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Abstract

Single-cell RNA-Seq can precisely resolve cellular states but application to sparse samples is 

challenging. Here, we present Seq-Well, a portable, low-cost platform for massively-parallel 

single-cell RNA-Seq. Barcoded mRNA capture beads and single cells are sealed in an array of 

subnanoliter wells using a semi-permeable membrane, enabling efficient cell lysis and transcript 

capture. We characterize Seq-Well using species-mixing experiments and PBMCs, and profile 

thousands of primary human macrophages exposed to tuberculosis.
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MAIN

The emergence of single-cell genomics has empowered new strategies for identifying the 

cellular and subcellular drivers of biological phenomena1–19. Patterns in genome-wide 

mRNA expression measured by single-cell RNA-Seq (scRNA-Seq) can be leveraged to 

uncover distinct cell types, states and circuits within cell populations and tissues1–5,9–13. The 

unprecedented view of cellular phenotypes scRNA-Seq affords could help transform our 

understanding of healthy and diseased behaviors, and guide the rational selection of 

precision diagnostics and therapies, if it could be broadly and easily applied to low-input 

(≤104 cells) clinical specimens.

Typically, scRNA-Seq has involved isolating and lysing individual cells, then independently 

reverse transcribing and amplifying their mRNA before generating barcoded libraries that 

are pooled for sequencing. Although manual picking2,5,8, FACS-sorting1,3,4 or integrated 

microfluidic circuits7,9,10 can isolate single cells, one-cell-one-sample approaches are 

constrained fundamentally in scale by costs, time, and labor. Recently, massively-parallel 

methods have emerged that assign unique barcodes to each cell’s mRNAs during reverse 

transcription, enabling ensemble processing while retaining single-cell resolution. These 

methods typically yield single-cell libraries of lower complexity, but higher throughput 

reduces the impact of the technical and intrinsic noise associated with each cell in 

analyses11,12. The most common variant is microfluidic devices that generate reverse-

emulsion droplets to serially couple single cells with uniquely-barcoded mRNA capture 

beads11,12. Droplet-based techniques, however, can have inefficiencies in encapsulation, 

introduce technical noise through differences in cell lysis time, and require specialized 

equipment, limiting where, when, and with what scale scRNA-Seq can be performed.

One alternative is to use arrays of subnanoliter wells loaded by gravity. Operational 

simplicity reduces the need for peripheral equipment, decreases dead volumes, and 

facilitates parallelization. As proof-of-principle, cells and beads have been co-confined in 

unsealed nanowell arrays to perform targeted single-cell transcriptional profiling13, yet the 

use of an open-array format significantly limits capture efficiency and increases cross-

contamination (Supplementary Fig. 1). To avoid these issues, nanowells have also been 

combined with microfluidic channels that facilitate oil-based single-cell isolation via fluid 

exchange14. Nevertheless, this design limits buffer exchange and necessitated integrated 

temperature and pressure controllers, impacting ease-of-use and portability15. Semi-porous-

membrane-covered nanowells have been used to link pairs of specific transcripts from single 

cells16; however, transcript capture and sealing efficiency were not addressed, and unique 

single-cell libraries were not achieved using many beads per well.

To overcome these assorted challenges, we have developed Seq-Well, a portable, simple 

platform for massively-parallel scRNA-Seq (Supplementary Fig. 2). Similar to previous 

nanowell-based implementations, Seq-Well confines single cells and barcoded poly(dT) 

mRNA capture beads in a PDMS array of ~86,000 subnanoliter wells. Designing well 

dimensions to accommodate only one bead enables single-bead loading efficiencies of ~95% 

(Figure 1a, Supplementary Fig. 3a; Supplementary Video 1). A simplified cell-loading 

scheme, in turn, enables capture efficiencies around 80% (Methods; Supplementary Fig. 
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3b), with a rate of dual occupancy that can be tuned by adjusting the number of cells loaded 

and visualized prior to processing (Supplementary Fig. 3c).

Importantly, Seq-Well uniquely leverages selective chemical functionalization to facilitate 

reversible attachment of a semi-permeable polycarbonate membrane (10 nm pore size) in 

physiologic buffers. This trait enables rapid solution exchange for efficient cell lysis but 

traps biological macromolecules, increasing transcript capture during hybridization and 

reducing cross-contamination (Supplementary Fig. 4a; Supplementary Protocol; 

Supplementary Video 2). The array’s unique three-layer surface functionalization comprises 

an amino-silane base20 crosslinked to bifunctional poly(glutamate)/chitosan top via a p-
Phenylene diisothiocyante intermediate (Methods; Supplementary Fig. 4); this bifunctional 

top, with poly(glutamate) coating the inner surfaces of the nanowells (where cells are lysed) 

and chitosan the array’s top surface (where the membrane binds), prevents non-specific 

binding of RNA to the array and efficient sealing, respectively (Methods; Supplementary 

Protocol; Supplementary Fig. 4b,c). To test sealing and buffer exchange, we monitored the 

fluorescence of dye-labeled, cell-bound antibodies before and after adding a guanidinium-

based lysis buffer. We observed rapid diffusion of the antibodies throughout the wells within 

five minutes of buffer addition and, unlike unsealed or previously-described, membrane-

covered BSA-blocked arrays16, little change in fluorescent signal over 30 minutes, 

suggesting robust retention of biological macromolecules despite use of a strong chaotrope 

(Methods; Supplementary Fig. 5).

After lysis, cellular mRNAs are captured by bead-bound poly(dT) oligonucleotides that also 

contain a universal primer sequence, a cell barcode, and a unique molecular identifier (UMI) 

(Methods; Supplementary Table 1). Next, the membrane is peeled off and the beads are 

removed for subsequent bulk reverse transcription, amplification, library preparation and 

paired-end sequencing, as previously described12 (Methods). Critically, beyond a disposable 

array and membrane, Seq-Well only requires a pipette, a manual clamp, an oven, and a tube 

rotator to achieve stable, barcoded single-cell cDNAs (Fig. 1a), enabling it to be performed 

almost anywhere.

To assess transcript capture efficiency and single-cell resolution, we profiled a mixture of 

5×103 human (HEK293) and 5×103 mouse (3T3) cells using Seq-Well. The average fraction 

of reads mapping to exonic regions was 77.5% (Supplementary Fig. 6), demonstrating high 

quality libraries. Shallow sequencing from a fraction of an array revealed highly organism-

specific libraries, suggesting single-cell resolution and minimal cross-contamination (Fig. 

1b; Supplementary Fig. 7a–c). In the absence of membrane sealing, by comparison, we 

obtained poor transcript and gene detection, and substantial cross-contamination 

(Supplementary Fig. 1). From deeper sequencing of a fraction of a second array, we detected 

an average of 37,878 mRNA transcripts from 6,927 genes in HEK cells and 33,586 mRNA 

transcripts from 6,113 genes in 3T3 cells, comparable to a droplet-based approach using the 

same mRNA capture beads (Drop-Seq)12 (Fig. 1c,d & Supplementary Fig. 7&8). Upon 

matched-read downsampling, we also observed levels of transcript and gene detection 

consistent with other massively-parallel bead-based scRNA-Seq methods (Methods; 

Supplementary Fig. 7d–g). Moreover, we found strong correlations between bulk RNA-seq 

data and populations constructed in silico from individual HEK cells (R=0.751±0.073–
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0.983±0.0001 for populations of 1–1,000 single cells, respectively), suggesting 

representative cell and transcript sampling (Methods; Supplementary Fig. 9).

Next, to examine the ability of Seq-Well to resolve populations of cells in complex primary 

samples, we loaded human peripheral blood mononuclear cells (PBMCs) into arrays in 

triplicate prior to beads, allowing us to perform on-array multi-color imaging cytometry 

(Methods; Fig. 2a,b, Supplementary Tables 2&3). Sequencing one-third of the beads 

recovered from each array yielded 3,694 high-quality single-cell libraries (Methods). 

Unsupervised graph-based clustering revealed unique subpopulations corresponding to 

major PBMC cell types (Methods; Fig. 2b, Supplementary Fig. 10–12; Supplementary 

Table 4). Each array yielded similar subpopulation frequencies (Fig. 2c), with detection 

efficiencies comparable to other massively-parallel technologies (Supplementary Fig. 13). 

The proportion of each subpopulation determined by sequencing also matched on-array 

immunophenotyping results (Fig. 2a,b). Critically, sequencing provides additional 

information: in addition to resolving dendritic cells from monocytes (Fig. 2b), we found 

significant variation among the monocytes (captured in PC3) due to differential expression 

of inflammatory and anti-viral gene programs (Fig. 2d)1,3. Overall, characterizing a sample 

in two ways using a single platform increases the amount of the information that can be 

extracted from a precious specimen, while also allowing analysis of one measurement in 

light of the other.

Finally, to test the portability of Seq-Well, we profiled primary human macrophages exposed 

to M. tuberculosis (H37Rv) in a BSL3 facility (Methods). In total, we recovered 14,218 (of 

40,000 possible) macrophages with greater than 1,000 mapped transcripts from a TB-

exposed and an unexposed array. Unsupervised analysis of 4,638 cells with greater than 

5,000 transcripts per cell revealed five distinct clusters (Fig. 3a,b & Supplementary Fig. 

14a,b; Supplementary Table 5). Two had lower transcript capture and high mitochondrial 

gene expression (suggestive of low quality libraries)17, and were removed; the remaining 

three (2,560 cells) were identified in both the exposed and unexposed samples (Fig. 3a, 

Supplementary Fig. 14c,d&15), and likely represent distinct sub-phenotypes present in the 

initial culture.

We next examined common and cluster-specific gene enrichments (Methods). Although 

Clusters 1 and 3 did not present strong stimulation-independent enrichments, Cluster 2 

uniquely expressed several genes associated with metabolism (Supplementary Tables 6&7). 

Intriguingly, within each cluster, we observed pronounced shifts in gene expression in 

response to M. tuberculosis (Methods; Fig. 3c & Supplementary Table 8), with common 

enrichments for gene sets previously observed in response to intracellular infection, LPS 

stimulation, and activation of TLR7/8 (Supplementary Tables 9&10). Cluster 1 uniquely 

displayed stimulation-induced shifts in several genes associated with cell growth, Cluster 3 

in transcripts associated with hypoxia, and Cluster 2, again, in genes linked to metabolism. 

Overall, these data suggest that basal cellular heterogeneity may influence ensemble 

tuberculosis responses. Equally importantly, they demonstrate the ability of Seq-Well to 

acquire large numbers of single-cell transcriptomes in challenging experimental 

environments.
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In conclusion, Seq-Well is a robust platform for scalable, single-cell transcriptomics 

applicable to almost any cellular suspension for which a reference genome or transcriptome 

exists. The technique is inexpensive, user-friendly, portable, and efficient, enabling scRNA-

Seq to accelerate scientific and clinical discovery, even when working with limited samples. 

Furthermore, the ability to measure protein secretion and cell surface expression on the same 

platform18,19 foreshadows multi-omic single-cell measurements at scale. As such, our 

platform may prove to be a potent tool for empowering a new era of precision science and 

medicine.

METHODS

Methods and any associated references are available in the online version of the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Seq-Well: A Portable, Low-Cost Platform for High-Throughput Single-Cell RNA-Seq 
of Low-Input Samples
(a) Photograph of equipment and array used to capture and lyse cells, respectively. (b) 

Transcripts captured from a mix of human (HEK293) and mouse (NIH/3T3) cells reveal 

distinct transcript mapping and single-cell resolution. Human (mouse) cells (> 2,000 human 

(mouse) transcripts and < 1,000 mouse (human) transcripts) are shown in blue (red). Among 

the 254 cells identified, 1.6% (shown in purple) had a mixed phenotype. (c,d) Violin plots of 

the number of transcripts (c) and genes (d) detected in human or mouse single-cell libraries 

generated by Seq-Well or Drop-Seq (Ref. 12; Center-line: Median; Limits: 1st and 3rd 

Quartile; Whiskers: +/− 1.5 IQR; Points: Values > 1.5 IQR). Using Seq-Well (Drop-Seq), an 

average of 37,878 (48,543) transcripts or 6,927 (7,175) genes were detected among human 

HEK cells (n = 159 for Seq-Well; n = 48 for Drop-Seq) and an average of 33,586 (26,700) 

transcripts or 6,113 (5,753) genes were detected among mouse 3T3 cells (n = 172 for Seq-

Well; n = 27 for Drop-Seq) at an average read depth of 164,238 (797,915) reads per human 

HEK cell and an average read depth of 152,488 (345,117) read per mouse 3T3 cell.
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Figure 2. Combined Image Cytometry and scRNA-Seq of Human PBMCs
(a) The hierarchical gating scheme (with the frequencies of major cell subpopulations) used 

to analyze PBMCs that had been labeled with a panel of fluorescent antibodies, loaded onto 

three replicate arrays and imaged prior to bead loading and transcript capture (Methods). 

Myeloid cells (green) were identified as the population of hCD3(-) HLA-DR(+) CD19(-) 

cells; B cells (orange) as the subset of hCD3(-) HLA-DR(+) CD19 (+) cells; CD4 T cells 

(blue) as the subset of CD3(+) CD4(+) cells; CD8 T cells (yellow) as the CD3(+) CD8(+) 

subset of cells; and, NK cells (red) as the subset of CD3(-) HLA-DR (-) CD56 (+) CD16(+) 

cells. (b) t-SNE visualization of single-cell clusters identified among 3,694 human Seq-Well 

PBMCs single-cell transcriptomes recovered from the imaged array and the two additional 

ones (Methods; Supplementary Fig. 10–12). Clusters (subpopulations) are labeled based on 

annotated marker gene (Supplementary Fig. 10). (c) The distribution of transcriptomes 

captured on each of the 3 biological replicate arrays, run on separate fractions of the same 

set of PBMCs. All shifts are insignificant save for a slightly elevated fraction of CD8 T cells 

in array 1 (*, p=1.0×10−11; Chi-square Test, Bonferroni-corrected). (d) A heatmap showing 

the relative expression level of a set of inflammatory and antiviral genes among cells 

identified as monocytes.
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Figure 3. Sequencing of TB-Exposed Macrophages in a BSL3 Facility Using Seq-Well
(a) t-SNE visualization of single-cell clusters identified among 2,560 macrophages (1,686 

exposed, solid circles; 874 unexposed, open circles) generated using 5 principal components 

across 377 variable genes (Methods). (b) Marker genes for the 3 phenotypic clusters of 

macrophages highlighted in (a). (c) Volcano plots of differential expression between exposed 

and unexposed macrophages within each cluster showing genes enriched in cells exposed to 

M. tuberculosis. In each plot, a p-value threshold of 5.0 ×10−16 based on a likelihood ratio 

test was used to establish statistical significance, while a log2-fold change threshold of 0.4 

was used to determine differential expression. Genes with p-values less than 5.0×10−6 are 

shown in cyan and absolute log2-fold changes greater than 0.4; In magenta are genes with p-

values less than 5.0×10−6 but absolute log2-fold changes less than 0.4; and, in black, are 

genes with p-values greater than 5.0×10−6 and absolute log2-fold changes less than 0.4.
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