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Abstract

Organic chemists and metabolic engineers use largely orthogonal technologies to construct 

essential small molecules like pharmaceuticals and commodity chemicals. While chemists have 

leveraged the unique capabilities of biological catalysts for small molecule production, metabolic 

engineers have not likewise integrated reactions from organic synthesis with the metabolism of 

living organisms. Here we report a method for alkene hydrogenation that utilizes a palladium 

catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible 

transformation, which requires both catalyst and microbe and can be used on a preparative scale, 

represents a new strategy for chemical synthesis that combines organic chemistry and metabolic 

engineering.
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Two scientific disciplines, organic chemistry and metabolic engineering, endeavor to 

produce small molecules using very different techniques.[1,2] Synthetic organic chemists 

largely employ non-biological catalysts and reagents to manipulate molecules in multi-step 

processes, while metabolic engineers harness the reactivity of enzymatic catalysts in the 

context of living organisms to produce molecules directly from fermentations.[3,4] While 

organic chemists have been increasingly utilizing enzymes in synthetic efforts[5] such as the 

industrial-scale synthesis of the diabetes drug sitagliptin (Januvia®),[6] efforts to synthesize 

molecules by incorporating reactions from organic synthesis into biological systems have 

lagged behind. We envision achieving this goal using biocompatible chemistry: non-

enzymatic transformations that directly interface with the metabolism of living organisms, 

modifying small molecule metabolites as they are produced and augmenting native 

biochemistry (Figure 1A).[7]
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Perhaps the largest obstacle faced in this endeavor is the discordance between the conditions 

typically required to support life and those often used in organic synthesis (non-aqueous 

solvents, extreme temperatures, reactive intermediates). For example, the problem of mutual 

catalyst inactivation can at times complicate efforts to combine transition metal catalysts 

with purified enzymes in vitro.[8] Additional challenges include the chemical complexity of 

the cellular and extracellular environments, the typically low concentrations of metabolites, 

and the potential difficulties associated with accessing intracellular substrates. 

Encouragingly, similar problems have been surmounted in developing bioorthogonal 

reactions, which are used to study biological phenomena in living cells and organisms 

without altering underlying cellular processes.[9] While such transformations illustrate that 

non-enzymatic chemistry can proceed in the presence of living systems,[10] their application 

toward small molecule synthesis has been underexplored.

We identified hydrogen gas[11] as a target metabolite for an initial proof-of-concept reaction: 

a biocompatible alkene hydrogenation that would directly combine hydrogen generated by 

living bacteria with a transition metal catalyst and could be utilized for preparative scale 

synthesis (Figure 1B). This choice was motivated by previous reports suggesting transition 

metal-catalyzed hydrogenation was compatible with living cells. Specifically, unsaturated 

bacterial membrane lipids can be reduced with transition metal catalysts and added 

hydrogen gas.[12a] Bacterially produced hydrogen can also directly reduce organic dyes[12b] 

and ethylene[12c] on an analytical scale using superstoichiometric amounts of catalyst. 

Though these examples provided important precedent for the desired chemical reactivity, 

they did not imply or demonstrate synthetic utility (e.g. preparative scale, broad substrate 

scope). Beyond its potential use for chemical synthesis, we also envisioned using our 

hydrogenation to elucidate factors influencing the success of biocompatible reactions.

We began by investigating whether hydrogenation could take place in media complex 

enough to support the growth of E. coli, our intended source of hydrogen (Table 1). We 

incubated the water-soluble alkene caffeic acid (1a) with platinum(IV)oxide in two types of 

growth media under an atmosphere of hydrogen gas (Entries 1 and 2) and found that a 

defined minimal medium (M9 glucose) provided higher conversion than a complex medium 

(Luria-Bertani (LB) + 0.5% glucose). We then examined the impact of bacteria on these 

reactions by performing hydrogenations under an atmosphere of hydrogen gas in growth 

media containing E. coli DD-2 (optical density (OD)600 = 0.4). This engineered strain 

produces hydrogen from glucose via an inducible pathway consisting of a pyruvate 

ferredoxin oxidoreductase, a ferredoxin, and a [Fe-Fe] hydrogenase.[13] We observed little 

change in conversion with organisms in the reaction mixture (Entries 3 and 4). Finally, we 

incubated catalyst and substrate in the presence of E. coli DD-2 under a nitrogen 

atmosphere, relying on bacterial production of hydrogen gas (Entries 5 and 6, Figure 1C). 

We observed 15% conversion for the reaction run in M9 glucose, providing support for our 

general reaction design.

Our initial optimization efforts focused on varying growth medium and catalyst (Table 1, 

Tables S3–4). Based on the increased conversions observed for reactions performed with 

added hydrogen, we suspected that hydrogen production by E. coli DD-2 was limiting 

reaction efficiency. We tested various media additives and found that adding either iron or 
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casamino acids (Table S3) to minimal media improved conversion. The combination of both 

additives provided a further increase (Table 1, Entry 7). These components may boost 

hydrogen generation by increasing the amount of functional [Fe-Fe] hydrogenase.[14]

We screened a variety of heterogeneous hydrogenation catalysts using our improved 

reaction media. While most catalysts examined provided no reactivity (Table S4), the Royer 

palladium catalyst[15] (2.44% palladium on polyethyleneimine (PEI)/silica gel) proved 

uniquely effective.[16] Using this catalyst, we could double the concentration of substrate 

and reduce catalyst loading to 8 mol% without impacting conversion (Table 1, Entry 8). 

Further optimization experiments were carried out with a more challenging substrate (E)-3-

(3,4,5-trimethoxyphenyl)acrylic acid (1b) (Figure S2, Tables S5–S11). Ultimately, we 

identified conditions that were readily scaled to hydrogenate 9 mmol (1.6 g) of 1a (Table 1, 

Entry 9). The ease with which we could apply this transformation to larger scale reactions is 

notable, and may indicate that this general approach is suitable for preparative scale 

synthesis.

We used these optimal reaction conditions to evaluate functional group compatibility, as it 

was unclear to what extent the presence of living organisms would impact substrate scope. 

Overall, the hydrogenation displayed broad utility for preparative-scale reactions of water-

soluble alkenes (Figure 2). An alkyne substrate (1k) also underwent exhaustive 

hydrogenation to the corresponding alkane. Most notably, 2-hexenedioic acid (1x) and Z,Z-

muconic acid (1y) were converted to adipic acid, an important industrial chemical that is 

produced on a multimillion ton scale annually and has been a frequent but challenging target 

for metabolic engineering.[17] These results suggest that adipic acid could be obtained 

directly from fermentations by combining a biocompatible hydrogenation catalyst with 

organisms that produce hydrogen and an alkene such as 1y, which has already been 

generated via engineered microbes.[18]

Finally, we investigated how the biocompatible hydrogenation takes place and its impact on 

E. coli. A series of control experiments delineated the requirements for a successful reaction 

(Figure 3A, Table S12). We also quantified the hydrogen and formic acid produced in each 

reaction mixture, as both metabolites could potentially contribute to hydrogenation.[19] No 

reaction was observed in the absence of catalyst, confirming that E. coli cannot reduce 1a. 

The presence of E. coli was essential, indicating that the organisms contribute a key reaction 

component. The low conversions observed for the –IPTG control and a parental E. coli 

strain that cannot generate hydrogen support our hypothesis that hydrogen gas is the primary 

metabolite contributing to the transformation.[20] Finally, we assessed the importance of 

catalyst-cell contact by sequestering the E. coli in dialysis cassettes. Hydrogenation still 

occurs, albeit with lower conversion, indicating that physical interaction is not a requirement 

(Table S12, Entry 11). However, E. coli is known to adsorb onto PEI,[21] and increased 

catalyst-cell proximity via this mechanism could contribute to the Royer catalyst’s superior 

utility relative to other heterogeneous catalysts.

The application of non-enzymatic catalysts and reagents in metabolic engineering requires 

that they do not significantly impede host growth and metabolism. To ascertain whether the 

E. coli survive the hydrogenation, we performed serial dilutions and plate counts directly 
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from spent reaction mixtures, systematically omitting reaction components to assess 

biocompatibility (Figure 3B). Remarkably, we observed no significant difference in survival 

between reactions with and without catalyst. Together with the experiment exploring spatial 

separation, this result may indicate that the hydrogenation occurs outside of cells. Additional 

experiments to fully elucidate the factors influencing catalyst activity and compatibility will 

be the focus of future research.

In summary, this work demonstrates that the metabolic output of living microbes and a 

biocompatible non-enzymatic transformation may be combined to enable preparative scale 

chemical synthesis. Although this methodology cannot yet match the efficiency of more 

established approaches,[22,23] this advance represents a crucial first step in merging the 

fields of organic chemistry and metabolic engineering and complements parallel efforts to 

engineer non-biological reactivity into enzyme scaffolds.[24] Ultimately, full integration of 

biocompatible reactions with cellular metabolism could provide access to chemical 

reactivity that would otherwise be out of reach in a cellular setting and molecules that could 

not be made using biological chemistry alone.

Experimental Section

General materials and methods, hydrogenation catalyst synthesis and analysis, reaction 

discovery and optimization, control reactions and metabolite analyses, assessment of 

catalyst toxicity, and compound characterization data are all described in the Supporting 

Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Biocompatible chemistry enables the integration of non-enzymatic reactions with microbial 

metabolism. a) Biocompatible chemistry represents a distinct approach for synthesis that 

employs chemical tools in a biological environment. b) Design of a biocompatible alkene 

hydrogenation that uses hydrogen gas produced directly by microbial metabolism for 

synthesis.
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Figure 2. 
Functional group tolerance of the biocompatible hydrogenation. Values shown are isolated 

yields for preparative scale reactions (5 mM substrate concentration with 8 mol% Royer 

catalyst in 90 mL of growth medium under an atmosphere of nitrogen in serum bottles 

shaken at 190 rpm) unless indicated otherwise.x Isolated yield for a preparative scale 

reaction run with 16 mol% Royer catalyst.y The reaction was run with 2.5 mM substrate.
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Figure 3. 
Requirements of the biocompatible hydrogenation and its effect on E.oli. a) Control 

experiments and metabolite analyses. Reactions were run with 5 mM of substrate 1a and 8 

mol% Royer catalyst in 7 mL of growth medium under an atmosphere of nitrogen in 16 mL 

Hungate tubes shaken at 190 rpm. Conversions were determined by 1H NMR and are the 

mean of three replicate experiments. Hydrogen and formic acid were quantified after 18 h 
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using GC. b) Survival of E. coli DD-2 after 18 h reactions measured by serial dilution and 

plate count. Data shown are the mean of three independent experiments.
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Table 1

Proof-of-concept and reaction optimization experiments

Entry Growth medium Cells/H2

added[a]
Catalyst, mol% Conversion

(%)[b]

1 LB + glucose no/yes PtO2, 40 mol% 15

2 M9 glucose no/yes PtO2, 40 mol% 100

3 LB + glucose yes/yes PtO2, 40 mol% 6

4 M9 glucose yes/yes PtO2, 40 mol% 91

5 LB + glucose yes/no PtO2, 40 mol% 0

6 M9 glucose yes/no PtO2, 40 mol% 15

7 M9CA glucose + Fe[c] yes/no PtO2, 20 mol% 56

8 M9CA glucose + Fe yes/no Royer, 8 mol%[d] 100

9 M9CA glucose + Fe yes/no Royer, 8 mol% 100/87[e]

Reactions were performed at a 5 mM substrate concentration in 5 mL of growth medium containing ampicillin (50 µg/mL), spectinomycin (25 µg/
mL), chloramphenicol (12.5 µg/mL), and IPTG (500 µM) under an atmosphere of either hydrogen or nitrogen in 16 mL Hungate tubes with shaking 
at 190 rpm.

[a]
E. coli strain DD-2 was used, OD600 = 0.4.

[b]
Determined by 1H NMR.

[c]
M9CA glucose + Fe medium contains Fe(NH4)2(SO4)2 (50 µM) and casamino acids (5 g/L).

[c]
Royer catalyst is 2.44 wt% palladium on polyethyleneimine/silica gel.

[d]
Reaction was performed on a 9 mmol scale (1.6 g of 1a) with 8 mol% Royer catalyst at a substrate concentration of 10 mM for 48 h (87% 

isolated yield).
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