
Common Blood Flow Changes across Visual Tasks: 
II. Decreases in Cerebral Cortex

Citation
Shulman, Gordon L., Julie A. Fiez, Maurizio Corbetta, Randy L. Buckner, Francis M. Miezin, 
Marcus E. Raichle, and Steven E. Petersen. 1997. “Common Blood Flow Changes Across Visual 
Tasks: II. Decreases in Cerebral Cortex.” Journal of Cognitive Neuroscience 9 (5) (October): 648–
663. doi:10.1162/jocn.1997.9.5.648.

Published Version
doi:10.1162/jocn.1997.9.5.648

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33896770

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33896770
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Common%20Blood%20Flow%20Changes%20across%20Visual%20Tasks:%20II.%20Decreases%20in%20Cerebral%20Cortex&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=591553a75abd1ca3db5974e3c358218b&departmentPsychology
https://dash.harvard.edu/pages/accessibility


Common Blood Flow Changes across Visual 
Tasks: 11. Decreases in Cerebral Cortex 

Gordon L. Shulman, Julie A. Fiez, Maurizio Corbetta, 
Randy L. Buckner, Francis M. Miezin, Marcus E. Raichle, and 
Steven E. Petersen 
Washington University School of Medicine 

Abstract 

H Nine previous positron emission tomography (PET) studies 
of human visual information processing were reanalyzed to 
determine the consistency across experiments of blood flow 
decreases during active tasks relative to passive viewing of the 
same stimulus array. Areas showing consistent decreases during 
active tasks included posterior cingulate/precuneous (Brod- 
mann area, BA 31/7), left (BAS 40 and 39/19) and right (BA 40) 
inferior parietal cortex, left dorsolateral frontal cortex (BA S), 
left lateral inferior frontal cortex (BA 10/47), left inferior tem- 
poral gyrus @A 20), a strip of medial frontal regions running 
along a dorsal-ventral axis (BAS €49, 10, and 32),  and the right 
amygdala. 

Experiments involving language-related processes tended to 
show larger decreases than nonlanguage experiments. This 
trend mainly reflected blood flow increases at certain areas in 
the passive conditions of the language experiments (relative to 
a fixation control in which no task stimulus was present) and 
slight blood flow decreases in the passive conditions of the 
nonlanguage experiments. When the active tasks were refer- 
enced to the fixation condition, the overall size of blood flow 
decreases in language and nonlanguage tasks were the same, 

INTRODUCTION 

Task-dependent increases in cerebral blood flow are 
often demonstrated by comparing an active task to a 
passive condition in which the same stimulus is pre- 
sented but the subject is not given a task. Surprisingly, 
large blood flow decreases are also observed in active 
minus passive images (Friston, Frith, Liddle, & Frack- 
owiak, 1991; Haxby et al., 1994). Blood flow increases in 
a cortical region are usually assumed to reflect increases 
in neural activity at that region because of the impor- 
tance of local, interneuronal processing within cortex. 
Correspondingly, blood flow decreases in a cortical area 
might reflect decreases in neuronal activity because the 
cells in that area are either more inhibited or less driven 
by afferent projections. 

Explanations of active minus passive decreases in neu- 
ral activity can be grouped into two general categories. 
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but differences were found across cortical areas. Decreases 
were more pronounced in the posterior cingulate/precuneous 
(BAS 31 /7 )  and right inferior parietal cortex (BA 40) during 
language-related tasks and more pronounced in left inferior 
frontal cortex (BA 10/47) during nonlanguage tasks. 

Blood flow decreases did not generally show significant dif- 
ferences across the active task states within an experiment, but 
a verb-generation task produced larger decreases than a read 
task in right and left inferior parietal lobe (BA 40) and the 
posterior cingulate/precuneous @A 3 In), while the read task 
produced larger decreases in left lateral inferior frontal cortex 
(BA 10/47). These effects mirrored those found between ex- 
periments in the language-nonlanguage comparison. 

Consistent active minus passive decreases may reflect de- 
creased activity caused by active task processes that generalize 
over tasks or increased activity caused by passive task proc- 
esses that are suspended during the active tasks. Increased 
activity during the passive condition might reflect ongoing 
processes, such as unconstrained verbally mediated thoughts 
and monitoring of the external environment, body, and emo- 
tional state. 

First, decreases may reflect processes related to the ac- 
tive task. Active tasks may produce decreases in neural 
activity within an area that is tonically active. For exam- 
ple, the tonic activity of neurons in the substantia nigra 
pars reticulata is decreased during a saccade (Hikosaka 
& Wurtz, 1983). Similarly, an active task may inhibit an 
area that would normally respond in the task environ- 
ment. Performance of a difficult visual discrimination in 
the presence of distracting auditory transients, for exam- 
ple, might produce inhibition of ongoing activity in audi- 
tory areas (Haxby et al., 1994). Friston et al. (1991) 
suggested that tasks involving the intrinsic generation of 
words increase activity in dorsolateral prefrontal cortex, 
which then inhibits superior temporal regions involved 
in extrinsic word generation. 

In these examples, different tasks decreased neural 
activity in different areas (e.g., the substantia nigra in a 
saccade task and auditory cortex in a visual discrimina- 
tion task). It is also possible, however, that all active tasks 
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inhibit the same areas. The aroused state typical of any 
active task, for example, may require the inhibition of 
particular areas. 

Second, decreased blood flow during the active tasks 
may reflect the absence of processes that normally occur 
during the passive condition. Ongoing processes in the 
passive condition that are suspended during the active 
task, for example, might reflect monitoring of the exter- 
nal environment or unconstrained thought processes. 
This hypothesis implies that the passive condition en- 
gages a set of processes that are different from those 
engaged by most active tasks. 

The interpretation of blood flow decreases during 
active tasks is partly constrained by their consistency 
across tasks. If each active task inhibits different areas 
(as in the saccade and visual discrimination examples), 
consistent decreases should not be found. If each active 
task inhibits the same area (as in the arousal example), 
similar decreases should be found across tasks. If de- 
creases represent ongoing processes in the passive state, 
decreases should also generalize across active tasks, 
since the passive condition is similar across tasks. 

This paper presents a reanalysis of nine PET studies 
of visual processing in order to determine the generality 
of blood flow decreases across tasks. Each study involved 
a set of active conditions, in which subjects performed 
a variety of tasks upon a stimulus, and a passive condi- 
tion, in which the same stimulus was presented, but the 
subject was not given a task. Decreases that generalized 
across tasks were examined by averaging active minus 
passive blood flow changes across all studies. 

RESULTS 

Replication analyses 

The reliability of the blood flow decreases in an overall 
megaimage that averaged active minus passive scan pairs 
across all experiments was determined (see previous 
paper, Shulman, Corbetta, Buckner, Fiez, et al., 1997, for 
details of method). Blood flow decreases were identified 
in a megaimage based on a hypothesis-generating (gen- 
erate) group of scan pairs and tested for reliability, via a 
one-sample t test, in a nonoverlapping hypothesis-testing 
(test) group of scan pairs. Nineteen foci from the gener- 
ate megaimage met the two selection criteria: (1) the 
magnitude of the active minus passive decreases was 
greater than 15 PET counts’ and (2) the sample size 
exceeded 50 subjects (Table 1 ) .  Sixteen of these foci 
replicated in the test group at a 0.05 level, Bonferroni 
corrected for the number of comparisons (p < 0.0026). 
Of these 16 foci, 14 corresponding foci were found in 
the generate plus test megaimage that combined the 
scan pairs from the generate and test groups. These foci 
(Figure 1 )  were located in the junction of the posterior 
cingulate and precuneous (BA 31/7), left (BAS 40 and 
39/19) and right (BA 40) inferior parietal cortex, left 

dorsolateral frontal cortex @A S), an extended medial 
strip running dorsal-ventral in frontal cortex (BAS 8, 9,  
and 10) and continuing through inferior anterior cingu- 
late (BA 32), left inferior frontal cortex (BA10/47), the 
left inferior temporal gyrus (BA 20), and the right 
amygdala . 

Analyses of Additional Blood Flow Changes 

The generate plus test megaimage was analyzed for all 
decreases whose magnitude exceeded 10 PET counts. 
Foci not previously found from the replication analysis 
generally had smaller z-scores and magnitudes (Table 2) .  
Some foci had coordinates homologous to a region 
noted in Table 1 in the other hemisphere [e.g., right 
anterior parietal cortex (BA 40), left amygdala, right in- 
ferior temporal gyrus (BA 20), and right prefrontal cor- 
tex (BA l o ) ] .  Of all foci less than 10 PET counts, only 
one, in BA 24/31, had a z-score that exceeded 3.08. While 
some foci in Table 2 may reflect “real” decreases, their 
reliability is uncertain since they were not tested for 
replicability. Subsequent analyses are limited to the 14 
foci from the replication analysis. 

Between-Experiments Analyses 

Several analyses examined the consistency across experi- 
ments of the decreases at the 14 foci. 

Between-Experiments ANOVAs 

Figures 2 through 5 show the magnitude for each of the 
14 foci across the nine experiments, with parietal lobe 
foci in Figure 2, frontal lobe foci in Figures 3 and 4,  and 
temporal lobe foci in Figure 5 .  Decreases were present 
at most foci for most experiments, but significant vari- 
ation across experiments was noted for 8 foci (p values 
for a 1 factor between-subjects ANOVA with Experiment 
as the factor are shown in Figures 2 through 5). Sub- 
sequent analyses partly explore the cause of this vari- 
ation. 

Single-Process Analyses 

The consistency of the 14 foci across broadly defined 
processes (e.g., language-related or nonlanguage proc- 
esses) was examined. Language, nonlanguage, motor 
(e.g., motor responses occurred in the active but not 
passive condition), and matched-motor (e.g., motor re- 
sponses in the active and passive conditions were iden- 
tical) megaimages were constructed by combining the 
appropriate experiments (Tables 3 and 4). Decreases 
were present at most foci for all four megaimages, but 
there were clear exceptions. The blood flow decrease at 
the right inferior parietal focus @A 40) only occurred 
very weakly in the nonlanguage and matched-motor 
megaimages. Weak decreases were also seen in the non- 
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Table 1. The left columns show the coordinates of foci from the generate megaimage that replicated and the magnitudes 
and p values for the replication in the test group. The right columns show the coordinates, sample sizes, magnitudes, and 
z-scores of foci from the generate plus test megaimage that were nearest those generate foci that replicated with a Bonferroni 
correction. In some cases, a separate generate plus test focus could not be found for a focus from the generate megaimage 
(e.g., L 40). The first column shows the number of each focus displayed in Figure 1. The superscript a refers to test statistics 
collected with a 50% sampling criterion. 

Generate coordinate Test Generate plus Test 
Focus 

Area No. X Y Z Mag. p value X Y Z N Mag. z-score 

Parietal Lobe 

31 

3 Iff 

L 40 

L 40 

L 39/19 

R 40 

Frontal Lobe 

L lateral 8 

L 8/9 

R 8/9 

L 9  

L 10 

10 (superior) 

10 

L 10/47 

32 

Temporal Lobe 

L 20 

L amygdala 

R amygdala 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 

-7 

-57 

-49 

-43 

49 

-29 

-9 

11 

-17 

-1 

-1 

-35 

-3 

-47 

-2 1 

17 

-35 

-53 

-35 

-53 

-69 

-55 

29 

43 

43 

63 

55 

49 

47 

19 

-23 

1 

-7 

34 

34 

40 

36 

36 

40 

40 

42 

44 

18 

10 

-6 

-6 

-14 

-16 

-20 

-18 

-10 

-20 

-16 

-17 

-12 

-1 1 

-13 

-10 

-10 

-1 1 

-2 1 

-26 

-14 

-12a 

-14 

-loa 
-13a 

< 0.0005 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.001 

< 0.001 

< 0.0001 

< 0.002 

< 0.001 

< 0.002 

< 0.0001 

< 0.0001 

< 0.0005 

< 0.0005 

< 0.0005 

< 0.01 

< 0.001 

-5 

-5 3 

-45 

45 

-27 

-1 1 

5 

-15 

-19 

-1 

-33 

3 

-49 

21 

-49 

-39 

-67 

-57 

27 

41 

49 

55 

57 

47 

45 

31 

-19 

-9 

40 

42 

36 

34 

40 

42 

36 

26 

8 

-4 

4 

-10 

-18 

-18 

130 

128 

131 

131 

131 

131 

132 

131 

125 

95 

87 

73 

65 

55 

-2 1 

-17 

-20 

-16 

-17 

-17 

-17 

-17 

-20 

-29 

-16 

-17 

-17 

-20 

-6.7 

-6.7 

-7.1 

-5.5 

4 . 4  

-6.8 

-6.2 

-6.5 

-6.7 

-7.7 

-4.7 

-4.6 

-4.9 

-4.6 

language megaimage for the right amygdala and inferior 
anterior cingulate (BA 32) and in the matched-motor 
megaimage for left inferior frontal cortex (BA 10/47). 
Blood flow decreases at all foci were generally larger for 
experiments involving a language or motor factor. Be- 
cause of the confounding of variables across experi- 
ments (particularly language and motor variables), 
however, between-experiments comparisons must be in- 
terpreted cautiously. Post-hoc contrasts are also only war- 
ranted for foci showing differences in the overall 
ANOVA. 

In summary, decreases at most foci were consistent 
across experiments and were not limited to active tasks 
involving language, nonlanguage, or simple motor execu- 
tion, although they may have been modulated by these 
processes. The strong betweenexperiments variation for 

right inferior parietal cortex (BA 40), however, may have 
reflected a language/motor requirement. 

Within-Experiment Analyses 

Decreases at the megaimage foci did not generally differ 
across the conditions within an experiment, but sig- 
nificant differences were found between the verb-gen- 
eration and read tasks of the Language and Practice 
Language experiments. Several parietal areas [left 
(t(19) = 3 . 1 1 , ~  c 0.01) and right (t(19) = 3.70,p c 
0.005) BA 40 and BA 31/7 (t(19) = 2.46,p C 0.02511 
showed larger decreases in the verb-generation than 
read tasks, while two left frontal areas [BA10/47 (t(19) = 
3 . 7 7 , ~  c 0.005) and BA 9 (t(l9) = 2.41,p = 0.026)l 
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Figure 1. Blood flow decreases in an overall megaimage that averaged the active minus passive scan pairs from all experiments. Numbers indi- 
cate the 14 foci that passed the replication procedure and produced a separate focus in the megaimage. 

showed larger decreases in the read than verb-genera- 
tion task. 

These within-experiment differences were consistent 
with the between-experiments comparisons. For exam- 
ple, right inferior parietal cortex (BA 40), which showed 
larger decreases in the language-related experiments, 
also showed larger decreases in the more demanding 
linguistic task (i.e., verb generation). The correlation over 
the 14 foci between the verb-generation minus read and 
the language minus nonlanguage magnitudes (from Table 
4 )  was 0.80 (p c 0.0005; Figure 6). This congruence of 
the within- and between-experiments analyses suggests 
that at least some of the significant differences between 
the language and nonlanguage megaimages were not 
due to correlated motor factors or stimulus eccentricity, 
which were both equated in the verb-generation and 
read tasks. 

The above comparison of the verb-generation and 
read tasks was conducted for those conditions in which 

subjects viewed new word lists. Raichle et al. (1994) 
showed that practicing the verb-generation task with the 
same word list changed the blood flow pattern pro- 
duced by that task, relative to the read task. A verb-gen- 
eration minus read subtraction, for example, yielded less 
activity after practice in left prefrontal cortex. Practice 
also made the verb generation considerably easier, 
reflected in a sharp reduction in reaction time (Raichle 
et al., 1994). An analysis of the data from the Raichle et 
al. experiment (e.g., Practice Language) yielded an inter- 
action of Task (verb generation, read) and Practice (naive, 
practiced, novel) at the left inferior frontal (BA 10/47) 
megaimage focus (F(2, 14) = 3.87, p < 0.05). While 
decreases were greater for the read than verb-generation 
task during the novel and naive conditions, equivalent 
decreases were found in the practiced conditions. This 
result is consistent with the earlier report. No significant 
interactions, however, were found at the parietal foci 
that showed larger decreases during the verb-generation 
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Table 2. AU blood flow decreases exceeding a magnitude 
criterion of -10 PET counts in the generate plus test overall 
megaimage that were not listed in the right panel of Table 1. 

X Y Z  N Mag. z-score 

Parietal Lobe 

7 1 -43 56 64 -12 -3.7 

R 40 51 -39 42 128 -11 -4.0 

Frontal Lobe 

R 8  15 29 48 129 -12 -4.9 

L 46 -39 41 18 131 -12 -4.7 

L insula -35 -13 2 131 -11 -3.8 

R insula 39 -11 4 131 -10 -3.7 

R 10 21 55 14 131 -12 -3.9 

L 47 -35 13 -12 75 -12 -4.0 

R 47 27 15 -14 60 -15 -3.3 

Temporal Lobe 

R 20 49 -15 -18 61 -14 -3.7 

R 20/21 51 -33 -12 113 -11 -4.0 

R 22 47 -55 16 132 -11 -4.4 

L 35/36 -25 -27 -10 115 -10 -3.5 

L amygdala -21 -9 -22 28 -19 -3.6 

than read task. Decreases at these foci were not affected 
by changes in the difficulty of the verb-generation task. 

Passive Minus  Fixation Analyses 

Eflects of Motor Responses on Blood Flow Decreases 
Motor responses were made in some passive conditions, 
but not others, while responses were never made in the 
fixation condition. Passive minus fixation magnitudes for 
conditions that did (unmatched-motor) or did not 
(matched-motor) involve a response were measured at 
the foci from the active minus passive megaimage in 
order to determine whether simple motor responses 
could produce decreases at those foci. Magnitudes and 
z-scores were similar in the matched- and unmatched- 
motor megaimages, indicating that motor responses 
were not sufficient to produce decreases. 

Eflects of Stimuli on Blood Flow Decreases 

Since the stimulus in most fixation conditions was sim- 
ply a small fixation cross, an analysis of the passive minus 
fixation data at the active minus passive foci also indi- 
cated whether a stimulus could produce blood flow 
changes at these foci. Passive minus fixation magnitudes 

in the language experiments* (which involved letter 
strings) were moderately positive at several left hemi- 
sphere foci (Table 5),  while magnitudes in the nonlan- 
guage experiments tended to be slightly negative (i.e., 
blood flow was greater in the fixation than in the passive 
condition). 

Inspection of the nonlanguage megaimage for local 
changes (with magnitudes exceeding 15 PET counts) 
near the active minus passive foci yielded no increases 
or decreases. The language megaimage, however, yielded 
increases in left hemisphere regions near those in Table 
5 (left BAS 20,9, 8/9,10/47, and 40) and sizable decreases 
in the posterior cingulate and precuneous (coordinate = 
9, -49, 44; magnitude = -32, z = -4.2; coordinate = - 1 ,  
-63,34; magnitude = -36, z = -4.9; coordinate = 5 ,  -79, 
44; magnitude = -30, z = -4.4). 

These results indicate that the passive baseline was 
shifted (relative to fixation) in several areas in the lan- 
guage and nonlanguage experiments. The increased 
blood flow at certain foci caused by the passive presence 
of a letter string made the active minus passive decreases 
at those foci even larger relative to the decreases that 
would have been obtained if the fixation point condition 
were used as a control. Conversely, the slightly decreased 
blood flow in nonlanguage passive minus fixation scan 
pairs made the active minus passive decreases smaller. 

The passive presence of a letter string produced a 
pattern of changes at the active minus passive foci that 
was similar to the pattern of changes produced at these 
foci by the verb-generation task relative to the read task. 
The correlation across foci between the passive minus 
fixation magnitudes in the language megaimage and the 
verb-generation minus read magnitudes was 0.63 Cp < 
0.02; Figure 6). Therefore, differences between the verb- 
generation and read tasks in the within-experiment 
analyses were not solely due to the greater difficulty of 
the verb-generation task. 

Active Minus  Fixation Analyses 

An active minus fixation megaimage was constructed in 
order to explore the implications of the shifted baselines 
in the language and nonlanguage experiments. The mag- 
nitudes in this megaimage at the 14 active minus passive 
foci were well approximated by adding the active minus 
passive and passive minus fixation magnitudes. Across 
foci, the average active minus fixation decrease was -16 
PET counts for both the language and nonlanguage ex- 
periments. This result confirms that the larger active 
minus passive decreases in the language than nonlan- 
guage studies (Table 4 )  were caused by shifts in the 
corresponding passive conditions. 

Active minus fixation decreases were significantly 
greater for the language than nonlanguage experiments 
in the right inferior parietal cortex (BA 40) (t(74) = 2.59, 
p < 0.02) and precuneous/posterior cingulate @A 31/7) 
(t(74) = 2.67,p c 0.01) and significantly greater for the 
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Figure 2. Each graph shows 
the active minus passive de- 
creases (in PET counts) across 
experiments at a single parie- 
tal focus from the overall 
megaimage. The p value for a 
1-factor ANOVA with Experi- 
ments as the factor is shown 
for each focus. The four experi- 
ments involving language- 
related processes are shown 
on the right of each graph, 
while the five nonlanguage 
experiments are on the left. 
Experiments in bold type in- 
volved a motor response in 
the active conditions but no 
response in the passive con- 
ditions. 

Focus #l pc.05 
nS "1 

-40 

3 
a 

-20 
2 
m e a -I 

0 0 

-60 

-40 

? a - -20 

a t 
J 

0 

20 

Focus #3 p<.ooo1 

T 

"1 T T 

p<.OOol 

T 
-40 

3 

a 
-20 

4: 

0 

nonlanguage than language experiments in left inferior 
frontal cortex (BA 10/47) (t(42) = 2.26,p < 0.05). These 
differences (Figure 7 )  parallel the differences noted ear- 
lier between the verb-generation and read tasks. The 
correlation between the verb-generation minus read (ac- 
tive minus passive) magnitudes and the language minus 
nonlanguage (active minus fixation) magnitudes was 
0.78 (p < 0.001). If the verb-generation minus read mag- 
nitudes are taken from only the Practice Language ex- 
periment, which did not contribute any active minus 
fixation data, the correlation was 0.67 (p < 0.01). 

While language-nonlanguage differences in parietal 
areas were also found in the active minus passive analy- 
sis, the left inferior frontal difference was not previously 
seen. The active minus passive decrease for left inferior 

frontal cortex (BA 10/47) was similar for the language 
and nonlanguage experiments (Table 4). Sincq the pas- 
sive presence of a letter string produced increasks in this 
area, however, the net active minus fixation decrease was 
larger for the nonlanguage than language studies. 

DISCUSSION 

Following a summary of the results, this section dis- 
cusses (1) the effects of several correlated variables on 
decreases in order to isolate the critical variables, (2) the 
methodological implications of the results, (3) a non- 
functional explanation of decreases involving the 
redistribution of the blood supply, (4) a functional expla- 
nation related to active task processes, ( 5 )  a functional 
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Figure 3. Frontal lobe de- 
creases in the overall 
megaimage. See Figure 2 
caption for details. 

Focus #5 p<.05 "1 -'I Focus#6 ns 

Focus #7 ns -'I do T 

Focus #8 ns "1 

explanation related to ongoing processes in the passive 
state, and (6) hypotheses concerning why these passive 
processes may be suspended during active tasks. 

Results Summary 

1. A set of 14 foci in frontal, parietal, and temporal 
lobes, as well as the amygdala, showed highly reliable 
active minus passive decreases that were present in most 
or many experiments. A similar consistency in cerebral 
cortex was not present for active minus passive in- 
creases, aside from the expected motor or sensory ef- 
fects (Shulman, Corbetta, Buckner, Fiez, et al., 1997). 

2. Blood flow decreases did not generally show sig- 
nificant differences across active tasks within an experi- 

"1 T -.. 

ment, but the verb-generation task produced larger de- 
creases than the read task in parietal areas (BAS 40 and 
31/7) and smaller decreases in left frontal areas (BAS 9 
and 10/47). 

3. Language tasks produced larger decreases in parie- 
tal areas (BAS 40 and 3 1 m  when tasks were referenced 
to either a fixation point or passive baseline. Nonlan- 
guage tasks produced larger decreases in a left inferior 
frontal region (BA 10/47) when tasks were referenced to 
a fixation baseline. This reciprocal pattern mirrored that 
shown for the verb-generation and read tasks. Language 
minus nonlanguage magnitudes were highly correlated 
across active minus passive foci with verb-generation 
minus read magnitudes. 

4. Production of a simple motor response was not 
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Figure 4. Frontal lobe de- 
creases in the overall 
megaimage. See Figure 2 
caption for details. 

Focus #9 pc.0005 "1 T 
Focus #lo pc.05 "1 T T 

-40 -40 

z z 
8 -20 m -20 P a U 
-I 

0 0 

20 20 

n 

Focus I1 1 pc.05 "1 T 

Focus b12 ns 

T T -40 

b 
(u s 7 0 

s a 
m -20 
P m -20 

4 

0 0 

20 20 

sufficient to produce decreases at the foci from the 
active minus passive megaimage. The presence of a letter 
string, however, increased blood flow at several left hemi- 
sphere foci (BAS 20, 9, 8/9, 10/47, and 40), produced 
sizable decreases in the precuneous, and showed a pat- 
tern of changes at the active minus passive foci similar 
to that produced by the verb-generation task relative to 
the read task. 

Variables Affecting Blood Flow Decreases 

Significant between-experiments differences were found 
at a number of megaimage foci but were difficult to 
interpret because the main variables distinguishing the 
experiments were highly correlated: motor response in 
the active but not passive condition, languagehask 
difficulty (i.e., the language tasks may have been more 
difficult than the nonlanguage tasks), and stimulus eccen- 
tricity. 

Language/Task Dzyficulty versus Motor 

Two results suggested that the languagehask difficulty 
variable rather than the motor variable contributed to 
the between-experiments differences. First, between- 
experiments language/nonlanguage differences were 
paralleled by within-experiment differences in the verb- 
generation and read tasks, in which the motor response 
was held constant. Second, the passive minus fixation 
data indicated that simple motor processes were not 
suflicient to produce  decrease^.^ 

Language versus Task Di&?culty 

Task difficulty cannot explain the language/nonlanguage 
differences at both the parietal and left frontal foci be- 
cause they were opposite in sign (i.e., larger parietal 
decreases in the language experiments and larger frontal 
decreases in the nonlanguage experiments). Differences 
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Figure 5. Temporal lobe de- 
creases in the overall 
megaimage. See Figure 2 
caption for details. 

-60 Focus bl3 ns 

-40 -40 
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Table 3. Sample sizes, magnitudes, and z-scores of decreases at the overall megaimage foci for those experiments in which 
the active task involved a motor response but no response was made in the passive (unmatched-motor) task and for those 
experiments in which the motor requirements of the active and passive tasks were the same (matched-motor). The last 
column shows the two-tailed p value for an unpaired t test comparing the magnitudes of the decreases in the unmatched- 
and matched-motor experiments. ns refers t o p  > 0.05. 

Unmatched-motor Matched-motor 

Area N Mag. z-score N Mag. z-score p value 
~ 

Parietal Lobe 

31/7 67 -29 -6.1 63 -1 2 -3.1 < 0.005 

L 40 65 -2 1 -5.3 63 -13 -4.0 ns 

L 39/19 67 -26 -6.1 64 -13 -3.8 < 0.01 

R 40 67 -24 -5.4 64 -7 -2.1 < 0.005 

Frontal Lobe 

L lateral 8 

L 8/9 

R 8/9 

L 9  

L 10 

10 

L 10/47 

32 

66 

66 

67 

67 

65 

51 

45 

37 

-20 

-22 

-18 

-20 

-27 

-35 

-23 

-19 

-4.7 

-5.5 

-4.1 

-4.8 

-6.1 

-6.7 

-4.6 

-3.7 

65 

65 

65 

64 

60 

44 

42 

36 

-14 

-12 

-16 

-15 

-12 

-23 

-9 

-15 

-4.4 

-4.0 

-4.9 

-4.3 

-3.2 

-4.2 

-1.9 

-2.8 

ns 

< 0.05 

ns 

ns 

< 0.005 

ns 

< 0.05 

ns 

Temporal Lobe 

L 20 31 -17 -3.0 34 -18 -3.8 ns 

R amygdala 26 -24 -3.5 29 -16 -2.9 ns 
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Table 4. Sample sizes, magnitudes, and z-scores of decreases at the overall megaimage foci for those experiments in which 
the active task involved language or nonlanguage related processes. The last column shows the two-tailed p value for an 
unpaired t test comparing the magnitudes of the decreases for the language and nonlanguage experiments. ns refers to 
p > 0.05. 

Language Nonlanguage 

Area N Mag. z-scow N Mag. z-score p value 

Parietal Lobe 

3 1/7 

L 40 

L 39/19 

R 40 

Frontal Lobe 

L lateral 8 

L 8/9 

R 8/9 

L9 

L 10 

10 

L 10/47 

32 

Temporal Lobe 

L 20 

R amygdala 

61 

59 

61 

61 

61 

61 

62 

62 

61 

54 

51 

42 

38 

32 

-28 

-25 

-29 

-29 

-19 

-24 

-22 

-22 

-29 

-39 

-15 

-22 

-18 

-27 

-6.1 

-5.8 

-6.2 

-5.9 

-4.4 

4 . 0  

-5.0 

-5.3 

-6.3 

-7.2 

-3.2 

-4.2 

-3.4 

-4.3 

69 

69 

70 

70 

70 

70 

70 

69 

64 

41 

36 

31 

27 

23 

-14 

-10 

-12 

-4 

-16 

-1 1 

-13 

-14 

-10 

-17 

-17 

-10 

-16 

-10 

-3.5 

-3.5 

-4.8 

-1.5 

-4.6 

-3.6 

-3.7 

-3.8 

-3.0 

-3.4 

-3.4 

-2.1 

-2.9 

-1.9 

< 0.05 

< 0.001 

< 0.002 

< 0.0001 

ns 

< 0.005 

ns 

ns 

< 0.0005 

< 0.001 

ns 

ns 

ns 

< 0.05 

between the verb-generation and read tasks at these 
frontal and parietal foci also varied in sign. The absence 
of any significant Task by Practice interactions in the 
Practice Language experiment at the parietal foci raises 
further problems for a task-difliculty explanation of the 
larger decreases at those foci during the verb-generation 
task. Larger decreases were not observed in the more 
difficult color-form than in the color conditions of Visual 
Search 1 and 2 (except for BA right 8/9 in Visual Search 
2) or in the more difficult conjunction than in the fea- 
ture conditions of Visual Search 3. Finally, the passive 
minus fixation language megaimage produced a blood 
flow pattern similar to that in the verb-generation versus 
read comparison, again raising problems for a task 
difficulty explanation. 

Language versus Eccentricity 

The language experiments involved stimulus displays 
that were more foveal (e.g., all letter strings were pre- 
sented 1' below fixation and subtended less than 5") 
than the nonlanguage experiments, which involved large 
field (Successive Same-Different Discrimination), para- 

foveal (Visual Search 2, Visual Search 3, Spatial Attention), 
or peripheral (Visual Search 1) displays. These eccentric- 
ity differences may explain the larger active minus pas- 
sive decreases in the precuneous/posterior cingulate 
(BA 3 In) in the language experiments, since this region 
also showed prominent passive minus fixation decreases 
in these experiments (see below). 

Methodological Implications 

The Passive as a Control Condition 

Although many studies have included a passive control 
in the experimental design, there may be concerns that 
this condition is too underspecified to provide a reliable 
control. The present analysis indicates that passive con- 
ditions across a wide variety of experiments produce a 
consistent set of blood flow changes and can serve as 
one control state. 

Task-Speczpc Blood Flow Decreases 

A blood flow decrease during an active task at any focus 
in Tables 2 or 3 does not reflect the operation of pro- 
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Figure 6. Scatterplots of magnitudes at the 14 active minus passive foci showing the relationship between (a) active minus passive decreases 
in the verb-generation minus read tasks and language minus nonlanguage experiments and (b) active minus passive decreases in the verb- 
generation minus read tasks and passive minus fixation increases in the language tasks. 

cesses unique to that task. Conversely, a reliable decrease 
at a different focus probably reflects a process relatively 
specific to the active task. The megaimage foci therefore 
provide useful information for interpreting the decreases 
produced by a task. The present dataset also contained 
task-specific decreases, although they were not discussed. 

Blood Flow Decreases Caused by Redistribution 
of the Blood Supply 

One explanation of the observed blood flow decreases 
concerns the redistribution of cerebral blood flow. The 
apparent constancy of the blood supply to the brain has 
led to suggestions that large blood flow increases in 
some areas may require decreases in other areas (e.g., 
see Haxby et al., 1994). Decreases, however, were often 
not accompanied by increases in neighboring regions 
(e.g., the right parietal decreases during the language 
tasks or the left frontal decreases during the nonlan- 
guage tasks). Similarly, the present decreases occurred in 
the absence of any evidence for corresponding increases 
in cortex that generalized over tasks (Shulman, Corbetta, 
Buckner, Fiez, et al., 1997). More generally, this hypothe- 
sis fails to take into consideration the enormous reserve 
capacity of the brain circulation to respond to changes 
in the metabolic and circulatory demands of the brain. 
This is dramatically demonstrated during the increased 
metabolic demands of convulsions. In both experimental 

animals (Plum, Posner, & Troy, 1968) and humans @rod- 
erson et al., 1973; Posner, Plum, & Van Poznak, 1969) 
overall brain blood flow and metabolism can increase 
severalfold. This not only results from the remarkable 
capacity of the normal brain vasculature to reduce its 
resistence and, hence, increase flow (Reivich, 1964) but 
also the capacity of the systemic circulation to support 
a large change in the circulatory demands of the brain 
by increasing cardiac output, manyfold if necessary, and 
increase peripheral resistence (Plum, 1968; Posner, 
1969). The changes in brain blood flow during cognitive 
activation experiments are usually in the range of 10% 
or less, hardly a serious physiologic challenge to the 
normal brain vasculature. 

Blood Flow Decreases Caused by Active Task 
Processes 

Active minus passive decreases may reflect decreased 
activity related to active task processes or suspension of 
activity related to ongoing processes in the passive con- 
dition. If the present decreases reflected active task proc- 
esses, these processes are not task-specific. This would 
contrast with the result of the preceding paper that active 
tasks do not produce common cortical increases. Al- 
though it seems unlikely that a single inhibitory process 
would encompass such a divergent set of cortical areas, 
subsets of these areas might reflect different processes. 
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Table 5. Passive minus fixation data. Sample sizes, magnitudes, and z-scores for passive minus fixation changes at coordinates 
for the active minus passive megaimage foci. The left panel shows data from experiments involving linguistic stimuli (e.g., 
letter strings), while the right panel shows data from experiments involving nonlinguistic stimuli. The last column shows the 
two-tailed p value for an unpaired t test comparing the magnitudes of the passive minus fixation changes for the language and 
nonlanguage experiments. 

Language Nonlanguage 

Area N Mag. 2-score N Mag. 2-score p value 

Parietal Lobe 

3 1/7 

L 40 

L 39/19 

R 40 

Frontal Lobe 

L lateral 8 

L 8/9 

R 8/9 

L 9  

L 10 

10 

L 10/47 

32 

Temporal Lobe 

L 20 

R amygdala 

34 

32 

34 

34 

34 

34 

35 

35 

34 

30 

28 

20 

20 

16 

-15 

12 

5 

-9 

9 

20 

8 

17 

6 

-2 

13 

-10 

18 

-2 

-2.0 

1.7 

0.9 

-1.6 

1.6 

2.8 

1.3 

2.9 

1.1 

-0.3 

2.5 

-1.0 

2.7 

-0.2 

44 

44 

44 

44 

44 

44 

44 

44 

39 

23 

19 

15 

12 

9 

-6 

-4 

-1 1 

-7 

4 

-2 

-8 

-8 

-1 

-2 

-6 

-18 

-10 

-7 

-0.9 

-0.9 

-2.4 

-1.5 

-1.2 

-0.4 

-1.7 

-1.4 

-0.2 

-0.4 

-0.6 

-1.7 

-0.8 

-1.4 

ns 

< 0.05 

< 0.05 

ns 

= 0.05 

< 0.05 

< 0.05 

< 0.005 

ns 

ns 

= 0.051 

ns 

< 0.05 

ns 

Arousal 

Maquet et. a1 (1996) have measured PET activation dur- 
ing REM sleep, slow-wave sleep, and wakefulness. They 
report that REM sleep decreased blood flow, relative to 
the other states, in left and right parietal cortex, the 
precuneous and posterior cingulate, and several regions 
in dorsolateral prefrontal cortex. Since these foci were 
roughly 10 to 15 mm from the corresponding foci re- 
ported here, it is unclear if they represent the same 
areas. If REM sleep is an “active” state, while slow-wave 
sleep and wakefulness are low arousal states, a corre- 
spondence would suggest that decreases in these re- 
gions during the active tasks of the present report reflect 
changes in arousal. Maquet et al. also report, however, 
that E M  sleep produced increases in the amygdala 
(9 mm from the present focus) and did not affect other 
foci from the present work, suggesting that an arousal 
interpretation may only account for a limited number of 
foci. 

Inhibition of Irrelevant Sensory Modalities 

Since all tasks involved visual stimuli, decreases may 
represent inhibition of task-irrelevant modalities such as 
somesthesis or audition (Haxby et al., 1994; Shulman, 
Corbetta, Buchner, Raichle, et al., 1997). Although none 
of the decreases occurred in primary sensory areas, 
some occurred in association cortex (e.g., the posterior 
insula, Table 2). 

Suppression of Habitual Response Systems 

Drevets and Raichle (in press) suggest that ventromedial 
frontal cortex and amygdala might show a reciprocal 
relationship with regions involved in cognitive process- 
ing. Based on evidence linking ventromedial frontal cor- 
tex to the generation and regulation of emotional states 
(Carmichael & Price, 1995; Damasio, Tranel, & Damasio, 
1990; Drevets et al., 1992), they speculate that ventrome- 
dial areas are inhibited during difficult cognitive tasks. 
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Figure 7. The left panel shows active minus passive decreases in the verb-generation conditions of the Practice Language and Language experi- 
ments and the active minus fixation decreases in the language megaimage combining data from the language-related studies. The right panel 
shows active minus passive decreases in the read conditions of the Practice Language and Language experiments and the active minus fixation 
decreases in the nonlanguage megaimage combining data from the nonlanguage-related studies. This betweenexperiments comparison yields a 
very similar pattern of decreases to that seen in the verb-generation and read tasks. The color scale for the language and nonlanguage experi- 
ments was 0 (black) to -40 (white) PET counts, while the scale for the verb-generation and read tasks was 0 (black) to -60 (white) PET 
counts. Different scales were used because of the large differences in sample size. 

Raichle et al. (1994) have contrasted two verbal re- 
sponse selection pathways, a sylvian/insular pathway 
that mediates relatively automatic or practiced behavior 
and a frontal/cingulate pathway that is active during 
unpracticed tasks requiring attentional involvement. 
Raichle suggests (personal communication, April 1997) 
that emotional arousal produces ventromedial frontal 
activity that favors the automatic pathway (e.g., under 
stress, the organism is biased toward habitual responses) 
and interferes with the performance of nonautomatic 
tasks. If nonautomatic tasks inhibit ventromedial areas to 
prevent this interference, decreases in ventromedial 
frontal cortex and the amygdala should be larger during 
the unpracticed verb-generation task than the read task. 
Decreases in these areas in the verb-generation task were 
slightly greater than in the read task, but the differences 
were not significant. 

Blood Flow Decreases Caused by Ongoing 
Processes in the Passive State 

Unconstrained Verbal Thought Processes 

During the passive condition, subjects may think verbally 
about a variety of topics unrelated to the active tasks, 
producing left-hemisphere changes in superior and infe- 
rior frontal cortex and inferior temporal cortex. These 
regions showed larger decreases in the read than gener- 
ate task and/or greater increases during the passive pres- 
entation of a letter string than a nonlanguage stimulus. 
Mazoyer et al. (1993) report that listening to prose pas- 
sages increased blood flow in left inferior and superior 
frontal cortex, the middle temporal gyrus, and the tem- 
poral pole. Studies of single-word processing have also 
reported left frontal activity (Petersen, Fox, Posner, Min- 
tun, & Raichle, 1989; Price, Wise, & Frackowiak, 1996). 
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Although increases in left inferior temporal regions have 
not been consistently observed [temporal lobe increases 
are usually more posterior and/or superior (Fiez, Raichle, 
Balota, Tallal, & Petersen, 1996), but see Price et al. 
(1996)], Bookheimer, Zeffiro, Blaxton, Gaillard, & Theo- 
dore, (1995) report that silent, but not overt, word read- 
ing produced left inferior temporal increases. They also 
found increases in left inferior and superior frontal 
cortex. 

Monitoring of the External Environment 

During the passive condition, subjects may be in an 
“exploratory state,” in which they monitor the external 
environment for novel or important events. Colby, Gat- 
tass, Olson, & Gross (1988) report that area PO in the 
macaque parietal-occipital sulcus has a relatively greater 
representation of the peripheral visual field than most 
visual areas, and projects to a medial parietal area, MDP, 
which has cells with large receptive fields that habituate 
quickly. These properties of macaque POFlDP may cor- 
respond to the decreases observed in the precune- 
ous/posterior cingulate (BA 3 1/7). Decreases were most 
pronounced in experiments with foveal stimulation and 
were also marked in the corresponding passive minus 
fixation megaimages, which contained decreases in both 
the precuneous/cingulate and more posterior parietal- 
occipital regions. The fixation condition, in which the 
processing demands of the foveal stimulus were minor, 
may particularly free the subject to monitor the visual 
field for novel stimuli, producing large parietal-occipital 
changes. 

Monitoring of the Body Image 

During the passive condition, subjects may monitor the 
state of the body and its orientation in the external 
environment, constructing a sensory/perceptual repre- 
sentation of the self. These processes may reflect some 
of the parietal changes observed in the present analysis. 
Inferior parietal cortex is involved in many aspects of 
egocentric spatial processing (Andersen, 1987), and 
some regions are multimodal (Colby & Duhamel, 1991). 
Right parietal lesions produce stronger neglect phe- 
nomenon than left parietal lesions, including distur- 
bances of the body image and anosognosia. In the 
present work, both right and left inferior parietal regions 
showed larger decreases during the language than non- 
language experiments, as well as larger decreases during 
the verb-generation than read task, but these effects 
appeared larger on the right side. Language-related tasks 
may have shifted attention to internaVsymbolic repre- 
sentations and away from the body image/external envi- 
ronment more than the nonlanguage tasks, which 
required close attention to external stimuli. 

Monitoring of Emotional State 

It was noted above that ventromedial frontal cortex and 
amygdala may be inhibited during active tasks in order 
to prevent biases in cognitive processing produced by 
emotional arousal. These areas may also show increases 
in the passive condition from monitoring of the current 
emotional state, particularly the intermediate class of 
sensations (“background feelings”) described by 
Damasio (1994) that corresponds to the body state be- 
tween emotions. 

Damasio (1 994) has argued that ventromedial prefron- 
tal regions can initiate emotional states associated 
through experience with particular contexts, by connec- 
tions with the amygdala that produce body states appro- 
priate to the emotion. He suggests that these body states 
are represented in primary (SI) and secondary (SII) so- 
matosensory cortex and the insula. Active minus passive 
decreases were not found in primary somatosensory 
cortex (Shulman, Corbetta, Buckner, Fiez, et al., 1997), 
although decreases of moderate consistency were found 
bilaterally in the posterior insula (Table 2). Repre- 
sentations of body states may occur more posterior than 
primary somatosensory cortex in superior and inferior 
parietal areas (see above). 

Causes of Suspension of Passive Processes 
during Active Tasks 

Ongoing processes in the passive condition may be sus- 
pended during active tasks for several reasons. First, 
these processes may have an antithetical relationship to 
active task processes. Sleep, for example, is antithetical 
to an alert state. Similarly, a general exploratory/monitor- 
ing state may be antithetical to a task-focused state. 
Second, subjects may not “bother” to engage in passive 
processes when performing an active task, although they 
might engage these processes if this were necessary. 
Third, these processes may carry a cost and may be 
suspended during active tasks due to interference from 
high-to-low priority processes. Interference between 
tasks or processes may occur because they compete for 
the use of some general structure or resource that has a 
limited capacity (Posner, 1978), although interference 
also has ‘‘local’’ causes that depend on the task pairings 
being studied. 

If suspension reflected competition between active 
and passive processes for a general structure or resource, 
the magnitude of the observed decreases should depend 
on the degree to which the active task involved those 
structures. More difficult tasks might use these structures 
to a greater degree, producing a greater suspension. 
There was little evidence, however, for an effect of task 
difficulty on decreases (see above). Similarly, asking sub- 
jects in the passive conditions to press a key each trial, 
which converted those conditions to simple detection 
tasks (see Note 3), did not produce passive minus h a -  
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tion decreases. Admittedly, these difficulty manipulations 
may have been too weak to show an effect. A threshold 
level of attentional involvement may be sufficient to 
dedicate the relevant neural regions to the active task. 

The neural mechanisms of interference are unknown. 
The simplest idea is that interference between two tasks 
results when both tasks use the same set of neurons. If 
active and passive processes involved overlapping neural 
areas, interference would cause an active minus passive 
decrease in the nonoverlapping areas subserving the 
passive process and an active minus passive increase in 
the nonoverlapping areas subserving the active task 
process. Posner and Petersen (1 990) have suggested that 
the anterior cingulate mediates an attentional function. 
If ongoing passive processes involved a network of areas 
that included the anterior cingulate, active visual tasks 
that heavily involved this region should have interfered 
more with these passive processes, producing larger 
decreases in noncingulate areas. 

The data did not support this idea. Although the ante- 
rior cingulate did not yield consistent increases in the 
active minus passive megaimage, cingulate increases 
were found during individual tasks in particular experi- 
ments (e.g., divided attention). These tasks did not pro- 
duce larger decreases than other tasks within the same 
experiment. Similarly, Visual Search 1 showed robust ac- 
tive minus passive anterior cingulate increases in all 
active conditions (Corbetta, Shulman, Miezin, Hunton, & 
Petersen, 1996) but did not show larger decreases rela- 
tive to nonlanguage experiments that did not show a 
cingulate increase (e.g., Spatial Attention, Visual Search 2 
and 3). 

METHOD 

The analysis stream from the previous paper (Shul- 
man, Corbetta, Buckner, Raichle, et al., 1997) on blood 
flow increases was applied to the decreases. This stream 
involved analyses of (1) reliability, (2) between-experi- 
ments variation, (3) within-experiment variation, and (4) 
passive minus fixation data. The current paper also con- 
tains the analysis noted below. 

Active Minus Fixation Analyses 

Active minus fixation scans were analyzed to gain more 
information on baseline shifts induced by the presence 
of a stimulus in the passive condition. An active minus 
fixation megaimage was constructed from the seven 
experiments that included fixation scans, in which an 
impoverished visual stimulus (usually just a fixation 
cross) was presented and subjects were simply required 
to fixate. Seventy-six subjects contributed a total of 181 
active minus fixation scan pairs. Although scans from a 
single subject were weighted to sum to one unit, equal 
weighting was not applied to the conditions within an 
experiment. There were many fewer active minus fixa- 

tion scans than active minus passive ones, making equal 
weighting of conditions inefficient. 
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Notes 

1. The magnitude criterion for the selection of foci from the 
generate megaimage was originally set at 15 PET counts for 
both increases and decreases. The criterion for the increases 
was lowered to 10 counts to guard against the possibility that 
the null results in cerebral cortex (see previous paper) resulted 
from too strict a criterion. If the decreases are also analyzed 
with a criterion of 10 counts, only one additional focus is 
included, in left dorsolateral prefrontal cortex (L. BA 46, Table 2). 
2. Roughly half of the scans in the language experiments were 
contributed by the Memory experiment. Buckner et al. (1995) 
noted that post-session interviews indicated that subjects ac- 
knowledged performing the stem completion task during the 
passive condition. It is possible that subjects also performed 
the active task to some degree in the passive conditions of 
other experiments. Covert performance of the active task dur- 
ing the passive condition will weaken the observed active 
minus passive decreases and should be reflected in passive 
minus fixation decreases at the megaimage foci. As noted later, 
the only decrease of this type that occurred to any significant 
extent was in the posterior cingulate/precuneous. Moreover, 
robust active minus passive decreases were found in the Mem- 
ory experiment, suggesting that the passive condition in that 
experiment did differ from the active conditions. 
3. The term motor may be misleading. By requiring subjects 
to press a key on alternating trials, the passive condition was 
converted into a more active task in which subjects detected 
the presence of a stimulus and then pressed a key. The de- 
mands of this task state were apparently too small to produce 
blood flow decreases. 
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