DIGITAL ACCESS 10 -
SCHOLARSHIP sr HARVARD T e i Schotaty Communicatin

DASH.HARVARD.EDU

Quality and speed in linear-scan register allocation

Citation

Traub, Omri, Glenn Holloway, and Michael D. Smith. 1998. Quality and Speed in Linear-

scan Register Allocation. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, Montreal, QC, June 17-19, 1998: 142-151.
doi:10.1145/277650.277714

Published Version
doi:10.1145/277650.277714

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34325454

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:34325454
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Quality%20and%20speed%20in%20linear-scan%20register%20allocation&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=ea60ffec82d3f3a95090a49368fae0b0&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Quality and Speed in Linear-scan Register Allocation

Omri Traub, Glenn Holloway, Michael D. Smith
Harvard University
Division of Engineering and Applied Sciences
Cambridge, MA 02138
{otraub, holloway, smith}@eecs.harvard.edu

Abstract

A linear-scanalgorithm directs the global allocation of reg-
ister candidates to registers based on a simpdadiaweep
over the program being compiled. This approactetpster

allocation makes sense for systems, such as thase f

dynamic compilation, where compilation speed is amp
tant. In contrast, most commercial and researchmigihg

compilers rely on a graph-coloring approach to glabgis-
ter allocation. In this paper, we compare the pernce of

a linear-scan method against a modern graph-cglorin

method. We implement both register allocators witthie

Machine SUIF extension of the Stanford SUIF compile

system. Experimental results show that linear $sanuch
faster than coloring on benchmarks with large nuis o
register candidates. We also describe improvementke
linear-scan approach that do not change its liokaracter,
but allow it to produce code of a quality near hattpro-
duced by graph coloring.

Keywords: global register allocation, graph coloring, linear

scan, binpacking
1 Introduction

Fast compilation tools are essential for high safevpro-
ductivity. The register allocation phase of codaagation is
often a bottleneck, and yet good register allocaisoneces-
sary for making today’s processors reach their peffik
ciency. It is thus important to understand the draff
between speed of register allocation and the quefithe
resulting code. In this paper, we investigate & &gproach
to register allocation, calleéhear scan and we compare it
to the widely-used graph-coloring method. This f@m-
parison shows linear scan to be faster than cajonimder
most conditions, especially on programs with langenbers
of variables competing for the same registers. Smmit-
ting high quality code was our first priority in pfementing
our linear scan allocator, we describe some novgplave-

Appears in the Proceedings of the ACM SIGPLAN 1G88fer-
ence on Programming Language Design and Implementat
pages 142-151, June 1998.

ments to the linear-scan approach that improveututpde
without destroying the linear character of the athon.

Despite the increasing speeds of modern processdras
never been more important to find and use efficampi-
lation techniques. The demand for highly optimizoade
generation is increasing as processors become ouone
plex. One response is the trend towards whole-pragr
optimization [6,15]. The success of this approaepehds
heavily on near-linear optimization techniques. e
growing trend seeks to optimize application codwatl or
run time. For example, Hoeltzle et al. [10] andefwol et al.
[13] describe the benefits of techniques in ada&ptiptimi-
zation and dynamic code generation respectively.b&o
acceptably responsive, these techniques must epatat
speeds measured in a reasonable number of cydegepe
erated instruction.

Both graph-coloring and linear-scan allocators lugness
information to find an assignment of register calatks to
the machine registers. To achieve this goal, atgragboring
allocator summarizes liveness information as aerfat-
ence graph, with nodes representing register catecand
edges connecting nodes whose corresponding caedidat
are live at the same time and therefore cannotisbaxa
register. For &-register target machine, findingaoloring
of the interference graph is equivalent to assigiire can-
didates to registers without conflict.

The standard graph-coloring method, adapted foistexg
allocation by Chaitin et al. [4,5], iteratively s an inter-
ference graph and heuristically attempts to cdioffithe
heuristic succeeds, the coloring results in a tegiassign-
ment. If it fails, some register candidates ardegpito mem-
ory, spill code is inserted for their occurrencasd the
whole process repeats. In practice, the cost oftaph-col-
oring approach is dominated by the constructiosuafces-
sive graphs, which is potentially quadratic in thanmber of
register candidates. Since a single compilatiort umay
have thousands of candidates (including compileegsed
temporaries), coloring can be expensive.

In contrast to graph coloring, a linear-scan allocéegins
with a view of liveness as Efetime interval A lifetime
interval of a register candidate is the segmenthefpro-
gram that starts where the candidate is firstilivhe static
linear order of the code and ends where it isliast A lin-
ear-scan allocator visits each lifetime interval turn,
according to its occurrence in the static lineadecorder,
and considers how many intervals are currentlyacflhe
number of active intervals represents the competifor

available machine registers at this point in thegpam.
When there are too many active lifetimes to fitsimple
heuristic chooses which of them to spill to memanygl the
scan proceeds. Because it only tries to detectrasolve
conflicts locally, rather than for an entire conagibn unit at
once, linear scan can operate faster than graphicgl Pre-
vious linear-scan allocators run in time lineathe size of
the procedure being compiled.

In Section 2, we describe our version of a linemrsalloca-
tor. Our algorithm is based on a variant of lingean, called
binpacking that Digital Equipment Corporation uses in its
commercial compiler products [1]. We describe saler
improvements to the binpacking approach. The migsifs
icant change involves our algorithm’s ability téoahte reg-
isters and rewrite the instruction stream in algisgan; all
current linear-scan algorithms of which we are analto-
cate and rewrite in separate passes. By allocading
rewriting simultaneously, we introduce flexibilitpto the
register allocation process by giving spilled adition can-
didates multiple chances to reside in a registeingutheir
lifetimes. Because of this flexibility, our appréa@quires a
second pass to resolve the linear-scan assumptitimshe
non-linearity of a procedure’s control-flow grap8HG).
Because the second pass entails a dataflow analisis
worst-case asymptotic complexity is quadratic ia gro-
gram size. However, as we explain in Section 2.6am be
engineered to give linear performance in all cabesSec-
tion 3, we describe our experiments, which useMhaehine
SUIF code generation framework to compare the perfo
mance of our linear-scan algorithm against a modeaph
coloring algorithm [7]. Section 4 discusses relaédrts in
linear-scan register allocation, and Section 5 sanwuas
our contributions.

2 Second-chance binpacking

Two important goals guide the design of our regiatica-

tion algorithm: speed of allocation and qualitycofde pro-
duced. In the spirit of the linear-scan family dibaators,

we seek to keep the allocation time to a minimunabyid-

ing expensive, iterative computations such as ttes aised
in graph-coloring register allocation. Furthermoumlike

any other allocation technigue of which we are aw#ne
algorithm described below performs allocation armtlec
rewriting in a single pass over the instructionsagbroce-
dure. This approach influences many of our desigai-d
sions. After Section 2.1 introduces the generalcepts
behind a binpacking allocator, Section 2.2 outlitiestech-
nigue and focuses on the novel aspects of our ithgor
Section 2.3 describes how we handle spills dutteginear
allocate/rewrite phase, while Section 2.4 discuskessec-
ond phase of our algorithm which resolves the agsioms

made during the linear first phase with the nomedinflow

of a CFG. Section 2.5 presents two optimizatiotated to

the creation of spill code and the elimination afwes. Sec-
tion 2.6 summarizes the computational complexityoaf

algorithm.

2.1 Allocation candidates and lifetime holes

We begin by describing some preliminary conceptsuab
the objects that we wish to allocate. In our altocawe
seek to assign registers to both program variadohelscom-
piler-generated temporaries. We shall refer tcalidication
candidates generically ssmporaries

When examining the lifetime of a temporary, we ohee
that it may contain one or more intervals duringalhno
useful value is maintained. These intervals amméellife-
time holes Figure 1 illustrates several kinds of lifetime
holes that can appear in the lifetime of a temporaven if
we assign a registerto a temporary for t's entire lifetime,
we can assign another temporarto r duringt's lifetime if
u's lifetime fits inside a lifetime hole ih In Figure 1, tem-
porary T3 fits entirely inT1's lifetime hole, and thus both
could be assigned the same register. We use a&giengrse
pass over the code to compute lifetimes and lifetirales.

2.2 Thebinpacking model

The register allocation model that we adopt views t
machine registers as bins into which temporaryitifes are
packed. The constraint on a bin is that it may aiononly
one valid value at any given point in the progratacaition.
Assuming that we have an infinite resource machiitle an
unbounded number of registers and that our taskois
choose the smallest subset of registers that cassigned
to lifetimes, we can minimize this number in twoysa
First, we can assign two non-overlapping lifetintesthe
same register. Second, we can assign two tempstarithe
same register if the lifetime of one is entirelyntained in a
lifetime hole of the other. Under both these apphes, the
constraint on a register (bin) is preserved.

A binpacking allocator scans the code in a forwlardar
order, processing the temporaries as they are ate@ad in
the program text. The processing of a tempotanyolves
the allocation of to a register if is not currently assigned a
register. We can view an unoccupied register ata@uing a
lifetime hole that extends to a later point in g@gram
where it is no longer free. With this view, theesgtion of a
register to allocate tbinvolves the search for a register with
a hole big enough to contain the entire lifetime.df we
have multiple registers with holes large enougltdatain
t's entire lifetime, we heuristically choose the istgr with
the smallest hole that is larger th&s lifetime. Once we
assignt to a register, we would replace all referencestto
with references to (assuming infinite registers).

In reality, the number of registers available orgigen
machine is fixed. If at some point in the lineaarsthere are
more overlapping lifetimes than there are availaielgis-
ters, some of these values will need to be spiliéal mem-
ory. The traditional approach to linear-scan altmca first
walks the sorted list of lifetime intervals decidinvhich
temporaries live in a register and which live inmuogy. A
second phase then scans the procedure code aniesewr
each operand with a reference to the approprigfistez or
to memory. For the purposes of discussion, we assam
load/store architecture where a register is alwagsired,

B1): - .
T2 - . T1
| < T1
T3 T2 T2
|T4 .
I T3 T3
\\‘A/ T4
B4
T4 ..
T4

(a) An example CFG
with temporary lifetimes overlaid.

Linear-ordering of blocks——

B1 B2 B3 B4
w r r
ﬁ
w r
L
w r
L
w W r W T
Lifetime hole —
T4's lifetime

inT4

(b) A linear ordering for the example CFG
with lifetime holes indicated for each temporary.

Figure 1. Example illustrating the concept of eelim ordering of a procedure’s basic blocks, andltfetimes and lifetime holes for the
temporaries in this procedure. Notice that a blbckindary can cause a hole to begin or end in thedr view of the program.

and so a reference to a spilled temporary is mddatea
point lifetime interval corresponding to the loadstore of
the spilled temporary. These point lifetimes arevagis
assigned a register during allocation.

2.3 Second-chance allocation

Early on in the design of our binpacking registéocator,
we noticed that it is possible to allocate regstertempo-
raries and rewrite temporary references all imnglsilinear
pass over the program text. When we encounter pdeary

t for the first time, we interrupt the rewriting mess and
determine an allocation far If we must spill another tem-
porary to create a free register fowe proceed in a manner
identical to the approaches that separate theaditot and
rewriting phases—a temporamcurrently residing in a reg-
isterr is spilled to memory antis assigned to. Such spill-
ing decisions are based on a priority heuristit tompares
the distance to each temporary’s next referenceghtex
by the depth of the loop it occurs in, picking thevest-pri-
ority temporary for eviction. Our system is unigamong
linear-scan allocators in that a spill point maaksplit in the
lifetime of the evicted temporary All references ta up to
this point have already been rewritten to use tegis Our
algorithm does not go back and change this face giill
decision affects only future referencesito

When encountering a later reference to this spilésdpo-
rary u, we must find it a register to occupy during the
instruction that uses it. If the reference is adrefu, we
find a free register (possibly evicting another temporary in
the process) and insert a loadusf memory location inta.
Once we have allocatadto this new register, we allowu
to remain inr until some higher-priority temporary evicts it

(or u's lifetime ends). In effect, we have split lifetime
again. The benefit of this approach is that we diohave to
reload u if we make another reference to it in the near
future. We do not need any special mechanisms refép
ence” a later spill load to the same register asldist spill
load [3]. In this approach, we optimistically, raththan pes-
simistically, plan fowu's future references. Since we already
have to support lifetime splits due to our emphasis sin-
gle allocate/rewrite pass, our allocator suppdnits dptimis-

tic approach naturally.

If the next reference to a spilled temporaris a write, our
allocator performs a similar optimistic decisione\&locate

u to a register (possibly spilling the current temporary in
this register), and we postpone the store of this malue

for u back into memory until some other temporary causes
the allocator to evict. All following references tai are
rewritten to use, and if we reach the end 0§ lifetime, we
may never have to produce the postponed store.

We call our optimistic handling of spilled tempaearsec-
ond chancebecause we give temporaries a second (or third,
etc.) chance at finding a register home. This séadrance
approach is completely generalized to provide aptaary
lifetime with a (potentially) new register for eyesplit in its
lifetime.

There is one other optimization that we performlevailo-
cating and rewriting. Similar to the case where dwenot
create another load of a spilled temporafom memory if
tis already in a register, we can optimize the r@wrocess
so that it does not create a store of a temparanyrrently
residing in a registarwhen evictingy, if the value fouinr
matches the value farin memory. To perform this optimi-
zation, we maintain information about the consisyenf

B1 B1 i

i1T1 ~ . i RL. {T1 not live}

{T1in R1}
/ \ i7: stR1,T1

B2 B3
52 B3 {T1inR1} {T1in mem}
2.« T1 I i2: .« R1
i5: st R1,T1 16:1d R2,T1
i3:..T1 i3:..« R2
{T1 in mem} {T1in R2}
/ i8: Id R2,T1\‘ /
B4 B4 {T1in R2}

i4:.. «T1

(a) An example CFG before allocation. The CFG
contains 5 temporary lifetimes, but ofly’s
references are shown.

i4: R2 — ..

(b) The CFG after allocation. Only instructions asmted
with T1 are shown. The linear allocation orderB4-B2-B3-B4
The allocation assumption$ Idyefore resolution are shown as sets

at the top and bottom of each block.

Figure 2. Example of conflict resolution at CFG edgAssume that none of the temporaries cont&itinié holes and that we have
only two registerR1 andR2. When the allocator encountéfisin B1, it assignsT1 to R1 and rewritesT1 in i1 and then?2 to useR1.
When the allocator encounters the third lifetimdR) it spills T1 to memoryig). When it encounteii8 in B3, it inserts a load oT1
from memoryi6); this timeT1 is given registeR2—a second-chance allocation. The linear scan coraplafter rewritingr 1in i3 and

theni4 to useR2 During resolution, the allocator inserts a stdi@) at the top oB3 and a load i8) at the bottom oB2.

the value irr with respect to the value iis memory home.
Any spill of u to or from memory makes the memory home
consistent withr. Any write of a value to invalidates the
consistency of the memory and register values. WWhen
come to a point where we decide to evdtom r, we avoid
the generation of a store spillifis evicted fromr during
one ofu's lifetime holes (a store is not needed sinceninet
reference will overwrite the current value) orhigtvalues of
uinr and in memory are consistent.

2.4 Resolution

As we mentioned earlier, the above approach tostegi
allocation comes with a cost. In giving a temporaisecond
chance and multiple register locations at differiatgrvals

in the temporary’s lifetime, we can potentially ate con-
flicts in the allocation assumptions at the basick bound-

aries. The linear processing of the allocation/femphase
of our approach incompletely models the programtrobn
flow. To maintain program semantics, we follow #ikca-

tion/rewrite phase with a traversal of the CFG adgesolv-

ing any mismatch in the allocation assumptions seeach
edge.

We can resolve any conflicts between the allocation
assumptions across CFG edges by inserting an ajgiep
set of load, store, or move instructions. During tiloca-
tion pass we maintain a map that gives us inforonatin
the location of a temporary at the top and bottdneach
basic block. Across a control flow edge, therethree pos-

sibilities that require resolution. If the tempgravas in a
register at the bottom of the predecessor blockrbuiem-
ory at the top of the successor block, we iffsertstore
instruction (but only if a temporary’s allocatedjigter and
memory home are inconsistent). If the temporary edov
from memory to a register, we insert a load ingtounc If
the temporary was in two different registers actbssedge,
we insert a move instruction. While processing dgeg we
are careful to model the data movement acrossdpe i a
manner that produces the correct resolution instms in
the semantically-correct order, even in the caserawo
(or more) temporaries swap their allocated regist&his
processing is similar to replacing SSA phi-nodestset of
equivalent move operations [12]. Figureg®es a simple
example of resolution.

The linear processing of the CFG can also leachteeces-
sary spill loads. Continuing with the example irgltie 2,
assume that we remove the shortest lifetime froomokoB3.
With this change, the allocator as currently ddsstiwould
still insert the load oT 1 into R2 for the rewrite in3. This

is because the linear ordering assumes that thadéen in
block B2 for T1 left T1 in memory. This is a pessimistic
assumption since there is no control-flow edgeatiyecon-
nectingB2 andB3. We would like to be able to take advan-

1. If the block at the head of the edge has onlingles predecessor, we
place the resolution code at the top of this bldtkie block at the tail of

the edge has only a single successor, we placestitdution code at the
bottom of this block. If the edge is a critical edgve split the edge, safely
creating a location to place the resolution code.

tage of the fact that one of our registers willupeised from
the top ofB3 till i3 and thus allocat&l to this registefor
the entire length oB3. The best choice is to allocard to
R1 at the top oB3 (eliminating the generation of any reso-
lution code across the ed@l-B3); however, this choice
would require us to reconstruct the binpackingestahen
the linear traversal transitions between two blastscon-
nected by a control-flow edge. We consider this¢gpen-
sive an operation considering thHRfl may be needed for
another temporary (as in the original example igufé 2)
before the use of1 ini3. An alternative solution is to run a
later code motion pass that tries to sink stored laoist
loads until they meet. When loads and stores tostme
stack location meet, we can replace the two oparativith

a move from the store’s source register to the'sodelstina-
tion register. The resulting move may then be elated by
subsequent copy propagation and dead-code -elimmati
passes.

Though we do not perform any dataflow analysesnduri
register allocation to minimize the generation mprove
the placement of spill code, we do perform, dutimg reso-
lution phase of our allocator, one dataflow analyer cor-
rectness. If we decided not to insert a store uietisn when
evicting a temporary (see Section 2.3), we usedattiethat
the memory and register contents were consistehis T
assumption may hold along one or more paths thrahgh
control flow graph, but not necessarily through peiths
reaching the point where the consistency infornmati@as
used. In order to determine if and where spill esaneed to
be inserted to guarantee consistency along allspatte
solve the following iterative bit-vector dataflowoblem.

Each bit vector used in our analysis requires asynhits as
there are allocation temporaries that are live ssroasic
block boundaries. During the linear scan, we mainta
working bit vector callelARE_CONSISTENTetA; be the
bit in ARE_CONSISTENTorresponding to a temporaty
A is set as long asis allocated to a registerand the con-
tents of r are consistent with's memory home. As
described in Section 2.3, a writertalearsA;, and a spill of

t setsA,. We will not generate a spill store foduring evic-
tion of t from r if A is set. We save a local copy of
ARE_CONSISTEN&®t the end of each basic block. This
copy is used in the subsequent dataflow analysis.

Also during the linear scan, we generate the IG&2N and
KILL sets for each basic block. The bit vector
WROTE_TR(byorresponds to the KILL set. L& be the
bit in WROTE_TR(byorresponding to a temporary\W, is

initially clear; it is set whenever a registeallocated td is

written inb. The bit vectotUSED_CONSISTENCY (lopr-

responds to the GEN set. Lety be the bit in
USED_CONSISTENCY (lgprresponding to a temporaty
U, is initially clear; it is set wheneveh is clear and we
usedA; to inhibit the generation of a spill store. In @th
words,U; is set whenever the inhibiting of a spill storke®

on assumptions of consistency not locabto

Once we have completed the linear scan for thecatibs
rewrite phase, we iterate to find a fixed pointtioe follow-
ing dataflow equations:

USED_C_out(b) = []
sOsucg b

USED C_in(s)

USED C_in(b) = USED CONSISTENCY X
0 (USED_C_out(b) ~WROTE TR(b))

For all blocksb, we initially setUSED_C_in(b)equal to
USED_CONSISTENCY(b)

During resolution processing, we insert a spillrstéor a
temporaryt during the processing of a CFG edqgesif the

bit for t in USED_C_in(s) is set and the bit in
ARE_CONSISTENT(p¥ clear. These edges represent the
beginnings of paths reaching program points whegecon-
sistency ot’s register and memory home was exploited, but
where the register and memory were not consistEim.
placement of this spill store follows the same ehaent
rules as the other resolution code.

2.5 Move optimizations

Modern computing systems typically impose usagerenn
tions for registers. The caller-saved registers,efcample,
are not preserved across procedure calls. As destiso
far, our algorithm only allows a temporary to beigsed to
a register if that register is free for the tempgsaentire
remaining lifetime. Under such a restriction, alinporaries
live across calls compete solely for the calleesgaregis-
ters. In a graph-coloring register allocator, tkigquivalent
to adding an interference edge to the caller-sasgisdters.

In our algorithm, we represent the constraints egister
usage by considering the intervals in which a tegis free
for use as its lifetime holes. A temporary can rfivinside

a register’s lifetime hole or another temporaryfetime

hole. In order to overcome the problem describexvabwe
allow in our algorithm for a temporary to be assdrto a
register with a lifetime hole that is not large aghb to con-
tain the entire lifetime. The algorithm heuristigadearches
for the largest of these insufficiently-large hol&ghen a
register’s lifetime hole expires, we check to sethére is
still a temporary contained in it. If there is ome evict the
temporary from that register at this point (cormsging to

a call site, for example).

When evicting a temporatyfrom a register; that is needed
by some convention, we could insert a spill stoeénading
its value the next time we need it through our s€echance
mechanism. But it might be true at this point thanhe other
registerrgnow contains a hole that could contésnremain-
ing lifetime. If t's lifetime fits in the lifetime hole img, it is
more efficient to insert a move fromto rg now than insert
a store now and a load later, provided th&t not evicted
from rg beforet's next reference. We therefore insert the
move now only if we can find an empty registgrand if
evictingt from r; would result in a spill store. We refer to
this mechanism asarly second chance

Although a move instruction can be more efficidmrt a
load-store instruction pair, we also want to eliaienmoves
during register allocation when possible. During boear
scan, we perform a check, in the spirit of movelesang,

that attempts to assign both the source and déstinaf a
move to the same register; such moves are elindnaea
separate peephole pass. The check works as followes
we have assigned a register to the source of a instreic-
tion, we check to see if that register has a hddeting
immediately after the move’s source use and iflifieéime
of the move’s destination temporary fits withingthiole. If
so, we bypass the normal allocation mechanism awdte
the move destination to use the same registereamtive
source.

We have implemented only a limited version of thevem
elimination optimization. In order to satisfy theigdal

Alpha calling convention, our Alpha code generanserts
move operations from the parameter registers tosyime-

bolic names of the parameters at the top of a phuree We
can easily eliminate these moves using our moviend-

tion. If we leave them in the code, they can natidg

degrade the performance of call-intensive progra@sr.

current implementation performs the move optimzati
only when the source of a move is already in astegi It

would be straightforward to extend our implemewatto

attempt move optimization after allocation of a gen

move source.

2.6 Complexity analysis

The conflict resolution step of our algorithm, wiiwe feel
is essential for maximizing the quality of the auttgode,
does not have a linear time bound. Its worst-caseptex-
ity is dominated by that of the dataflow calculatio
described above. However, this dataflow analysis loa
replaced so that our allocator runs in linear time.

The first two phases of the algorithm, computatdrife-
times and holes, then allocation and rewriting, ®@wani-

tions at most, which brings its time cost downQx(N) bit-
vector operations.

In our implementation, the time spent in this datafcalcu-
lation rarely reaches one percent of the time cawesliby
the overall algorithm. We have therefore not atterdpo
tune this phase. For situations in which stricedrity is
necessary, one could easily replace our iteratatafbw
calculation with a more conservative solution. Tes@e
that we avoid a spill store only when legal, we canser-
vatively initialize the working copy of the
ARE_CONSISTENDit vector at the top of each blodk
encountered during the linear scan. We initializeith the
intersection of the savellRE_ CONSISTENM®it vectors at
the bottom of allb’s predecessor blocks. We assume that
any predecessor with an uninitialized bit vectaracs all
bits in the working bit vector.

In our experiments, conflict resolution includingtdflow
analysis has never consumed more than five penfethie
total time for allocation. Sacrificing strict linety has not
had a major impact.

3 Experimental evaluation

To compare fairly our linear-scan register allocatith a
graph-coloring allocator, we have implemented thawth
in the Machine SUIF extension [14] of the Stanf&dIF
compiler system [16]. SUIF makes it easy to mix aratch
compiler passes. Keeping the rest of the compikedf we
created two alternative register allocation pasgkstical
in every respect except the central register agsig algo-
rithms. In both passes, for example, we use shiyeaties
to construct CFGs and perform liveness and loopkdep
analysis, with the results attached to the CFGradgegis-
ter allocation. Moreover we use a common set dities for

festly linear® Each is a single sweep over the instructions of scanning the code and updating it to insert spétructions

the program being compiled. Allocation has a camtstac-
tor proportional to the number of available registsince it
may scan the register state in order to chooseaanin a
register.

The sweep over edges during conflict resolutioralso
effectively linear: in real programs most flow nedeave an
out degree of one or two so that the number of edgews
as the number of nodes, and not quadratically.

If the equations folUSED_C_in(b)and USED_C_out(b)
given above are solved by the standard iterativeditor
calculation, then conflict resolution has a worase run-
ning time ofO(N?) bit-vector operations, whelgis the size
of the program. If the size of the bit-vectorshie humber of
temporaries, then the bound is cubic, since tred atmber
of register candidates is typically proportionathe size of
the program. The common experience with the stahdar
method, however, is that it terminates in two aeéhitera-

2. We assume the liveness information used in figpdifetimes and
holes is available when register allocation begiftse cost of gathering
and storing it is amortized over many optimizatioma typical optimizing
compiler.

or to reflect register assignments. Loop depthsisduin the
same way to weight occurrence counts in both aitwsaln
each case, register allocation is preceded by dedel elim-
ination and followed by a peephole optimization p#sat
removes moves that can safely collapse into theegliag
or succeeding instruction.

The coloring method used is an implementation it th
described by George and Appel [7]. This is a pwlering
approach in the style originated by Chaitin [5] aefined
by Briggs et al. [2]. Its principal departure frdhmat style is
that it integrates register coalescing (copy prepiag) into
the coloring phase of allocation, rather than penfog it
repeatedly beforehand in a loop. The usual Ch&itiggs
method builds a new interference graph after eachess-
ful round of coalescing. George and Appel take dbstly
graph-building operation out of the inner loop. Yheport
that it also improves code significantly by elining more
copy instructions. Our implementation is faithfalthe pub-
lished algorithm [7vith two exceptions:

« We use a lower-triangular bit matrix, rather than
hash table, to record the adjacency relation of the
interference graph.

Instruction counts Run time (sec)
Benchmark Set_:ond-chance Graph _ Ratio Set_:ond-chance Graph _ Ratio

binpacking coloring (binpack/GC) binpacking coloring (binpack/GC)
alvinn 5859032035 5850062031 1.002 20.56 20.67 0.995
doduc 1610607538 1565260889 1.029 7.36 7.23 1.018
eqntott 2782873030 2777476231 1.002 6.92 6.90 1.003
espresso 1510435454 1390526882 1.086 3.54 3.34 1.06
fpppp 6775315066 6262634084 1.082 25.79 24.73 1.043
li 9878244999 9694580392 1.019 23.91 24.76 0.966
tomcatv 6531688057 6531662363 1.000 14.29 14.36 0.99¢
compress 94956007702 91999060755 1.032 281.30 275.7 01.02
m88ksim 1112471957 1101374080 1.010 2.97 2.90 1.024
sort 1030126044 989670114 1.041 4.35 4.02 1.082
wc 1046734 1046722 1.000 0.92 0.91 1.011

Table 1: A comparison of the dynamic instructionms and the run times of executables using eihesecond-chance
binpacking approach or George/Appel’s graph-colgrapproach.

« We perform liveness analysis only once, before-all
cation, rather than once per round of coloring. For
both linear scan and graph coloring, temporarias th

are live only within a single basic block are exizd

from dataflow analysis, which greatly reduces bit

vector sizes and makes repeated dataflow analysis

unnecessary between coloring iterations.

The latter simplification is possible for both larescan and
graph coloring, because the temporaries generatexpiti
code insertion are live only within a single baslieck. Glo-
bal liveness information is not affected by suahperaries.

When targeting the Digital Alpha, our graph-colgriallo-
cator deals separately with general-purpose regisiad
floating-point registers. On current Alpha implertagions,
data moved between register files must go througmary,
and each register operand of a given instructian aaly
reside in one file or the other. With coloring, then-linear
costs of building the interference graph and chapsem-
poraries to spill make it more efficient to solvee ttwo
smaller problems separately. (This is the apprased, for

example, in the compiler for which George and Appel

designed their algorithm.) Our linear-scan alganitton the
other hand, processes both register files at once.

3.1 Runtimes

We compare the quality of generated code on a nuwibe

benchmarks. Table 1 presents run-time results otbrms
of instruction counts and actual run times. Forheaetric,
we also calculate the ratio of the result undezdinscan to
the result under graph coloring. Larger ratios mpaarer
performance of the linear-scan-produced executafie
target machine for these experiments is a Digitpha run-

ning Digital UNIX 4.0. Most benchmarks are from the

SPEC92 suite, except foompresandm88ksim(SPEC95)
and sort and wec (UNIX utilities). The instruction count
results were obtained using the HALT tool within dhane
SUIF to instrument each benchmark after code gtinara
The run-time results were obtained with the UNIXei

Second-chance Graph
Benchmark . _ :
binpacking coloring
alvinn 0% 0%
doduc 0.460% 0.492%
eqntott 0.001% 0.000%
espresso 0.783% 0.148%
fpppp 18.561% 13.397%
li 0% 0%
tomcatv 0% 0%
compress 0% 0%
m38ksim 0.030% 0.045%
sort 1.339% 0.905%
wc 0% 0%

Table 2: Percentage of total dynamic instructiong do

spill code for each allocation approach. If no $pibde

was inserted during register allocation, the pertage is
reported as simply “0%".

command on a lightly-loaded Alpha. Each time is liest
of five consecutive runs.

Overall, our approach produces executables thatohie
quality near to those produced by coloring. To hetplain
the variation in the instruction count results, [€b pre-
sents a statistic indicating what percentage of ttital
dynamic instruction count was due to spill codesitesd by
the register allocator. This counts load, storej amove
instructions inserted for allocation candidatesyoRive of
our benchmarksafvinn, li, tomcaty compressandwc) had
no spill code under either approach. For theseicgifns,
the difference in the dynamic instruction countJable 1 is
entirely due to the lack of move coalescing in algiorithm.
We expect that we could remove much of this difiessby
following register allocation by copy propagatiamdadead-
code elimination optimizations.

15

|:| evict loads |_|__| resolve loads
|:| evict stores |I| resolve stores
. evict moves . resolve moves
g 1.0 1 —
0 S
€38
8 c
o o
v O
T ¥ —
O ©
(ST} I
= N —
30
= i L1
o — |~
€ 05+ [- - -
0.0 = El ‘
) <)) L) <)) A °) <)
7 & g v y K X > &
600 b° \O\' (,\\o 66O 660 QQQ QQQ 60\ 60\ 6\6\ %\é\
Sl S & & & R SF gF
&P & <& <

Benchmark-scheme

Figure 3. A categorization of the spill code ingerby each allocator. Results for our binpackingmach are labelled with a “-b”
while those for coloring are labelled with “-c”. Feeach benchmark, we normalize the counts to tted $pill code inserted with
binpacking. We have separated the “eviction” spdlde inserted during our linear scan and the caigralgorithm’s spill phase

from the “resolve” spill code inserted during ougsolution phase.

For the applications with spill code, Figure 3 mEs a
detailed look at the composition of the spill cqateduced
both by second-chance binpacking and by graph iogjor
In both doducandm88ksim binpacking produces less spill
code than coloring. The majority of the differensealue to
the insertion of extra spill loads during colorif@ur bin-
packing produces more spill code than coloringefgntott
espresspfpppp andsort A significant proportion of this
increase appears due to extra stores (resolutidneait-
tion). These stores can, as in the caseqpitott lead to a
large number of resolution loads. A review of thepwut
code shows that a global optimization pass rurr afteca-
tion can eliminate unnecessary load/store pairaels as
partially redundant spill instructions using haisti and
sinking technigues.

In order to evaluate the advantages of our secbadee
binpacking over traditional two-pass binpacking,cweated
a version of our allocator that assigns a wholetilife to

either memory or register. This implementationl $tikes
advantage of lifetime holes during allocation. Weserved
two classes of applications with respect to thégoerance
of this allocator. The first, represented best hg word-
count (vc) benchmark, contains those applications whose
performance degrades substantially under binpackitigy
out second chance. Thec benchmark ran 38% slower
(1445466 vs. 1046734 dynamic instructions) whem-all
cated using two-pass binpacking than it did whéncated
with our second-chance approach. Thebenchmark has a
large number of temporaries that are live througlzoloop
that contains a procedure call to an I/O routiner €econd-
chance mechanism manages to allocate some ofrtipote
raries to caller-saved registers, evicting thent fpefore the
procedure call but avoiding unnecessary stores. thiee
pass binpacking approach, however, is not ableseothe
caller-saved registers (there is no hole in a cabeed reg-
ister large enough to contain the lifetimes oftémaporaries

Average number of Allocation time (sec)
Module)
(Benchmark) Reg'lster Interference graph Graph coloring Segond-chance
candidates edges binpacking
cvrin.c (espresso 245 1061 0.4 15
twldrv.f (fpppp) 6218 51796 8.8 3.7
fpppp.f (fpppp) 6697 116926 15.8 4.5

Table 3: A comparison of the allocation times. Berage number of register candidates and interfegegraph edges refer to
the coloring allocator. These numbers cover allociolg iterations.

live across the call), thus evicting temporarie$ ofithe
callee-saved registers. Since this algorithm dassamoid
unnecessary stores, costly spill code is insemsitlé the
loop. The other class of applications, exemplifiedeqn-
tott, has almost identical performance under two-pass b

Digital Equipment Corporation has used a lineanszigo-
rithm for many years in the GEM optimizing code gent
tor, a compiler back-end used in several of its ien
products [1]. The GEM approach to binpacking aredttr
ment of lifetime holes [3] was the starting poit four

packing and second-chance binpacking (2783984589 vswork on linear-scan allocation. Binpacking evolviedm

2782873030 dynamic instructions). Tegntottbenchmark
spends a vast majority of its time in the procedumept()
which contains a very small number of temporaried a
therefore requires no spilling.

3.2 Compiletimes

To evaluate the compilation speed of the two method

timed both on representative modules from the beeck

set. Table 3 shows results obtained by timing ohéy dore
parts of the allocators on a lightly-loaded Alphaparticu-

lar, we record the time of day after setup actgtcommon
to both allocators, such as CFG construction, laoalysis,
liveness analysis, etc., and then record the tihtlp again
after allocation. The difference in these two reeat times
is summed over all procedures in a compiled mothufeo-

duce the times in Table 3. Each is the best of dimesecu-
tive runs. The table also includes the average munolh

register candidates per procedure in the module thad
average number of edges in their interference graph

While the coloring allocator is actually fastergmall prob-
lems, its performance rapidly becomes worse onrprog
with lots of competing register candidates. Thegmlners
illustrate that a coloring allocator slows downrsfigantly
as the complexity of the interference graph inaeeas

4 Related work

The phrase “linear scan” was used by the developfetise
‘C dynamic code generator to describe the regatecator
in their system [13]. Having tried graph colorinthey
developed a simpler method that scans a sortedfligie
lifetimes and at each step considers how manyirtifet are
currently active and thus in competition for theaidable
registers. When there are too many active lifetitod#, the
longest active lifetime is spilled to memory ane tbcan
proceeds. No attempt is made to take advantagéetifrle
holes or to allocate partial lifetimes. Neverthsleis con-
text of a run-time code generator, the improveniembm-
pilation speed obtained by using linear scan imbtef
coloring justifies a modest decrease in run-timeesp

work done in the production quality compiler-conepil
project at CMU [11,17]. However, the discovery wfelar-
scan register allocation at Digital was almost ecident: its
first implementation was intended as a “throw-awaydd-
ule, meant to be replaced by a more elaborate sehem
When the throw-away turned out to perform bettantits
more complicated replacement, it was shipped wiith t
product instead [9].

Digital's allocator uses “history preferencing”, igh
allows load instructions to be omitted by remenogri
which values in memory are mirrored in registerar €ec-
ond chance method subsumes history preferencingéahsl
the dual optimization of avoiding a store instrantwhen a
register’s value can be shown to exist in memonrgaaly or
never be needed in memory again.

Laurie Hendren and a group from McGill Universitgvie
experimented with an alternative representationrfarfer-
ence graphs which they calyclic interval graphg8]. This
data structure provides more fine grain informatadrout
the overlap between two temporary lifetimes, esihci
those extending around a loop. Hendren’s algoritiovers
points of maximal pressure withfat cover a set of non-
overlapping intervals that can fit into one registehis idea
is very similar to binpacking. Hendren also introds the
concept of achameleon interval a temporary that is
assigned different colors, or registers, at difféngoints in
its lifetime.

In his recent book, Bob Morgan presents a hybrigragch
to register allocation [12]. He first runs a limig pass
which reduces the register pressure by introdudpiy

code for temporaries that are live through loops. thHen
runs his register allocator in three phases: hissty using
graph-coloring to allocate temporaries that are lacross
basic blocks. He then uses Hendren's representatich
algorithm to allocate those local temporaries tlean
occupy the same registers as the global temporaress
final phase uses a standard local algorithm tocatk the
purely local temporaries.

5 Conclusions

Linear-scan methods of register allocation are fasd
effective. They can enable the interproceduralrojzition
of large programs, and they are appropriate fortime
code generation. They avoid the risk of the compifee
performance degradation that graph-coloring methads
fer on certain program inputs.

We have presented and studied a new implementatiam
ear-scan, called second-chance binpacking. Thisoapp
performs register allocation and instruction reingtin a
single pass, and it pays more attention to spdecminimi-
zation than other linear-scan approaches. We hadem
fair comparison of this new method with a well-dgsd
coloring algorithm and found linear scan to be cetitjyve

in output quality and much less prone to slow d@rrcom-
plex inputs. We believe there remain ways of turimgsec-
ond-chance binpacking algorithm so that the ruretim
performance of generated code more uniformly matche
that of a coloring allocator.

6 Acknowledgments

We are grateful to Steve Hobbs, Bob Morgan, andustig
Reinig of Digital Equipment Corporation for theielpful
discussions on the use of binpacking in the GEM miten
We would also like to thank Max Poletto of MIT fbis
explanation of the use of linear scan in dynamigecgener-
ation.

This research was funded in part by a NSF Youngstiga-
tor award (grant no. CCR-9457779), a DARPA grant no
NDA904-97-C-0225, and research gifts from AMD, Dagi
Equipment, HP, Intel, and Microsoft.

7 References

[1] D. S. Blickstein, P. W. Craig, C. S. Davidson, R

Faiman, K. D. Glossop, R. P. Grove, S. O. Hobbs\&n&.

Noyce, “The GEM Optimizing Compiler SystenDigital

Equipment Corporation Technical Journat(4):121-135,
1992.

[2] P. Briggs, K. Cooper, and L. Torczon, “Improvemts
to Graph Coloring Register AllocationRCM Transactions
on Programming Languages and Systed(3):428-455,
May 1994.

[3] C. K. Burmeister, K. W. Harris, W. B. Noyce aisd
0. Hobbs, U.S. patent number 5,339,428.

10

[4] G. Chaitin et al., “Register Allocation via Caing,”
Computer Language$, pp. 47-57, 1981.

[5] G. J. Chaitin, “Register Allocation and Spillinga
Graph Coloring,”SIGPLAN Notices17(6):201-107, June
1982.

[6] M. F. Fernandez, “Simple and Effective Link-time
Optimization of Modula-3 Programs3IGPLAN Notices
30(6):103-115, June 1995.

[7] L. George and A. Appel, “lterated Register Caale
ing,” ACM Transactions on Programming Languages and
Systems18(3):300-324, May 1996.

[8] L.J.Hendren, G. R. Gao, E. R. Altman and C.kMu
erji, “A Register Allocation Framework Based on Hie
chical Cyclic Interval Graphs,’Proc. 4th International
Compiler Construction Conferencep. 176-191, October
1992.

[9]

[10] U. Hoeltze, “Adaptive Optimization for Self: Ren-
ciling High Performance with Exploratory Programuyih
Ph.D. thesis, Stanford University, March 1995.

[11] B. Leverett, “Register Allocation in Optimizingom-
pilers,” Ph.D. thesis, CMU-CS-81-103, Carnegie-Mdell
University, February 1981.

S. O. Hobbs, Personal communication, July 1997.

[12] R. MorganBuilding an Optimizing CompileDigital
Press, Boston, 1998.

[13] M. Poletto, D. R. Engler and M. F. Kaashoelccita
System for Fast, Flexible and High-level Dynamicd€o
Generation,’SIGPLAN Notices32(5):109-121, May 1997.

[14] M. Smith, “Extending SUIF for Machine-dependent
Optimizations,” Proc. First SUIF Compiler Workshop
Stanford, CA, pp. 14-25, January 1996. URL: http://
www.eecs.harvard.edu/machsuif.

[15] D. W. Wall, “Global Register Allocation at Link
Time,” SIGPLAN Notices21(7):264-275, July 1986.

[16] R. Wilson et al., “SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compifers,
ACM SIGPLAN Notice29 (1994), pp. 31-37. URL: http://
suif.stanford.edu.

[17] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O.
Hobbs and C. M. Geschk&he Design of an Optimizing
Compiler American Elsevier, New York, 1975.

