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Abstract

Advances in fabrication technologies are enabling the production of architected materials with
unprecedented properties. While most of these materials are characterized by a fixed geometry,
an intriguing avenue is to incorporate internal mechanisms capable of reconfiguring their spatial
architecture, therefore enabling tunable functionality. Inspired by the structural diversity and fold-
ability of the prismatic geometries that can be constructed using the snapology origami-technique,
here we introduce a robust design strategy based on space-filling polyhedra to create 3D recon-
figurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by
numerical analysis and physical prototypes, we systematically explore the mobility of the designed
structures and identify a wide range of qualitatively different deformations and internal rearrange-
ments. Given that the underlying principles are scale-independent, our strategy can be applied to
design the next generation of reconfigurable structures and materials, ranging from transformable
meter-scale architectures to nanoscale tunable photonic systems.

Introduction

In the search for materials with new properties, there have been significant advances in recent years
aimed at the construction of architected materials whose behavior is governed by structure, rather than
composition.1–3 Through careful design of the material’s architecture, new material properties have
been demonstrated, including negative index of refraction,4,5 negative Poisson’s ratio,6 high stiffness
to weight ratio7,8 and optical9 and mechanical10 cloaking. However, most of the proposed architected
materials (also known as metamaterials) have a unique structure that cannot be reconfigured after
fabrication, making them suitable only for a specific task and limiting their applicability to well-known
and controlled environments.

The ancient art of origami provides an ideal platform for the design of reconfigurable systems, since
a myriad of shapes can be achieved by actively folding thin sheets along pre-defined creases. While
most of the proposed origami-inspired metamaterials are based on 2D folding patterns, such as the
miura-ori,11–17 the square twist18 and the box-pleat tiling,19 it has been shown that cellular structures
can be designed by stacking these folded layers,13 or assembling them in tubes.20–23 Furthermore, by
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taking inspiration from snapology24,25 - a modular origami technique - a highly reconfigurable 3D
metamaterial assembled from extruded cubes has been designed.26 Although these examples showcase
the potential of origami-inspired designs to enable reconfigurable architected materials, they do not
fully exploit the range of achievable deformations and only cover a small region of the available design
space. As a result, ample opportunities for the design of architected materials with tunable responses
remain to be explored.

Here, we introduce a robust strategy to design 3D reconfigurable architected materials and show
that a wealth of responses can be achieved in periodic 3D assemblies of rigid plates connected by elas-
tic hinges. To build these structures, we use periodic space-filling tessellations of convex polyhedra as
templates, and extrude arbitrary combinations of the polygon faces. In an effort to design architected
materials with specific properties, we systematically explore the proposed designs by performing nu-
merical simulations and characterize the mobility (i.e. number of degrees of freedom) of the systems.
We find that qualitatively different responses can be achieved, including shear, uniform expansion
along one or two principal directions, and internal reconfigurations that do not alter the macroscopic
shape of the materials. Therefore, this research paves the way for a new class of structures that can
tune their shape and function to adapt and even influence their surroundings, bringing origami-inspired
metamaterials closer to application.

Design Strategy

To design 3D reconfigurable architected materials, we start by selecting a space-filling and periodic
assembly of convex polyhedra (Fig. 1). We then perform two operations on the tessellation: (i) we
separate adjacent polyhedra while ensuring that the normals of the overlapping faces remain aligned.
This can be achieved by imposing that for each overlapping face pair

dpj,b − dpj,a = 2Ljnj , (1)

where dpj denotes the displacements applied to the polyhedra to separate them, and the subscripts
a and b indicate to which polyhedron the two overlapping faces belong. Moreover, Lj is the distance
between the faces in the separated state, and nj is the unit normal to the face pointing outward of the
polyhedron indicated by the subscript a.
(ii) we extrude the edges of the polyhedra in the direction normal to their faces to form a connected
thin-walled structure (Fig. 1), which we refer to as a prismatic architected material (Supplementary
Movie 1).

Importantly, for the periodic space-filling tessellations considered here, it is sufficient to focus on a
unit cell that consists of only a few polyhedra and covers the entire assembly when translated by the
three lattice vectors l0i (i = 1, 2, 3). While Eq. (1) can be directly imposed to all internal face pairs
in the unit cell, for overlapping faces that are periodically located (i.e. lie on the external boundary
of the unit cell) the constraint needs to be updated as

dpj,b − dpj,a + Rj −R0
j = 2Ljnj , (2)

where Rj =
∑3

i=1 αj,ili and R0
j =

∑3
i=1 αj,il

0
i denote the distance between the two periodically

located faces in the expanded and initial configuration, respectively, li being the lattice vectors of the
expanded unit cell and αj,i ∈ {−1, 0, 1}. As shown by Eqs. (1) and (2), for a unit cell with F face
pairs the expanded configuration is fully described by F extrusion lengths Lj (j = 1, ..., F ) (Fig. 1).
However, for most unit cells the extrusion lengths cannot all be specified independently due to the
constraints introduced by by Eqs. (1) and (2). As a result, each unit cell is characterized by Findep ≤ F
independent extrusion lengths as illustrated in Supplementary Fig. 6. For the sake of convenience we
chose the Findep independent extrusion lengths to be as close as possible to an average extrusion length,
L̄, by solving

min
L1...LFindep

F∑
j=1

(
Lj − L̄

)2
, (3)
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while ensuring that the constraints imposed by Eqs. (1) and (2) are not violated.
Finally, we note that all periodic and space-filling assemblies of convex polyhedra tested in this study

were successfully extruded following the proposed design strategy (i.e. we always found Findep ≥ 1). As
an example, in Fig. 1 we show three prismatic architected materials based on unit cells containing (a)
two triangular and one hexagonal prism, (b) an octahedron and cuboctahedron, and (c) four triangular
prisms.

Characterizing Reconfigurability

Although the aforementioned design strategy represents a robust and efficient approach to construct
prismatic architected materials, it does not provide any indication on their reconfigurability. To
determine if, and to what extent, the meso-structure of the designed architected materials can be
reshaped, we started by fabricating centimeter-scale prototypes from cardboard and double-sided tape
(Figs. 2a-c), using a stepwise layering and laser-cutting technique (see Supplementary Information:
Methods).26,27

Focusing on the three architected materials shown in Fig. 1, we find that the structure based on
triangular prisms and the one based on a combination of triangular and hexagonal prisms can be
reconfigured by bending the edges and without deforming the faces, and are respectively characterized
by one and two deformation modes (Figs. 2d-e and Supplementary Movie 2). In contrast, the material
based on a combination of octahedra and cuboctahedra is completely rigid (Fig. 2b and Supplementary
Movie 2). Furthermore, our experiments reveal that these architected materials have fewer degrees
of freedom than their constituent individual extruded polyhedra (Supplementary Fig. 7), indicating
that the additional constraints introduced by the connections between the polyhedra effectively reduce
their reconfigurability.

Numerical Algorithm

While the examples of Figs. 2a-e illustrate the potential of our strategy to design reconfigurable archi-
tected materials, they also show that the design of systems with specific behavior is not straightforward.
To improve our understanding of the reconfigurability of the proposed architected materials, we im-
plemented a numerical algorithm that predicts their mobility and corresponding deformation modes.
In our numerical analysis, each extruded unit cell is modeled as a set of rigid faces connected by linear
torsional springs, with periodic boundary conditions applied to the vertices located on the boundaries.
To characterize the mobility of the structure we solved the following eigenproblem M̃−1K̃am = ω2am,
in which M̃ and K̃ are respectively the mass and stiffness matrices, which account for both the rigidity
of the faces and the periodic boundary conditions through master-slave elimination. Moreover, ω is an
eigenfrequency of the system and am is the amplitude of the corresponding mode (see Supplementary
Information: Mode analysis for 3D prismatic architected materials with rigid faces).

Figs. 2f-g show the simulated eigenmodes for the two reconfigurable architected materials considered
in Figs. 1a and c. Although the simulations only predict the deformation for small rotations, the
modes are strikingly similar to the deformation observed in the experiments (Figs. 2d-e). Solving the
aforementioned eigenproblem therefore provides a convenient approach to determine the mobility of the
structures and gives insight into their deformation without the need for specific boundary conditions.

Designs Based on Uniform Tessellations

To further explore the potential of prismatic architected materials, and to establish relations between
their reconfigurability and the initial space-filling polyhedral assembly, we next focus on extruded
materials based on the 28 uniform tessellations of the 3D space, which comprise regular polyhedra,
semiregular polyhedra and semiregular prisms.28–30 Due to their relative simplicity, these uniform
templates provide a convenient starting point to explore the design space.
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Using the numerical algorithm, we first determined the number of degrees of freedom, ndof, of the
resulting 28 architected materials (Supplementary Fig. 9). We find that the mobility of the unit cells is

affected by two parameters: the average connectivity of the unit cell, z̄ = 1
P

∑P
p=1 zp, and the average

number of modes of the individual polyhedra, n̄ = 1
P

∑P
p=1 np, where P is the number of polyhedra

in the unit cell and zp and np are the number of extruded faces and modes of the p-th polyhedron,
respectively (Supplementary Fig. 8). The results for the 28 architected materials reported in Fig. 3
show three key features. First, higher values for z̄ lead to rigid materials (i.e. ndof = 0 for z̄ > 8).
Second, if all the constituent extruded polyhedra are rigid (i.e. n̄ = 0), the resulting architected
material is rigid as well, and third, only 13 of the 28 designs are reconfigurable (i.e. ndof > 0).

Interestingly, we find that all of the 13 reconfigurable structures are based on unit cells comprising
only prisms, such that they recover the relation previously demonstrated for extruded individual prisms,
n̄ = z̄−3.31 Moreover, our results indicate that most of the reconfigurable structures are characterized
by fewer degrees of freedom than the constituent individual polyhedra (i.e. ndof < n̄), with the
exception of the architected materials based on the cube (#22) and the triangular prism (#11) for
which ndof = n̄.

Having determined the number of modes for the 28 architected materials, we next characterize the
macroscopic deformation associated to each of them. More specifically, we determine the macroscopic
volumetric strain δ =

∑3
j=1 εj for each mode, where εj are the macroscopic principal strains (see

Supplementary Information: Mode analysis for 3D prismatic architected materials with rigid faces).
Interestingly, we find that for the 13 reconfigurable architectures all modes are characterized by δ = 0,
which indicates pure macroscopic shearing deformation, as also confirmed by visual inspection of the
modes (Supplementary Fig. 9).

To characterize the reconfigurability of prismatic architected materials, so far we assumed the faces
to be completely rigid and the hinges to act as linear torsional springs. However, fabrication will
always result in deformable faces, leaving the question whether prismatic architected materials can be
reconfigured when their faces are deformable. To explore this direction, we updated our numerical
algorithm by introducing a set of springs to account for the deformability of the faces12,13,21 (see
Supplementary Information: Stiffness of 3D prismatic architected materials with deformable faces).
We then deformed the extruded unit cells uniaxially and investigated their macroscopic stiffness for
different loading directions (identified by the two angles γ and θ as shown in Fig. 4).

In Fig. 4 we report the normalized stiffness K/E as a function of γ and θ for four prismatic
architected materials characterized by t/L̄ = 0.01, E being the Young’s modulus of the material and
t the thickness of the faces. We find that the response of the architected material based on template
#28, which was previously qualified as rigid (i.e. ndof = 0), is fairly isotropic as its stiffness does not
vary much as a function of the loading direction (i.e. 3.1 · 10−3 ≤ K/E ≤ 4.0 · 10−3). In contrast,
the stiffness of architected materials for which ndof > 0 drops significantly for specific directions (i.e.
Kmin/Kmax = O(10−3)). Interestingly, these are the loading directions for which the reconfiguring
modes get activated, as indicated by the snapshots shown in Fig. 4. Therefore, these results indicate
that the deformation modes we found in the limit of rigid faces still persist even when the faces are
deformable. Note that we used the same stiffness for bending of the faces and bending of the hinges,
and from the results we can therefore conclude that the architecture of these systems make bending of
the faces energetically costly (as it is typically accompanied by stretching and shearing of the faces).
Finally, materials characterized by higher ndof are characterized by more “soft directions”. As such,
materials with ndof = 1 seem most promising for the design of reconfigurable architected materials,
since they can be reconfigured along a specific direction, while still being able to carry loads in all
other directions (Fig. 4 and Supplementary Fig. 10).

Enhancing the Reconfigurability

Although we have shown that by extruding the edges of expanded assemblies of polyhedra we can
construct reconfigurable architected materials, our results indicate that the mobility of the resulting
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structures is significantly reduced by their connectivity. Furthermore, the modes of all reconfigurable
designs show a qualitatively similar shearing deformation. To overcome these limitations, we next
introduce an additional step in the design strategy and reduce the connectivity of the materials by
extruding some of faces of the unit cell, while making the remaining faces rigid.

As an example, in Fig. 5 we consider the architected material based on a tessellation of truncated
octahedra (#28). When all faces are extruded, z̄ = 14, leaving the structure rigid (i.e. ndof = 0).
However, by making 8 of the 14 faces rigid instead of extruding them (Fig. 5a and Supplementary
Movie 3) we can reduce the connectivity to z̄ = 6 and the resulting architected material is no longer
rigid, as ndof = 1. As shown in Fig. 5b and Supplementary Movie 3, this response was also confirmed
experimentally. Finally, we note that by varying the face pairs in the unit cell that are made rigid
instead of extruded, a total of 2F = 128 different architected materials can be designed using the
truncated octahedra as a template. However, only 82 combinations are possible (as all the other cases
will result in structures with disconnected parts) and out of those designs only four are reconfigurable.
Due to symmetries in the truncated octahedron, these four configurations are identical to the one
shown in Fig. 5.

Next, to determine the range of deformations that can be achieved in the proposed structures,
we apply the same brute force strategy to the other 27 uniform space-filling tessellations depicted in
Fig. 3. For this study we considered a maximum of 216 designs per tessellation, randomly selected from
the 2F possibilities, so that for 11 of the tessellations (#4-5, #9-10, #16-17, #20-21, #23, #25, and
#27) the results are not complete, but rather indicate a trend. Note that we expanded the number of
possible designs by removing the polyhedra for which all faces have been made rigid from the extruded
unit cell, as those would have resulted in rigid parts completely disconnected from the architected
materials.

Of the approximately 0.6 · 106 connected designs investigated here (Supplementary Table 1), 90%
are rigid (i.e. ndof = 0) while the other 10% are reconfigurable (i.e. ndof > 0). Supplementary Figs.
11a-b show that to achieve reconfigurability we still need z̄ ≤ 8, with the exception of 6 designs based
on #5 for which z̄ = 9 (see Supplementary Fig. 12). Moreover, fully extruded architected materials
characterized by n̄ = 0 always remain rigid, independent of the reduced number of connections.
Finally, and perhaps more importantly, we also find that using this design approach the mobility of
the architected materials can be significantly enhanced, as 0 ≤ ndof ≤ 16 and for many of the structures
ndof > n̄ (Supplementary Table 1).

Inspection of the modes also reveals that a variety of qualitatively different types of deformation
can be achieved. To better characterize them, in Fig. 6 and Supplementary Fig. 11c-f we report

the magnitude of the principal strains, ||ε|| =
√∑3

i=1 ε
2
i , versus the volumetric strain, δ, for each

deformation mode observed in the reconfigurable architected materials investigated here. Interestingly,
we find that for many modes ||ε|| = δ = 0. These modes do not alter the global shape of the structure,
but only result in internal rearrangements. Design #a shown in Fig. 6 is an example of a structure
undergoing such a local deformation. Here, most of the structure is rigid except for 1D tubes that
can deform independently. Differently, #b is an example in which the whole internal structure is
deforming, while maintaining the same macroscopic shape (Supplementary Movie 4).

Besides these local modes, Fig. 6 also indicates that there are designs capable of achieving types
of macroscopic deformation different than pure shear (for which δ = 0 and ||ε|| > 0). For example,
we find that some of the structures are characterized by an effective vanishing strain in two directions
(#c). The deformation of such architected materials is characterized by ε1 6= 0 and ε2 = ε3 ≈ 0,
resulting in δ = ||ε||. Moreover, the results also reveal that there are a variety of structures capable of
uniform bi-axial expansion (or contraction), for which ε2 = ε3 6= 0 and ε1 = 0 and ||ε|| = δ/

√
2. Such

deformation mode is exemplified by design #d shown in Fig. 6 (Supplementary Movie 4). Finally, we
note that δ =

√
3||ε|| corresponds to uniform expansion (or contraction) characterized by ε1 = ε2 = ε3,

and defines a boundary for possible combinations of δ and ||ε||. In fact, none of the designs considered
here exhibits this type of deformation.
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Discussion and Conclusion

In this work we introduced a convenient and robust strategy to design reconfigurable architected
materials, and explored the design space by considering structures based on the 28 uniform space-
filling tessellations of polyhedra. While our study uncovered architected materials with a wide range
of qualitatively different responses and degrees of freedom, many more designs are possible by using
different assemblies of convex polyhedra as templates (including assemblies based on Johnson Solids
and irregular polyhedra, and assemblies that do not fill space), by considering different extrusion
lengths, or by removing faces (instead of making them rigid prior to the extrusion step). Given these
additional possibilities in the design of reconfigurable architected materials, we made our numerical
algorithm implemented in Matlab available for download as Supplementary Information, to be used and
expanded upon by the community. Finally, we believe that, building on the results presented in this
work, prismatic architected materials with specific properties may be efficiently identified by combining
our numerical algorithm with stochastic optimization algorithms such as Genetic Algorithms. Such
optimization algorithms could prove essential in the design of reconfigurable architected materials
capable of handling changing environments or multiple task (that will likely lead to pareto optimal
solutions).

To realize prismatic architected materials, in this study we used cardboard for the rigid faces and
double-sided tape for the hinges. While this fabrication process enables the realization of centimeter-
scale prototypes (for our models we used L̄ = 35 mm) that closely match the conceptual origami-
inspired mechanisms, real world applications depend on the ability to efficiently manufacture assemblies
comprising a large number of unit cells at different length scales using different fabrication techniques.
Taking advantage of recent developments in multi-material additive manufacturing, we also built the
proposed architected materials using a stiff material (with Young’s modulus E ≈ 1 GPa) for the
faces and a soft material (E ≈ 1 MPa) for the hinges (see Supplementary Information: Methods).
Supplementary Movie 5 shows 3D printed models for two designs based on assemblies of truncated
octahedra (for both models we used L̄ = 6 mm). Although additional local deformation arises from the
finite size of the flexible hinges, the 3D printed structures exhibit the same deformation modes predicted
by our numerical analysis and observed in the cardboard prototypes. As such, recent advances in
fabrication, including projection micro-stereolithography,7 two-photon lithography8,32,33 and ‘pop-up’
strategies,34–40 open exciting opportunities for miniaturization of the proposed architectures. All
together, our strategy enables the design of a new class of reconfigurable systems across a wide range
of length scales that is waiting to be explored.

Data Availability The Matlab model used to determine the mobility and deformation modes of the prismatic
architected materials is provided as Supplementary Information. Other models and datasets
generated during and/or analysed during the current study are available from the corresponding
author on request.
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Figure 1: Design strategy to construct 3D prismatic architected materials. Space-filling and periodic
assemblies of convex polyhedra are used as a template to construct prismatic architected materials
(Supplementary Movie 1). After selecting a space-filling tessellation, we focus on a unit cell spanned
by the three lattice vectors l0i (i = 1, 2, 3) and identify all pairs of overlapping faces. We then separate
the polyhedra while ensuring that the normals of all face pairs remain aligned. Finally, we extrude the
edges of the polyhedra in the direction normal to their faces to construct the extruded unit cell. Note
that the architected material can be constructed by tessellating the extruded unit cell along the three
new lattice vectors li. Using this approach, we designed three architected materials that are based on
space-filling tessellations comprising (a) triangular prisms and hexagonal prisms, (b) octahedra and
cuboctahedra, and (c) triangular prisms.
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Figure 2: Deformation modes of 3D prismatic architected materials. (a-c) Prototypes of the 3D
prismatic architected materials shown in Fig. 1 were constructed using cardboard (rigid faces) and
double-sided tape (flexible hinges). (d) The structure based on a combination of triangular and hexag-
onal prisms can be reconfigured in two different ways (i.e. has two degrees of freedom). (e) The
structure based on triangular prisms has a single deformation mode. Note that the architected mate-
rial based on the octahedra and cuboctahedra cannot be reconfigured. (f-g) Simulated modes of the
reconfigurable architected materials. The obtained deformation modes were linearly scaled to match
the experiments (scale bar 10 cm).

Figure 3: Number of degrees of freedom for architected materials based on the 28 uniform tessellations
of the 3D space. The mobility of the structures is affected by the average connectivity, z̄, and the
average mobility, n̄. The prismatic architected materials and their deformation modes are shown in
Supplementary Fig. 9.
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Figure 4: Normalized stiffness K/E of prismatic architected materials. The figure shows the results
for architected materials based on template (a) #22, (b) #26, (c) #12, and (d) #28. To determine
the stiffness in all loading directions, the architected materials are rotated by angles γ and θ prior to
loading. In each contour plot we indicate the minimum and maximum stiffness with white and black
squares, respectively. Moreover, we also show the deformed architected materials for the mimimum
and maximum stiffness direction. Note that the deformation is magnified to facilitate visualization.

Figure 5: Enhancing the reconfigurability of 3D prismatic architected materials. (a) To enhance the
reconfigurability of the architected material based on the space-filling assembly of truncated octahedra
(#11 in Fig. 3), we extrude only 6 of its faces and make the remaining 8 faces rigid. Using this
approach, the average connectivity is reduced from z̄ = 14 to z̄ = 6 and the resulting structure is no
longer rigid, as ndof = 1. (b) Experimental validation of the numerical predictions (scale bar 10 cm).
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Figure 6: Deformation modes of 3D prismatic architected materials with enhanced reconfigurability.
Relation between the volumetric strain, δ, and the magnitude of the principal strains, ||ε||, for all
the architected materials characterized by ndof = 1. The color of the markers refers to the uniform
tessellation that has been used as a template, as shown in Fig. 3. Structures #a and #b (based on #24
and #9 respectively) are characterized by δ = ||ε|| = 0 and experience internal rearrangements that
do not alter their macroscopic shape. Structure #c (based on #16) only deforms in one direction (i.e.
δ = 4.21, ||ε|| = 4.76), while #d (based on #14) experiences uniform biaxial extension (or contraction)
(i.e. δ = 2.45, ||ε|| = 1.73).
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