
Revisiting Whether Recent Surface Temperature 
Trends Agree with the CMIP5 Ensemble

Citation
Lin, Marena, and Peter Huybers. 2016. “Revisiting Whether Recent Surface Temperature 
Trends Agree with the CMIP5 Ensemble.” Journal of Climate 29 (24) (December): 8673–8687. 
doi:10.1175/jcli-d-16-0123.1.

Published Version
doi:10.1175/JCLI-D-16-0123.1

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33973673

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33973673
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Revisiting%20Whether%20Recent%20Surface%20Temperature%20Trends%20Agree%20with%20the%20CMIP5%20Ensemble&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=1154121855cf9404954266b1c3d8ef6b&departmentEarth%20and%20Planetary%20Sciences
https://dash.harvard.edu/pages/accessibility


Revisiting Whether Recent Surface Temperature Trends Agree with
the CMIP5 Ensemble

MARENA LIN AND PETER HUYBERS

Harvard University, Cambridge, Massachusetts

(Manuscript received 8 February 2016, in final form 11 May 2016)

ABSTRACT

In an earlier study, a weaker trend in global mean temperature over the past 15 years relative to the preceding

decades was characterized as significantly lower than those contained within the phase 5 of the Coupled Model

Intercomparison Project (CMIP5) ensemble. In this study, divergence between model simulations and obser-

vations is estimated using a fixed-intercept linear trend with a slope estimator that has one-third the noise var-

iance compared to simple linear regression. Following the approach of the earlier study, where intermodel spread

is used to assess the distribution of trends, but using the fixed-intercept trend metric demonstrates that recently

observed trends in global mean temperature are consistent (p. 0:1) with the CMIP5 ensemble for all 15-yr

intervals of observation–model divergence since 1970. Significant clustering of global trends according to

modeling center indicates that the spread in CMIP5 trends is better characterized using ensemble members

drawn across models as opposed to using ensemble members from a single model. Despite model–observation

consistency at the global level, substantial regional discrepancies in surface temperature trends remain.

1. Introduction

Much attention has been focused on the fact that re-

cent trends in global warming are slower than those

predicted in many climate simulations. One class of

explanation for this model–data disagreement is models

not capturing internal variations in the surface energy

balance (Kosaka and Xie 2013; England et al. 2014),

possibly associated with increased deep ocean heat up-

take (Meehl et al. 2011; Trenberth and Fasullo 2013).

Changes to external radiative forcing specifications

could also reduce model warming trends (Solomon et al.

2010; Santer et al. 2014; Schmidt et al. 2014; Huber and

Knutti 2014), as would downward revision of a model’s

transient climate sensitivity (Otto et al. 2013). Another

class of explanation involves changes to global temper-

ature estimates. Inclusion of arctic surface temperature

estimates (Cowtan and Way 2014), revision of temper-

ature buoy offsets (Karl et al. 2015), and adjusting for

air–sea temperature differences (Cowtan et al. 2015) can

all incline recent warming observations nearer to the

models. Other studies reconcile observed trends with ei-

ther statistical properties of individual models (Thorne

et al. 2015) or specific phases of modeled internal vari-

ability (Risbey et al. 2014) within phase 5 of the Coupled

Model Intercomparison Project (CMIP5) ensemble

(Taylor et al. 2012).

Both improved mechanistic understanding of decadal

temperature variability and more accurate global tem-

perature estimates are of obvious value. There is also

utility in addressing whether differences between recent

temperature trends and model projections are statistically

significant. Findings of significant differences would give

grounds for concluding that models are missing major

components of internal variability, that data-based esti-

mates are biased, or that other sources of uncertainties are

too narrowly construed.

A variety of approaches have been employed in

assessing statistical significance of recent warming trends.

Rajaratnam et al. (2015) tested whether recent warming

rates were slower than those between 1950 and 1997 and

found no evidence for significant slowing. Brown et al.

(2015) assessed recent trends in global tempera-

ture against a combination of model- and empirically

derived variability, finding consistencywhen usingCMIP5
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regional concentration pathways (RCPs) 4.5 or 6

(Taylor et al. 2012), but they observed that decadal

trends fall below the 5th percentile of distributions when

using RCP8.5. Fyfe et al. (2013, hereafter Fyfe2013) also

assessed observed trends relative to CMIP5 projections

and found them to generally reside below the 5th per-

centile of simulations when using RCP4.5. A similar

analysis is presented in box 9.2 of IPCC AR5 (Flato

et al. 2013).

To our knowledge, Fyfe2013’s analysis represents the

strongest published claim for the statistical significance

of the hiatus, and here we take up twomajor elements of

that analysis in further detail. First, as Fyfe2013 docu-

ment, their results are sensitive to selection of specific

intervals. For example, trends in observed global tem-

perature computed using the Hadley Centre/Climatic

Research Unit version 4 (HadCRUT4) gridded compila-

tion (Morice et al. 2012) range from 08 to 0.078C decade21

when started between 1998 and 2002, all ending in 2014.

If individual intervals are then examined in isolation,

statistical significance varies, with trends indicated as

highly anomalous (p, 0:05) or consistent with CMIP5

trends (p. 0:10). This sensitivity to interval selection is

not surprising given the shortness of the examined

trends (Wunsch 1999), but it introduces an element of

arbitrariness insomuch as a basis for choosing between

results is lacking. Further, finding an interval falling

outside of a 95% confidence interval becomes increas-

ingly likely with the number of distinct intervals exam-

ined (e.g., Marotzke and Forster 2015).

A second issue is how the model ensemble ought to

be statistically interpreted for purposes of constructing

a null distribution. A truth-plus-error approach posits

temperature trends as involving a deterministic com-

ponent plus biases, whereas an exchangeable approach

posits that actual climate and individual ensemble

members share equivalent statistical properties (e.g.,

Annan and Hargreaves 2010). Although Rougier et al.

(2011) showed that these approaches can be statistically

equivalent, the implementation of the truth-plus-error

approach by Fyfe2013 generally indicates differences

between simulations and observations that are significant,

whereas the exchangeable implementation only indicates

significant differences for some of the most recent in-

tervals considered. Determining which representation of

the null is better suited to the present test would also

reduce arbitrariness in the interpretation of the results.

In the following, we introduce a more stable metric of

divergence in trend between observations and simula-

tions. This metric differs from the typical least squares

linear metric because it is fit with a fixed intercept, re-

ducing the added variance from interval selection. With

the exception of this modified trend metric, we replicate

the hypothesis testing of Fyfe2013 and identify why the

null distributions inferred from the truth-plus-error and

exchangeable approaches differ in implementation. On

these bases, a consistent interpretation emerges whereby

no significant difference is found between observed

global trends and the CMIP5 ensemble using RCP4.5.

2. Data

Observational temperature estimates are from the

58 3 58HadCRUT4 gridded compilation of instrumental

temperatures (Morice et al. 2012). Missing monthly data

are infilled using the annual average if at least 10 months

of observations are present in the year. Only grid boxes

having at least 90% of monthly data coverage between

1950 and 2015 are included, covering 71% of the global

surface area. For included grid boxes, data that are still

missing are filled with the total time series average. All

values are monthly anomalies with respect to 1950–2015

average seasonal cycle.

Simulations of surface temperature are from the

CMIP5 historical ensemble conjoined with matching

members from the RCP4.5 ensemble (Taylor et al. 2012;

van Oldenborgh 2015). The ensemble comprises 22 mod-

eling centers, 38 models, and 108 simulations (Table 1).

Our ensemble differs from that of Fyfe 2013 by inclusion

of the EC-EARTH and INM-CM4.0models, addition of

21 NASA Goddard Institute of Space Studies (GISS)

ensemble members, and omission of HadCM3 owing to

the lack of complete RCP4.5 runs. Models have varying

numbers of representative ensemble members, with, for

example, NASA GISS contributing 34 ensemble mem-

bers, CSIRO–Queensland Climate Change Centre

of Excellence (QCCCE) contributing 10, and MRI

contributing 1. With the exception of two GISS simu-

lations, different simulations from the same model will

differ at least in their initialization time within a control

run for a given physics parameterization.

Analyses are performed on annual averages, where

the July–June year is used in order to better contain

ENSO anomalies within a given year, with the year

associated with the January–June portion of the aver-

age reported. Monthly averages are weighted accord-

ing to the number of days in a month, which differs

across models. Models variously employ the standard

Gregorian calendar with leap years, a fixed 365-day

no-leap-year calendar, and a fixed 360-day calendar.

For all model–data comparisons, simulations were re-

gridded to the observational grid by taking the area-

weighted average of simulation grid boxes contained

within each uncensored observational grid box. Global

mean temperatures are determined as the area-weighted

average across all uncensored grid boxes on the native
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grid of the simulation. Results are unchanged to two

significant figures if simulations are instead regridded

using linear interpolation.

3. Methods

a. Measuring the divergence

We test the null hypothesis H0 that recent global

temperature trends are consistent with the CMIP5

multimodel ensemble. It is useful to focus on the trend

metric used in evaluating H0 because of its implications

for the stability of the test. Global temperature trends

are often quantified using an estimate of slope s in the

following simple linear regression equation:

T
k
5 s(t

k
2 t

0
)1 b1 «

k
, t$ t

0
, (1)

in which both s and b are estimated in the least squares

sense, by minimizing �N

k50«
2
k. If «k is assumed un-

correlated and normally distributed with standard

deviation s, the expected variance of the slope estima-

tor is VAR(s)5 12s2/(L3 2L), whereL is the number of

data points that comprise the trend. This formulation is

common (e.g., Thompson et al. 2015) and derived in

appendix B.

TABLE 1. List of CMIP5 ensemble members assessed, sorted by center, model, and ensemble number. Columns are given in descending

order of hierarchical model lineage: the center number and name, the model number and name, and ensemble members comprising each

model. Note that numbering is internal to this study. Expansions of institutions and model names are available online at http://www.

ametsoc.org/PubsAcronymList.

Center No. Center name Model No. Model name Ensemble No.

1 National Institute of Meteorological Research/Korea

Meteorological Administration (NIMR/KMA)

1 HadGEM2-AO 1

2 BCC 2 BCC_CSM1.1 2

3 BCC_CSM1.1(m) 3

3 College of Global Change and Earth

System Science (GCESS)

4 BNU-ESM 4

4 CCCma 5 CanESM2 5–9

5 NCAR 6 CCSM4 10–15

6 NSF–DOE–NCAR 7 CESM1(BGC) 16

8 CESM1(CAM5) 17–19

7 CMCC 9 CMCC-CM 20

10 CMCC-CMS 21

8 CNRM–CERFACS 11 CNRM-CM5 22

9 CSIRO–QCCCE 12 CSIRO Mk3.6.0 23–32

10 EC-EARTH 13 EC-EARTH 33–39

11 LASG–IAP 14 FGOALS-g2 40

12 FIO 15 FIO-ESM 41–43

13 NOAA/GFDL 16 GFDL CM3 44

17 GFDL-ESM2G 45

18 GFDL-ESM2M 46

14 NASA GISS 19 GISS-E2-H 47–61

20 GISS-E2-H-CC 62

21 GISS-E2-R 63–79

22 GISS-E2-R-CC 80

15 MOHC 23 HadGEM2-CC 81

24 HadGEM2-ES 82–85

16 INM 25 INM-CM4.0 86

17 IPSL 26 IPSL-CM5A-LR 87–90

27 IPSL-CM5A-MR 91

28 IPSL-CM5B-LR 92

18 MIROC 29 MIROC5 93–95

30 MIROC-ESM 96

31 MIROC-ESM-CHEM 97

19 MPI-M 32 MPI-ESM-LR 98–100

33 MPI-ESM-MR 101–103

20 MRI 34 MRI-CGCM3 104

21 Norwegian Climate Centre (NCC) 35 NorESM1-M 105

36 NorESM1-ME 106

22 CSIRO–BoM 37 ACCESS1.0 107

38 ACCESS1.3 108
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Many statisticalmodels can be fit to quantify trends (e.g.,

Visser et al. 2015), and we consider further formulations

according to several characteristics: similarity to fore-

going approaches [i.e., Eq. (1)], suitability for describing

previous agreement but recent divergence between

models and data, and low sensitivity to choice of in-

terval. Although not considered by Visser et al. (2015), a

piecewise fit to a time series of the difference between

two temperature estimates appears apt under these

criteria. Specifically, the difference between two time

series T 0 is fit using a constant offset c followed by a

linear trend d that is piecewise continuous:

T 0
k 5

�
c1h

k
, t

k
# t

0
,

d(t
k
2 t

0
)1 c1h

k
, t

k
. t

0
.

(2)

The constant c is estimated as the average ofT 0 for t# t0,

and d is estimated in a least squares sense, as for s. Es-

timates of d differ from s in having an intercept fixed at

(t0, c), which acts as a hinge point preceded by a constant

and followed by a trend diverging from that constant.

Different sets of time series used to calculate T 0 are
defined in the context of various tests that follow.

The expected variance of d is smaller than that of s

when each is fit to the same T 0 time series. Assuming

that hk and «k have equivalent distributions and that

the variance of c is small on the basis of being con-

strained by a relatively long sequence of T 0 permits for

writing VAR(d)5 6s2/[L(L2 1)(2L2 1)]. The ratio of

variances between d and s is then (L1 1)/(4L2 2).

Appendixes A and B give derivations of these variances

and further calculations involving variance contribu-

tions from c.We find that d has 0.35 times the variance of

s when applied to global temperature trends over 15-yr

intervals.

Importantly, d is also more stable than s across

application to different intervals. The variance of the

difference in trends fit to L-length intervals with consecu-

tive start years using d, relative to that for s is given by

VAR(d2 2 d1)/VAR(s2 2 s1)5 L(L 1 1)/[2(2L 2 1)2].

This ratio is 0.143 for an interval length of L5 15.

Contributions from variance in c are neglected in the

foregoing expression but areminor as long as the interval

over which c is calculated (#t0) exceeds that over which

d is defined (.t0; see appendix C). The lower variance of

d associated with interval selection reduces the potential

for false positives that otherwise occur when conducting

multiple tests for trend significance over various intervals.

Stability of the d estimator is also empirically indicated

by its more smoothly varying as a function of start year

(Fig. 1). When T 0 is defined as the difference between

HadCRUT4 global average temperature and the CMIP5

ensemble average, values of s equal 20:1728, 20:1288,

and 20:1898Cdecade21 for 1998–2014, 2000–14, and

2002–14 (Fig. 1b). In contrast, estimates of d fit to the

same time series change monotonically when com-

puted over the same intervals, having values of d equal

to 20:1408, 20:1688, and 20:2058Cdecade21 (Fig. 1c).

Unless explicitly indicated otherwise, regional and

global estimates of CMIP5 ensemble average tempera-

ture are always computed as the average across equally

weighted modeling centers and include only grid boxes

corresponding to observations.

Computing d on a gridbox basis—again using CRU

observations relative to the CMIP5 ensemble average—

shows a coherent pattern of cooling in the eastern Pacific

consistent with the negative phase of the Pacific decadal

oscillation (PDO; Zhang et al. 1997; Fig. 2). Further, a

cooling trend that is prominent in the midlatitudes of

Eurasia when using s is suppressed when using d, con-

sistent with findings that these trends result from short-

term internal variability (Li et al. 2015; Cohen et al.

2012) and that d is less volatile. That d yields more

physically interpretable patterns, to which we return later,

also supports its being a more suitable metric for

FIG. 1. Global mean temperatures from observations and the

CMIP5 ensemble average, and their difference. (a) HadCRUT4

global mean temperature time series (black) and CMIP5 en-

semble average time series (gray). (b) Difference between ob-

servations and the CMIP5 ensemble average (black) with trends

estimated over intervals of 1998–2014, 2000–14, and 2002–14

having values of s520:1728, 20:1288, and 20:1898C decade21,

respectively. (c) Similar to (b), but using the d trend estimator and

obtaining values of20:1408,20:1688, and20:208Cdecade21 for the

same intervals.
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interpreting divergence in recent trends. From both

theoretical variance properties and empirical applica-

tion, we find d to be less volatile than s and, therefore,

expect it to yield more consistent results when applied in

testing for model–observational discrepancy.

b. Formulating a null hypothesis

We evaluate a null hypothesis H0 that recent global

temperature trends are consistent with the CMIP5

multimodel ensemble using the d metric. Contributions

to uncertainty in comparing observations and models

are captured through combining different realizations

of three time series: A, a version of global mean tem-

perature anomalies from observations; B, a version of

global mean temperature anomalies averaged across the

CMIP5 ensemble; and C, a time series representing the

variability associated with an individual CMIP5 simu-

lation. The null hypothesis H0 is assessed by calculating

the degree to which the distribution of trends derived

from realizations of A2B1C contain zero and,

therefore, reflect consistency between model and ob-

servations. This hypothesis test is modeled exactly upon

that of Fyfe2013 in order to allow for direct comparison

of results. We evaluate 15-yr trends, as this was the

chosen length of Fyfe2013 and Marotzke and Forster

(2015), and Fyfe2013 rejected H0 using s for the 15-yr

interval 1998–2012.

Realizations of global temperature from observations

A have uncertainties that include observational noise,

issues associated with computing global averages from a

limited network, and systematic errors from switching

between observing methods. These uncertainties are

expressed for the HadCRUT4 observations through an

ensemble with 100 members, each perturbed with noise

realizations (Morice et al. 2012). Themean and standard

deviation of s computed between 2000 and 2014 from

FIG. 2. Maps of trend divergence between HadCRUT4 observations and the CMIP5 en-

semble average using (a) the standard trend estimator s and (b) fixed-intercept trend esti-

mator d for 2000–14. Trends are computed on a gridbox basis, with model results first being

regridded to the 58 3 58 grid of the HadCRUT4 observations.
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the HadCRUT4 observational ensemble is 0.0768 6
0.0068Cdecade21. Fyfe2013 compute realizations of

observational trends by averaging over 100 draws of the

HadCRUT4 ensemble taken with replacement. This

approach suppresses the standard deviation of s by a

factor of 10 and, in our view, seems unwarranted since

each ensemble member is meant to indicate a plausible

realization. Furthermore, note that the bias correction

for ocean buoy data suggested by Karl et al. (2015) re-

sults in a trend estimate of 0:1168Cdecade21 between

2000 and 2014 that exceeds all HadCRUT4 ensemble

trends, suggesting that the uncertainty estimates in the

ensemble are too narrow or that the correction of Karl

et al. (2015) is too large. A question noted, albeit not

otherwise addressed here, is whether the observational

record of surface temperature is known with sufficient

accuracy to provide a stringent test of the climate

models. We proceed using Fyfe2013’s estimate of tem-

perature trends and their spread from the uncorrected

HadCRUT4 ensemble in order to illustrate that it is

difficult to reject H0 even under Fyfe2013’s representa-

tion of low uncertainty.

Realizations of global temperature across the CMIP5

ensemble B are obtained by sampling the 38 CMIP5

models with replacement, randomly selecting an ensemble

member for each, and taking the average across samples.

This approach gives equal weight to each model, as op-

posed to weighting according to the number of submitted

ensemble members. Averaging across models in order to

obtain a more stable estimate is more defensible than

averaging across HadCRUT4 temperature realizations

because models are developed semi-independently from

one another and contain independent realizations of

internal variability, whereas there is only a single set

of temperature observations. There is evidence, how-

ever, that the spread across various model ensembles is

suppressed (Huybers 2010; Masson and Knutti 2011),

possibly because of anchoring effects or suppression of

outliers (Cess et al. 1996).

Finally, a realization of the variability associated with a

simulation C is obtained by sampling ensemble members

in a similar manner as for B and then computing the

difference between a single one of the sampled ensemble

members and the average across the sample. In accord

with the statistical approach that models and observa-

tions are exchangeable realizations of climate (Annan

and Hargreaves 2010), the observations, represented

by a single sample from the HadCRUT4 ensemble, are

afforded the weight of onemodel and pooled with the 38

CMIP5 models for a total of 39 sampled units. In prac-

tice, however, we find that the inclusion of observations

in this sampling process does not affect estimates of

statistical significance.

Each realization of time series A2B1C then

describes a departure of observed temperatures A

from a CMIP5 average B with variability associated

with a single ensemble member C. The distribution of

H0 is estimated from trends fit to 105 realizations of

A2B1C, and H0 is rejected if fewer than 5% of re-

alizations are greater than or less than zero; that is, tests

are performed as two sided at the p5 0:1 level.

c. Clustering and rejection of an alternate test approach

Fyfe2013 also employ a methodology loosely moti-

vated by the truth-plus-error framework where B is

meant to represent true climate and a quantity C0 rep-
resents internal variability. Following Fyfe2013, we re-

alize C0 by selecting one of the 13 CMIP5 models

associated with more than one ensemble member and

computing the difference between one of these ensem-

ble members and the average time series of that model.

This approach yields amore narrow distribution of trends

and more frequent rejection of the null hypothesis than

that based on the exchangeable hypothesis. The origin of

this discrepancy becomes evidentwhen assessingwhether

simulations cluster according to model.

Clustering between members of a sample tends to

narrow the inferred distribution of trends, if not oth-

erwise accounted for (Pennell and Reichler 2011).

Several studies document correlations of temperature

or precipitation patterns according to model (Masson

and Knutti 2011; Knutti and Sedlácek 2013; Sanderson

et al. 2015). We use an Ansari–Bradley rank-sum ap-

proach (Ansari and Bradley 1960) to specifically test

whether the values of d cluster according to model.

Values of d are assessed for each ensemble member

relative to the CMIP5 ensemble average temperatures

for 2000–14. The test is one sided and performed at the

p5 0:05 level.

Of the 16 modeling centers that contribute multiple

ensembles, 7 centers comprising a total of 58 ensemble

members each have significantly smaller dispersion

than the remainder of the ensemble at the p5 0:05 level

(Table 2). The 34 ensemble members contributed by

NASA GISS show particularly significant clustering at

p, 0:01. A bootstrapped version of the Ansari–

Bradley rank-sum test that accounts for the correla-

tion between sample medians gives equivalent results.

Figure 3 also illustrates this clumping of trends ac-

cording to modeling center and that the empirical his-

togram of trends is broader when each modeling center

is equally weighted.

Smaller dispersion of members from a single model

relative to those from across models is not surprising

considering that different models may include different

physics (e.g., Watanabe et al. 2012), entail different

8678 JOURNAL OF CL IMATE VOLUME 29



parameterizations (e.g., Collins et al. 2011), and contain

different forcing (e.g., Tebaldi and Knutti 2007). Smaller

dispersion explains why the null distribution estimated

using C0, which depends on intramodel differences, is

narrower than C, which depends on intermodel differ-

ences. Simulations may also cluster along axes not entirely

described according to model center—inclusive of aspects

of physics, parameterization, and forcing—though such

dependencies are not directly relevant to the distinction

between the C and C0 null models considered here. Our

view is that evaluation of whether observations are con-

sistent with simulations should include all relevant sources

of uncertainty in model simulations and that the inter-

model comparisons associated with C are more represen-

tative of this uncertainty. In the following sections, we thus

rely exclusively on the exchangeable approach in order

to gauge consistency between CMIP5 simulations and

observations.

4. Results

We are systematically unable to reject H0 for all

15-yr intervals that we examine, with start years rang-

ing between 1970 and 2000 (p. 0:1; Fig. 4). Note that

TABLE 2. Test results for whether ensemble members from a single modeling center significantly cluster. Specifically, a null hypothesis

that the dispersion of d slopes associatedwith amodeling center are equal to or greater than that across all othermodeling centers is tested

using an Ansari–Bradley rank-sum approach. The number of ensemble members associated with each modeling center is given in the

last column.

Modeling center P value No. of ensemble members

BCC 0.02 2

CCCma 0.01 5

NCAR 0.07 6

NSF–DOE–NCAR 0.17 4

CMCC ,0.01 2

CSIRO–QCCCE 0.18 10

EC-EARTH 0.01 7

FIO ,0.05 3

NOAA/GFDL 0.32 3

NASA GISS ,0.01 34

MOHC (additional realizations by INPE) 0.55 5

IPSL 0.17 6

MIROC ,0.01 5

MPI-M 0.09 6

NCC 0.21 2

CSIRO–BoM 0.51 2

No. of ensemble members with p, 0:05 58

FIG. 3. Histograms of d illustrating different model weights. (a) Equal weighting of ensemble members gives

a more narrow distribution than when (b) each modeling center is equally weighted. All values of d are calculated

for 2000–14. Color bar indicates modeling centers according to the numbering in Table 1.
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this failure to reject is obtained using a p value of 0.1,

as opposed to 0.05, and using the average across

HadCRUT4 ensemblemembers in estimatingA, both of

which make it easier to reject H0. The differences be-

tween our results and Fyfe2013 relates to our use of

d instead of themore volatilemetric s and our employing

only the exchangeable approach C as opposed to the

more narrowly distributed C0 obtained from a truth-

plus-error approach.

Although we do not favor other approaches, for com-

pleteness we note that if instead a combination ofC and s

were employed, results would be more variable and re-

jection ofH0 becomes almost, but still not quite, possible

for the 1998–2012 interval. Using C0 and d would lead to

rejections for 15-yr intervals starting between 1998 and

2000. Finally, using C0 and s would lead to intermittent

rejection of four different 15-yr intervals, starting at 1992,

1998, 1999, and 2000 (Fig. 4a), consistent with the com-

bined effects of a null that is more narrowly distributed

and ametric that ismore variable between different fitted

intervals. We note that the variability of p values across

different 15-yr intervals is smooth in Fig. 2d of Fyfe2013,

which we have not been able to reproduce.

Our basic result, thatH0 cannot be rejected usingC and

d, is insensitive to three other relevant variants. First,

Fyfe2013 do not include INM-CM4.0 in their ensemble,

FIG. 4. Significance of observed slopes judged relative to null distributions. Slopes are

measured using either (a) s or (b) d, begin at the values labeled on the abscissa, and span

15 years. Distributions are estimated from 105 realizations of A2B1C, where A is from

observations and B and C are from CMIP5. The 90% confidence intervals are shown for

A2B1C (solid gray line) as well as the truth-plus-error approach of A2B1C0 (dashed).
Trend distributions with fewer than 5% of realizations greater or less than zero would in-

dicate that observations are inconsistent with the CMIP5 ensemble. Using d to assess the

trend ofA2B1C,H0 cannot be rejected for any 15-yr interval between 1970 and 2014. Note

that Marotzke and Forster (2015) show a similar figure but use different metrics and null

distributions.
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and the single ensemble member associated with this

model shows one of the most negative d trends. Whereas

repeating our test excluding this model lowers esti-

mated p values, they nowhere become lower than 0.1.

Second, if C is interpreted as uncertainty that is

equally applicable to the observations, represented by

A, and to the CMIP5 ensemble average, represented by

B, it appears arbitrary whether it is added to or sub-

tracted from the quantity A2B. However, C is asym-

metric with a positive skew toward larger values (Fig. 4)

such that p values are smaller when C is added, though

again never lower than 0.1. It is unclear whether this

asymmetry is indicative of physical processes that make

positive anomalies from the mean more likely than

negative ones, as implied by the asymmetric nature of

feedback sensitivity (Roe and Baker 2007), or merely

results from the small sample population.

Finally,whenusing the spatially interpolatedHadCRUT4

produced by Cowtan and Way (2014) and the spatially

complete estimates of global mean temperatures for the

CMIP5 ensemble, it becomes even more difficult to reject

H0 using s and d. These latter results are expected given the

rapid warming in polar regions (Cowtan and Way 2014).

5. Discussion and conclusions

Meehl et al. (2013) demonstrated that intervals of slow

temperature rise in CCSM4 RCP4.5 projections also gen-

erally feature negative PDO patterns along with anoma-

lously positive rates of ocean heat uptake. In our results,

regional d between CRU observations and the CMIP5

ensemble average show a clear negative phase of the PDO

(Fig. 2b). Furthermore, the simulation having the second-

closest global d to the observations (ensemble member 24;

see Table 1) shows a regional d pattern resembling the

negative phase of the PDO (Fig. 5a), suggesting that at

least some ensemble members produce cooling for physi-

cally similar reasons. A systematic exploration of the

manifestation of the PDO in each ensemble member,

however, reveals no clear relationship between global

values of d and the pattern or phase of the PDO.

Rather than providing an explanation in terms of the

PDO, ensemble members with global d values similar

to the observations generally have anomalously low

temperature trends at high northern latitudes over

continents (e.g., CSIRO–QCCCE model numbers 24

and 32; Figs. 5a,b). This congruence between regional

and global d is consistent with findings that cooling

trends across northern regions are tied to the slow-

down in global temperature trends (Cohen et al. 2012).

The presence of such negative regional d values within the

ensemble follows from northern continental regions hav-

ing high variance in d across ensemble members (Fig. 5c).

High variance in northern continental regions has been

found in other simulations (e.g., Deser et al. 2012) and is

presumably associated with positive feedbacks that am-

plify arctic warming (e.g., Feldl and Roe 2013) and low

thermal buffering at high northern regions (e.g., Kim and

North 1991). Negative trends in northern regions are,

however, inconsistent with the observed neutral or positive

d values foundatmost high latitudes in observations (Fig. 2).

Further discrepancies exist in the eastern equatorial

Pacific, where CMIP5 trends are uniformly higher than

FIG. 5. Maps of d for two CMIP5 ensemble members and of the

standard deviation of d across the CMIP5 ensemble. The two en-

semble members are selected for having a global d at least as negative

as that observed: (a) CSIRO–QCCCE (model 24 in Table 1) with

a global average d of 0:2198Cdecade21 and (b) CSIRO–QCCCE

(model 32) with a global average d of 0:2788Cdecade21. Similar to

Fig. 2, d is computed on a gridbox basis, with differences taken be-

tween the CMIP5 ensemble average and individual ensemble mem-

bers. (c) Standard deviation of d across 108 ensemblemembers at each

grid box. All d values are computed over the interval 2000–14.
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the observations across all ensemble members (Fyfe and

Gillett 2014), a conclusion that holds no matter how the

slope or its significance is determined. For example, al-

though ensemble member 24 produces a North Pacific

pattern of divergence that is unusually consistent with the

observations, there is disagreement in d values in the

eastern equatorial Pacific, where the simulation has amore

positive trend than in the observations. Kosaka and Xie

(2013) show that restoring a model toward observed

temperatures in the eastern equatorial Pacific results in

global temperature variations very similar to observa-

tions, along with regional warming in arctic Eurasia

and northeastern Canada similar to observations. Ding

et al. (2014) demonstrate in a slab ocean model that a

pattern of tropical temperature trends involving cooling

in the eastern equatorial Pacific leads to increased

warming focused in northeastern Canada as well as

Greenland, also consistent with observed trends.

The apparent importance of the eastern equatorial

Pacific for governing global temperature and the clear

model–observation discrepancies in this region creates

some tension with our conclusion that CMIP5 simula-

tions are consistent with observations at the global scale.

Indeed, the observed pattern of strong negative di-

vergence in the tropics and positive divergence at high

northern latitudes is not found among CMIP5 ensemble

members (Fig. 6). Ensemble members with the most

negative global d values show negative divergences

both in the tropics and at high northern latitudes. Thus,

although the CMIP5 ensemble contains recent global

temperature trends similar in magnitude to the observa-

tions, they are composed of differing regional patterns.

Our finding of global consistency but regional dis-

crepancy between simulations and observations also

reflects findings using earlier periods of the observa-

tional record. Examination of SST variability showed that,

whereas global-scale decadal variability is consistent, de-

cadal SST variability in 58 3 58 gridded observations

is significantly larger than that found at comparable spa-

tial scales in CMIP5 (Laepple and Huybers 2014a).

FIG. 6. Zonal average d for the 108CMIP5ensemblemembers (color lines) andobservations (black

line). The d values are calculated between each ensemble member and the CMIP5 ensemble average

on a zonal basis over the 2000–14 interval. Results from each ensemble member are also colored

according to their global d that are calculated using global averages. Also shown in black are zonal

average d values between theHadCRUT4 gridded observations and theCMIP5 ensemble average. In

this case, only a spatially complete observational estimate from an interpolation of the HadCRUT4

gridded product (Cowtan and Way 2014) is used to allow for comparisons across all latitudes.

8682 JOURNAL OF CL IMATE VOLUME 29



Examinations of decadal variability at the scale of the

eastern equatorial Pacific, however, show consistency

between CMIP5 and observations (Ault et al. 2013; Fyfe

and Gillett 2014). Further study of these issues is war-

ranted to include how simulations and observations

compare as a function of spatial scale (e.g., Stott and

Tett 1998), how irregular sampling and noise influence

estimates of SST variability (e.g., Laepple and Huybers

2014b), and how model specification and resolution in-

fluence simulated variability (e.g., Stammer 2005).

Our results differ from Fyfe2013 in that we find no

significant differences between global-scale temperature

trends and those in the CMIP5 ensemble across all 15-yr

intervals since 1970. Given that we otherwise replicate the

hypothesis testing of Fyfe2013, the stability of our results

comes fromusing ametric of divergence in trend that pivots

from a long-term mean as well as exclusive use of a null

distribution that accounts for intermodel spread. This

reevaluation brings comparison of observed and CMIP5

trends into agreement with other analyses (e.g., Brown

et al. 2015). At some level, uncovering flaws in models on

the basis of observations would be an important scientific

accomplishment, demonstrating the capacity to test cli-

mate model predictions and helping to focus future work,

but our findings for global mean temperature demon-

stratemere consistency. Regional discrepancies, however,

highlight the continued utility of improving observational

estimates, developing techniques for better comparing

observations and models, and continued inquiry into the

causes of regional trends.

Acknowledgments.WethankGeert JanvanOldenborgh

for facilitating access to CMIP5 simulation output through

the KNMI climate explorer website and are grateful for

comments provided by Lauren Kuntz, Thomas Laepple,

Karen McKinnon, Cristian Proistosescu, Andrew Rhines,

Daniel Schrag, Eric Stansifer, and Giuseppe Torri. Fund-

ing was provided by NSF Award 1304309 and an NSF

Graduate Research Fellowship.

APPENDIX A

Derivation of Trend Estimators

Estimators for the simple linear regression slope s and

intercept b are derived from the linear equation, where

T 0
k and «k are random variables:

T 0
k 5 s(t

k
2 t

0
)1 b1 «

k
, k5 0, 1, 2, . . .N . (A1)

To simplify the subsequent algebraic expressions, N is

defined as the number of data points after t0, and L 5
N11. For a trend of length L years, s is fit to k5 0 . . .N.

The sum of the residual variance is defined as follows:

�
N

k50

«2k 5 �
N

k50

[T 0
k 2 (sk1 b)]2 . (A2)

Setting the partial derivative with respect to s equal to zero,

›

 
�
N

k50

«2k

!

›s
5 �

N

k50

f22k[T 0
k 2 (sk1 b)]g5 0, (A3)

which yields the following expression for s:

s5

2b �
N

k50

k1 �
N

k50

T 0
kk

�
N

k50

k2

. (A4)

An expression for b follows similarly:

›

 
�
N

k50

«2k

!

›b
5 �

N

k50

[2(sk1 b)2 2T 0
k]5 0, (A5)

b5
1
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�
N

k50

T 0
k 2 s �

N

k50

k

!
. (A6)

Substituting Eq. (A6) into Eq. (A4) yields the least

squares solution for slope s:

s5

2
1

N1 1
�
N

k50

T 0
k �

N

k50

k1 �
N

k50

T 0
kk

�
N

k50

k2 2
1

N1 1

 
�
N

k50

k

!2
. (A7)

A similar approach is used to find d, where T 0
k and hk

are random variables:

T 0
k 5 d(t

k
2 t

0
)1 c1h

k
, k5 1, 2, . . .N . (A8)

Because the intercept at k 5 0 is fixed at T 0
0 5 c, d is

computed using k5 1 . . .N. The sum of the residual

variance is defined as follows:

�
N

k51

h2
k 5 �

N

k51

[T 0
k 2 (dk1 c)]2 . (A9)

Analogous to the derivation of s [Eq. (A4)], d can be

expressed in terms of c:

d5

2c �
N

k51

k1 �
N

k51

T 0
kk

�
N

k51

k2

. (A10)
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Equation (A10) can be rewritten to include the com-

putation of c. In the following, indexing of T 0 is shifted
by M 2 N to include the interval over which c is com-

puted, where M is the total length of the time series T 0.
We define c5�M2N

k51 T 0
k/(M2N), and substituting this

into d gives the following:

d5

2
�

M2N

k51

T 0
k

M2N
�
N

k51

k1 �
N

k51

T 0
M2N1kk

�
N

k51

k2

. (A11)

APPENDIX B

Derivation of Trend Estimator Variances

The variance of the trend estimator given in Eq. (A4)

can be expressed as follows:

VAR(s)5

VAR

(
�
N

k50

"
T 0
k

 
k2

1

N1 1
�
N

k50

k

!#)
2
4 �N

k50

k2 2
1

N1 1

 
�
N

k50

k

!2
3
5
2

. (B1)

This equation can be substantially simplified. Defining the

variance of T 0
k as s2 and noting that [1/(N1 1)]�N

k50k is

the average k,

VAR(s)5

s2 �
N

k50

(k2 k)22
4 �N

k50

k2 2
1

N1 1

 
�
N

k50

k
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3
5
2
. (B2)

Further simplification comes from the equality

�N

k50(k2 k)2 5�N

k50k
2 2 [1/(N1 1)](�N

k50k)
2, yielding

VAR(s)5
s2

�
N
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k2 2
1

N1 1

 
�
N

k50

k

!2
. (B3)

Finally, the integer addition identities �N

k51k
2 5

[N(N1 1)(2N1 1)]/6 and �N

k51k5 [N(N1 1)]/2 al-

low for writing

VAR(s)5
12s2

N(N1 1)(N1 2)
5

12s2

L3 2L
. (B4)

An expression can similarly be derived for the d esti-

mator given in Eq. (A10) if the variance of the intercept

c is assumed negligible:

VAR(d)5
6s2

L(L2 1)(2L2 1)
. (B5)

The ratio of variances between the fixed-intercept and

standard trend estimators is given by

VAR(d)

VAR(s)
5

L1 1

4L2 2
. (B6)

If, instead, the variance of the intercept estimator c is

accounted for, the overall variance associated with d is

given by

VAR(d)5s2

2
666664
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M2N
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777775 , (B7)

and the variance ratio becomes

VAR(d)

VAR(s)
5

3

4(M2L1 1)

L(L2 1)(L1 1)

(2L2 1)2
1

L1 1

4L2 2
.

(B8)

For the 2000–14 trend examined in the main text, L 5
15 and M 5 64, which gives a variance ratio of 0.336.

This ratio is only slightly higher in the presence of

autocorrelation. For example, numerical simulations

wherein «k and hk are represented as a first-order au-

toregressive process fit to each of the T 0 calculated
from the CMIP5 ensemble gives an average variance

ratio of 0.349.

APPENDIX C

Derivation of Variances of Trend Differences
between Intervals with Consecutive Start Years

Our choice of the d estimator is guided by its

greater stability than s between trend estimates of

same-length intervals with consecutive start years.

Stability can be demonstrated analytically by com-

paring the variances of the differences in trends be-

tween overlapping intervals offset by one year. The

difference in consecutive trends s is first treated,

where s1 corresponds to an interval that increments

all years of s by one:
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Applying the variance operator and foregoing integer

addition identities gives the following:
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The variance of consecutive d slope estimates can be

determined analogously if c is assumed the same for

both intervals:

VAR(d1 2 d)5
36s2

L(L2 1)(2L2 1)2
. (C5)

The ratio of the two variances is then given by

VAR(d1 2 d)

VAR(s1 2 s)
5

L(L1 1)

2(2L2 1)2
, (C6)

having a value of 0.143 for L 5 15.

Including the variance contributions from es-

timating c over an interval of length M 2 N leads

to a longer expression, where d and d1 are esti-

mated over T 0
M2N11 . . .T

0
M and T 0

M2N12 . . .T
0
M11,

respectively:

d1 2 d5
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The variance of this difference is given by

VAR(d1 2 d)5s2
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Note that the interval over which c is computed for d1 is equivalent in length but incremented by one year relative to

that of d. The variance ratio is then given by

VAR(d1 2 d)

VAR(s1 2 s)
5

L2(L2 1)(L1 1)

4(M2L1 1)2(2L2 1)2
1

L(L1 1)
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1

L(L1 1)

2(M2L1 1)(2L2 1)2
(C9)

and is only slightly greater at 0.151 than when

variance in c is neglected, given M 5 64 and L 5 15.

The greater stability between estimates associ-

ated with d reduces the potential for multiple

tests involving different intervals to produce false

positives.
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