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Abstract 1 

 Arginine, one among the twenty most common natural amino acids, plays a pivotal 2 

role in cellular physiology as it is being involved in numerous cellular metabolic and 3 

signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Due 4 

to decreased expression of argininosuccinate synthetase (ASS) and/or ornithine 5 

transcarbamoylase (OTC), several types of tumor are auxotrophic for arginine. Deprivation of 6 

arginine exploits a significant vulnerability of these tumor cells and leads to their rapid 7 

demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective 8 

destruction of tumor cells. Arginase, arginine deiminase (ADI) and arginine decarboxylase 9 

(ADC) are potential enzymes that may be used for arginine deprivation therapy. These 10 

arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible 11 

to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently 12 

under clinical investigations and if successful will potentially be advanced as anti-cancer 13 

modalities. 14 

 15 
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Introduction 1 

Amino acids play a major role in regulating important cellular events in both normal 2 

and malignant cells. Besides their role in the synthesis of hormones and peptides, amino acids 3 

also function as cell signaling molecules, playing a modulatory role in gene expression.1 4 

Amino acids regulate RNA synthesis by diverse mechanisms ranging from regulating 5 

transcription factors assembly,2 to total mRNA turnover.3,4 Amino acids are major 6 

determinants of a normal cellular physiology, therefore potential signaling pathways such as 7 

amino acid response (AAR) pathway sense their altered metabolism [Figure 1]. Hence, amino 8 

acid levels in the body are critical for important cellular functions.5-9  9 

There is a significant difference between the metabolism of normal and malignant 10 

cells.10 For instance, bio-energetic requirements for homeostasis in normal cells are fulfilled 11 

by catabolic metabolism. On the other hand, the majority of the tumor cells alter their 12 

metabolic program (“metabolic remodeling”) and consume additional nutrients in order to 13 

maintain a balance between elevated macromolecular biosynthesis11 and adequate levels of 14 

ATP for survival.12,13  However, the endogenous supply of nutrients becomes inadequate 15 

during intense growth. Thus tumor cells depend on exogenous nutrients in their 16 

microenvironment to fulfill the elevated energy requirements i.e. they become auxotrophic 17 

for nutrient and energy sources.14-16 Deprivation of amino acids results in growth inhibition 18 

or death of tumor cells by the modulation of various signaling cascades.6-9,17,18  19 

Exogenously incorporated enzymes that deprive amino acids could be a novel 20 

strategy for the treatment of auxotrophic tumors. The first FDA approved heterologous 21 

enzyme for the treatment of cancer was E. coli L-asparaginase.19 L-asparaginase exploits the 22 

differences on their dependence of normal and leukemic cells towards L-asparagine.20 L-23 

asparaginase has been proven to be a promising agent for the treatment of L-asparagine 24 

auxotrophic T-cell acute lymphoblastic lymphoma (T-ALL). Use of L–asparaginase in T-25 
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ALL opened up new windows of ‘amino acid-depriving therapy’. Currently, there is a 1 

resurgence of interest in enzyme-mediated amino acid deprivation as a new therapeutic 2 

approach for cancer treatment.6,7,21,22 For example, arginine depletion can inhibit tumor cell 3 

proliferation and induce cell death pathways. Here we endeavor to provide a basic 4 

understanding of the roles of arginine in normal and tumor cell with emphasis on current 5 

knowledge and developments in the application of enzyme-mediated arginine depriving 6 

therapy as a potential anticancer approach.  7 

Enzyme-mediated arginine deprivation: a potential anti-cancer approach 8 

Arginine is involved in the regulation of various molecular pathways and thus 9 

availability of arginine can modulate key metabolic, immunological, neurological and 10 

signaling pathways of the cells [Figure 2 and 3].23,24  Auxotrophy towards arginine by certain 11 

tumor cells (particularly that of hepatocellular carcinoma and melanoma) has been well 12 

characterized.25,26 Normal cells, when deprived of arginine, undergo cell cycle arrest at Go/G1 13 

phase and become quiescent. If reinstated with arginine, the majority of the normal cells 14 

recover to their normal proliferation status. However, arginine deprivation in tumor cells does 15 

not arrest cell cycle at G1 phase and continue to be in a cell cycle, leading tumor cells to 16 

undergo unbalanced growth and eventually lead to the activation of apoptotic pathways.27,28  17 

Owing to the involvement of arginine in a plethora of cellular pathways, arginine 18 

dependence of tumor cells has rapidly emerged as a potential target for cancer.29 However, 19 

dietary restriction results in the reduction of only 30% of plasma free arginine.30 Thus, 20 

arginine degrading enzyme-mediated arginine deprivation has been proposed as a potential 21 

anti-cancer therapy by various research groups.27-35 Enzymes that can be used for arginine 22 

deprivation therapy (ADT) include arginine deiminase (ADI), arginase and arginine 23 

decarboxylase (ADC) as discussed below [Figure 3].  24 

 25 
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1. Arginine deiminase  1 

Arginine deiminase (ADI) (E.C.3.5.3.6) is a prokaryotic enzyme originally isolated 2 

from Mycoplasma, which catalyzes an irreversible deimination of the guanidine group of L-3 

arginine to citrulline and ammonium ion.36 Normal cells are able to convert citrulline into 4 

arginine through argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL), 5 

expression of which are tightly regulated. However, the expression of ASS/ASL is down-6 

regulated in certain tumor cells by unknown mechanisms and these cells are unable to 7 

convert citrulline to arginine.30-33,37 This makes the tumor cells auxotrophic for arginine for 8 

their growth and cellular functioning. ADI-mediated arginine deprivation leads to apoptotic 9 

cell death, selectively of arginine auxotrophic ASS (-) tumor cells sparing the ASS (+) ADI 10 

resistant normal cells38 [Table 1].  Incidence of ASS deficiency varies depending on the 11 

tumor type and expression level of ASS has been proposed as a biomarker for identification 12 

of ADI sensitive tumors.24,25,39-42  13 

In 1990, Miyazaki and co-workers43 were the first to report the growth inhibition of 14 

Mycoplasma infected human tumor cells. The cause of growth inhibition of human tumor cell 15 

lines was identified as a ADI produced by Mycoplasma. In vitro growth-inhibitory dose of 16 

Mycoplasmal ADI appeared to be 1000 times lower than that of bovine liver arginase. 17 

Subsequently in 1992, growth inhibitory activity of ADI was demonstrated in ASS-18 

downregulated human melanoma cells.44 These pioneering studies established ADI as a 19 

potential anti-cancer enzyme [Figure 4].  20 

1.1 PEGylated ADI 21 

Being microbial in origin, ADI has serious disadvantages of eliciting strong 22 

antigenicity and rapid plasma clearance (half-life of 4 h). To circumvent these limitations, 23 

several studies have aimed to extend the plasma half-life of ADI and to minimize its 24 

antigenicity.  In 1993, Takaku et al addressed these problems for the first time by 25 
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polyethylene glycol (PEG) modification.45 Remarkably, PEGylation of Mycoplasma arginini 1 

ADI enhanced its cytotoxic potential in vivo and once a week intravenous injection of PEG-2 

ADI at a dose of 5 U/mouse (10 mg protein/Kg) depleted plasma arginine to an undetectable 3 

level at least for a week, whereas native enzyme required 10 daily injections to achieve 4 

similar effects. Nevertheless, PEGylation of Mycoplasma hominis ADI also resulted in 5 

significant enhancement of arginine lowering potential of native Mycoplasma hominis 6 

ADI.46,47 Recently, PEGylation and pharmacological properties of an engineered ADI 7 

originated from Pseudomonas plecoglossicida have been studied. PEGylated Pseudomonas 8 

plecoglossicida ADI remarkably improves the stystemic half-life (by 11-folds) and found to 9 

exhibit superior efficacy than native ADI in depleting plasma arginine.48  10 

PEG-ADI has also shown promising outcomes for the treatment of human 11 

malignancies. In March 1999, ADI-PEG20, PEGylated recombinant Mycoplasmal ADI was 12 

approved as an orphan drug by US-FDA for the treatment of HCC and malignant melanomas. 13 

Subsequently in July 2005, European Agency for the Evaluation of Medicinal Products 14 

(EMEA) granted orphan drug status to ADI-PEG20 for the treatment of HCCs.49  15 

ADI-PEG20 is currently undergoing clinical investigation as a randomized double-16 

blind Phase III trial in patients with advanced HCC (NCT 01287585), Phase II studies in 17 

patients with ASS-negative metastatic melanoma (NCT 01279967) and Phase II studies in 18 

patients with relapsed small-cell lung cancer (SCLC) (NCT 01266018)50 [Table 2]. Outcomes 19 

of the previous clinical studies were also encouraging, achieving response rates of 25% and 20 

47% in melanoma and HCC, respectively [Table 2]. Moreover, grade III and IV toxicities 21 

have not been observed in clinical investigations involving ADI-PEG20 in metastatic 22 

melanoma and HCC patients.51,52 Therefore, clinicians are looking forward to the 23 

establishment of ADI-PEG20 as a potent anti-cancer modality.     24 

 25 
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1.2 Tumor sensitivity towards ADI 1 

The auxotrophicity of tumors towards arginine and their sensitivity towards it can be 2 

attributed to the lack or reduced expression of ASS in tumors.25,37-39,53 Notably, numerous 3 

tumor cells which are deficient in ASS expression, are sensitive towards ADI treatment 4 

[Table 1]. Transfection of an expression plasmid containing human ASS cDNA in HCC and 5 

melanoma cells confers severe resistance to ADI treatment compared to ASS-negative cells.47 6 

Till date, most promising targets for ASS expression dependent ADT identified are human 7 

melanoma and HCCs. Other promising targets include malignant pleural mesothelioma 8 

(MPM), renal cell carcinoma, prostate cancer, T-ALL and osteosarcoma.50 However, 9 

molecular mechanisms underlying tumor sensitivity towards ADI treatment, by down-10 

regulation of ASS expression in tumor cells, are still elusive. Promoter hypermethylation-11 

dependent silencing of ASS gene is an endorsed mechanism of ASS gene repression.37,54-56  12 

Methylation frequency of the ASS promoter upto 50-80% level at the CpG loci is 13 

documented across a broad range of lymphomas. In contrast, normal lymphoid samples were 14 

found unmethylated.26 Treatment of ADI-PEG20 to ASS-methylated lymphoma cell lines 15 

revealed dramatic decrease in the proliferation rate and viability count, by inducing caspase-16 

dependent apoptosis, without affecting normal lymphoblastoid cell lines. Demethylation-17 

induced resistance to ADI-PEG20 treatment has also been confirmed in Cutaneous T-cell 18 

Lymphoma (CTCL) cell lines, as their incubation with 5-Aza-dC (demethylating agent) for 8 19 

days which resulted in partial demethylation, followed by transcriptional activation and 20 

synthesis of ASS protein.26  21 

Recently Rabinovich et al have confirmed that proliferation of the osteosarcoma cells 22 

is supported by down-regulation of ASS, by facilitating pyrimidine synthesis via activation of 23 

CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase and dihydroorotase) 24 

complex.57 As cytosolic aspartate serves as a substrate for both ASS and for CAD complex, 25 
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ASS down-regulation can enhance aspartate availability for CAD for the synthesis of 1 

pyrimidine nucleotides to promote proliferation. Thus, aspartate transport can be exploited as 2 

an additional therapeutic target in tumors with ASS down-regulation, especially in those ones 3 

which develop resistance to arginine-depriving enzymes.    4 

1.3 Tumor resistance towards ADI 5 

ASS-deficient tumors are sensitive to ADI treatment; however, arginine deprivation 6 

eventually up-regulates ASS expression in tumor cells and thereby confers resistance towards 7 

ADI.25,58 Transcriptional induction of ASS expression and increase in ASS mRNA level is 8 

reported in human embryonic kidney cells and melanoma cells during arginine starvation.59,60  9 

Transcription factors such as c-Myc and HIF-1Į are involved in the up-regulation of ASS 10 

expression under arginine depleted conditions.60 E-box and GC-box are the important 11 

sequences located between -85 and -35 nucleotides in the ASS promoter region that modulate 12 

ASS expression through their interactions with c-Myc and HIF-1Į. Under the normal 13 

concentrations of arginine, HIF-1Į (but not c-Myc) binds to E-box and thus acts as a negative 14 

regulator of ASS expression. Under the conditions of arginine depletion, HIF-1Į is degraded 15 

and replaced by up-regulated c-Myc, which directly binds to E-box; thus, c-Myc acts as a 16 

positive regulator of ASS expression [Fig. 6 of Ref. 60].  Recently reported in melanoma 17 

cells, inhibition of ubiquitin-mediated protein degradation is a molecular mechanism 18 

responsible for the stabilization and accumulation of c-Myc.61 Furthermore, various cellular 19 

pathways, such as Ras and its downstream ERK/PI3K/AKT kinase cascade are associated 20 

with the post-translational modifications of c-Myc, leading to its phosphorylation and 21 

stabilization during ADI-PEG20-mediated arginine deprivation conditions. Involvement of 22 

Ras/PI3K/ERK signaling pathway in the development of resistance towards ADI treatment 23 

suggests that combination of ADI with Ras/ERK, PI3K/AKT inhibitors is a potential 24 

therapeutic strategy to improve the anti-cancer response.62,63  25 
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Development of anti-drug neutralizing antibodies is another possible mechanism of 1 

resistance towards ADI-PEG20 treatment.64 Arginine concentrations were recovered up-to 2 

pre-treatment levels in a patient with malignant pleural mesothelioma and in Asian patients 3 

with advanced hepatocellular carcinoma following the ADI-PEG20 treatment. This recovery 4 

in arginine concentration was found concomitant with an increase in anti–ADI-PEG20 5 

antibody titer.65 These studies suggest the involvement of drug-associated resistance i.e. anti-6 

drug neutralizing antibodies, rather than tumor-related factors as another possible mechanism 7 

of resistance of some tumor cell types towards ADI-PEG20 treatment.62,63  8 

 9 

1.4 Anti-tumor mechanisms of ADI treatment 10 

1.4.1 Role of autophagy and apoptosis in ADI-mediated arginine deprivation therapy 11 

Due to the involvement of arginine in numerous cellular pathways [Figure 2], the 12 

exact anti-proliferative mechanisms of ADI treatment, besides that of arginine depletion, are 13 

still elusive. One of the potential pathways involved in the cytostatic and cytotoxic potential 14 

of ADI is TRAIL (tumor necrosis factor-related apoptosis-inducing ligand).66-68  TRAIL plays 15 

an important role in the cleavage of Beclin-1 (Atg6) and Atg5 in arginine deprived melanoma 16 

cells.69 Beclin-1 and Atg5 are essential for the formation of autophagosomes and thus crucial 17 

for autophagy. Since autophagy serves as a mean to evade apoptosis in arginine depleted 18 

cells, TRAIL induced cleavage of Beclin-1 and Atg5 leads to decreased autophagy, thereby 19 

increasing apoptosis.69 Additionally, these two drugs (ADI and TRAIL) complement each 20 

other by activating the intrinsic apoptosis pathways. ADI-PEG20 increases cell surface 21 

receptors DR4/5 for TRAIL thereby binding TRAIL to these death receptors. As a result, 22 

caspase-8 or 10 are activated.66 ADI-PEG20 treatment also modulates different autophagic 23 

pathways involved in the cell survival. AMPK and ERK pathways are activated in ADI-24 

treated prostate cancer cells; while AKT, mTOR and S6K pathways are attenuated. ADI-25 
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PEG20 treatment to CWR22Rv1 prostate cancer cells induced autophagy, as revealed by the 1 

appearance of LC-II only after 30 minutes exposure continues its persistence after 24 hours 2 

following ADI-PEG20 treatment.70,71 Additionally, inhibition of autophagy by chloroquine, a 3 

clinically approved anti-malarial agent which inactivates lysosomal functions, accelerates the 4 

ADI-induced apoptotic cell death of prostate cancer 70,71 and SCLCs.39 Thus autophagy has 5 

been proposed as a pro-survival mechanism of tumor cells during arginine deprivation.71 6 

ADI-mediated arginine deprivation is also known to induce caspase-dependent 7 

apoptotic pathways in many of the tumor cells types. ADI-PEG20 treatment activates 8 

caspase-3 in ASS-methylated malignant lymphoma cells, whereas ASS-positive normal 9 

lymphoblastoid cells are resistant to it.26 Similarly, cell death has been attributed to caspases 10 

activation in glioblastoma,54 melanoma,38,72 leukemia73 and pancreatic cancer cells.74 11 

Moreover, all these studies indicate that inhibition of autophagy leads to further advancement 12 

in the ADI-PEG20-mediated demise of tumor cells, suggesting the induction of autophagy as 13 

a mechanism of tumor resistance to ADI-PEG20 treatment.   14 

Cumulative pieces of evidence suggest that the activation of caspases is not a sole 15 

decisive phenomenon in programmed cell death pathways. Caspase-dependent apoptosis is a 16 

major mode of cell death, but in its absence or failure, there are other pathways which can 17 

also execute cell death.75-77  ADI-PEG20 treatment to SCLC, leukemia, retinoblastoma and 18 

prostate cancer cells induces apoptotic cell death pathways, however, without activation of 19 

caspases, suggesting the role of caspase-independent apoptosis as a cell death pathway.33,39,69, 20 

70,78 The inter-membrane space of mitochondrion contains proteins such as apoptosis-21 

inducing factor (AIF) and endonuclease G (EndoG), which can induce apoptotic cell death in 22 

a caspase-independent fashion.79 EndoG is one of the predominant endonucleases that are 23 

involved in the regulation of cellular functions such as mitochondrial biogenesis, DNA 24 

synthesis and repair. AIF is an FAD-containing flavoprotein which plays an important role in 25 
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the stability of an electron transport chain.80 Nutrient deficiency-mediated stress signals 1 

induce mitochondrial outer membrane permeabilization (MOMP), which consequently 2 

releases inter-membrane space proteins such as AIF, EndoG and cytochrome c. AIF plays a 3 

role of central mediator in caspase-independent cell death pathway.81 AIF, once released into 4 

the cytosol, interacts with EndoG and cyclophilin A prior to its translocation into the 5 

nucleus.82 Subsequently after translocation into the nucleus, it triggers cell death either 6 

directly, through interaction with DNA, or indirectly, through the production of reactive 7 

oxygen species.73,74,79,80 MOMP promotes both, caspase-dependent and caspase-independent 8 

apoptotic pathways, but with different kinetics.83 Although, the upstream signaling stimulus 9 

for both, a caspase-dependent and caspase-independent pathway is the same, i.e. via 10 

induction of MOMP, their downstream pathways are different. Moreover, nuclear alterations 11 

and the changes occurring in mitochondrial trans-membrane potential during caspase-12 

independent pathways are different than those observed in a caspase-dependent apoptotic 13 

pathway. 84 14 

To summarize, growing evidence suggests that autophagy is a prevailing cell survival 15 

mechanism in tumor cells undergoing ADI-mediated arginine deprivation. The overall 16 

cellular response to ADI-mediated arginine deprivation in different tumor cells operates 17 

through a complex cascade, initiating with induction of autophagy and followed by the 18 

activation of either caspase-dependent or caspase-independent cell death pathways. It is 19 

worth emphasizing that the discrepancy of cellular responses of tumor cells to ADI-mediated 20 

arginine depletion in activation of either caspases-dependent or caspases-independent cell 21 

death pathways can vary depending on tumor cell type.38,39,70,71,74 As a result, the precise 22 

mechanisms of tumor cell death- consequential of cellular response to ADI-mediated arginine 23 

depletion- appear to be complex and variable, and need to be further elucidated.   24 

 25 
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1.4.2 Inhibition of de novo protein synthesis by ADI-mediated arginine deprivation 1 

Inhibition of de novo protein synthesis is another mechanism which can be attributed 2 

to the anti-tumor potential of ADI. As extracellular arginine pool is responsible for 40% of de 3 

novo protein synthesis, ADI treatment to human lung carcinoma cells results in an anti-4 

proliferative effect, mediated by inhibition of protein synthesis.85 Arginine is present in 5 

various compartments such as extracellular, intracellular and citrulline-arginine regeneration 6 

i.e. cytosolic compartment and it is known to regulate various cellular pathways differently. 7 

Protein synthesis mainly utilizes arginine either from the intracellular pool or the citrulline-8 

arginine regeneration mechanism, while polyamines synthesis largely utilizes arginine pool 9 

from the intracellular origin.86,87 Polyamines are synthesized through the methionine salvage 10 

pathway via decarboxylation of S-adenosylmethionine (SAM). SAM is a donor metabolite 11 

necessary for the transfer of methyl group to DNA and proteins. Human colon cancer 12 

(HCT116) cells treated with short hairpin CD44 RNA interference showed a decrease in the 13 

total amount of methionine-pool metabolites including polyamines, suggesting the role of 14 

polyamines in cancer proliferation.88  15 

ADI treatment towards human mammary adenocarcinoma and lung carcinoma cells 16 

differently modulates polyamine synthesis and the global protein synthesis. Interestingly, 17 

inhibition of protein synthesis has been correlated with the ASS-mediated regeneration of 18 

arginine. Cells expressing low levels of ASS (A549) result in decreased protein synthesis 19 

(without affecting polyamine synthesis) and those expressing higher ASS levels (MCF-7) are 20 

resistant to ADI treatment, as the decreased arginine levels can be replaced by citrulline-21 

arginine regeneration pathway.85  22 

1.4.3 Anti-angiogenic effects of ADI-mediated arginine deprivation 23 

As a tumor grows beyond a certain size (2 mm in diameter for most solid tumors), 24 

available vasculature within the tumor becomes inadequate to supply sufficient quantities of 25 
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essential nutrients for their growth.89 This results in the generation of hypoxic tumor 1 

microenvironment and leads to the development of new blood vessels (angiogenesis) as a 2 

colossal requisite of the developing tumors.90 Accordingly, neovascularization can be stated 3 

as one of the decisive phenomena during tumor growth and metastasis.91 Emerging studies 4 

now indicate that not only molecular signals but also metabolic mechanisms regulate 5 

angiogenesis.92 Under stress conditions such as hypoxia, tumor cells secrete angiogenic 6 

factors such as vascular endothelial growth factor (VEGF).93 Increased levels of VEGF 7 

activate VEGF receptor 2 (VEGFR2) signaling in the quiescent endothelial cells which in 8 

turn initiate angiogenesis.94-96 Endothelial cells produce 85% of their total amount of ATP via 9 

glycolysis. Addiction of endothelial cells on anaerobic rather than aerobic pathway enables 10 

them for the formation of vascular sprouts in hypoxic areas.97,98 Metabolism of tumor 11 

endothelial cells resembles that of highly activated endothelial cells because of the tumor 12 

induced switch from quiescence to proliferation due to metabolically regulated migration 13 

during sprouting.99,100  14 

Besides ADI’s role in modulation of apoptotic pathways, it has an anti-angiogenic 15 

activity that contributes to its anti-tumor potential. The growth, migration and differentiation 16 

of human umbilical vein endothelial cells (HUVECs) are strongly impaired in a medium 17 

containing recombinant ADI.101 As a consequence; it results in decreased tube formation with 18 

intermittent and incomplete microvascular network. Similarly, Park et al. found that E. coli 19 

ADI inhibits angiogenesis by inhibiting tube formation of endothelial cells and 20 

neovascularization in Chick Chorioallantoic Membrane (CAM) and Matrigel plug assay.102  21 

Suppression of nitric oxide (NO) generation is also another possible mechanism for 22 

anti-angiogenic activity of ADI. Since L-arginine is required for nitric oxide synthases 23 

(NOSs) to generate NO, the depletion of arginine by ADI suppresses NO synthesis.102 24 

Potential role of ADI-mediated arginine depletion in inhibition of NO synthesis has been 25 
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reported.103,104 We and others have previously reported that NO promotes tumor growth 1 

through the stimulation of angiogenesis105-107 and regulates cellular interaction by controlling 2 

adhesion molecule expression and ultimately cell adhesion.108,109 NO directly, or indirectly 3 

through NO-mediated reactive nitrogen species (RNS), induces the activation of certain 4 

angiogenic signaling pathways in the endothelial cells.110 NO acts as an autocrine mediator in 5 

endothelial cell functioning and as a final modulator in VEGF stimulated angiogenesis.109,111 6 

NO not only mediates angiogenesis but also subsequent vessel maturation112,113 Moreover, 7 

NO is known to inhibit angiostatin and thrombospondin-1, two main inhibitors of 8 

angiogenesis.114 Owing to the important role of NO in angiogenesis, ADI inhibits tumor 9 

growth not only by draining the supply of arginine, but also by its anti-angiogenic activity via 10 

suppression of NO generation. 11 

To summarize, certain tumor cell types such as, HCCs and metastatic melanomas are 12 

invariably deficient in ASS expression and can be specifically targeted by ADI-mediated 13 

ADT. It is worth noting that more than one pathway may be attributed to the cytotoxic 14 

potential of ADI-mediated ADT [Figure 5]. The anti-tumor potential of ADI may not only be 15 

simply accredited to its action as arginine degrading enzyme but also to several other 16 

mechanisms important in the cellular functioning of tumor cells. Induction of apoptotic 17 

pathways, inhibition of angiogenesis and inhibition of de novo protein synthesis are the 18 

important mechanisms attributed to the cytotoxic potential of ADI. Moreover, studies have 19 

revealed the ADI-mediated modulations in tumor cell-cycle. The fundamental difference of 20 

cell cycle modulations in normal and malignant cells should be exploitable as a means of 21 

selective demise of tumor cells and ADI, in combination with other anti-cancer 22 

chemotherapeutic agents, which can be a potential strategy to improve chemo-sensitization 23 

against tumor cells.115-118  24 

 25 
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 1 

2. Arginase 2 

Arginase (E.C.3.5.3.1) is a mammalian enzyme which catalyzes the conversion of 3 

arginine to ornithine and urea. Arginase is considered as an enzyme responsible for the cyclic 4 

nature of urea cycle, since only the organisms containing arginase are able to carry out the 5 

complete urea cycle.
119

 Two distinct isoforms of mammalian arginase have been identified 6 

which are encoded by two separate genes.
120

 Type I arginase (arginase I) is located in the 7 

cytosol and is mainly expressed in liver. Type II arginase is located in the mitochondrial 8 

matrix and is expressed in extra-hepatic tissues.
121,122

 Intracellular regulation of arginase 9 

expression is of immense importance as it has crucial implications for the synthesis of 10 

essential cellular metabolites,
123

 For example, cytosolic co-localization of arginase I with 11 

ornithine decarboxylase (ODC) preferentially utilizes ornithine for the biosynthesis of 12 

polyamine. On the other hand, due to its co-localization with ornithine aminotransferase 13 

(OAT) in the mitochondria, arginase II directs ornithine for the production of proline and 14 

glutamine.
124,125

  15 

2.1 PEGylated recombinant human arginase I  16 

Elevated requirements of arginine by tumor cells were first identified in 1947 and 17 

preferential utilization of arginine by tumor bearing animals was revealed in 1953.
126,127

 The 18 

use of bovine and murine arginase in arginine deprivation therapy was prevailing until the 19 

advent of recombinant DNA technology,
128-130

  followed by the pervasive use of recombinant 20 

human arginase in subsequent decades.
131,132 

Arginase from bovine and murine sources has 21 

been extensively used for the arginine deprivation therapy in vitro. However, limited success 22 

was achieved in vivo due to its alkaline optimum pH and very low affinity for the substrate. 23 

Human arginase I also has a serious limitation of very short circulatory half-life (Approx. 30 24 

minutes).  25 
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To extend plasma half-life of arginase, PEGylation has been applied successfully. 1 

PEGylated recombinant human arginase I (rhArg-Peg5000mw) had efficient catalytic activity at 2 

physiological pH with improved in vivo half-life of 3 days. Furthermore, rhArg-Peg5000mw 3 

was found to have significant tumor inhibitory activity in BALB/c nude mice bearing HCC 4 

xenografts.131 Notably, these results were consistent with those demonstrated by Tsui and co-5 

workers.133 Recently, a bio-engineered form of human arginase I was developed by the co-6 

factor replacement, the replacement of two Mn2+ ions by Co2+ ions. The modified Co2+-7 

arginase I resulted in 10-fold increase in the catalytic activity and 5-fold greater stability at 8 

the physiological pH. Nevertheless, IC50 values for killing human HCC and melanoma cell 9 

lines were lowered by 12-15 folds.134 More recently, modifications in bioengineered Co2+-10 

arginase I were performed by conjugating 5-kDa PEG  to enhance plasma half-life. This 11 

modified version of bioengineered arginase I (Co-hArgI–PEG) was proven to be cytotoxic by 12 

significantly increasing the expression of caspases-3 in HCC and pancreatic carcinoma (PC) 13 

tumor xenografts.135 Lately, the cytotoxic potential of Co-hArgI–PEG was identified in acute 14 

myeloid leukemia (AML) and glioblastoma cells. AML cell lines were found sensitive 15 

towards Co-hArgI–PEG-mediated arginine deprivation with very low (58-722 PM) IC50 16 

values, suggesting a very high potential of Co-hArgI–PEG-mediated arginine depletion in 17 

AML cells.136 Moreover, Co-hArgI–PEG-mediated arginine deprivation has been 18 

demonstrated to induce caspase-independent, non-apoptotic cell death in human glioblastoma 19 

cells.137 Alternative method to extend the plasma half-life of recombinant human arginase 20 

also has been established. Plasma half-life of a fusion protein form of a recombinant human 21 

arginase (rhArg-Fc, constructed by linking rhArg to the Fc region of human immunoglobulin 22 

IgG1), was evidenced to significantly extend up-to approx. 4 days.138 In addition, rhArg-Fc 23 

was confirmed to conspicuously inhibit the cell growth of human HCC cells in vitro and in 24 

vivo.138  25 
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Last decade has evidenced a prevalent use of recombinant human arginase-mediated 1 

ADT in numerous cancer cell types, mainly metastatic HCC and melanomas.131,139,140 2 

Currently, PEGylated derivative of recombinant human arginase I is undergoing clinical trials 3 

for the treatment of human HCC.141,142 Moreover, initiatives are now being taken to 4 

overcome the possible problem of accumulation of PEGylated products in the liver by 5 

impending approaches such as fusion proteins.138  6 

2.2 Anti-tumor mechanisms of arginase-mediated arginine deprivation 7 

Selective starvation of L-arginine in tumor cells, which are auxotrophic for L-8 

arginine, is one of the most important anti-tumor mechanisms of ADT. Arginase can render 9 

its cytostatic effect as a result of modulations in the cell cycle proteins, whereas, cytotoxic 10 

effects rendered by arginase I-mediated arginine deprivation have been proposed as a result 11 

of induction of potential cell death pathways namely apoptosis and probably by ‘autophagic 12 

cell death’. Summarized below are the current understandings of the molecular mechanisms 13 

of cytostatic and cytotoxic effects rendered by arginase-mediated ADT. 14 

2.2.1 Role of autophagy in arginase-mediated arginine deprivation 15 

 Autophagy is a key sensing and regulatory mechanism of cells in nutrient deprived 16 

conditions. Under stress conditions, autophagy functions as a bio-energy management 17 

system by recycling cell organelles and damaged and/or long-lived proteins.143 Although 18 

autophagy seems to be a survival mechanism of the cells, there is a growing evidence of 19 

accumulation of autophagosomes and other autophagic markers in dying cells unable to 20 

process apoptosis, raising the term ‘autophagic cell death’.144-147 However, the term 21 

‘autophagic cell death’ is based on morphological features rather than the causative role of 22 

autophagy in cell death. New definition of ‘autophagic cell death’ has been proposed, 23 
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implying that cell death must occur without the involvement of apoptotic machinery, 1 

(caspase activation) but with an increase in autophagic flux.148,149  2 

 Mammalian target of rapamycin (mTOR) is a key regulator of coupling cell growth 3 

and nutritional status of the cell.150,151 Autophagy is induced by the inhibition of mTOR 4 

signaling pathway.152 During nutrient affluent conditions, mTOR is involved in the negative 5 

regulation of Atg1 (autophagy related gene 1) which inhibits autophagy.153,154  Arginase-6 

mediated arginine deprivation leads to decreased levels of ATP, which in turn activates the 7 

adenosine 5ƍ-monophosphate-activated protein kinase (AMPK). Activated AMPK 8 

eventually inhibits the mTOR-signaling pathway, manifested by the reduced 9 

phosphorylation of key downstream molecules, such as 4E-BP1 (Eukaryotic translation 10 

initiation factor 4E-binding protein-1). Dephosphorylation of 4E-BP1 is observed in Chinese 11 

hamster ovary (CHO), human melanoma cells and human prostate cancer cells following 12 

their exposure to recombinant human arginase I.65,155,156 Phagosome/lysosome activity is 13 

also significantly increased following an incubation of human tumor cells in L-arginine 14 

deficient medium.157 Additionally, studies carried out by Hsueh et al.156 evidenced no 15 

significant induction of apoptotic mechanisms in prostate cells after their exposure to 16 

rhArgI, suggesting the role of autophagic cell death, rather than apoptosis, as an alternative 17 

cell death mechanism. In addition, autophagy has often accompanied damaged mitochondria 18 

and higher levels of reactive oxygen species (ROS).158,159 Acute generation of ROS has been 19 

attributed to causing severe damages to the cellular macromolecules, which in consequence, 20 

leads to necrosis of the tumor cells.160,161 Overall, arginase leads to deprivation of arginine, 21 

in consequence, it inhibits mTOR pathway during the deprivation and thus forcing tumor 22 

cells to undergo ‘autophagic cell death’ pathway.162  23 

  SLC38A9, a member 9 of the solute carrier family 38, has been recently identified as 24 

an integral component of the lysosomal machinery that controls amino acid-induced mTOR 25 
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activation.
163,164

 Amino acid starvation in human embryonic kidney (HEK293T) cells with 1 

stable expression of SLC38A9 has been shown to activate mTOR in a sustained manner. 2 

Moreover, shRNA-mediated silencing of SLC38A9 results in a reduction of arginine-3 

induced mTOR activation. Also, depletion of SLC38A9 impaired mTOR activation induced 4 

by cycloheximide (a protein synthesis inhibitor which induces accumulation of intracellular 5 

amino acids), further suggests the role of SLC38A9 in mTOR activation at the lysosomal 6 

rather than at the plasma membrane. These studies have demonstrated that SLC38A9 acts as 7 

an upstream positive regulator tor mTOR functioning and thereby modulating autophagy in 8 

arginine-deprived tumor cells.     9 

 Although some studies have advocated autophagy as a cell death mechanism of 10 

arginase-mediated ADT,
156,157

 many groups have explained it as a pro-survival mechanism; 11 

mainly by postponing the activation of apoptosis.
38,161

 Thus, understanding the exact role of 12 

autophagy in arginase-mediated cell death pathways is a complicated episode.
162,165

 13 

Therefore, much need to be elucidated about these new findings related to ‘autophagic cell 14 

death’ and caution must be taken to assign autophagy as a cell death pathway in arginase-15 

mediated ADT. 16 

2.2.2 Role of apoptosis in arginase-mediated arginine deprivation  17 

 The role of autophagy, either in cell survival or in cell death, depends on many factors 18 

such as cell type, nature and severity of the stimuli and so on.
166

 If the attempt of the cells to 19 

survive through autophagy fails, apoptotic pathways take over and ultimately cause cell 20 

death.
143

 Inhibition of autophagy in amino acid deficient conditions induces tumor cell 21 

death, mainly because of further exacerbation of energy dearth.
167,168

 Also, longer 22 

persistence of autophagy is proposed to eventually lead the activation of caspase-dependent 23 

cell death pathways, as autophagy and apoptotic cell death pathways are interconnected and 24 
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also share some common pathways through the induction of the membrane permeability 1 

transitions.169-171 Induction of apoptotic pathways is another consequence of arginine 2 

depletion and anti-tumor mechanism of arginase I-mediated arginine deprivation.  3 

 Involvement of apoptosis as a cell death mechanism in arginase-mediated ADT has 4 

been illustrated in various literature reports. Annexin V is known to selectively stain the 5 

cells, which are destined for apoptosis or in the process of apoptosis. 33% of human 6 

melanoma cell population was destined for apoptotic cell death following rhArg 7 

treatment.139 Arginase I-mediated arginine deprivation led to the transcriptional up-8 

regulation of caspase 3, the intrinsic mitochondrial pathway of apoptosis, which is marked 9 

by the change in mitochondrial membrane potential.172 Recently, an anti-leukemic potential 10 

of PEGylated-arginase has been attributed to kinases general control nonderepressible 2 11 

(GCN2)-mediated induction of apoptosis in T-ALL cells.173  12 

2.2.3 Cell cycle arrest by arginase-mediated arginine deprivation and combination 13 

approaches   14 

rhArg-Peg5000mw-mediated arginine deprivation in various HCC cells results in their 15 

cell cycle arrest at G2/M phase, by decreased expression levels of cyclin B1 and cdc2, or in S 16 

phase, by a transcriptional up-regulation of cyclin A1 [Ref. 140]. rhArg-Peg5000mw-mediated 17 

arginine depletion was witnessed to impair the expression of cyclin D3 in T-ALL cells, which 18 

was followed by an arrest of the cells in the G0-G1 phase of the cell cycle and induction of 19 

apoptosis.172 Recent investigations of rhArg-Fc-mediated arginine deprivation in human HCC 20 

cells exhibited cell cycle arrest at S phase.138 The exact mechanisms of these findings are still 21 

elusive, but the possible reasons seem to be the increased expression of cyclin A and declined 22 

transcription levels of p27 and p21 (the key cyclin kinase inhibitors).  23 
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Owing to the evidence of cell cycle arrest, a combination of arginase and other cell-1 

cycle specific anti-cancer chemotherapeutics as potential anti-tumor approaches have been 2 

established. Synergistic effects of rhArg-Peg5000mw with 5-fluorouracil (5-FU, uracil analog 3 

which interferes with RNA and DNA synthesis) and cytarabine (Ara-C, anti-metabolic 4 

chemotherapeutic agent) have been investigated on the inhibition of proliferation of HCC and 5 

T-ALL cells, respectively.131,172 Treatment of either rhArg-Peg5000mw or Ara-C alone induces 6 

a heterogeneous anti-tumor effect in vivo, whereas, combined treatment of rhArg-Peg5000mw 7 

and Ara-C induces a homogenous prevention of spleen growth, leading to the prolonged 8 

survival in all of the T-ALL bearing mice.172 Moreover,  combined treatment of PEGylated 9 

recombinant human arginase I and oxaliplatin has been demonstrated to synergize the 10 

inhibiting effect on tumor growth and enhanced overall survival probability as compared to 11 

PEGylated recombinant human arginase I or oxaliplatin treatment alone.174 12 

Altogether, arginase has an advantage over ADI that it is efficacious in both ASS-13 

negative and OTC- negative tumors,59 whereas ADI is efficacious only in ASS-negative 14 

tumors. The tumor cell types expressing ASS are resistant to arginine deprivation treatment 15 

by ADI.25,26,54,61,131 Even though arginase has been considered as a potential drug candidate 16 

over a period of six decades, low substrate specificity (high km of 2-4 mM), short plasma life 17 

and optimum alkaline pH (pH 9.3) limit in vivo applications of arginase.131,140 In addition, 18 

robust homeostatic mechanisms in the body allow faster restoration of plasma free arginine, 19 

making in vivo arginine deprivation by arginase more difficult. Most of the scientific efforts 20 

nowadays pay attention to these limiting characteristics of arginase.134,175,176  21 

3. Arginine decarboxylase 22 

Arginine decarboxylase (ADC) (E.C. 4.1.1.19) metabolizes arginine to agmatine, one 23 

of the minor metabolic products of arginine. ADC is mainly found in plants, bacteria and 24 

mammalian liver and brain membranes.177,178 The mammalian ADC is different from other 25 
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sources and distinct but related to ODC.
179

 Although, arginine decarboxylation by ADC is a 1 

minor metabolic route, its product i.e. agmatine has a significant role in numerous cellular 2 

pathways.
180

 Agmatine modulates the polyamine metabolism through its negative interaction 3 

with ODC.
181

 Agmatine also confers an inhibitory effect on intracellular polyamine content 4 

by inhibiting polyamine uptake
182

 and probably by increased polyamine catabolism.
183

 5 

Mayeur et al.,184
 has reported the effect of agmatine accumulation on polyamine metabolism, 6 

cell proliferation and cell cycle distribution in human colon adenocarcinoma epithelial cell 7 

lines. Due to the agmatine-mediated reduction in polyamine synthetic capacity of the cells, 8 

agmatine markedly inhibits the cell proliferation of HT-29 and Caco-2 cells in a dose 9 

dependent manner, without affecting cell membrane integrity. Moreover, agmatine modulates 10 

the cell cycle progression by decreasing ODC activity and expression.
181,185

 As ODC plays an 11 

important role in the G1/S progression of the cells, agmatine-mediated modulations in ODC 12 

expression lead to modifications in the cell cycle progression.
186

 Additionally, agmatine also 13 

has been shown to delay the expression of cyclins in tumor cells, leading to the modifications 14 

in the cell cycle progression.
184

  15 

ADC has been investigated for the enzymatic degradation of arginine in normal and 16 

malignant cell cultures.
187

 Arginine deprivation in human diploid fibroblasts (normal cells), 17 

achieved using human recombinant ADC, resulted in the cell cycle arrest at G1/G0. While 18 

treatment of 0.1 unit ml
-1 

ADC to HeLa (Human cervical cancer) cells resulted in cell cycle 19 

arrest with an initiation of cell death after 2 days.
187

 Similar results were evidenced in the 20 

studies by Wheatley et al.,188
 where 5 units ml

-1 
ADC was found as effective as arginase in 21 

the  inhibition of HeLa cells and cell cycle arrest at G1 (quiescence) in fibroblasts.  22 

Although some research groups have exhibited ADC as a potential anti-tumor 23 

enzyme, only a few reports are available to support this fact [Table 1].
187,188

 Even though 24 

ADC possesses low Km and can degrade arginine very rapidly, the serious problem is related 25 
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to its product i.e. agmatine. Agmatine is toxic to normal cells when its concentration reaches 1 

a millimolar level, particularly when free arginine levels are low. Additionally, agmatine is 2 

not converted back to arginine under normal physiological conditions, which may lead to its 3 

accumulation and toxicity to normal cells.
189

 Though recombinant human ADC expressed in 4 

E. coli has been evidenced more active than Sigma enzymes prepared from other sources, its 5 

PEGylation has been shown to result in the loss of its entire activity.
187,189

 To consider the 6 

further rational use of this prospective enzyme as potential anti-cancer modality, it clearly 7 

warrants further evaluation [Table 3].  8 

Concluding remarks 9 

Sufficient evidence has been accumulated indicating that arginine catabolic enzymes-10 

based approaches may be an effective way to target malignant cells. These enzymes control 11 

tumor cell proliferation as well as make them highly vulnerable to cell-cycle specific 12 

chemotherapeutic agents. This combinatorial approach is one of the potential strategies to 13 

maximize the efficacy to obliterate the tumor cells. Extensive research of the arginine 14 

metabolic pathways led to the establishment of arginine-depriving enzymes as a potential 15 

anti-cancer strategy against arginine auxotrophic tumors. However, many of these enzymes 16 

can be co-expressed in the cells, which results in complex interactions. For example, arginine 17 

is a common substrate for arginase as well as NOS. The specific role of NO, either in 18 

inhibition or induction of cell proliferation is dependent on numerous factors like its 19 

interaction with other free radicals, cellular makeup, tumor milieu, proteins present the 20 

cellular microenvironment and also upon the chemical and biological heterogeneity of NO. 21 

NO has been known to demonstrate bipolar cellular effects and often termed as “double-22 

edged sword”. Although, NOS remains a viable candidate for cancer treatment, the precise 23 

role of NO in the tumor microenvironment is extremely complex and conflicting. Also, the 24 

preferential utilization of arginine by arginase and/or NOS pathway is not fully understood. 25 
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Thus, many of these pathways warrant further research to understand the arginine metabolism 1 

at cellular and molecular levels involving upstream and downstream pathways of the 2 

enzymes involved. 3 

It should be noted that modulation of the immunological responses is one of the major 4 

roles of arginine availability. Arginine metabolism in myeloid-derived suppressor cells via 5 

arginase and/or NOS markedly impairs the T-cell responses that would eradicate and remove 6 

tumor cells.190 Many excellent articles are available which focus on the role of arginine in 7 

immunological aspects of the tumors. 191-194 It would suffice to say here that the arginine 8 

deprivation therapy may have further anti-tumor effect through restoration of anti-tumor 9 

immunity. 10 

Arginine dependence of the tumor cells has been considered as the “Achilles heel” of 11 

tumor cells.195 Inability of tumor cells to proliferate in the absence of arginine can be targeted 12 

for their selective destruction by arginine depriving enzymes.  Large numbers of enzyme-13 

based anti-cancer therapies are currently undergoing clinical evaluation. It is encouraging that 14 

arginase and arginine deiminase already have achieved considerable success, without causing 15 

detrimental side effects and with high tolerability.51,63,141 The knowledge acquired about the 16 

PEGylation has helped in the generation of adducts of potential value, overcoming the 17 

serious limitations of the anti-cancer enzymes of the non-human origin. The approach of 18 

enzyme-mediated arginine deprivation therapy is highly challenging, however rewarding 19 

upon success due to the provision of overturning the cancer dogma. 20 
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 18 

Figure legends 19 

 20 

Figure 1: Amino acid response (AAR) pathway 21 

Restriction of essential amino acids activates the general control nondepressible protein 2 22 

(GCN2) kinase by increasing uncharged t-RNA pool.196 Activated GCN2 kinase 23 

phosphorylates the translation initiation factor eIF2Į. Phosphorylated eIF2Į binds more 24 

tightly to eIF2ȕ, inhibiting the exchange of GDP for GTP. Inhibition of GDP exchange for 25 

GTP further inhibits the binding of eIF2 complex to methionine aminoacyl tRNA, leading to 26 

inhibition of translational initiation.197 Recently, SLC38A9 has been identified as an 27 
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upstream positive regulator of the mTOR pathway.  Amino acids activate the RAG GTPases, 1 

which then recruit mTOR to the lysosomal surface. Rheb also localizes to lysosomal 2 

membrane. mTOR activation occurs only when both RAG GTPases and Rheb are active. 3 

Upon amino acid deprivation, tuberous sclerosis complex (TSC) translocates to lysosomal 4 

surface and promotes GTP hydrolysis by Rheb and thereby inhibiting mTOR complex.164 5 

 6 

Figure 2: Involvement of arginine in human physiology 7 

Arginine is a dibasic, cationic amino acid and is considered as ‘conditionally essential’ 8 

amino acid. Arginine plays a crucial role in innate and adaptive immunity. For example, 9 

increased role of arginine in myeloid-derived suppressor cells results in the impairment of T-10 

cell proliferation and function.190 Arginine has been identified as the sole physiological 11 

precursor for nitric oxide (NO), a key performer in many cellular regulatory functions. 12 

Arginine also is a precursor of two important amino acids, proline and glutamate.198 One of 13 

the most important roles of arginine is its implication in the synthesis of polyamines through 14 

the diversion from NO synthesis pathway. Polyamines are known to promote tumor growth, 15 

invasion and metastasis.199 Arginine also plays a vital role in the synthesis of nucleotides, 16 

creatine, agmatine and hormones such as insulin and prolactin.200  17 

Figure 3: Arginine synthesis and homeostasis pathways 18 

Arginine is synthesized as an intermediate in the urea cycle. Arginine homeostasis is mainly 19 

achieved by catabolism. In neonates, the gene expression of arginine anabolic enzymes such 20 

as 1-pyrroline-5-carboxylase, argininosuccinate synthetase (ASS) and argininosuccinate lyase 21 

(ASL) is low. Thus, arginine is considered as an essential amino acid in neonates. After birth, 22 

the expression of ASS and ASL increases and expression of arginase is found undetectable at 23 

this stage.201 Arginine can be degraded by arginase, ADC, ADI and NOSs (Please note that 24 

ADI is not a mammalian enzyme). The products of arginine catabolism play important roles 25 

in tumor cell biology. For example, ornithine, the product of arginase, is diverted to 26 

polyamine synthesis via ornithine decarboxylase. NOSs degrade arginine into citrulline and 27 

NO. Citrulline is recycled to urea cycle, while NO is as a modulator of important metabolic 28 

and signaling cascades. Agmatine is synthesized by decarboxylation of arginine via ADC and 29 

plays an important role in neurotransmission.   30 

 31 
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Figure 4: Timeline of important advancement in arginine deprivation therapy of cancer  1 

 2 

Figure 5: Schematic representation of cytostatic and cytotoxic pathways involved in arginine 3 
deprivation therapy   4 

Arginine deprivation therapy (ADT) can potentially modulate numerous cellular and 5 

signaling pathways rendering their cytotoxic and cytostatic pathways. Induction of apoptotic 6 

pathways, inhibition of angiogenesis and inhibition of de novo protein synthesis are the 7 

important mechanisms attributed to the cytotoxic potential of ADT. Moreover, ADT-8 

mediated modulations in tumor cell-cycle can be exploited as a means of tumor growth arrest.  9 
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Table 3: Properties of arginine depriving enzymes 

Arginine deiminase (E.C. 3.5.3.6) Arginase (E.C.3.5.3.1) Arginine decarboxylase 
(E.C.4.1.1.19) 

Main products are citrulline and 

NH3 

 

Main products are ornithine 

and urea 

Main products are agmatine 

and CO2 

At  physiological  pH,  

Mycoplasmal ADI  is 300x more 

effective than arginase at depleting 

arginine 

Very high alkaline pH 

optimum (pH 9.3) and has 

little enzymic activity at 

physiological pH 

Mammalian ADC has a 

basic pH optimum (pH 

8.23) 

 

Circulatory half-life of  ~ 4 h 

 

Very short circulatory half-

life (Approx. 30 minutes) 

Not reported 

Very high aƥnity for arginine (Km 

of 0.1-1 mM) 

Low aƥnity for arginine 

(Km of 2-4 mM) 

High aƥnity for arginine 

(Km of  ~ 1mM) 

 

Most normal cells and tissues are 

able to take up citrulline from the 

circulation 

 

 

 

 

Only  found  in  microorganisms  

and  is  strongly antigenic in 

mammals 

 

Tumor sensitivity to ADI is 

dependent on ASS expression 

 

 

Efficacious  only in ASS-negative  

tumors 

 

 

No cofactor requirement 

 

 

Pegylation improves catalytic 

activity at physiological pH 

 

Ornithine can only be 

reconverted back into 

arginine in the liver and can 

cause toxicity to extra-

hepatic tissues by inhibiting 

protein synthesis 

 

Human enzyme, non-

immunogenic 

 

 

The sensitivity of tumors to 

rhArg is independent of 

ASS expression 

 

Efficacious  in  both  ASS-

negative  and  OTC-

negative  tumors 

 

Mn
2+ 

is essential for 

catalytic activity 

 

Pegylation improves 

catalytic activity at 

physiological pH 

 

Agmatine is not converted 

back to arginine under 

normal physiological 

conditions, may lead to its 

accumulation and toxicity 

to normal cells 

 

Found in plants, microbes 

and human brain 

 

 

Studied only in human 

cervical cancer ( HeLa) cell 

lines 

 

 

 

 

 

Pyridoxal phosphate is a 

cofactor 

 

PEGylation results in the 

total  loss of catalytic 

activity 

 

 

 


