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Abstract

Background—Methylmercury, a worldwide contaminant of fish and seafood, can cause adverse

effects on the developing nervous system. However, long-chain n-3 polyunsaturated fatty acids in

seafood provide beneficial effects on brain development. Negative confounding will likely result

in underestimation of both mercury toxicity and nutrient benefits unless mutual adjustment is

included in the analysis.

Methods—We examined these associations in 176 Faroese children, in whom prenatal

methylmercury exposure was assessed from mercury concentrations in cord blood and maternal

hair. The relative concentrations of fatty acids were determined in cord serum phospholipids.

Neuropsychological performance in verbal, motor, attention, spatial, and memory functions was

assessed at 7 years of age. Multiple regression and structural equation models (SEMs) were

carried out to determine the confounder-adjusted associations with methylmercury exposure.

Results—A short delay recall (in percent change) in the California Verbal Learning Test (CVLT)

was associated with a doubling of cord blood methylmercury (−18.9, 95% confidence interval [CI]

= −36.3, −1.51). The association became stronger after the inclusion of fatty acid concentrations in

the analysis (−22.0, 95% confidence interval [CI] = −39.4, −4.62). In structural equation models,

poorer memory function (corresponding to a lower score in the learning trials and short delay
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recall in CVLT) was associated with a doubling of prenatal exposure to methylmercury after the

inclusion of fatty acid concentrations in the analysis (−1.94, 95% CI = −3.39, −0.49).

Conclusions—Associations between prenatal exposure to methylmercury and neurobehavioral

deficits in memory function at school age were strengthened after fatty acid adjustment, thus

suggesting that n-3 fatty acids need to be included in analysis of similar studies to avoid

underestimation of the associations with methylmercury exposure.

Keywords

Methylmercury Compounds; Neuropsychological measures; Omega-3 fatty acids; Negative
confounding; Prenatal exposure delayed effects; Structural equation modeling

1. Introduction

Methylmercury (MeHg), an organic form of mercury, is primarily generated from inorganic

form in micro-organisms in the aquatic environment as part of the natural global

biogeochemical cycling of mercury (NRC, 2000). MeHg bioaccumulates up the aquatic food

chain so that the highest concentrations occur in large, long-lived predatory species in

freshwater and marine food chains. This worldwide contaminant is a well-established

neurotoxicant that can have serious adverse effects on the developing nervous system. Thus,

infants exposed to high prenatal methylmercury exposure in Minamata, Japan were born

with serious neurological damage, even if their exposed mothers were virtually unaffected

(Igata, 1993; Harada, 1995). Recent epidemiological studies have documented subtle

mercury-associated neuropsychological dysfunctions in the domains of language, attention,

and memory, and to a lesser extent, in visuospatial and motor functions (Grandjean et al.,

1997; NRC, 2000; Debes et al., 2006).

Fish and seafood, however, contain n-3 polyunsaturated fatty acids (PUFA), mainly

docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (Hearn et

al., 987; Raper et al., 1992) that are essential for normal brain development and therefore

may attenuate the apparent methylmercury toxicity. DHA is a component of membrane

structural lipids that are enriched in non-myelin membranes of the nervous system and

certain phospholipid components of the retina. EPA is a precursor of the n-3 eicosanoids,

which have a range of beneficial effects (Kinsella et al., 1990; Connor, 2000; Mahaffey,

2004). The demand for PUFA is the greatest from the beginning of the third trimester of

gestation through about 18 months after birth when the human brain grows the fastest;

insufficient supplies of PUFA and other nutrients may result in deficits in brain development

(Innis, 1991).

This creates a situation of negative confounding, where MeHg and nutrients affect the

outcome in opposite directions, thus resulting in substantial underestimation of the effects of

mercury toxicity and of fish benefits unless there is mutual adjustment of both (Choi et al.,

2008a; Stewart et al., 2012). Among the small number of studies that examined the effects

of both nutrients and MeHg at the same time as predictors of developmental outcomes,

several found that the effects of both predictors were strengthened when both were included

in the modeling of the outcomes (Oken et al., 2005, 2008; Budtz-Jørgensen et al., 2007;
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Strain et al., 2008; Boucher et al., 2011). A recent review suggested that further studies are

needed to examine the association of MeHg and nutrients from fish consumption with

neurological development (Dziorny et al., 2012). Without mutual adjustment of both the

mercury exposure and nutrients from fish, inherent bias will result from the underestimation

of both toxicants and nutrients. The bias will be greater for parameters that are measured

with a larger imprecision (Budtz-Jorgensen et al. 2007). Hence there is a great need to

clarify the relative risks and benefits of fish and seafood consumption.

The current study was undertaken to assess the potential impact of negative confounding by

n-3 PUFA on the methylmercury effects on children’s neurobehavioral performance. Faroes

Islands, the study location, is a Nordic fishing community with limited social differences,

and the pollutant exposures primarily originate from traditional diets that include seafood

and pilot whale meat (Grandjean et al., 1992). We made use of each individual’s multiple

exposure biomarkers which included prenatal mercury levels from maternal hair at

parturition and cord blood samples. We also included the result of the child’s hair and blood

samples at 7 years of age. We used structural equation model (SEM) analysis to ascertain

the association between the combination of MeHg exposure biomarkers on groups of

outcome variables, thus avoiding the multiple comparison problems and adjusting for

exposure imprecision and missing data which may not be adequately addressed by standard

regression analysis (Budtz-Jørgensen et al., 2002).

2. Materials and methods

2.1. Study population

A cohort of 182 singleton term births was assembled during a 12-month period in 1994–

1995 at the National Hospital in Torshavn in the Faroe Islands. The local marine diet

includes also the consumption of pilot whale meat, a main source of methylmercury

exposure (Steuerwald et al., 2000). Six children who had congenital neurologic disease or

psychomotor retardation were excluded. A total of 176 were included in the study.

The protocol of the study was approved by the Faroese ethical review committee and by the

Institutional Review Board in the US. Written informed consent was obtained from all

parents.

2.2. Measurements of Exposure

The mercury (Hg) concentration in whole blood from the umbilical cord was used as the

primary indicator of prenatal exposure to MeHg (Grandjean et al., 1992, 1997). Cord blood

samples were obtained at birth and Hg analysis was performed in duplicate by flow-injection

cold-vapor atomic absorption spectrometry after digestion of the sample in a microwave

oven. Hair samples were cut close to the root in the occipital area of the mother at

parturition. Details of analytic methods and quality control procedures are described

elsewhere (Grandjean et al., 1992, 1997).

Increased exposure to polychlorinated biphenyls (PCBs) may occur in the Faroes from the

ingestion of blubber from pilot whales (Grandjean et al., 1997). The concentrations of major

PCB congeners were therefore measured in maternal serum obtained at the mothers’ last

Choi et al. Page 3

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



antenatal consultation at week 34. PCB congeners were quantified by a two-stage solid-

phase extraction method, followed by gas chromatography analysis with electron capture

detection (Steuerwald et al., 2000). To avoid problems with congeners not assessed and

concentrations below the detection limit, a simplified total PCB concentration was

calculated as the sum of congeners CB-138, CB-153, and CB-180 multiplied by 2

(Heilmann et al., 2006).

2.3. Measurements of Seafood Nutrients

Cord serum phospholipids were extracted and transmethylated before analysis on a gas

chromatograph with a flame inonization detector (Bjerve et al., 1987). Results were reported

as relative concentrations in weight percent of total phospholipid fatty acids for essential n-3

PUFA (DHA and EPA), arachidonic acid (AA, 20:4n-6) as an essential n-6 PUFA, and the

three relevant elongation and desaturation products – eicosatrienoic acid (ETA, 20:3n-9),

docosatetraenoic acid (DTA, 22:4n-6), and docosapentaenoic acid (DPA, 22:5n-6). The sum

of DHA and EPA was highly correlated with the total n-3 fatty acid concentration (r=0.98,

p<0.001) and was used as the nutrient adjustment.

Selenium in cord blood samples were determined by electrothermal atomic absorption with

Zeeman background correction. Methods and procedures of the analysis have been

documented (Grandjean et al., 1992). We found that selenium was only weakly correlated

with the sum of DHA and EPA (r=0.27, p<0.001). Selenium in cord blood showed an

average of 10-fold molar excess above methylmercury (Choi et al., 2008b).

2.4. Outcome measurements

We included neuropsychological tests that would be affected by the neuropathological

abnormalities that have been described in congenital methylmercury poisoning (Harada,

1995; NRC, 2000) and functional deficits seen in children with early life exposure to

neurotoxicants (Kjellström et al., 1989; White et al., 1994). These tests reflect different

domains of brain functions. Details of the administration and results of the tests have been

published (Grandjean et al., 1997; Choi et al., 2008b). In addition, based on a priori

neurobehavioral knowledge and supported by exploratory factor analysis, the outcome

variables were grouped into major nervous system functions (Debes et al., 1996; Budtz-

Jørgensen et al., 2002). Briefly, Boston Naming Test (Kaplan et al., 1983) for language,

Neurobehavioral Evaluation System (NES) Finger Tapping (Dahl et al., 1996) for motor

function, NES Continuous Performance Test and Wechsler Intelligence Scale for Children –

Revised (WISC-R) digit span forward (Weschler, 1974) for attention, WISC-R Block

Design, Stanford-Binet (S-B) copying and recall (Thorndike et al., 1986) for visuospatial

performance, and California Verbal Language Test (Children) (Delis et al., 1994) for verbal

and memory functions.

2.5. Measurement of covariates

Potential covariates were identified based on the prior knowledge of potential influence on

the outcome variables and the epidemiologic setting in the Faroe Islands (Grandjean et al.,

1997; Steuerwald et al., 2000). Characteristics of the cohort are described elsewhere

(Steuerwald et al., 2000). Briefly, the characteristics of the child included sex, age at testing,
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parity, the Home Observation for Measurement of the Environment (HOME) evaluation

(Caldwell and Bradley, 1985), and computer experience (for computer-assisted tests). The

parental characteristics considered were maternal Raven intelligence score, and, as binary

variables, maternal smoking during pregnancy, maternal and paternal vocational and

professional training and paternal employment. For the socially and highly homogenous

Faroese society where social status scales from other countries are not appropriate, we used

vocational or professional training (versus unskilled) of each parent and the employment

status of the father as binary indicators of social background (Grandjean et al. 1997). For

computer-assisted tests, two binary variables (yes/no) relating to the child’s acquaintance

with computers and computer games were included.

Previously defined medical risk factors at birth (Grandjean et al., 1997) did not show any

relationship with mercury exposure (97% of the children did not have any) and were

therefore not included in the final models.

2.6. Statistical analyses

The distributions of the exposure data were skewed, and were therefore log (base 10)

transformed to approximate a Gaussian distribution. Most of the neurobehavioral test scores

were normally distributed, except for Block Design (transformed to the square root of the

score) and the number of missed responses on the Continuous performance Test (score was

transformed to the natural logarithm +1). The distributions of the nutrients approximated a

Gaussian distribution. Associations of contaminant exposures and nutrient concentration

with outcome parameters were determined using standard regression techniques. Residual

plots were used to assess the model fit, and the significance of second- and third- order

terms was determined to test linearity assumptions. Association with mercury exposure was

expressed as the change (as a percentage of standard deviation) of the outcome variables for

each doubling of the exposure. The corresponding 95% confidence intervals (CI) were

calculated. The nutrient association was similarly expressed as the change of the outcome

variables for a one-unit increase in the nutrient variable.

DHA and AA are the two major PUFAs that are important in early central nervous system

development (Jacobson et al. 2008; Martinez 1992). Because they compete for the same

metabolic pathways, high dietary intake of DHA can result in decreased tissue AA

(Jacobson et al. 2008). Studies have used the ratios of DHA to AA or total n-3 to n-6 to

evaluate the degree of n-3 fatty acid enrichment (Cotogni et al. 2011; Jacobson et al. 2008;

Simopoulos et al. 2002). We therefore included the ratio of sum DHA and EPA to AA as an

additional nutrient parameter.

A recent study found that the concentrations of the three relevant elongation and

desaturation products – eicosatrienoic acid (ETA, 20:3n-9), docosatetraenoic acid (DTA,

22:4n-6), and docosapentaenoic acid (DPA, 22:5n-6) may reflect relative deficiency or a

suboptimal dietary supply of essential fatty acids which might not be observed by including

n-3 nutrients alone (Slagsvold et al. 2009). As a secondary analysis, we therefore included

these three fatty acids in addition to DHA+EPA as the nutrients adjustment.
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Because of the availability of several exposure parameters and outcome variables, linear

regression analysis with confounder adjustment was complemented by structural equation

models (SEMs) to assess the association between an integrated set of exposure variables

(cord blood and maternal hair mercury) on the one hand, and sets of outcomes (tests for each

of the brain function domain) on the other, with adjustment for nutrient variables and

confounders. SEMs have only recently been introduced in environmental health research,

but detailed instructions are available (Bollen, 1989; Budtz-Jørgensen et al., 2002). In this

approach, the neurobehavioral outcomes are considered to be manifestations of five latent

neurobehavioral variables, and similarly, mercury concentrations in cord blood and maternal

hair measured the child’s latent exposure. Each of the latent neurobehavioral variables was

assumed to depend linearly on the latent exposure variable (See Figure 1 for the verbal

function). In addition to avoiding multiple comparison problems, this method can adjust for

exposure imprecision and missing data, which may not be adequately addressed by standard

regression analyses (Budtz-Jørgensen et al., 2000). Information from children with

incomplete data was included in the maximum likelihood estimation under the assumption

that the values were missing at random (Little and Rubin, 2002; Budtz-Jørgensen et al.

2002).

The outcome variables were grouped into several latent brain function domains: verbal

(Boston Naming tests, California Verbal Language Test (CVLT), and Digit Span forward);

motor (Finger Tapping); attention (digit span forward and Continuous Performance Test);

spatial (square block design, copying, and copying recall); and memory (California Verbal

Language Test and copying recall). The latent variables were determined from factor

structure and consistency with response modalities where the test scores were assumed to

reflect five broad functional groupings as previously described (Debes et al. 2006). In order

to include a sufficient number of tests in each group, outcomes were allowed to occur in

more than one group. Exposure effects on the latent outcomes can be expressed as the effect

of a doubling in exposure in the units of a selected neurobehavioral test score (the so-called

reference outcome) chosen before the analysis.

Additional separate analyses were performed including selenium as an additional nutrient,

and PCB a potential confounder.

To support and enhance our current analyses, we also include as supplementary materials, a

meta-analysis for SEM with the inclusion of a larger previous cohort with similar

characteristics, but the fatty acid measurements were missing.

3. Results

The characteristics of the cohort are reported in Table 1. The children were born with birth

weight above 2500 g and with a mean gestational age of 39.6 weeks. This population is

highly dependent on fish and seafood, including pilot whale as confirmed by the dietary

habits during pregnancy. Most of the pregnant women were non-smokers (69%), and 87.5%

did not consume alcohol during pregnancy.

Table 2 shows the geometric means and interquartile ranges of Hg and PCB concentrations

among the 176 children. The exposure biomarkers showed relatively wide ranges. The
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interquartile range of Hg concentrations spanned almost a factor of four. Cord blood Hg was

highly correlated with maternal hair Hg at parturition (r=0.84, p<0.001), and moderately

correlated with cord serum PCB (r=0.45, p<0.001). PCB did not show any statistically

significant associations with the outcomes, and including it as a confounder in the models

only marginally changed the associations with mercury. We therefore report the results

without PCB adjustment.

Table 3 shows the distribution of mean relative concentration of fatty acids (given as weight

percent) in cord serum phospholipids and cord blood selenium among the 176 subjects. As

was found in our earlier study, selenium did not play a significant protective role against

methylmercury neurotoxicity, and including it in the models only changed the n-3 fatty acid

association by about 1–3%, the results were therefore reported without the selenium

adjustment.

Means of the neuropsychological tests were generally within expected limits, based on

Scandinavian and similar norms for this age range (Table 4). Results of multiple regression

models showed that increased cord blood methylmercury exposure was significantly

associated with deficit in recall for short delay at 7 years, with marginal significant

association with verbal learning (Table 4). These associations were strengthened after the

adjustment of fatty acids. The Stanford-Binet immediate recall correct scores were

marginally associated with methylmercury exposure but the association though in the

expected direction, became non-significant after the adjustment of the nutrients. No

significant or marginal significant associations between methylmercury exposure and the

other outcomes were found. The nutrients were not associated with the outcomes.

A SEM was constructed to determine the overall association of prenatal mercury exposure

with each group of neurobehavioral tests at 7 years, with adjustment for nutrients (expressed

as the sum of DHA and EPA) and confounders. Figure 1 shows the SEM to determine the

association of prenatal methylmercury exposure on verbal function. Similar models were

performed for the motor, attention, spatial, and memory functions. Results for the latent

variables (Table 5) were in accordance with those found in the regression models. Prenatal

mercury exposure was significantly associated with decreased memory performance, and its

association with verbal function reached marginal significance with the adjustment of the

sum DHA and EPA. In both outcomes, the associations were strengthened after adjusting for

the nutrient. We also included maternal fish dinners in the models and found similar but

weaker association with the memory function (see Appendix A), and we therefore report the

models with the nutrient adjustments only.

Results of the analyses using the ratio of sum DHA and EPA to AA were similar to those of

the sum of DHA and EPA (see Appendix A). Similar results were found in the secondary

analysis when the three relevant elongation and desaturation products – ETA, DTA, and

DPA were adjusted as the nutrients in addition to DHA+EPA (see Appendix A).

4. Discussion

Our results showed that increased prenatal methylmercury exposure was associated with

deficits in memory function at school age – a domain known to be sensitive to this
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neurotoxicant. The association was strengthened after adjustment for n-3 fatty acid

concentrations.

A major strength of the present study is that we used valid exposure biomarkers as indicators

of prenatal MeHg exposure, and grouped outcome variables into major nervous system

functions based on a priori neurobehavioral knowledge as previously described (Budtz-

Jørgensen et al., 2002; Debes et al., 2006). Past studies have assessed the association using

mercury concentrations in maternal hair (Oken et al., 2005; Strain et al., 2008) or cord blood

(Boucher et al., 2011) with individual outcomes. Our SEM analyses used integrated

information from all available exposure biomarkers, taking into account the imprecisions

originating from both laboratory measurement error and biological variation (Budtz-

Jørgensen et al., 2002). The latent exposure variable is likely to provide a better

approximation to the true prenatal MeHg exposure if the model assumptions are appropriate.

Similarly, the outcomes were grouped to reflect the different domains of brain functions.

The SEM therefore avoids multiple comparison problems and adjusts for exposure

imprecision and missing data, which may not be adequately addressed by standard

regression analyses.

To separate opposite impacts on the outcomes such that the true extent of developmental

methylmercury neurotoxicity will not be underestimated, we assessed both the beneficial

effects and adverse risks of fish intake at the same time. We used measurements of essential

n-3 PUFA (DHA and EPA) and n-6 PUFA (AA) in cord serum. The average concentrations

of DHA and AA in our cohort were more than twice as high as comparable data from the

Inuit infants in Artic Quebec, where fish and sea mammals are the stable diet (Jacobson et

al., 2008), although the different analytical methods in the separation of phospholipids

between the studies might explain some of the differences. Currently there is no

internationally agreed standard method on how to measure PUFA in patients or in

epidemiological studies. Although all methods presently used are significantly and

positively associated with the dietary intake, only a part of the variation in the measured

PUFA concentrations can be explained by the dietary seafood intake. The remaining

variation is explained by other factors such as variations in metabolism, genome, population

characteristics, age, and sex (Lindberg et al. 2013). The high concentrations of PUFA in

cord blood suggested that all Faroese children are PUFA sufficient. Thus, the lack of

nutrient association with the outcomes could probably be due to a relatively flat PUFA curve

at high levels. Studies have shown a non-linear association between measured relative

concentrations of PUFA and outcomes, suggesting a threshold limit above which no further

change of effects on outcomes is observed (Bønaa et al. 1990; Lindberg et al. 2008).

Another factor that may explain the lack of nutrient association with the outcomes could be

that DHA and EPA may have differential effects on the measured outcome (Bønaa et al.

1992; Mori et al. 2000). The analyses with DHA only, however, showed similar results. We

also adjusted for selenium, a nutrient found in seafood, in the analyses. However, no

significant associations with selenium were found, and unchanged associations of mercury

with the outcomes were found after adjustment for selenium, consistent with our previous

findings (Choi et al., 2008b). Again, the high selenium concentrations suggest that the

Faroese are selenium sufficient.
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We had limited power to assess the associations in our cohort. However, the tendencies of

adverse mercury-related associations with the verbal function were consistent with the

advanced SEM models which combined both cohorts (as described in the supplementary

materials), and the observation that the association was strengthened after the adjustment for

n-3 fatty acid concentrations, thus correcting for negative confounding. In addition,

significant association of mercury exposure with deficits in memory performance was

strengthened after adjusting for fatty acids but not fish intake as the beneficial effects of fish

consumption depend on the relative fatty acid content of the fish consumed. Thus, maternal

fish consumption cannot be used as a proxy measure for the nutritional benefits of PUFA

that may mask the adverse effect of Hg exposure. The relatively small changes in mercury

effects with and without the adjustment of fatty acids reflect the low correlation between

mercury exposure and essential fatty acids in our cohorts, and effects of adjustment for fatty

acids could be greater in other populations, especially those that include subjects with a

broader range of intakes. Furthermore, DHA, which is highly enriched in the brain including

the hippocampus and is associated with an increase in the hippocampus-related learning and

memory function (Birch et al. 2000; Diau et al. 2005), may have partially explained why the

negative confounding was observed most clearly in the memory domain.

In conclusion, prenatal exposure to methylmercury was associated with deficits at school

age in domains known to be sensitive to this neurotoxicant, with associations being

strengthened after fatty acid adjustment. These findings suggest that n-3 fatty acids need to

be included in analysis of similar studies to avoid underestimation of the associations with

methylmercury.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AA arachidonic acid

CVLT California Verbal Language Test

DHA docosahexaenoic acid

DPA docosapentaenoic acd

DTA docosatetraenoic acid

EPA eicosapentaenoic acid

ETA eicosatrienoic acid

MeHg methylmercury
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PCB polychlorinated biphenyls

PUFA polyunsaturated fatty acid

SEM structural equation model
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Appendix A

Changes in outcomes (six groups of neurobehavioral tests) and corresponding 95%

confidence intervals associated with a doubling in Hg exposure and a one unit increase in

fish nutrients at age 7 years in SEM analysis with adjustment in a Faroese cohort (N=176)
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Highlights

• Fish and seafood contain toxic contaminants such as methylmercury, but also

provide essential nutrients including n-3 fatty acids

• We measured prenatal methylmercury exposure in cord blood and maternal hair

at parturition, and n-3 polyunsaturated fatty acids in cord serum phospholipids

in a birth cohort

• Neuropsychological performance in verbal, motor, attention, spatial, and

memory functions was assessed at 7 years of age

• Decreased memory function was associated with prenatal methylmercury

exposure

• The association was strengthened by the inclusion of fatty acid concentrations in

the analysis, suggesting that negative confounding will likely result in the

underestimation of mercury toxicity unless nutrient benefits are adjusted in the

analysis
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Figure 1.
Path diagram for a structural equation model (SEM) to determine the overall association of

prenatal methylmercury exposure and verbal function, with adjustment for nutrients

(expressed by the sum of DHA and EPA) and covariates. The estimated true mercury

exposure (Hg) is modeled as a latent parameter based on mercury concentrations in cord

blood (B-Hg), and maternal hair (H-Hg). The latent verbal parameter are expressed by a

series of verbal neuropsychological test results (Boston Naming Tests – BNT1, BNT2; Digit

Span forward; and California Naming Tests – CVLT1, CVLT2, CVLT3, CVLT4)
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Table 1

Characteristics of the 176 Faroese children

Variable

Age in years at examination (mean ± SD) 7.5 ± 0.08

Sex (boy/girl) [%] 50/50

Gestational age in weeks (mean ± SD) 39.6 ± 1.2

Birth weight in g (mean ± SD) 3670 ± 478

HOME score (mean ± SD) 43.3 ± 4.6

Computer experience at testing (yes/no) [%] 89/11

Previous births (0/1/at least 2) [%] 30/28/42

Maternal Raven score (mean ± SD) 47.8 ± 6.4

Non-smoking during pregnancy [%] 68.8

No alcohol consumption during pregnancy [%] 87.5

Monthly fish dinners consumed during pregnancy (0–1/2/at least 3) [%] 20/30/50

Monthly whale dinners consumed during pregnancy (0/1/at least 2) [%] 40/24/36

Monthly whale blubbler dinners consumed during pregnancy (0/1/at least 2) [%] 48/19/33

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Choi et al. Page 16

T
ab

le
 2

D
is

tr
ib

ut
io

n 
of

 H
g 

an
d 

PC
B

 C
on

ce
nt

ra
tio

ns
 A

m
on

g 
a 

Fa
ro

es
e 

B
ir

th
 C

oh
or

t (
N

=
17

6)

E
xp

os
ur

e 
bi

om
ar

ke
r

N
G

eo
m

et
ri

c 
m

ea
n

In
te

rq
ua

rt
ile

 r
an

ge
T

ot
al

 r
an

ge
C

or
re

la
ti

on
 w

it
h 

co
rd

 b
lo

od
 H

g

Pr
en

at
al

 H
g 

ex
po

su
re

 
C

or
d 

bl
oo

d 
(μ

g/
L

)
15

7
21

.4
12

.9
–4

0.
0

1.
90

–1
01

.8
1.

00

 
M

at
er

na
l h

ai
r 

(μ
g/

g)
16

9
4.

10
2.

48
–7

.8
2

0.
32

–1
6.

3
0.

84

Se
ru

m
-P

C
B

a  
(μ

g/
g 

lip
id

)

 
C

or
d 

se
ru

m
16

7
1.

13
0.

63
–1

.9
3

0.
04

–1
8.

4
0.

45

a T
ot

al
 P

C
B

 c
on

ce
nt

ra
tio

n 
w

as
 c

al
cu

la
te

d 
as

 tw
ic

e 
th

e 
su

m
 o

f 
co

ng
en

er
s 

13
8,

 1
53

, a
nd

 1
80

.

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Choi et al. Page 17

T
ab

le
 3

M
ea

n 
R

el
at

iv
e 

C
on

ce
nt

ra
tio

ns
 o

f 
Fa

tty
 A

ci
ds

 (
w

ei
gh

t %
) 

in
 C

or
d 

Se
ru

m
 P

ho
sp

ho
lip

id
s 

an
d 

C
or

d 
B

lo
od

 S
el

en
iu

m
 (

μg
/L

) 
A

m
on

g 
a 

Fa
ro

es
e 

B
ir

th
 C

oh
or

t

F
at

ty
 A

ci
d

N
M

ea
n 

(S
D

)
In

te
rq

ua
rt

ile
 R

an
ge

T
ot

al
 R

an
ge

C
or

re
la

ti
on

 w
it

h 
D

H
A

+E
P

A

Su
m

 o
f 

D
H

A
 a

nd
 E

PA
14

9
9.

57
 (

1.
71

)
8.

22
–1

0.
9

6.
40

–1
4.

5
1.

00

D
oc

os
ah

ex
ae

no
ic

 a
ci

d 
(D

H
A

)
14

9
8.

94
 (

1.
66

)
7.

67
–1

0.
1

5.
93

–1
3.

8
0.

99

E
ic

os
ap

en
ta

en
oi

c 
ac

id
 (

E
PA

)
14

9
0.

63
 (

0.
28

)
0.

43
–0

.7
7

0.
12

–1
.6

1
0.

25

T
ot

al
 n

-3
a

14
9

10
.8

 (
1.

91
)

9.
32

–1
2.

0
6.

97
–1

6.
7

0.
98

A
ra

ch
id

on
ic

 a
ci

d 
(A

A
)

14
9

16
.5

 (
1.

63
)

15
.4

–1
7.

4
9.

28
–2

1.
8

−
0.

02

T
ot

al
 n

-6
b

14
9

32
.0

 (
1.

69
)

30
.9

–3
3.

3
28

.3
–3

6.
1

−
0.

52

D
H

A
+

E
PA

/A
A

 r
at

io
14

9
0.

59
 (

0.
12

)
0.

50
–0

.6
7

0.
35

–0
.9

2
0.

86

T
ot

al
 n

-3
/T

ot
al

 n
-6

 r
at

io
14

9
0.

34
 (

0.
07

)
0.

28
–0

.3
8

0.
20

–0
.5

5
0.

96

Se
le

ni
um

c
13

6
10

3.
0 

(1
.1

4)
93

.8
–1

12
.3

77
.1

–1
57

.5
0.

27

a T
ot

al
 n

-3
 in

cl
ud

ed
 f

at
ty

 a
ci

ds
 1

8:
3n

3,
 2

0:
5n

3,
 2

2:
5n

3 
an

d 
22

:6
n3

b T
ot

al
 n

-6
 in

cl
ud

ed
 f

at
ty

 a
ci

ds
 1

8:
2n

6,
 2

0:
2n

6,
 2

0:
3n

6,
 2

0:
4n

6,
 2

2:
4n

6,
 a

nd
 2

2:
5n

6

c G
eo

m
et

ri
c 

m
ea

n 
an

d 
SD

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Choi et al. Page 18

T
ab

le
 4

A
ss

oc
ia

tio
n 

of
 N

eu
ro

be
ha

vi
or

al
 T

es
t P

er
fo

rm
an

ce
 (

E
xp

re
ss

ed
 a

s 
Pe

rc
en

t C
ha

ng
e)

 a
nd

 C
or

re
sp

on
di

ng
 9

5%
 C

on
fi

de
nc

e 
In

te
rv

al
s 

(C
I)

 a
t 7

 Y
ea

rs
 W

ith
 o

ne

U
ni

t i
nc

re
as

e 
of

 F
at

ty
 A

ci
ds

 (
D

H
A

+
E

PA
),

 a
nd

 a
 D

ou
bl

in
g 

of
 th

e 
C

or
d 

B
lo

od
 H

g 
E

xp
os

ur
e 

W
ith

 A
dj

us
tm

en
t f

or
 C

ov
ar

ia
te

sa  
A

m
on

g 
a 

Fa
ro

es
e 

C
oh

or
t

(N
=

17
6)

T
es

t
M

ea
n

M
od

el
 1

:
H

g 
on

ly
M

od
el

 2
:

F
at

ty
 a

ci
ds

 o
nl

y

M
od

el
 3

: 
H

g 
w

it
h 

F
at

ty
 a

ci
ds

H
g

F
at

ty
 a

ci
ds

N
E

S2
 F

in
ge

r 
T

ap
pi

ng

 
Pr

ef
er

re
d 

ha
nd

52
13

.1
 (

−
4.

36
, 3

0.
6)

−
0.

07
 (

−
0.

89
, 0

.7
4)

14
.0

 (
−

3.
25

, 3
1.

3)
−

0.
14

 (
−

0.
94

, 0
.6

6)

 
N

on
-p

re
fe

rr
ed

 h
an

d
46

6.
40

 (
−

10
.4

, 2
3.

2)
−

0.
32

 (
−

0.
98

, 0
.3

3)
7.

62
 (

−
9.

16
, 2

4.
4)

−
0.

34
 (

−
0.

98
, 0

.3
1)

 
B

ot
h 

ha
nd

s
70

4.
01

 (
−

13
.4

, 2
1.

4)
0.

28
 (

−
1.

29
, 1

.8
5)

4.
34

 (
−

13
.5

, 2
2.

2)
0.

30
 (

−
1.

25
, 1

.8
5)

N
E

S2
 C

PT

 
A

ve
ra

ge
 R

T
 (

m
s)

b
65

3
8.

59
 (

−
9.

67
, 2

6.
9)

4.
56

 (
−

3.
58

, 1
2.

7)
7.

59
 (

−
11

.1
, 2

6.
3)

3.
79

 (
−

4.
65

, 1
2.

2)

 
L

og
 to

ta
l f

al
se

 n
eg

at
iv

e
1.

16
11

.4
 (

−
7.

35
, 3

0.
2)

0.
02

 (
−

0.
07

, 0
.1

1)
10

.3
 (

−
9.

01
, 2

9.
6)

0.
00

6 
(−

0.
08

, 0
.1

0)

 
L

og
 to

ta
l f

al
se

 p
os

iti
ve

1.
49

−
6.

92
 (

−
25

.2
, 1

1.
3)

−
0.

02
 (

−
0.

10
, 0

.0
6)

−
7.

81
 (

−
26

.6
, 1

0.
7)

−
0.

02
 (

−
0.

10
, 0

.0
6)

W
IS

C
-R

 
D

ig
it 

sp
an

s
4.

17
−

2.
07

 (
−

20
.8

, 1
6.

6)
−

0.
12

 (
−

0.
26

, 0
.0

1)
†

0.
11

 (
−

18
.8

, 1
9.

0)
−

0.
13

 (
−

0.
26

, 0
.0

1)
†

 
Si

m
ila

ri
tie

s
9.

73
−

10
.3

 (
−

26
.8

, 6
.1

4)
0.

15
 (

−
0.

11
, 0

.4
1)

−
13

.0
 (

−
29

.4
, 3

.3
9)

0.
18

 (
−

0.
07

, 0
.4

3)

 
Sq

rt
 b

lo
ck

 d
es

ig
ns

4.
61

0.
08

 (
−

17
.9

, 1
8.

0)
0.

04
 (

−
0.

10
, 0

.1
8)

0.
84

 (
−

17
.2

, 1
8.

9)
0.

04
 (

−
0.

10
, 0

.1
8)

B
os

to
n 

N
am

in
g 

T
es

t

 
N

o 
cu

es
27

.6
−

12
.6

 (
−

30
.3

, 5
.0

6)
−

0.
21

 (
−

0.
78

, 0
.3

6)
−

10
.5

 (
−

28
.4

, 7
.4

7)
−

0.
16

 (
−

0.
74

, 0
.4

2)

 
W

ith
 c

ue
s

30
.7

−
12

.5
 (

−
30

.3
, 5

.1
6)

−
0.

24
 (

−
0.

81
, 0

.3
2)

−
9.

81
 (

−
27

.7
, 8

.0
4)

−
0.

20
 (

−
0.

77
, 0

.3
7)

C
V

L
T

 
L

ea
rn

in
g

36
.5

−
14

.3
 (

−
30

.4
, 1

.8
7)

†
−

0.
01

 (
−

0.
95

, 0
.9

3)
−

15
.7

 (
−

32
.3

, 0
.8

3)
†

0.
11

 (
−

0.
83

, 1
.0

5)

 
Sh

or
t d

el
ay

, f
re

e 
re

ca
ll

6.
36

−
18

.9
 (

−
36

.3
, −

1.
51

)*
0.

22
 (

−
0.

11
, 0

.5
5)

−
22

.0
(−

39
.4

, −
4.

62
)*

0.
28

 (
−

0.
05

, 0
.6

0)

 
L

on
g 

de
la

y,
 f

re
e 

re
ca

ll
6.

54
−

7.
15

 (
−

25
.0

, 1
0.

7)
0.

12
 (

−
0.

21
, 0

.4
5)

−
7.

26
 (

−
25

.2
, 1

0.
7)

0.
14

 (
−

0.
19

, 0
.4

7)

 
L

on
g 

de
la

y,
 r

ec
og

ni
tio

n
12

.8
0.

40
 (

−
14

.7
, 1

5.
5)

−
0.

02
 (

−
0.

24
, 0

.1
9)

0.
12

 (
−

15
.7

, 1
6.

0)
−

0.
02

 (
−

0.
24

, 0
.2

0)

St
an

fo
rd

-B
in

et

 
C

op
yi

ng
 b

lo
ck

 d
es

ig
n

2.
87

−
5.

0 
(−

22
.0

, 1
2.

0)
−

0.
03

 (
−

0.
23

, 0
.1

8)
−

7.
28

 (
−

24
.8

, 1
0.

3)
−

0.
02

 (
−

0.
22

, 0
.1

8)

 
Im

m
ed

ia
te

 r
ec

al
l c

or
re

ct
5.

93
−

16
.0

 (
−

34
.6

, 2
.5

6)
*

0.
05

 (
−

0.
21

, 0
.3

2)
−

15
.7

 (
−

34
.9

, 3
.4

8)
0.

08
 (

−
0.

18
, 0

.3
5)

a A
ge

 a
t t

es
tin

g,
 s

ex
, p

ar
ity

, m
at

er
na

l R
av

en
 s

co
re

, m
at

er
na

l a
nd

 p
at

er
na

l t
ra

in
in

g,
 p

at
er

na
l e

m
pl

oy
m

en
t, 

m
at

er
na

l s
m

ok
in

g 
du

ri
ng

 p
re

gn
an

cy
, a

nd
 H

O
M

E
 s

co
re

. F
or

 c
om

pu
te

r 
as

si
st

ed
 te

st
s,

 th
e 

ch
ild

’s
ac

qu
ai

nt
an

ce
 w

ith
 c

om
pu

te
rs

 a
nd

 c
om

pu
te

r 
ga

m
es

 w
er

e 
in

cl
ud

ed
.

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Choi et al. Page 19
b H

ig
he

r 
sc

or
es

 in
di

ca
te

 w
or

st
 p

er
fo

rm
an

ce
.

† p<
0.

10
,

* p≤
0.

05

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Choi et al. Page 20

Table 5

Changea in Outcomes (six Groups of Neurobehavioral Tests) and Corresponding 95% Confidence Intervals

Associated With a Doubling in Hg Exposure (With and Without Serum Fatty Acids, DHA+EPA) and a one

Unit Increase in Fatty Acids at age 7 Years in Structural Equation Model (SEM) Analysis With Covariate

Adjustmentb in a Faroese Cohort (N=176)

Mercury only (95% CI)
No fatty acids

Mercury with fatty acids (95% CI)

Mercury Fatty acids

Verbal −0.42 (−1.17, 0.32) −0.50 (−1.06, 0.06)† 0.15 (−0.12, 0.43)

 Boston Naming with cues

 Boston Naming no cues

 Digit span forward

 CVLT learning

 CVLT short delay, free recall

 CVLT long delay, free recall

 CVLT recognition

Motor −0.33 (−1.12, 0.46) 0.15 (−0.95, 1.25) −0.14 (−0.68, 0.39)

 NES2 FT preferred

 NES2 FT non-preferred

 NES2 FT both hands

Attention −0.07 (−0.20, 0.06) −0.05 (−0.21, 0.11) −0.07 (−0.16, 0.02)

 WISC-R digit spans

 NES2 CPT mean RT (ms)

 NES2 CPT log false negative

 NES2 CPT log false positive

Spatial −0.13 (−0.32, 0.07) −0.16 (−0.37, 0.05) 0.04 (−0.07, 0.15)

 WISC-R sqrt block designs

 S-B copying designs (16)

 S-B immediate recall correct

Memory −1.01 (−2.21, 0.20) −1.94 (−3.39, −0.49)* 0.67 (−0.03, 1.36)†

 CVLT learning

 CVLT short delay, free recall

 CVLT long delay, free recall

 CVLT recognition

 S-B immediate recall correct

a
Change is expressed in the units of the reference outcome. Verbal: Boston Naming with cues; Motor: NES2 FT preferred; Attention: WISC-R

digit spans; Spatial: WISC-R sqrt block designs; Memory: CVLT learning.

b
Each structural equation model included confounders: sex, age at testing, parity, maternal Raven score, maternal and paternal training, paternal

employment, maternal smoking during pregnancy, HOME score, and monthly whale dinners during pregnancy. For computer assisted tests, the
child’s acquaintance with computers and computer games were included.

†
p<0.10,

*
p 0.05
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