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Abstract

Air-sea exchange of elemental mercury (Hg’) is a critical component of the global
biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg’, we
collected high-resolution measurements across large gradients in temperature, salinity, and
productivity in the Pacific Ocean (20°N-15°S). Surface seawater Hg” was much more variable
than atmospheric concentrations. Peak seawater Hg” (~130 fM) observed in the inter-tropical
convergence zone (ITCZ) were ~3-fold greater than surrounding areas (~50 fM), and are
comparable to latitudinal gradients in the Atlantic Ocean. Peak evasion in the northern ITCZ was
four times higher than surrounding oceanographic regimes and located where high wind speed
and elevated seawater Hg” coincided. A modeling analysis using the MITgem and atmospheric
inputs from the GEOS-Chem global Hg model suggests that higher Hg inputs from enhanced
precipitation in the ITCZ combined with the shallow ocean mixed layer in this region can
explain observations. Modeled seawater Hg’ concentrations reproduce the observed seawater
Hg" peaks in the ITCZ of the Atlantic and Pacific Oceans but underestimate its magnitude, likely
due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our
results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere
driving variability in seawater Hg” and net Hg inputs to biologically productive regions of the

tropical ocean.
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Introduction

Air-sea exchange of elemental mercury (Hg) plays a critical role in the global mercury
(Hg) cycle by extending the lifetime of anthropogenic Hg actively cycling in the environment.'?
Most human exposure to methylmercury, a neurotoxin, is from pelagic species such as tuna
harvested from the open ocean.”* Reduction of inorganic divalent mercury (Hg") in seawater to
form Hg’ and subsequent evasion to the atmosphere directly reduces the reservoir available for
conversion to methylmercury.’ Limited observational data on atmospheric and aquatic Hg” have
hampered our ability to model air-sea exchange on a global scale and predict responses to
changes in ocean biogeochemistry.® ’ Here we report new high-resolution data from the Pacific
Ocean on atmospheric and aquatic Hg” concentrations measured across four oceanographic
regimes identified by differences in temperature, salinity and productivity. We use these data to
better understand environmental drivers of aqueous Hg” formation and evasion and discuss
improvements to modeling capability motivated by these results and a previous study in the
Atlantic.

Regional variability in Hg” evasion mainly reflects differences in turbulent mixing of the
surface ocean (wind, bubbles, temperature) and Hg” concentrations in seawater. * Atmospheric
Hg" concentrations in the marine boundary layer are less variable than surface seawater.’
Atmospheric deposition is the main source of Hg to the open ocean and plays a large role in

8,10

determining the pool of Hg" available for reduction.® '° The remaining ~40% of global Hg inputs

to the surface mixed layer of the ocean is from subsurface ocean upwelling, seasonal
entrainment, and Ekman pumping.'"> '?

Data on variability in Hg” concentrations in open ocean regions across large gradients in

salinity, temperature, productivity, precipitation, and winds are severely limited. Early studies in
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the Equatorial Pacific suggested that highest Hg” concentrations and associated evasion occur in
the most productive upwelling regions of the ocean due to enhanced biological reduction, but
spatial coverage of measurements was limited.” > More recent work suggests that photochemical
oxidation and reduction of Hg species occurs much faster than biotic reduction reactions, and
elevated ocean productivity may instead decrease seawater Hg" concentrations through enhanced
sorption and scavenging of particle associated Hg' that would otherwise be reduced and
evaded.” ' > Along a latitudinal transect of the Atlantic Ocean, Kuss et al.'® found a strong
tropical maximum in Hg’ concentrations associated with the inter-tropical convergence zone
(ITCZ) and significantly lower values in the equatorial upwelling zone, subtropics and mid-
latitudes. The authors attributed this spatial variability to a combination of high precipitation,
rapid Hg" photoreduction due to intense solar radiation, and low wind speeds. Recent modeling
efforts have not captured this gradient in Hg’ concentrations between the ITCZ and adjacent
areas'' and some suggest elevated concentrations in upwelling regions.'>

Here we analyze new data on Hg’ concentrations measured across four biochemical
provinces of the Pacific Ocean, in combination with previously published data from the Atlantic
Ocean, to better understand factors driving spatial variability in aqueous Hg’ concentrations. We
report high-resolution simultaneous measurements of atmospheric and aquatic Hg"
concentrations along a latitudinal transect from ~20°N to ~15°S in the Pacific Ocean. These
measurements capture a large gradient in salinity, temperature, meteorology, productivity, and
oceanographic circulation. We use these data in combination with previously collected
information from the Atlantic Ocean to better understand factors driving latitudinal patterns in
seawater Hg" concentrations, and discuss implications for improving global air-sea exchange

estimates.
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Methods

Field measurements

We collected high-resolution measurements of atmospheric and aquatic gaseous Hg" along
the METZYME cruise track in the Pacific Ocean between 1-24 October 2011 from 20°N to 15°S
(Figure 1). We measured atmospheric Hg’ at a 5-minute resolution using a Tekran 2537A
mercury vapor analyzer. The instrument was calibrated daily using the internal calibration source
and had a detection limit of <0.2 ng m™. For aqueous Hg’, we collected seawater from the ship’s
intake at 7 m depth and used the automatic continuous equilibrium system with a 5-minute
temporal resolution of measurements as described in detail in Andersson et al.'” The Tekran
2537B used during water sampling was also calibrated daily using the internal calibration source
and the detection limit was <2 fM for seawater Hg'.

We aggregated all high-resolution measurements including underway measurements of
wind speed, salinity, temperature, precipitation, and in situ fluorescence (a proxy for algal
productivity) into one-hour averages for statistical analyses. Averaging over an hour is
reasonable as the short-term variability in the measurements was small. Dissolved gaseous Hg in
surface seawater is assumed to be mainly Hg” because studies have shown that it generally

contains <5% dimethylmercury.'®*°

Modeling
Air-sea fluxes for field measurements were calculated using the Nightingale et al. *'
022

parameterization for instantaneous wind speeds, the Henry’s law coefficient for Hg ,™ a

temperature-corrected Schmidt number for CO,,> and the Wilke-Chang method for estimation of
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a temperature and salinity-corrected Hg" diffusivity®*. A variety of values have been proposed
for the diffusivity of Hg’, as discussed by Kuss et al.”” and to demonstrate the impact of variation
in this parameter, the air-sea exchange estimate using their diffusivity parameterization is
included in the Table S1.° We selected the Nightingale et al.*' parameterization because it
provides a mid-range estimate of air-sea exchange.*” **

We compare observations to modeling results from the MIT General Circulation Model
(MITgem)” driven by inputs from the GEOS-Chem model (version v9-01-02) using 2006-2009
meteorological data as described in Zhang et al.’’ and use the model results to look at total Hg
inputs and losses in the surface ocean mixed layer. The MITgcm has a horizontal resolution of
1°x1° and 23 vertical levels’' and includes an ecological simulation of carbon and plankton
dynamics (the Darwin model).>* Physical advection and diffusion of tracers are driven by ocean
circulation data from ECCO-GODAE state estimates.” Differences attributable to variability in
meteorological years of the observations are expected to be small (for wet deposition average
interannual variability between 2006-2011 was <5% for the Pacific (160°N transect) and the
Atlantic (25°W transect)).

The MITgcem includes both lateral and vertical transport of Hg species due to ocean

1.%3% The model was

circulation and settling of suspended particles, as described in Zhang et a
run with repeated circulation and external forcing from current day rivers and deposition for 10

years.” Rate coefficients for photochemical and biologically driven redox reactions between Hg"
and Hg", sorption to suspended particles, and parameterization of air-sea exchange estimates are

from published and previously evaluated models of Hg fate in the ocean.'""**

Results and Discussion
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We grouped observations across the METZYME cruise track into four oceanographic
regimes representing: (1) the North Pacific (14-20°N), (2) the ITCZ (5-14°N), (3) the Equatorial
Pacific (5°N-1°S), and (4) the South Pacific (1-15°S) (Figure 1, Figure S1). These are specified
based on differences in ocean circulation and atmospheric processes, which are reflected in
measureable difference in seawater temperature, salinity, and fluorescence 36 (Figure 2 ; Table
1). The regimes are dynamic and the spatial distribution changes with season. In the North
Pacific, seawater is cold with characteristically low productivity. Approaching the ITCZ,
seawater temperature increases and salinity declines as the result of high precipitation rates. The
ITCZ also experiences substantial wind driven Ekman pumping and stratified surface waters.
The equatorial region is dominated by the low temperatures of the South Equatorial Current and
high productivity due to upwelling nutrients, while the South Pacific has warmer high salinity

water with intermediate productivity.’”>*

Latitudinal variability in Hg'

Table 1 and Figure 2 show measured atmospheric and aquatic Hg’ concentrations along the
cruise track, associated evasion fluxes, and ancillary data. Atmospheric Hg" concentrations are
significantly elevated in the North Pacific (14-20°N) and ITCZ (5-14°N) compared to the
equatorial (1-5°N) and South Pacific (1-15°S) (Tukey-Kramer test, p<0.001). Mean
concentrations ranged from 1.15 ng m™ in the South Pacific up to 1.32 ng m™ in the North
Pacific (Table 1). This pattern is consistent with enrichment of atmospheric mercury in the
northern hemisphere from anthropogenic sources, as discussed elsewhere.”” *

Studies conducted prior to the availability of our present analytical capability for high

resolution measurements of aquatic and atmospheric Hg" suggested enhanced Hg' in equatorial
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upwelling regions." By contrast, we observed relatively low concentrations of atmospheric Hg”
(mean 1.18 ng m™) and aquatic Hg" (mean 53 fM) in the equatorial region (1-5°N) compared to
more northern oceanographic regimes. High Chla and fluorescence in the equatorial region
(Table 1) supports the premise that enhanced removal of Hg" associated with suspended particles
is likely occurring, lowering the Hg" pool available for reduction and associated Hg’
concentrations.

Seawater Hg’ concentrations differ by almost a factor of three compared to <20% for
atmospheric Hg". Concentrations were highest in the warm, low salinity waters of the ITCZ
(~130 fM) and remained low and fairly stable outside this region (~47-53 fM). This variability is
much higher than during four cruises over two years in the vicinity of Bermuda where the
average concentration varied by less than a factor of two across cruises.” We attribute high
concentrations observed in the oceanographic regime characteristic of the ITCZ to a combination
of high Hg inputs through wet deposition and a shallow mixed layer in this region, the latter
making elevated inputs more pronounced (Table 1).

Previously reported total Hg concentrations in wet deposition from across the Pacific (14-75
pM***?) are ~50 times higher than seawater concentrations. Seawater Hg and salinity were
strongly anti-correlated (R*=0.63) across the cruise. Precipitation rates in the ITCZ (2.5-3.0 m yr’
") are much higher than adjacent areas (0.3-1.0 m yr™') (Figure S2).** Deep convective
precipitation scavenges upper tropospheric air enriched in Hg", resulting in high rainwater
concentrations.” A study from the Western Pacific region with deep convection reports an
average summertime concentration of total Hg in wet deposition of ~58 pM.*

Seawater Hg' also varied significantly within the ITCZ (t-test, p<0.001), increasing south

of 8°N (shaded areas on Figure 2) due to a combination of higher inputs from precipitation and
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significantly lower wind speeds (t-test, p<0.001). Satellite data show an average rainfall of 1-3
mm h™' during the cruise in the southern part of the ITCZ and little precipitation in the northern
part* (Figure S2). The presence of a vertical salinity gradient in the mixed layer in the southern
ITCZ but not the northern part supports this premise (Figure S3) and indicates that the ITCZ is
moving south. Precipitation of 2 mm h™' with 50 pM Hg concentrations over just one day (48 mm
d!) would increase seawater Hg concentration within the upper 10 meters by ~25%, assuming a
background concentration of ~1 pM."* Sustained precipitation over several days in the southern
part of the ITCZ could, therefore, easily explain the observed increase concentrations in the
entire mixed layer (~30 m).

Atmospheric Hg' is elevated in the northern part of the ITCZ temporarily influenced by
the North Eastern trade winds, likely due to the highest evasion fluxes of the cruise observed in
this region (>8 ng m™ h™"). Lower seawater Hg' is also apparent in the northern ITCZ compared
to southern regions but the observed gradient in concentrations is likely attributable to
differences in inputs (wet deposition) rather than losses as discussed above. The rapid
equilibrium established between Hg'" and Hg" in surface waters'* means that changes in Hg"
concentrations reflect variability in the larger pool of inorganic Hg species. The relative increase
in evasion in the northern ITCZ is thus not large enough to explain the observed north-south

ITCZ gradient in seawater Hg".

Latitudinal variability in evasion
Air-sea exchange in the northern part of the ITCZ (maximum: 8.73 ng m™~ h™") was more
than four-fold greater (mean: 3.24+2.22 ng m” h™") than in the more southerly oceanographic

regimes (0.7-0.8 ng m™ h™") and more than two-fold greater than in the North Pacific (Table 1).
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These differences are due to a combination of high seawater Hg" and the North Eastern trade
winds temporarily overlapping with the northern part of the ITCZ during our cruise (Figure 2).
Wind speeds throughout the cruise were lowest between 8-12°S (<3 ms™), fairly stable between
8°S-4°N, dipped below 3 m s™ again in the southern part of the ITCZ and then rapidly increased
to 12 ms™ in the northern regions (Figure 2). Although highest overall Hg’ concentrations
occurred in the southern part of the ITCZ, highest evasion fluxes are located in the northern
region where high wind speeds (associated with southwards movement of the ITCZ) and
elevated seawater Hg” coincide. Low seawater Hg” concentrations in the North Pacific between
12-15°N resulted in lower evasion despite high wind speeds. These observations reinforce the
importance of understanding variability in seawater Hg" as a control on the magnitude of air-sea

exchange, a factor that has been neglected in some broad scale studies.*

Large scale drivers of Hg" across ocean basins

Similar latitudinal variability in seawater Hg" is apparent by comparing data from the
Pacific Ocean reported here to data from the Atlantic Ocean'® (Figure 3). Kuss et al.'® also
observed elevated Hg” concentrations in the low salinity, warm waters of the Equatorial Atlantic
Ocean across two seasons. Peak seawater Hg' in the Atlantic Ocean tracked the movement of the
ITCZ between sampling periods in November and May (Figure 3). High Hg” concentrations in
the ITCZ in the Atlantic springtime (~130 fM) were similar to those reported here for the Pacific
(~130 fM), while concentrations measured during the Atlantic fall were higher (~220 fM). Hg"
concentrations in the tropical Atlantic (15S-15N) ranged between 35-60 fM and also matched

observations reported for the Pacific here (~50 fM). Variability in evasion fluxes was similar for

10
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the Atlantic and Pacific ranging ~4 fold across regions with highest fluxes where high wind
speeds and elevated Hg’ coincide in the tropical and subtropical oceans.

Figure 3 compares simulated Hg” using the MITgem in surface seawater (0-10 m depth)
to observations from all three cruise transects. The model reproduces much of the observed
latitudinal variability in aqueous Hg’ but only captures 45-70% of the amplitude of the peak in
the ITCZ. Kuss et al.'® suggested that a combination of a shallow mixed layer and high solar
radiation could cause the elevated Hg" concentrations in the ITCZ but these processes are
accounted for in our model simulation.'"*

Concentrations of Hg in the surface ocean reflect the overall pool of inorganic Hg
because there is a rapid equilibrium established between Hg” and Hg" in seawater, as discussed
above.'* Figure 4 shows the relative importance of various input and loss pathways for inorganic
Hg in the surface ocean of the cruise regions sampled. Net inputs from atmospheric deposition
are the predominant source in the ITCZ across the Atlantic and Pacific regions. A sensitivity
simulation shows that modeled seawater Hg" is almost proportionally affected by changes in
atmospheric Hg" inputs in the ITCZ (20% change in deposition resulted in 14-16% change in
Hg" in the ITCZ and 6-16% elsewhere; Figure S4). Thus, low bias in modeled seawater Hg’ in
the ITCZ compared to observations likely reflects insufficient Hg deposition in the atmospheric
simulation (GEOS-Chem) for this region.

The GEOS-Chem model reproduces the precipitation rate in the ITCZ fairly well
compared to satellite observations*® suggesting the model underestimation is related to limited
supply of Hg" in the atmosphere. Deep convective cloud systems and high precipitation loads

43,49

distinguish the ITCZ from other parts of the tropical ocean and recent work has shown that

cumulonimbus clouds reaching altitudes of 10-14 km may enhance Hg" scavenging compared to

11



247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

stratiform clouds (~4 km) for the same precipitation load.” Insufficient deposition in areas of
deep convection has also been noted in comparisons of GEOS-Chem simulated deposition to
measured Hg wet deposition from the MDN network data at mid latitudes.’”>' In both the mid-
latitudes and the tropics this discrepancy could be caused by model underestimation of upper
tropospheric Hg", which is supported by recent observations,”” or insufficient model scavenging
of the upper troposphere. As evidence for the latter, Wang et al.”® found that GEOS-Chem
greatly overestimates upper tropospheric black carbon concentrations in the tropics. Our work
suggests the need for additional measurements of wet deposition in tropical areas and improved
understanding of atmospheric Hg dynamics in regions with deep convection to better quantify
mercury deposition and resulting seawater concentrations in the tropics.>*

Figure 4 illustrates the importance of lateral seawater flow in the surface ocean for
redistributing enhanced atmospheric mercury deposited in the ITCZ region. Ekman pumping is
particularly pronounced in the oceanographic regime that reflects the influence of the ITCZ,
resulting in strong horizontal outflow of Hg in the surface ocean to other regions of the tropical
ocean. Upwelling in the equatorial region and along the African coast reintroduces Hg from the

. 55, 56
subsurface ocean into the surface ocean.”

In highly productive regions such as the Patagonian
Shelf in the Atlantic, losses from particle settling can exceed evasion. These results clearly
illustrate the importance of adequately capturing both Hg redox chemistry and physical transport
processes in the atmosphere and ocean to resolve air-sea exchange estimates. Results presented

here suggest enhanced atmospheric Hg inputs in the ITCZ are redistributed through lateral ocean

transport of surface waters (Figure 4) to biologically productive regions of the tropical ocean.
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Additional information, including all data for atmospheric and aquatic Hg’ from the

Atlantic and Pacific Oceans and associated evasion fluxes are available free of charge via the

Internet at http://pubs.acs.org.
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Table 1. Summary of observations across oceanographic regimes of the Pacific Ocean.

North Pacific ITCZ Equator South Pacific
14-20°N 5-14°N 1°S-5°N 1-15°S

Hg',m (ng m™) 1.32+0.1* 1.27+0.1* 1.18+0.1 1.15+0.1
Hg',, (fM) 51.3+4.1*° 104.7£19.9  53.0+10.3* 47.0£13.3°
Hg" flux (ng m* h™) 1.420.2 3.242.2 0.7+0.4* 0.8+0.4*
Wind Speed (m s™) 9.842.5 6.6+2.9 5.1£1.2* 5.6x1.7*
Sea surface temperature (°C) 26.1£0.35 28.2£0.39*  26.9+0.70 28.3£0.51*
Salinity (psu) 35.0+0.02 34.3+0.15 35.1+0.11 35.7+0.17
Fluorescence (unitless)* 99.7+2.6 116.3£23.6 209.3+£50.7 139.3+42.3
Chla (mg m™) 0.03-0.06 0.06-0.09 0.12-0.27 0.06-0.15
Mixed layer depth (m) 50 30 100 150

All regions are significantly different from each other using a Tukey-Kramer test for multiple comparisons unless
denoted * or °.

A Fluorescence was measured with a baseline ~95 and provides a relative indicator of variability in productivity
across the cruise track but cannot be compared between cruises because the baseline value is cruise specific.
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Figure captions

Figure 1. Oceanographic regimes sampled on the METZYME cruise and measured seawater Hg’
concentrations.

Figure 2. Latitudinal variability in measured atmospheric and seawater Hg" concentrations,
associated evasion, and environmental properties on the METZYME cruise between 1-24
October, 2011. Oceanographic regimes for October 2011 are shown; shaded areas denote
statistically different regions for Hg” concentrations within the oceanic regime reflecting the
ITCZ.

Figure 3. Comparison of modeled (red) and observed (blue) latitudinal gradients in Hg" along
cruise tracks in the Pacific and the Atlantic Oceans. Model results are from the MITgem within
+2 degrees of the cruise track with atmospheric inputs from the GEOS-Chem global Hg model.
Data from the Atlantic Ocean are from Kuss et al.'®

Figure 4. Modeled inputs and losses of Hg in the ocean mixed layer across the cruise regions
sampled. Results are presented as monthly averages from the MITgem Hg simulation.” Model
comparison with observations indicates a low bias in atmospheric inputs in the ITCZ (Figure 3).
Specifications of the budget calculations reported here are provided in the SI.
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Figure 4. Modeled inputs and losses of Hg in the
ocean mixed layer across the cruise regions sampled.
Results are presented as monthly averages from the
MITgcm Hg simulation.29 Model comparison with
observations indicates a low bias in atmospheric
inputs in the ITCZ (Figure 3). Specifications of the
budget calculations reported here are provided in

the SI.
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