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METHOD Open Access

scDual-Seq: mapping the gene regulatory
program of Salmonella infection by host
and pathogen single-cell RNA-sequencing
Gal Avital1,2, Roi Avraham3,6, Amy Fan3, Tamar Hashimshony2, Deborah T. Hung3,4,5 and Itai Yanai1*

Abstract

The interaction between a pathogen and a host is a highly dynamic process in which both agents activate
complex programs. Here, we introduce a single-cell RNA-sequencing method, scDual-Seq, that simultaneously
captures both host and pathogen transcriptomes. We use it to study the process of infection of individual mouse
macrophages with the intracellular pathogen Salmonella typhimurium. Among the infected macrophages, we find
three subpopulations and we show evidence for a linear progression through these subpopulations, supporting a
model in which these three states correspond to consecutive stages of infection.

Background
The rise of antibiotic-resistant bacterial pathogens con-
stitutes one of the most serious threats to human health.
Many of these resistant pathogens, such as Mycobacter-
ium tuberculosis, Salmonella enterica, and Neisseria gon-
orrhea, spend a significant portion of their life-cycle
surviving and replicating within host cells, typically mac-
rophages [1]. The interaction between a pathogen and a
host is a highly dynamic process in which both orches-
trate intricate gene regulatory pathways. For example,
the pathogen S. enterica stimulates the inflammatory re-
sponse of the body, invades macrophages, and alters
their gene expression in order to optimize its survival
conditions [2]. During infection, however, multiple out-
comes are observed when a bacterium encounters a host
cell, including bacterial clearance, bacterial survival and
persistence, or host cell death (Fig. 1a). These different
phenotypic outcomes thus suggest heterogeneous cellu-
lar behavior [3, 4], which makes a single-cell approach
crucial for the dissection of the factors contributing to
the different infection outcomes.

While simultaneous transcriptome analysis of host and
bacteria by RNA-sequencing (RNA-seq) can provide a
comprehensive view of cellular states, previous efforts
using bulk measurements have been limited to averaging
over thousands of host and pathogen cells [5], thereby
losing the ability to capture the heterogeneity of the in-
dividual encounters. Another major limitation in single-
cell RNA-seq is the dependence on oligo-dT priming,
which has restricted the examination to only individual
host cells since this approach does not provide in-
formation on the state of the individual infecting patho-
gen [5–8]. Although poly-A independent methods for
single cells are available [9, 10], their efficacy for detect-
ing intracellular bacterial transcriptomes is untested.
Here, we present scDual-Seq, a method to simultan-

eously analyze both host and pathogen cells using
single-cell RNA-seq. This method is highly multiplexed,
uses UMI to allow single transcripts quantification, and
takes advantage of in vitro transcription (IVT) for ampli-
fication. We show that by using scDual-Seq, we are able
to identify and quantify the expression levels of both
bacterial and host transcripts in individual infected
mammalian cells.

Results and discussion
We developed a single-cell dual capture and sequencing
method ─ scDual-Seq ─ for single-cell RNA-seq to
analyze simultaneously both host and bacterial cells. To
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capture both bacterial and host transcripts, scDual-Seq
primes the reverse transcription (RT) reaction using ran-
dom hexamer DNA oligos (see “Methods,” Fig. 1b, and

Additional file 1). After adding a polyA tail to the com-
plementary DNA (cDNA), scDual-Seq proceeds as an
extensive modification of the CEL-Seq2 method for

a

b c

d

e

Fig. 1 A single-cell RNA-sequencing approach to studying host–pathogen interaction. a Heterogeneity of outcomes of intracellular infection is
due to both Salmonella and macrophage states. scDual-Seq simultaneously produces the transcriptome of both the host and the pathogen and
allows the identification of cellular subpopulations during infection. b Schematic of the scDual-Seq method. Reverse transcription is primed using
random hexamers, followed by RNase treatment and 3’ polyA tailing. The second strand is synthesized using the CEL-Seq2 barcoded primers (see
“Methods”). The samples are pooled together before the complementary DNA (cDNA) undergoes linear amplification by in vitro transcription. The
amplified RNA is then reverse transcribed using a random primer with an overhang of the sequence complementary to the Illumina 3’ adaptor. cDNA
with both Illumina adaptors are selected by polymerase chain reaction and the DNA library is sequenced using paired-end Illumina sequencing.
c Mean number of unique transcripts identified across five technical replicates, for mouse (black) and Salmonella (red). Circles and error bars represent
the mean and standard deviation. d Plot between the expression of the two technical replicates of 10 pg mouse RNA and 10 pg Salmonella RNA.
e Boxplots indicating the correlation coefficients across replicates with the sum expression of all 20 samples for mouse and for five replicates in each
dilution for Salmonella. Mouse indicated in black, Salmonella dilutions indicated in red
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single-cell RNA-seq [11, 12], which includes barcoding
for multiplexing, IVT for amplification, and paired-end
Illumina sequencing.
To assay the ability of scDual-Seq to detect transcripts

of both eukaryotic and bacterial origin, we processed
RNA extracted from bulk samples of mouse embryonic
stem cells (mESC) and from the Gram-negative, intracel-
lular pathogen S. typhimurium (Salmonella). On average,
we detected 63,000 unique mouse transcripts and
120,000 unique Salmonella transcripts when starting
with 10 pg RNA, the estimated amount of RNA present
in a mammalian cell, respectively (Fig. 1c). This is con-
siderable given that one mESC cell is thought to consist
of 500,000 transcripts [13]. To study the sensitivity of
scDual-Seq with reduced RNA input amounts, we proc-
essed samples with 10 pg of mESC RNA and 1 pg,
0.1 pg, and 0.01 pg Salmonella RNA, respectively. We
detected roughly the same number of mouse transcripts
and a decrease of one order of magnitude in Salmonella
transcripts across the dilutions, as expected from the
linearity of detection in scDual-Seq (Fig. 1c). Due to the
random priming during RT, we detected messenger
RNAs (mRNAs) and non-coding RNA in our samples
(Additional file 2: Figure S1a). While most of the
Salmonella transcripts correspond to non-coding RNA,
in mouse this is not the case; which may be attributed to
a difference in the structure of the prokaryotic and
eukaryotic ribosomal RNAs. We further detected high
correlations between technical replicates; R = 0.99, on
average, for 10 pg mouse samples and R = 0.89 for the
10 pg Salmonella samples (Fig. 1d shows one pair of
technical replicates). The reproducibility, however, is re-
duced with lower input amounts: for 0.01 pg Salmonella
RNA, the average correlation is 0.79 (Fig. 1e). Based on
these studies, we concluded that scDual-Seq accurately
measures RNA levels in samples containing as little as
0.01 pg RNA for both polyA+ and polyA- RNA. On
average, we detected 470 Salmonella transcripts in
0.01 pg of RNA, which is the expected amount of RNA
in a single bacterial cell [14]. Since this amount of
RNA has been estimated to correspond to 10,000
transcripts, scDual-Seq has an estimated sensitivity of
approximately 4.7%.
To test for the sensitivity of scDual-Seq in measuring

the transcriptomes of live Salmonella, we identified
genes differentially expressed between an overnight
culture of Salmonella grown in bulk and intracellular
Salmonella within macrophages in exposed single cells,
and 10 and 100 cell populations. We detected a similar set
of differentially expressed genes in all three comparisons,
indicating that sensitivity is not severely compromised at
the single-cell level (P < 0.001; hypergeometric distribu-
tion; Additional file 2: Figure S1b). Second, we found good
correspondence of Salmonella transcriptomes between

the single-cell data and population-level data, as well as
between the 10-cell and 100-cell population data
(Additional file 2: Figure S1f), demonstrating the accuracy
of the single-cell measurements of bacterial transcripts.
Comparing the sensitivity of scDual-Seq directly with that
of CEL-Seq2, we found that CEL-Seq2 has higher sen-
sitivity with more detected mouse genes than scDual-Seq
(Additional file 2: Figure S1c). However, examining at the
number of detected Salmonella genes (non-polyA),
scDual-Seq performed better than CEL-Seq2. scDual-Seq
shows the same dependency of noise on expression level
that was observed in CEL-Seq [11] (Additional file 2:
Figure S1d, e).
Previous work has identified that infection is accompan-

ied by significant and dramatic gene expression changes in
either the host or the pathogen [5, 15, 16]. To simultan-
eously query both host and pathogen transcriptomes, we
isolated mouse bone marrow-derived macrophages and
analyzed: (1) infected cells that were isolated by
fluorescence-activated cell sorting (FACS) after having
been exposed to GFP-expressing Salmonella at a 50:1
MOI, at three time-points (2.5, 4, and 8 h after infection);
and (2) cells that were not exposed to the pathogen
(unexposed), as control (Fig. 2a, Additional file 2:
Figure S2a–c, see “Methods”). For each time point, 96
cells were processed using scDual-Seq.
By performing an unbiased comparison of the macro-

phage single-cell transcriptomes across the time-points,
we identified two responses that, for the most part, dis-
tinguished the infected and unexposed cells (Fig. 2b,
Additional file 2: Figure S2d). Among the infected cells,
one type of response characterizes the majority of in-
fected cells that we term an induced response (87 cells).
A second type of response characterizes the 69 infected
cells whose transcriptome resembles that of unexposed
cells, which we term a “partially induced” response be-
cause their global transcriptional patterns are more simi-
lar to the unexposed than other infected cells. Genes
known to be part of the immune response – Tnf and
Sod2 – are differentially expressed between the unex-
posed and partially induced cells relative to the induced
cells. As a control, we verified that Gapdh expression
levels were not also higher in the induced cells (Fig. 2c).
Moreover, genes previously detected to be differentially
expressed between exposed and unexposed macrophages
[3] show significant expression differences across these
clusters (Fig. 2d). While the partially induced cells do
not induce a full immune response in contrast to the
induced cells, they may nonetheless be considered as
having a “partial response” because as a population they
have higher expression (though not significant) of some
major immune response genes when compared to the
unexposed cells, e.g. Tnf (Fig. 2c). Furthermore, we
visualized the relations among the identified groups
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based upon the aforementioned immune response genes
[3]. Strikingly, we found an arc-shaped distribution of
cells whereby the partially induced cells are flanked by
the unexposed and induced cells (Fig. 2e, Additional
file 2: Figure S2e).
We next sought to study Salmonella expression in the

induced cells. Since Salmonella expression is relatively
sparse in terms of the number of detected transcripts,
we pooled the expression of genes belonging to the same
regulon [17] into a collective expression profile (see
“Methods”). While these regulons are partially defined
based upon E. coli orthology [17] – in addition to
Salmonella-based experiments – it has been previously
shown that co-expression among genes is generally evo-
lutionarily conserved [18, 19]. Examining the expression
of the Salmonella regulons within the induced macro-
phages of all three time-points, we identified two classes
of intracellular Salmonella with distinct transcriptional
signatures which we denote Class I (47 single cells) and

Class II (40 single cells) (Fig. 3a). Examining mouse gene
expression and Salmonella regulon expression specific
to each class revealed high-virulence functionality in
Class I Salmonella (Additional file 2: Figure S3a, b). We
further confirmed this separation into two Salmonella
classes as well as the cluster of partially induced cells in
an independent experiment involving a single time-point
(Additional file 2: Figure S4a–c).
To gain further insight into the molecular composition

of the subpopulations, we compared gene expression
across the partially induced, Class I, and Class II cells,
according to their Salmonella regulon expression pro-
files. Surprisingly, Class I subpopulation is more corre-
lated to that of the Salmonella regulon expression in
partially induced cells than to that of Class II cells, des-
pite the fact that both Class I and II Salmonella induce
the same response from the host (Fig. 3b, P < 0.0001,
Wilcoxon rank sum test, see “Methods”). There are two
main possible models to explain the simultaneous

a

b c

d e

Fig. 2 Identifying host subpopulations in mouse macrophages exposed to Salmonella. a Bone marrow-derived macrophages, exposed or unexposed to
Salmonella, were sorted into a 96-well plate and processed using scDual-Seq at the four indicated time-points. b tSNE plot of single cells (perplexity = 10)
computed based on correlation matrix between single cells using 457 mouse genes with high expression variation (mean/median > 1) and maximum
expression higher than 10 tpm. The color indicates exposed (green), unexposed (gray), and induced (black circle). DBscan was used to cluster the cells
into two groups. c Boxplot of expression levels (log10 tpm) of the indicated mouse genes across the non-infected, partial-induced, and induced single
cells (P < 0.02, Wilcoxon rank sum test). d Boxplots of the sum expression of the previously reported infection gene module [3] across the exposed and
unexposed individual cells in our scDual-Seq data (P < 0.0001, Wilcoxon rank sum test). e tSNE plot of single cells (perplexity = 10) computed based on
the normalized expression of the previously reported infection gene module [3]. Cells were colored according to their annotation in (a)
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observation of these three subpopulations (the partially in-
duced macrophages infected with Class-I-like Salmonella,
the fully induced macrophages infected with Class I
Salmonella, and the fully induced macrophages infected
with Class II Salmonella). In the first, the three different
subpopulations could represent different stages through
which infection progresses linearly (Fig. 4). While the host
cells were exposed to Salmonella simultaneously, the rate
of infection progression could be non-uniform, resulting
in the co-existence of all three subpopulations.
Alternatively, the co-existence of the three subpopulation
classes may indicate that infection proceeds via different
parallel, individual programs wherein a commitment to a

particular state of infection is made by the encounter be-
tween an individual bacterium and host cell.
To distinguish between these two models, we used

pseudo-time analysis based upon the tSNE plot in Fig. 2e.
Pseudo-time was inferred based upon the Euclidean dis-
tance among the cells (in tSNE space, Fig. 3c, see
“Methods”). Interestingly, we observed that the ordered
cells recapitulated the clustering observed in the previ-
ous analysis. Cells of the same group generally clustered:
first the unexposed cells, next partially induced cells
followed by Class I cells and finally Class II cells. To test
whether ordering by pseudo-time reflected known bio-
logical processes, we queried for the SPI-1 and SPI-2
(type-III secretion systems) Salmonella regulons which
are known to be inversely expressed during infection
[20–22]. Interestingly, we found that while the mean ex-
pression of both regulons is similar across the subpopu-
lations (Additional file 2: Figure S3B), examining their
expression level at the pseudo-time single-cell level or-
dered cells, SPI-1 is more highly expressed in the par-
tially induced cells, early in the infection, and SPI-2 is
more highly expressed in Class I later in infection
(Fig. 3d, see “Methods”). This order of SPI-1 and SPI-2
expression matches that from previous reports [20–22].
To further query whether the infection progresses

linearly, we followed the distribution of these

a b

c d e

Fig. 3 A time-course of Salmonella infection. a tSNE plot of induced single cells (perplexity = 10) computed based upon 32 Salmonella regulons.
Color indicates Class I (purple) and Class II (orange). DBscan was used to cluster the cells into two groups. b The heatmap indicates Pearson’s
correlation coefficients between the average Salmonella regulons expression of the partially induced, Class I, and Class II subpopulations. c tSNE
plot (positioned as in Fig. 2e) colored by the pseudo-time order of the cells. The bar below indicates unexposed (gray), partially induced (green),
Class I (purple), and Class II (orange) cells, ordered by pseudo-time. d Plot of normalized expression level of SPI-1 and SPI-2 regulons in single cells
ordered according to pseudo-time and smoothed (see “Methods”). The bar below indicates partially induced (green), Class I (purple), and Class II
(orange) cells, ordered by pseudo-time. e Bar chart indicating for each time-point (2.5, 4, and 8 h after infection), the fraction of the three identified
subpopulations (partially induced, Class I, and Class II)

Fig. 4 A model of consecutive infection stages. A model for the
gene regulatory program of Salmonella infection. Host and pathogen
transcriptomic processes are indicated in blue and red, respectively
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subpopulations over the time course of infection. If the
linear model is correct with the partially induced cells
representing the earliest state in infection, we would
expect that the fraction of the cells that are partially
induced to decrease with time. Indeed, calculating the
fraction of each subpopulation at each time point, we
found the largest fraction of partially induced cells at 2.5 h
after infection, with a smaller fraction at 4 h, and no par-
tially induced cells at all at 8 h (Fig. 3e). This result, as well
as the pattern of correlations among the three subpopula-
tions (Fig. 3b) and the order of cells according to the in-
fection pseudo-time (Fig. 3c), is consistent with infected
macrophages following a linear progression from the par-
tially induced state to the fully induced state process
(Fig. 4). Further, since the Class I Salmonella transcrip-
tomes in the fully induced macrophages are transcription-
ally more akin to those of the Salmonella in partially
induced cells, this could suggest a progression of the par-
tially induced cells to the fully induced cells containing
Class I Salmonella. At this stage, the host response is
induced in a large-scale upregulation of immune
functions. Finally, infection could then proceed to macro-
phages maintaining an induced state with Salmonella in a
Class II state. Since the linear and parallel models need
not necessarily be mutually exclusive, a combination of
these two—a temporal linear process in some cells such as
the partially induced macrophages and parallel commit-
ments to different strategies in others—may be possible.

Conclusions
scDual-Seq represents a novel method to query host–
pathogen interactions. We expect that among its many
possible uses, it will be invaluable to study the adaptive
abilities of pathogens to antibiotics, the effect of geno-
typic changes on the immune response of the host, and
the in vivo characterization of infection. Our current
implementation of scDual-Seq does have the limitation
of a high MOI which might have masked certain infec-
tion stages and phenotypes due to a potential variable
number of bacteria in the infected macrophages. As
previously described, constitutive GFP expression in the
infected macrophages is not sufficiently precise to allow
us to robustly conclude the number of bacteria infecting
each macrophage; for example, starting with an MOI of
25, the GFP+ cells contain a range of 1–10 colony form-
ing units (CFU) [3] Further work, perhaps using a
microfluidics platforms [23, 24] to enable the analysis of
a massive cohort of host–pathogen encounters, will
address lower MOIs for a more accurate and compre-
hensive description of infection. Overall, the ability to
capture both the pathogen and host transcription pro-
grams at the level of individual cells will be important
for understanding the relationships among the different
states of infection.

Methods
The scDual-Seq method
The SuperScript II Double Strand cDNA synthesis kit is
used to convert the mRNA to double-stranded DNA
with the following modifications: RT is performed in
one-tenth volume (a total of 2 μL), as described in the
protocol for random hexamer. After RT, RNase treat-
ment is performed using a RNase cocktail enzyme mix
(Life Technologies). A total of 0.5 μL mix containing
0.05 enzyme units is added and incubated at 37 °C for
30 min. 2X AMPure beads are added, incubated at room
temperature for 20 min, and washed with 80% EtOH.
The sample is then re-suspended in 1.5 μL 5X Tailing
buffer and 5 mM dATP and incubated at 94 °C for
2 min. A total of 1 μL mix containing 2 units of terminal
deoxynucleotide transferase (Life Technologies) is added
to the sample, incubated at 37 °C for 30 min, and inacti-
vated at 65 °C for 10 min. The second strand synthesis is
performed in a final volume of 10 μL as described in the
protocol with a modified CEL-Seq2 primer:

CGATTGAGGCCGGTAATACGACTCACTATA
GGGGTTCAGAGTTCTACAGTCCGACGATC
NNNNNAGACTCTTTTTTTTTTTTTTTTTT
TTTTTTV

After second strand synthesis, the samples are pooled
together and cleaned using 1.2X AMPure beads. IVT is
performed in two-fifths reaction volume as described in
the Ambion Message AMP II kit for 13 h.

Measuring the sensitivity of scDual-Seq
We tested scDual-Seq on clean RNA of both mouse and
Salmonella prepared as follows. Mouse RNA was iso-
lated from CGR8 embryonic stem cell (ESC) line and
prepared using a TRIzol extraction and treated with
RQ1 RNase-free DNase (Promega) according to the
manufacturers’ protocols. RNA cleanup was done with
AMPure RNAClean beads. To extract Salmonella RNA,
Salmonella were grown in LB and lysed by bead beating
and RNA was extracted by the Qiagen RNeasy kit. RNA
concentration was measured using Qubit, and diluted
for technical replicates RNA in four different dilutions:
10 pg of mouse RNA mixed with 10 pg, 1 pg, 0.1 pg or
0.01 pg of Salmonella RNA, respectively, each in five rep-
licates. All 20 samples were processed using scDual-Seq.
As a side-by-side comparison, five replicates of the 10 pg
of mouse RNA mixed with 0.01 pg of Salmonella were
processed using the CEL-Seq2 protocol [12].

Mice, cell lines, and bacterial strains
C57BL/6 WT mice were obtained from Jackson Laboratory.
All animals were housed and maintained in a conventional
pathogen-free facility at the Massachusetts General

Avital et al. Genome Biology  (2017) 18:200 Page 6 of 8



Hospital. All experiments were performed in accordance
to the guidelines outlined by the MGH Committee on
Animal Care. All Salmonella typhimurium strains used in
this study were derived from the wild-type strain SL1344.

Bone marrow-derived macrophage (BMDM) infection with
Salmonella
Cultures of S. typhimurium labeled with GFP (pFPV25.1;
Addgene) were grown in Luria-Bertani (LB) medium at
37 °C shaken at 250 rpm for 16 h (overnight culture).
One milliliter from the overnight culture was washed in
PBS and incubated for 1 h with pHrodo dye (Life
Technologies) at room temperature in 100 mM sodium
bicarbonate. S. typhimurium was then washed three
times with HBSS and OD600 was measured. BMDMs
were infected at an MOI of 50:1 and spun down for
5 min at 250 g. After 30 min, cells were washed with
media containing 15 μg/mL gentamicin to remove S.
typhimurium that were not internalized. We sorted 96
individual cells unexposed to Salmonella, individual cells
2.5, 4, and 8 h after infection. At each time-point cells
were lifted from plates and sorted using FACS into
96-well plates containing 4.5 μL lysis buffer (TE containg
5%NP-40 and RNAse inhibitor) [3]. We repeated the
experiment with unexposed cells and cells 4 h after
infection; we sorted 40 individual exposed cells and 40 un-
exposed cells. Sorted cells were DNase treated with 1 uL
enzyme mix of 0.2 U of DNase I at 65 °C for 5 min,
cleaned with 1.8X RNAClean beads, and eluted with
1.2 μL of primer-dNTP mix before continuing to the RT
step of scDual-Seq. Overnight culture Salmonella: 1 mL
from the overnight culture was washed with PBS and
RNA was extracted using phenol chloroform. A total of
1 ng of clean RNA was used as starting amount for the
scDual-Seq protocol.

Sequencing
Paired-end sequencing was performed on the HiSeq
4000 in high-throughput mode, 50 bases for read 1,
seven bases for the Illumina index, and 50 bases for read
2. Read 2 was trimmed for 35 bases before mapping. On
average, each single cell had 2.4 million reads. For the
dilution experiment (Fig. 1), paired-end sequencing was
performed on the HiSeq 2500 in rapid mode, 15 bases
for read 1, seven bases for the Illumina index, and 36
bases for read 2.

Data analysis and statistics
The initial analysis of the scDual-Seq sequenced reads
was done using the CEL-Seq2 pipeline [12]. Reads were
mapped to the mouse and Salmonella transcriptomes. In
the last step, only reads mapping to the reverse strand
are counted, since scDual-Seq produces stranded reads
(htseq_wrapper; extra_params = −s reverse). In our first

experiment, we filtered out cells with < 10,000 unique
transcripts and with correlation of < 0.8 with at least ten
other cells; we were left with 63 unexposed cells, 57 in-
fected at 2.5 h, 59 infected at 4 h, and 42 infected at 8 h.
In the second experiment, after filtering out single cells
with < 20,000 unique transcripts, we were left with 33
unexposed cells and 38 infected cells. We used binomial
statistics to convert the number of UMIs into transcript
counts [13] and normalized to give read count in tran-
scripts per 10,000.

Gene Ontology analysis
Based on the tSNE plot shown in Fig. 2b, we defined two
groups of cells: partially induced and induced cells. For
each group, we identified 50 genes that are expressed high-
est in that group and with the lowest P value for differen-
tial expression between the two groups (Kolmogorov–
Smirnov test). For each gene set we computed the
enrichment for gene ontology terms (hypergeometric
distribution) using annotations from Ensembl [25].

Regulon expression analysis
For each cell, we summed the number of unique tran-
scripts belonging to the same regulon [17] into a collect-
ive regulon expression and normalized to transcripts per
thousand. For each defined group (partially induced,
Class I, and Class II) we performed the Wilcoxon rank-
sum test for each regulon comparing the expression
level (tpm) between the group and the two other groups
(for example, partially induced compared with Class I
and Class II). Only regulons with higher expression
levels in this group and a significant P value (P < 0.05)
were selected for further analysis. Expression levels
(tpm) for each of the selected regulons were averaged
for each group. Finally, the mean values were normalized
across the three groups, and ordered using ZAVIT [26, 27].
Correlation coefficients between transcriptomes (Fig. 3b)
were computed based upon their Salmonella regulon ex-
pression levels (log10 tpm) of all infected cells. A Wilcoxon
rank-sum test was used to compare the correlations be-
tween the partially induced and Class I cells with respect
to the partially induced and Class II cells.

Pseudo-time analysis
We used the ZAVIT method [26, 27] to order the cells
based on tSNE-1 and tSNE-2 values generated in Fig. 2e.
The values were coerced to a smooth path by a moving
mean over 50 radius values. The length of the path going
through the cells in tSNE-1, tSNE-2 space was calculated
and used as pseudo-time. For SPI-1 and SPI-2 expres-
sion profiles in single cells, we filtered out cells with no
expression for both SPI-1 and/or SPI-2 regulons. The
expression profiles were ordered by the pseudo-time,
normalized, and smoothed.
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Additional files

Additional file 1: scDual-Seq protocol. This file includes the detailed
scDual-Seq protocol. (PDF 265 kb)

Additional file 2: Supplementary figures. This file includes four
supplementary figures. (PDF 3997 kb)
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