (Keenan et al., 2012), and it has been argued that there is no 431 
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reason to expect that performance will be improved under future climate scenarios (Richardson 432 

et al., 2012). While there is broad consensus that future warming is likely to speed up plant 433 

developmental processes and advance spring phenology in temperate forests (Saxe et al., 2001), 434 

accurately forecasting the impacts of these changes on carbon and water fluxes requires better 435 

phenology submodels to be integrated into large-scale land surface models. Our results—436 

obtained using a phenology model tuned to an extensive dataset derived from near-surface 437 

remote sensing and validated globally using MODIS observations—show that future shifts in 438 

phenology are likely to be smallest in warmer, lower-latitude temperate forests and largest in 439 

colder, higher-latitude boreal forests. By coupling vegetation phenology to carbon and water 440 

cycling processes, our analysis also shows that use of the standard spring phenology submodel in 441 

CLM is likely to substantially under-predict C uptake and evapotranspiration across deciduous 442 

broadleaf forests in the Northern Hemisphere. This confirms that accurate prediction of spring 443 

phenological transitions is essential to reduce uncertainties in quantifying land-atmosphere 444 

exchanges of carbon and water under future climate scenarios. We note that our model runs were 445 

conducted “offline”, in that the forcing was prescribed and the biosphere does not feedback to 446 

the climate system. We expect that with fully coupled runs in the CESM, the increased carbon 447 

uptake and evapotranspiration predicted by CLM-PhenoCam could have a substantial influence 448 

on the evolution of the climate system over the next 85 years. 449 

 We showed that when evaluated against MODIS-derived SOS for the entire Northern 450 

Hemisphere boreal and temperate deciduous broadleaf forest, the PhenoCam spring phenology 451 

submodel made considerably more accurate SOS predictions than the standard spring deciduous 452 

phenology submodel used in CLM. Against several different types of validation data, at different 453 

levels of spatial aggregation, the PhenoCam submodel had both lower RMSE and lower bias 454 
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than the standard submodel (Fig. 3). This suggests that, for the most part, the PhenoCam sites 455 

(spanning 15° latitude, from 35 to 50 °N, and almost two months in spring onset date, from day 456 

of year 80 to 140) we used for model development effectively capture the dominant patterns of 457 

spatial variation of spring phenology in Northern Hemisphere deciduous broadleaf forests. 458 

However, careful examination of the results clearly reveals that model performance was poorest 459 

in warm regions such as southeastern China and the southeastern United States. In these regions, 460 

PhenoCam model predictions showed significant bias towards later SOS compared to MODIS-461 

derived SOS. One possible source of this bias is that there are large number of missing MODIS 462 

observations in these regions, which may lead to erroneous detection of seasonality metrics of 463 

OGI and MAT and therefore the MODIS SOS dates. Meanwhile, none of the PhenoCam sites 464 

that were used to calibrate the model were located in warm, low-latitude (22-35 °N) temperate 465 

forests, probably leading the model to be over-fit to cooler, northern sites. As more sites are 466 

added to the PhenoCam network in coming years (or as complementary data become available 467 

from other networks around the globe), it will be important to re-estimate this model using a 468 

more geographically representative sample. The increasing availability of other long-term, 469 

spatially extensive phenological datasets, e.g. from the USA-National Phenology Network 470 

(Jeong & Medvigy, 2014; Melaas et al., 2016), should prove invaluable for the development and 471 

testing of new phenology models with better accuracy and improved generalizability 472 

(Richardson et al., 2013).  473 

A few previous studies have reported adaptation (implying genetic change from natural 474 

selection) or acclimation (implying reversible physiological adjustment) of plant spring 475 

phenology to warming temperatures (e.g., van Asch et al., 2007; Bennie et al., 2010; Keller et al., 476 

2011), suggesting an evolutionary tradeoff between advancing spring onset and avoiding 477 
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catastrophic disturbance (e.g., spring frost and insect outbreaks). However, these responses may 478 

vary among species and also geographically. Thus there is a lack of knowledge regarding the 479 

capacity for forest tree phenology to adjust to rising temperatures via either mechanism. We are 480 

not aware of any existing large-scale phenology model that explicitly considers adaptation to 481 

future climate change. The CLM model implicitly assumes that acclimation will occur, as the 482 

GDD threshold to trigger bud burst depends on mean air temperature in the previous year 483 

(Equation 2), but this is a short-term and reversible response. Notably, a surprising result from 484 

this model—which occurs precisely because of the acclimation effect—is the prediction that 485 

spring bud burst will actually be delayed for some warmer regions of the world by 2100, 486 

compared to present-day conditions (Fig. 4a,d). While there is some evidence that failure to meet 487 

chilling requirements may delay spring bud burst in a small selection of species (e.g. (Heide, 488 

1993; Orlandi et al., 2004; Schwartz & Hanes, 2010)), we are not aware of any observational 489 

studies which have yet demonstrated this kind of phenological delay, at a regional scale, in 490 

response to recent warming trends.  491 

Similar to our results, many previous studies have found that land-atmosphere exchanges 492 

of carbon and water are sensitive to vegetation phenology (Richardson et al., 2013). For example, 493 

Richardson et al., (2009) used ground observations of spring phenology, together with eddy 494 

covariance measurements of CO2 exchange to estimate that earlier spring leaf-out increased 495 

annual GPP by about 10 g C m
-1

 d
-1

 in a temperate deciduous forest. By comparison, across 496 

Northern Hemisphere forests, Piao et al., (2007) used a model-based analysis to estimate that a 497 

1-day extension in growing season length was associated with a 5.8 g C m
-2

 d
-1 

increase in GPP 498 

and a 2.8 g C m
-2

 d
-1

 increase in NPP. Yue et al., (2015) reported GPP in the north of 30 °N has 499 

increased 0.01 Pg C yr
-1

 d
-1

 due to the phenological change during 1982-2011 based on global 500 
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model simulations. Similarly, Zha et al., (2010) reported that warmer spring temperatures 501 

advanced spring leaf-out and enhanced both springtime and annual evapotranspiration in 502 

Western Canadian ecosystems. By analyzing long-term flux data and ground observations of 503 

phenology during the past two decades, Keenan et al. (2014) suggested that a one-day change in 504 

SOS would result in both more GPP (7.5 g C m
-2 

d
-1

) and more net C uptake (4.5 g C m
-2

 d
-1

).  505 

However, with observational studies, estimates of relationships between shifts in phenology and 506 

shifts in productivity may be confounded by processes that are simultaneously affected by the 507 

same factors driving variation in phenology, but which are not directly linked to phenology. A 508 

strength of our analysis is that it provides a defensible “model experiment” framework, with both 509 

a “control” (or null) model (in this case, the standard CLM spring phenology submodel) and a 510 

“treatment” model (CLM-PhenoCam). By differencing the predictions of the two models, we can 511 

isolate effects of phenology ecosystem processes. This approach allows us to eliminate the 512 

impact of climate change on other processes which are not phenologically-mediated but that 513 

could be mistakenly attributed to phenology if only a single model was used. (e.g., (Piao et al., 514 

2007)), because of their underlying covariation with temperature and hence SOS. 515 

 Changes in spring leaf out dates have been hypothesized to have both direct (i.e., 516 

immediate) and indirect (i.e., lagged) effects on ecosystem processes (Richardson et al., 2009). 517 

While the empirical evidence for the indirect effects of phenological anomalies is mixed 518 

(Richardson et al., 2010), our model-based analysis allowed us to distinguish between the direct 519 

and the indirect effects. Our results show that the direct effects of changes in SOS account for the 520 

majority (about 66% for GPP, 44% for AR and 86% for NPP) of the total (annual) differences in 521 

modeled carbon fluxes by the end of the 21
st
 century (2090-2100). By comparison, for water 522 

fluxes, the direct effects of changes in SOS account for a smaller fraction (33% for soil 523 
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evaporation, 43% for vegetation evaporation, and 43% for vegetation transpiration) of the 524 

differences, with the indirect effects being much larger. This may have to do with available soil 525 

water serving as both a constraint and a buffer on ET (Migliavacca et al., 2012). However, 526 

empirical validation of these results using FLUXNET data is advised before these conclusions 527 

can be made with confidence. In summary, the results of this study show improved estimation of 528 

spring phenology for Northern Hemisphere boreal and deciduous broadleaf forests by 529 

incorporating a new and optimized submodel into the CLM version 4.5. The PhenoCam spring 530 

phenology submodel outperforms the standard CLM seasonal-deciduous spring phenology 531 

submodel in terms of both better accuracy and precision. Our analysis shows that with the 532 

standard seasonal-deciduous spring phenology submodel, errors in modeled SOS will propagate 533 

into modeled carbon and water fluxes (Richardson et al., 2012), and that these errors are 534 

exacerbated under future climate change. Our results suggest that with the standard seasonal-535 

deciduous spring submodel, CLM may under-estimate GPP by 0.6 Pg C yr
-1

 and NPP by 0.3 Pg 536 

C yr
-1

 by the end of the 21
st
 century. While the under-estimation of GPP is small relative to 537 

global terrestrial GPP (estimated at 123 ± 8 Pg C yr
-1

 by Beer et al., (2010)), the under-538 

estimation of NPP is considerable relative to the global terrestrial C sink, which for 2013 is 539 

estimated to be 2.5 ± 0.9 Pg C yr
-1

 (Le Quéré et al., 2015). Therefore, our results argue for a 540 

reconsideration of the standard seasonal-deciduous spring phenology submodel in CLM, as 541 

substantial errors in predictions of key land-atmosphere fluxes, as well as interactions and 542 

feedbacks between the biosphere and the climate system, may otherwise result (Richardson et al., 543 

2013).   544 
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Figure 1. Average SOS (start of spring) dates predicted by CLM and CLM-PhenoCam, compared with MODIS-
derived SOS, over the period 2003-2013: (a) CLM predicted SOS; (b) CLM-PhenoCam predicted SOS; (c) 
MODIS-derived SOS; (d) Differences between CLM and CLM-PhenoCam SOS [(a)-(b)]; (e) Differences 

between CLM and MODIS SOS [(a)-(c)]; (f) Differences between CLM-PhenoCam and MODIS SOS [(b)-(c)]. 
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Figure 2. Latitudinal mean of the SOS dates predicted by CLM and CLM-PhenoCam: (a) hindcast predictions, 
2001-2013; (b) CLM predictions at the beginning (2014-2023) and end (2091-2100) of the forward runs 
under RCP 4.5 and 8.5; and (c) CLM-PhenoCam predictions at the beginning (2014-2023) and end (2091-

2100) of the forward runs under RCP 4.5 and 8.5.  
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Figure 3. Probability density estimates of the root mean square error (RMSE), mean bias error (MBE), and 
Pearson correlation coefficient (r), for start of spring (SOS) predicted by two models: CLM and CLM-

PhenoCam. (a)-(c): comparison against Moderate Resolution Imaging Spectroradiometer (MODIS)-derived 
SOS across the Northern Hemisphere deciduous broadleaf forest (0.9×1.25 degree grid cells); (d)-(f): 

comparison against PEP725 data (0.25 degree grid cells); (g)-(i): comparison against MODIS-derived SOS 
across the eastern US deciduous forest (1km grid cells).  
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Figure 4. Differences of SOS dates predicted by CLM and CLM-PhenoCam of forward model runs under the 
RCP 4.5 (the first row) and 8.5 (the second row) scenarios. (a) Changes of SOS dates predicted by CLM 
between 2014-2023 and 2091-2100 under RCP 4.5 (calculated by using 2091-2100 results minus 2014-

2023 results); (b) Same as (a) but from CLM-PhenoCam results; (c) Differences between (b) and (a) [(a)-
(b)]; (d)-(f): Same as (a)-(c), respectively, but under RCP 8.5 scenario.  
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Figure 5. Global area-weighted mean start of spring (SOS) date predicted from 2014 to 2100 under (a) 
Representative Concentration Pathway (RCP) 4.5 and (b) RCP 8.5 scenarios, for CLM’s standard seasonal-

deciduous phenology submodel and a revised phenology submodel calibrated to PhenoCam data.  
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Figure 6. Impacts of start of spring (SOS) submodel on globally-integrated carbon (GPP: gross primary 
production; AR: autotrophic respiration; NPP: net primary production) and water (QVEGT: vegetation 

transpiration; QVEGE: vegetation evaporation; QSOIL: soil evaporation) fluxes for 2014 to 2100 under RCP 
4.5 (left column) and RCP 8.5 (right column) scenarios. The direct effects are calculated from differences 
between CLM and CLM-PhenoCam model runs in springtime-integrated fluxes, while the direct+indirect 

effects are calculated from differences between CLM and CLM-PhenoCam model runs in annually-integrated 
fluxes.  
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Figure 7. Scatterplots of the direct and indirect differences of annual carbon and water fluxes from CLM and 
CLM-PhenoCam vs. the SOS differences from the forward model runs under both RCP 8.5 senario. The 

relationships are essentially identical for RCP 4.5.  
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Figure S1. Scatterplots of the trend in MODIS vs. the trend in the CLM (a) and CLM-PhenoCam (b) predicted 
SOS time series across all Northern Hemisphere boreal and temperate deciduous broadleaf forest grid cells. 

39 points fall outside the axis ranges.  
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Figure S2. Breakpoint trends of aggregated PEP725 data and model predicted SOS in Europe.  
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