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Abstract: 

Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on 

the surface. A practical coating should exhibit stable repellency, show no interference with 

color or transparency of the underlying substrate and, ideally, be deposited in a simple process 

on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged 

silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface 

structures that are further surface-functionalized with fluorinated silanes and infiltrated with 

fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials 

and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to 

effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid 
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interface that repels water, low-surface-tension liquids and complex fluids. The absence of 

hierarchical structures and the small size of the silica nanoparticles enables complete 

transparency of the coating, with light transmittance exceeding that of normal glass. The 

coating is mechanically robust, maintains its repellency after exposure to continuous flow for 

several days and prevents adsorption of streptavidin as a model protein. The LbL process is 

conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore 

may present an efficient synthetic route to non-fouling materials. 

 
1. Introduction 

A self-cleaning coating that repels various contaminating liquids without staining the 

substrate will impact a wide range of technological and consumer applications, including 

surface coatings on windows, lenses or solar cells, repellent or protective clothing, non-

fouling marine vessels or biomedical devices, and anti-icing or drag-reducing surfaces. An 

ideal coating should ensure stable repellency, should be transparent in order not to affect color 

or transparency of the underlying substrate and should be able to be deposited in a simple 

process on materials regardless of their size, shape, or composition. The key difficulty in 

creating such omniphobic coatings is to overcome the strong tendency of low-surface-tension 

organic liquids to wet surfaces[1-2] and the adsorption of organic contaminants (especially 

proteins, cells or bacteria) that can compromise the repellent properties.[3-5] 

Traditional superhydrophobic surface designs are inspired by the lotus leaf[6] and rely 

on the creation of air-infused micro/nanostructured surfaces to minimize the contact points 

between the liquid to be repelled and the substrate.[7-10] The best of them outperform the lotus 

leaves due to sophisticated hierarchical structuration, designed to repel low-surface-tension 

liquids,[1-2, 11] enable repellency under water[12] or control the movement of water droplets.[13-14] 

However, these structures often rely on complex re-entrant geometries to achieve repellency, 

which can require involved preparation protocols. 
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An experimentally simple layer-by-layer assembly method of polyelectrolyte and 

nanoparticle layers to create superhydrophobic coatings was previously presented as a 

possible solution to avoid complex fabrication.[15-17] Originating from the technique 

established by Decher et al[18-19] these assemblies can be made with ease and applied to 

surfaces of various materials, sizes, and shapes, making them useful for many applications.[20-

28] While the simplicity of the method offers a solution to the practical limitations of more 

complex designs of surface topography, the fundamental issues associated with lotus leaf-

mimicking materials remain. The composite solid/air interface in the superhydrophobic, lotus 

leaf inspired design is metastable. The air layer can escape the structures upon damage, 

application of low-surface-tension liquids, under pressure or at elevated temperature, leading 

to failure of the coating.  

An alternative approach for creating repellent coatings is lubricant-infused 

micro/nanostructured surfaces that derive their performance from a stable liquid film formed 

at the interface.[8,29-31] In lubricant-infused materials, the functionalized, structured solid 

immobilizes a fluid lubricant layer on the substrate, producing a thermodynamically stable 

solid/lubricant interface when roughness, surface chemistry and lubricant are properly 

matched.[30] This immobilized lubricant layer effectively prevents any test liquid from being in 

contact with the underlying solid substrate and consequently, reduces pinning.  As a result, the 

test liquid is easily shed from the surface.  The elimination of direct contact between the 

liquid and the solid substrate also prevents adhesion of liquid-borne contaminants including 

bacteria[32-33] and drastically lowers the adhesion of ice.[34-36] The liquid nature of the lubricant 

introduces further benefits, such as self-healing properties,[30,37] pressure and temperature 

stability,[38-39] enhanced condensation[40] and heat transfer,[41] and dynamic control of the 

wettability.[37] 

This fast developing area has led to different approaches of introducing roughness 

features on various substrates. Lubricant-infused slippery surfaces can be simply formed 
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using porous membranes[30,37] where thermodynamically stable lubricant films enable 

excellent repellency. However, difficulties associated with the attachment of such porous 

membranes to various types of substrates limit their practical applications. Similarly, micron-

scale topography can be introduced via photolithography but this technique limits the ability 

to cover curved surfaces.[30, 40] Electrochemical deposition,[34] and  porous polymer films[33,42] 

also achieve thermodynamically stable lubricant films; however, the coating is substrate-

dependent and generally lacks transparency. Sol-gel approaches[43-44] allow transparency of the 

coating but usually lack mechanical stability. A closed-cell nanoscale architecture prepared 

from colloidal templating has been shown to be mechanically robust but is limited in 

scalability and cannot be applied to more complex substrates, for example the inside of tubes 

or pipes.[45] While all of these recent innovations have tremendously increased scope and 

applicability of lubricant-infused coatings, the need remains to establish an experimentally 

simple and versatile coating method.  

Since the underlying solid structure simply serves to facilitate wetting of the lubricant 

into the surfaces features (i.e. creating a Wenzel state[46] for the lubricant) instead of 

preventing the wetting of the liquid to be repelled (i.e. creating metastable Cassie Baxter 

states[47]), one can employ virtually any method to create surface roughness. LbL assemblies, 

characterized by ease of applicability to various surfaces of arbitrary shapes, scalability and 

the possibility of automation are a promising starting point when seeking a simple yet 

powerful coating method. Recently, Zacharia et al recognized the potential of this method to 

create lubricant-infused, repellent surfaces.[48] They used LbL to prepare a hierarchical 

coating consisting of a micron-sized porous polyelectrolyte multilayer architecture decorated 

with silica nanoparticles. As expected, the process allows application of the repellent coating 

on arbitrarily-shaped surfaces with high homogeneity. However, their protocol, involving 

hierarchical structuration increases the total thickness of the coating and therefore impedes 

transparency. Furthermore, it has been shown that plain polyelectrolyte multilayer films are 
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mechanically feeble and require additional modifications (i.e. chemical crosslinking) to 

acquire wear resistance.[49]  

To overcome these issues, we adopt an experimentally simple LbL deposition of silica 

nanoparticles[15, 17, 50] to create a lubricant-infused nanoscale coating with high transparency 

and good mechanical robustness. Positively charged polyelectrolytes and negatively charged 

silica nanoparticles are assembled onto a given substrate, sintered at high temperature, surface 

modified by silane chemistry, and infused with a lubricant matching in chemical composition. 

The small size of the silica nanoparticles results in a nanoscale film that supports effective 

liquid repellency without any further structural hierarchy, thus preventing unwanted scattering 

of light at larger roughness features, leading to complete transparency of the coating. Yet, it 

can create a sufficiently rough interface to stably entrap the lubricant to form a smooth liquid 

overlayer that repels a second immiscible liquid. Previously, we have found that the absence 

of hierarchy indeed increases the performance of lubricant-infused coatings.[43] The sintering 

of the colloidal layers at elevated temperatures further creates a more robust interconnected 

network of particles,[51] which significantly reduces the coating’s susceptibility to mechanical 

damage, which we assess by tape peel tests. This method allows us to combine a multitude of 

desirable properties including liquid repellency, transparency, mechanical stability, and 

antifouling properties with the appealing characteristics of the LbL coating approach, such as 

process automation, scalability, and application to glass surfaces of various shapes. Different 

substrate materials can be coated as well, given that they can be treated with oxygen plasma to 

activate the surface.  

 
2. Results and Discussion 
 

Coating process.  Figure 1 schematically shows the fabrication of the surface coating. In 

brief, negative charges are created on the substrate by plasma treatment, UV-ozone or 

immersion in base piranha solution. The substrate is subsequently immersed into a solution of 
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positively charged polyelectrolyte (poly-diallyldimethyl ammonium chloride, PDADMAC), 

rinsed and immersed into a solution of negatively charged LudoxTM silica nanoparticles.[15, 17, 

50] Electrostatic attraction leads to the formation of a fuzzy, disordered film of polymer and 

nanoparticles.[18-19] The alternate deposition of PDADMAC and silica particles is repeated 

multiple times, as desired.  The assembled hybrid film is calcined or plasma-treated to remove 

the polymer and to activate the silica nanoparticle surfaces, leaving a disordered, porous silica 

nanoparticle assembly on the substrate, the surface of which is subsequently silanized with 

1H,1H,2H,2H-(tetrahydrotridecafluorooctyl)-trichlorosilane to produce a fluorinated surface. 

A fluorinated lubricant oil (DuPont KrytoxTM 100), matching the surface chemistry of the 

coating, is then infiltrated into the porous structure to create a thermodynamically stable, 

immobilized lubricant layer that prevents a second, immiscible liquid from contacting and 

pinning on the underlying solid, thus creating a slippery, lubricant-infused porous surface 

(SLIPS).[30]  

 

Figure 1. Schematic illustration of the layer-by-layer process to form nanoscale slippery, lubricant-infused 

porous coatings (LbL SLIPS). Negative charges are introduced to the substrate (i) and subsequent layers of 

positively charged polyelectrolyte (ii) and negative charged silica nanoparticles (iii) are adsorbed to form a 
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hybrid thin film (iv) that can be calcined to produce a porous silica coating (v). After covalently functionalizing 

the surface with fluorinated silanes (vi), a fluorinated lubricant is wicked into the coating (vii), rendering the 

surface non-adhesive and allowing for a secondary immiscible liquid to slide off the substrate with ease (viii).  

 

As the process takes advantage of adsorption from aqueous solutions, there is no 

inherent limit with respect to the area that can be coated. We demonstrate scalability on a 

laboratory scale by applying the coating process on 17x17 cm2 glass panels (Figure SI1 and 

Movie 1). For ease of comparison, we use KrytoxTM 100 as fluorinated lubricant for all 

experiments in this article except the flow experiments, which were performed using the more 

viscous KrytoxTM 103. The choice of lubricants is versatile and, depending on the specific 

application, lubricants with desired properties can be chosen. For increased long-term stability 

and applications at elevated temperature, more viscous fluorinated oils with extremely low 

vapor pressure can be used[30, 39], while oils from natural sources such as olive oil can be 

selected to ensure non-toxicity.[45] 

SEM images of the silica nanoparticle coating on glass substrates prepared with 

different deposition cycles, taken after calcination at 500°C, are shown in Figure 2a. An 

increase in particle number and film density with increasing deposition cycles is visible. 

Quartz Crystal Microbalance (QCM) measurements, performed on a silica-coated crystal to 

ensure similar surface chemistry, further showed evidence of a constant, step-wise addition of 

silica nanoparticles with each deposition cycle starting after the third cycle (Figure 2b,c and 

Figure SI 2). This allows for an adjustment of the total roughness and thickness of the coating.  

The optical properties of the coating after lubrication were investigated by UV-Vis-NIR 

transmittance measurements. All lubricated substrates showed an increase in light 

transmittance throughout the visible spectrum compared to a reference glass slide (Figure 3). 

With increasing number of layers, the transmittance of light increased. It has previously been 

shown that LbL nanoparticle coatings can display superior anti-reflective properties by 

creating a refractive index gradient along the interface.[15, 53] Here, we simply confirm that the 
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absence of any hierarchical design allows us to create highly transparent surfaces with liquid 

repellency properties as we will show below. 

 

 Figure 2. Characterization of the LbL-deposited silica nanoparticle coatings. a) SEM images after different 

deposition cycles on a glass substrate, taken after calcination to remove the polymer layers. All scale bars are 

500 nm. b) Increase in deposited mass for each consecutive LbL adsorption cycle (red line), calculated using 

Sauerbrey’s equation[52] from the frequency drop measured by Quartz Crystal Microbalance (QCM) on a silica-

coated crystal (black line). c) Number of silica nanoparticles deposited onto the substrate during each adsorption 

cycle (gray) and as cumulative during the complete process (black) calculated from the QCM data. A near-linear 

increase in deposited particles with increasing coating cycles was observed.  

 

Figure 3. UV-Vis-NIR transmittance spectra of samples lubricated after calcination and fluorosilanization of the 

silica nanoparticle coating (LbL SLIPS) with increasing numbers of deposited layers show an increase in light 

transmittance for all coatings as compared to a normal glass slide. 
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Wetting properties. The wetting properties of the coatings with varying numbers of deposited 

layers were quantified by dynamic contact angle and sliding angle measurements using water 

and octane as test liquids on LbL-modified glass slides (Figure 4). With increasing coating 

thickness, the static water contact angle after fluorosilanization steadily increased and leveled 

at 120° for four or more deposition cycles, indicating complete coverage of the surface with 

silica nanoparticles (Figure SI3). In contrast to reported silica particle-based coatings,[15-16, 54] 

the dry coatings do not possess superhydrophobic properties due to the small size of the silica 

nanoparticles and the absence of hierarchical superstructures. As a consequence, a droplet of 

water placed on a LbL-coated substrate without addition of lubricant experiences significant 

pinning. This translates to high contact angle hysteresis and removal of a droplet only after 

tilting the surface to very high angles (Figure 4a,c, light gray columns). Similarly, an octane 

droplet is pinned and shows significant contact angle hysteresis. Due to its lower surface 

tension, it starts moving at approximately 35° (Figure 4b,d, light gray columns). However, it 

leaves a wetted trail behind. 

The addition of the lubricant has a significant effect on the wetting properties. If the 

lubricant is held in place by the surface nanostructures, the added liquid will not be able to 

penetrate the lubricant layer and will, therefore, experience contact with the fluid lubricant 

layer only. The molecular smoothness of this liquid/liquid interface eliminates pinning, 

leading to a minimal contact angle hysteresis and ease of moving of the added droplet without 

leaving stains on the surface.[30] Figure 4 compares contact angle hysteresis (a,b) and sliding 

angle measurements (c,d) of water and octane for LbL-coated substrates before and after 

addition of lubricant as a function of the number of deposited silica nanoparticle layers. For 

coatings with one or two deposition cycles, the liquid droplets show substantial contact angle 

hysteresis and high sliding angles, indicating pinning of the liquid at the solid surface.  

This result suggests that the ability of the lubricant layer to remain immobilized within 

the porous network is highly dependent on the number of deposited nanoparticle layers 
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present on the surface. This behavior correlates well with the SEM and QCM data (Fig. 2) 

that show uneven, patchy coating structure and non-uniform silica particle accumulation 

during the first deposition cycles. However, with increasing number of deposited coatings, the 

surface roughness increases, leading to a more stable solid/lubricant interface as chemical 

affinity and capillary forces are increased. Coatings with four or more deposited layers 

showed low contact angle hysteresis and sliding angles for both water and octane, indicating 

the formation of a stable lubricant layer that is not displaced by the applied liquid. The 

presence of this stable lubricant layer is demonstrated in Figure 4e,f, which shows the 

removal of a droplet of water and octane from a lubricated substrate coated with five layers of 

silica nanoparticles tilted at an angle of 2°. Furthermore, the surfaces retained their repellency 

properties after application of shear forces induced by spinning at high rotational speeds 

(Figure SI6,7).  

 
Figure 4: Liquid repellency properties of LbL-silica coatings on glass substrates with and without infiltration 

with lubricant. a,b) Contact angle (CA) hysteresis of water (a) and octane (b) for LbL silica nanoparticle coatings 

in dry, fluorosilanized and lubricant-infused state as a function of the number of deposited layers. c,d)  Sliding 

angles of a 20µl droplet of water (c) and octane (d) in dry and lubricated state for coatings with up to nine 
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deposited layers. The lubricated samples drastically outperform both uncoated (0 layers) and dry coated 

substrates and feature small contact angle hysteresis and sliding angles for both liquids. All measurements were 

averaged over 5 individual measurements. e,f) Time-lapse images of a water (e) and octane (f) droplet show 

sliding under an angle of 2° on a lubricated substrate with five deposited silica nanoparticle layers without 

getting pinned to the substrate. Scale bars are 1mm. 

Coatings on objects with different shapes. The solution-based assembly method also enables 

the coating to be applied to the interior surfaces of arbitrarily shaped objects. As examples, 

Figure 5 shows time-lapsed images taken from Movie 2 and 3 that demonstrate the efficient 

repellency of honey from the inside of a LbL SLIPS-coated glass vial (Figure 5a, lower row) 

and of crude oil from the inside of a glass tube (Figure 5b, lower row), visualized by clear 

sliding of the fluid without adhering to the surface. Honey and crude oil were chosen as 

examples of challenging sticky and contaminating complex fluids that cannot be removed 

from uncoated surfaces (Figure 5a,b, upper rows).  

 

Figure 5. LbL SLIPS coatings repel different complex fluids on arbitrarily-shaped glass surfaces. a) Time-lapsed 

images taken from Movie 2 showing the sliding of honey in the inside of a glass vial coated with LbL SLIPS 

(lower row). In contrast, honey strongly sticks to an uncoated glass vial (upper row).  b) Time-lapsed images 

taken from Movie 3 showing the absence of pinning and staining of crude oil in the inside of a LbL SLIPS-

coated glass tube (lower row); while an untreated sample is stained by the crude oil (upper row). 
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Stability of the coating. The repellency performance of lubricant-infused coatings can be 

compromised in two ways. First, the underlying solid surface topography can be damaged 

mechanically, leading to de-wetting of the lubricant and the creation of pinning points.[45] 

Second, lubricant can be drained from or sheared off the surface, exposing solid parts of the 

surface which then act as pinning points and compromise repellency.[43]  

The mechanical properties of the underlying, solid nanoparticulate coating were 

qualitatively examined using a tape peel test. Coatings with nine silica nanoparticle layers 

were assembled on a silicon wafer substrate and annealed at different temperatures. An 

adhesive tape (Scotch Magic Tape) was used as a probe to test for the adhesion of the coating 

to the substrate. 15 repetitions of tape attachment and peel off were performed to guarantee 

sufficient repetitions to strip off the complete coating. Figure 6a shows SEM images of the 

samples after the peel test. Coatings that were annealed to 500°C were not removed by the 

adhesive tape, indicating mechanical robustness which can be attributed to an increased 

sintering of the particles’ contact areas.[51] As expected, the wetting properties, measured by 

water contact angle hysteresis after an additional cleaning step of the substrates to remove 

traces of adhesive remaining on the substrate showed retained repellency performance on 

samples with intact nanoparticle coatings (Figure 6b). Samples that were mechanically 

damaged showed higher contact angle hysteresis, indicative of pinning of the test liquid 

caused by dewetting of the lubricant. 

 

Figure 6. Mechanical properties of the layer-by-layer assembled coatings. Nine layers of a nanoparticle 

coating were assembled on a silicon wafer substrate, annealed at different temperatures, subjected to a tape peel 
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test (15 repetitions of peeling with Scotch Magic Tape), imaged by electron microscopy to investigate the 

damage (a) and infused with a lubricant to test the repellency performance by means of water contact angle 

hysteresis measurements (b). From a calcination temperature of 500°C, the coatings remained on the substrate 

without any visible damage and showed retained repellency properties.  

 

To investigate the stability of the lubricant film, LbL-coated, lubricant-infused glass 

tubes were subjected to a continuous flow of water in a closed circulation system. After a set 

time of water circulation, the flow was stopped, the water was drained and the performance of 

the coating was evaluated.  Sliding angles of individual water droplets (70uL) were measured. 

Figure 7a shows the resulting water sliding angles after continuous water flow at 10 ml/min 

for up to 5 days. A reference, fluorosilanized sample without a nanoparticulate coating 

(“coating 0”) and a tube coated with a single layer of silica nanoparticles (“coating 1”) 

showed high water sliding angles indicating that the lubricant layer was drained off the 

substrate, in agreement with the measurements performed on flat surfaces shown in Figure 4. 

Samples with 5 and 9 nanoparticle layers, showed much lower sliding angles of around 5°, 

indicative of an intact lubricant layer covering the surface structures.  

The flow rate was then increased from 10 ml/min to 100 ml/min and the samples 

subjected to continuous flow for 24h (Figure 7b). With increased flow rate, the repellency 

properties of the coating with 5 nanoparticle layers started to become compromised, as can be 

seen from an increase in sliding angle to 20°. The tube coated with 9 nanoparticle layers 

retained its low water sliding angles at all tested flow velocities. We therefore conclude that 

the lubricant layer in LbL coated substrates can be retained even under exposure to long-term 

flow conditions.  
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Figure 7. Performance of lubricant-infused LbL coatings under flow. Glass tubes coated with different numbers 

of nanoparticle layers and infused with a fluorinated lubricant (Krytox 103) were subjected to a continuous flow 

of water with a flow rate of 10 ml/min for different times (a) and with different flow rates for 24h (b). After the 

flow was stopped, the water was drained and the sliding angles of individual droplets of water (20µl) recorded to 

investigate if the coating retained its repellency properties. Coatings with 9 deposited silica nanoparticle layers 

retained water repellency for all tested times and flow rates. 

 

Figure 8. Adhesion and staining of LbL coated, lubricant-infused tubes. Tubes coated with different numbers of 

nanoparticle layers were subjected to water flow (10 ml/min) for 24 h and then stained with a water-soluble, 

commercial blue dye (Dharma Pigment 60 Blue Dye) (a) and fluorescently labelled streptavidin proteins (b). 

Tubes coated with 5 and 9 nanoparticle layers showed negligible staining and a significant decrease in protein 

adsorption. 

 

Lubricant-infused coatings strongly decrease the adhesion of liquid-borne 

contaminants.[30, 45]  Most crucially, it has been shown that the repellent characteristics extend 

to biologically relevant materials, including proteins,[45] bacteria[32-33] and marine species.[42] 

The prevention of adhesion requires an intact lubricant layer to prevent direct contact of the 
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contaminant with the solid surface. To test for unwanted adhesion, we conditioned samples 

similar to those described above with water flow (10ml/min) for 24 h and stained the tubes 

with a commercially available, water-soluble blue dye (Dharma Pigment 60 Blue Dye) and 

fluorescently labeled streptavidin proteins (incubation time was 10 min) (Figure 8). 

Quantitative information was extracted by image analysis (Figure SI4, Table SI1, Figure SI5, 

Table SI3). Figure 8a shows that both the hydrophilic glass control, the fluorosilanized glass 

control without any silica nanoparticles (“SiO2-13F”) and, to a lesser extent, the sample with 

one deposited silica nanoparticle cycle were stained by the dye, while the samples coated with 

more silica nanoparticles (5 and 9 layers) showed no visible adhered dye. The adsorption of 

proteins was visible under UV-light illumination (Figure 8b) and showed strong adsorption on 

fluorosilanized samples with no or one LbL layer. Since proteins are known to adhere well to 

hydrophobic surfaces,[3] we attribute the observed protein adhesion to a loss of the liquid 

lubricant overlayer. Samples with 5 and 9 nanoparticle layers showed little protein adsorption. 

 

Application on different materials. The LbL deposition process can be applied to various 

substrate materials given that two requirements are met: First, charges need to be introduced 

to the material’s surface to enable the deposition process. This can be achieved by a variety of 

methods, including treating the substrates with oxygen plasma, UV-ozone, acid or base 

piranha or a corona discharger. While base piranha provided a simple method to coat both 

interior and exterior surfaces on glass with LbL-deposited nanoparticulate films, we found 

that oxygen plasma treatment for short times (1 min, 10sccm gas flow, 100W) was most 

effective to coat different substrate materials, including metal and polymer surfaces. Second, 

after successful deposition, the surfaces of the silica nanoparticle coating need to be oxidized 

to create hydroxyl functional groups necessary to covalently bind the fluorinated silane 

molecules that are thereby required to match the surface chemistry of the lubricant. For glass 

surfaces, calcination at elevated temperatures was used to completely remove the organic 
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polycation layer prior to a base piranha-mediated surface activation. For different substrate 

materials, especially polymer substrates, calcination is not possible. We therefore revised the 

process and used oxygen plasma to combust the polycation surface layers and oxidize the 

silica nanoparticle surfaces. This revised process limits the applicability to surfaces that can 

be efficiently treated with plasma. Shielded or highly curved substrates, for example the 

inside of a tube cannot be efficiently coated using this process. We compared the stability of 

the lubricant layer under shear forces for both methods and found no differences in lubricant 

layer thicknesses and repellency performance between calcined and oxygen plasma-treated 

samples (Figure SI6, 7).  

As examples of the LbL SLIPS formation on metal or polymer surfaces, we 

investigated the coating process on aluminum and poly(methylmethacrylate) (PMMA) 

substrates, respectively. The consecutive build-up of nanoparticle layers on aluminum was 

visible in SEM images (Figure SI8), while the increase in static water contact angles with 

increasing number of nanoparticle layers (Figure SI9) indicates a successful functionalization 

with (1H,1H,2H,2H-tetrahydrotridecafluorooctyl)-trichlorosilane. The wetting properties of 

the LbL-coated aluminum and PMMA films were investigated before and after infusion of 

lubricant by means of contact angle hysteresis measurements using octane as a test liquid 

(Figure 9a,c).   
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Figure 9. LbL SLIPS coatings on different materials. a) Contact angle hysteresis of octane as a function of the 

number of LbL cycles on an aluminum substrate with and without addition of lubricant. b) Wetting properties of 

a dyed octane droplet moving along a surface of untreated (top row) and LbL SLIPS-coated aluminum with five 

deposited silica nanoparticle layers (lower row) under a tilt angle of 20°. In contrast to the untreated sample, no 

staining is observed for the coated surface. c) Contact angle hysteresis of octane as a function of the number of 

LbL cycles on a PMMA substrate with and without addition of lubricant. d) Wetting properties of an uncoated 

and LbL SLIPS-modified PMMA surface with five deposited silica nanoparticle layers. Similar to glass and 

aluminum surfaces, a dyed octane droplet leaves no stains on the coated polymer surface. The tilt angle was 20°. 

e) Example of a LbL SLIPS coating on curved polymer surfaces: The images show the absence of staining of 

crude oil in a LbL SLIPS-coated polypropylene jar.  

 

Similar to the coatings on glass substrates, LbL-SLIPS on aluminum and PMMA substrates 

showed a significantly lower contact angle hysteresis than dry, fluorosilanized coatings. 

Substrates coated with three or more layers showed octane contact angle hysteresis well 

below 5°, indicating a stable lubricant layer covering the substrate. In contrast to untreated 

and dry, fluorosilanized coatings, an octane droplet moving along the SLIPS substrates did 

not leave any residue on either aluminum or PMMA surfaces (Figure 9b,d, Figure SI10a). The 

coating process can also be applied to curved surfaces as long as the surface is accessible to 
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oxygen plasma. As a proof-of-principle, we show the application of repellent coatings on an 

Eppendorf tube and a polypropylene jar (Movie 4,5, Figure 9e).  

Table 1. Sliding angles averaged over five individual measurements, of octane and water droplets on different 

substrates coated with LbL silica nanoparticles (seven deposited layers). 

Substrate 

Material 

Water sliding angle /° Octane sliding angle /° 

Untreated Dry coating Lubricated 

coating 

Untreated Dry coating* Lubricated 

coating** 

Glass 56±8 66±5 2.2±0.5 16±3 31±3 1.6±0.5 

Aluminum pinned 63±4 2.2±0.4 wetted 51±13 2.0±0.7 

Stainless Steel pinned 85±5 1.4±0.5 wetted 49±7 1.4±0.5 

PMMA pinned pinned 2.0±0.7 wetted 46±5 1.6±0.5 

Poly propylene pinned pinned 1.2±0.4 wetted 48±6 1.4±0.7 

Poly sulfone pinned pinned 2.4±0.5 wetted 44±5 2.0±0.7 

 *octane droplet left stains on the surface after sliding 
**no contamination of the surface after sliding 

 

Further examples of successfully coated surfaces include stainless steel, poly 

propylene (PP) and polysulfone (PSu) (Figure SI10b). Table 1 quantifies the wetting behavior 

of all tested substrates by comparing the sliding angles of water and octane for untreated 

reference samples; dry, fluorosilanized layer-by-layer silica nanoparticle coatings (7 

deposition cycles), and the same coatings after addition of lubricant (dynamic contact angles 

and contact angle hysteresis data are shown in Table SI5 and Table SI6). All untreated 

reference samples failed to repel water as the droplets remained pinned even after tilting the 

substrate to 90°, and were wetted and stained by octane. The introduction of the dry, 

fluorosilanized LbL surface coating changed the wetting properties consistently for all 

samples and showed high contact angle hysteresis and sliding angles for both liquids. The 

presence of octane stains on the surfaces indicated the failure of the dry coating in repelling 

the liquid.  All functionalized, lubricated samples showed small sliding angles and absence of 

staining for both water and octane. 
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3. Conclusions  

We have developed a simple process to introduce a lubricant-infused, repellent coating 

to a variety of surface materials and shapes. The surface structure consists of a nanoscale 

colloidal film prepared by a cycled adsorption of positively charged polyelectrolytes and 

negatively charged silica nanoparticles. After fluorosilanization of the silica nanoparticles, a 

fluorinated lubricant is infiltrated into the porous coating and firmly held in place by matching 

surface chemistry and surface roughness. The strong affinity of the lubricant to the substrate 

ensures the stability of the lubricating film and creates a barrier that prevents a second liquid 

from being exposed to the underlying solid. With the absence of pinning points, the applied 

liquids slide off the substrate with ease.  

We performed a detailed analysis of the structural, wetting, optical and mechanical 

properties of such LbL SLIPS and demonstrated the range of their functional advantages: (1) 

with the increasing number of deposited silica nanoparticle layers, the coating demonstrates 

successful repellency of aqueous, organic and complex liquids, including biological fluids; (2) 

it can be formed on arbitrarily shaped glass surfaces; (3) the coating protocol can be modified 

to apply to different material classes, including metal and polymeric surfaces; (4) the small 

size of the silica nanoparticles applied in the process does not interfere with light of visible 

wavelengths and, thus, gives rise to transparency of the coating, a prerequisite for potential 

application in self-cleaning, stain-resistant windows, solar panels or lenses; (5) the coatings 

retained their repellent properties after exposure to flow; (6) upon annealing at high 

temperatures, the coating produces a mechanically robust layer due to the sintering of silica 

particles; (7) the deposition process is simple, of low cost, based on aqueous solutions and 

thus environmentally benign, scalable and automatable. The presented method thus combines 

all the remarkable properties of previously reported lubricant-infused coatings with improved 

simplicity and versatility of accessible substrate materials, shapes and sizes. We expect this 
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process to be commensurate with industrial coating procedures and to have impact in the 

general design of highly repellent, self-cleaning, non-fouling, transparent surfaces. 

 
 
4. Experimental Section  

 
Materials. Sulfuric acid, hydrogen peroxide (33% in water), ammonia (25% in water), 

poly(diallyldimethylammonium) chloride (20% in water), Ludox TM40 silica nanoparticles 

(diameter: 20nm), (1H,1H,2H,2H-tetrahydrotridecafluorooctyl)-trichlorosilane (13F), poly 

methyl methacrylate and Toluene were purchased from Sigma Aldrich and used without 

further purification. MilliQ (Millipore, Billerica, MA, USA) water was used for all 

experiments. Flat 5 cm x 3 cm x 0.1 cm Aluminum, Stainless steel and polymer substrates 

were purchased from McMaster. Borosilicate glass pipettes (VWR) were cut in 10 cm lengths 

as substrates used in all flow experiments. The DuPont Krytox PFPE GPL 100 lubricant was 

purchased from Miller-Stephenson (Density 1870 kg/m3 at 0°C; kinematic viscosity 0.12 

cm2/s, evaporation rate 0.59%/day[30]). Mustard and honey were purchased from Market 

Basket. The crude oil used was a naphthenic crude oil (Hoops) from Texas, USA (North 

America) with a medium-heavy density of 0.869 g/ml (31.4*API) at 15.56°C and 1.00% 

sulfur (sour with more than 0.50% sulfur) and a TAN of 0.92 mg KOH/g. Optical 

transmission of glass substrates and their SLIPS-coated counterparts were measured at room 

temperature using an Agilent 8453 UV-Vis spectrometer with air as the background. All SEM 

images were taken using a Zeiss FESEM Ultra Plus. 

Deposition of Colloidal Particles onto Substrates. Glass substrates were immersed into base 

piranha (5:1:1 water to hydrogen peroxide solution to ammonia solution) at 80 °C for 0.5 h to 

remove any organic residues. All metal and polymer substrates were oxygen plasma treated 

for 1 min to create surface charges. After this cleaning treatment, the substrates were rinsed in 

DI water. The layer-by-layer deposition was performed by immersion of the substrates in a 
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0.1 wt.-% solution of poly(diallyldimethylammonium) chloride (PDADMAC) for 10 min, 

followed by rinsing in DI water for 1 min and subsequent immersion into a solution of 0.1 

wt.-% Ludox silica colloids for 10 min and rinsing for 1 min in water. This cycle was repeated 

to deposit multilayers. 

Removal of Polymer Layer. The organic material was removed by combustion at 500 °C 

(ramped from room temperature to 500 °C for 5 h, 2 h at 500°C, ramped from 500°C back to 

room temperature in 2 h) in the case of glass substrates. All other samples were treated with 

oxygen plasma (Model femto, Plasma Diener, Germany) for 1min with 10sccm oxygen gas 

flow and 100W power to partially degrade the polyelectrolyte and activate the silica surface. 

Fluorosilanization. Fluorosilanization was carried out by vapor-phase deposition of 

(1H,1H,2H,2H-tetrahydrotridecafluorooctyl)-trichlorosilane for 24 h at reduced pressure and 

room temperature. Prior to silanization, the substrates were cleaned in base piranha (glass 

substrates) or plasma-treated with oxygen plasma as described above for metal or polymer 

substrates. 

Lubrication. 10µl/cm2 substrate of DuPont Krytox 100 was added to the substrate until 

uniform coverage was achieved by tilting. To achieve a homogeneous lubricant layer 

thickness for all different samples and experiments and thus allow proper comparison, all 

samples were placed vertically for 10 min in order to thin out the lubricant film by gravity-

assisted drainage.  

Quartz Crystal Microbalance Measurements. Measurements were performed on an E4 Auto 

QCM-D from Q-sense (Sweden) using silica-coated quartz crystal. Prior to the layer-by-layer 

deposition and data collection, the crystal was cleaned of organic residue using base piranha 

(5:1:1 water to hydrogen peroxide solution to ammonia solution) for 1 min at 75 °C and then 

UV-Ozone treated for 10 min. Each layer deposition was performed for 7 min at 100 uL/min 

flow of alternating PDADMA and 20 nm silica colloid solution with a 2 min H2O rinse in 
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between each deposition at 300 uL/min. The concentration of both solutions was similar to 

bulk deposition experiments (0.1 wt. %) 

Contact angle measurements. Dynamic contact angles were measured using a goniometer 

(CAM 101, KSV Instruments) at ambient condition by slowly increasing and decreasing the 

volume of the droplet to induce sliding, then analyzing the images to find the best fitting 

contact angles. All measurements were repeated at least five times on different areas of the 

substrates and averaged.  Sliding angles were determined using a 10µl droplet of liquid on a 

customized tilting stage with a precision of approximately 0.5°. All measurements were 

averaged over at least five droplets. To be counted as “sliding”, a droplet needed to slide over 

the full substrate without getting pinned at any point. 

Flow experiments. All flow experiments were conducted using the Masterflex L/S Peristaltic 

Pump (Cole-Parmer). The glass tubes coated with the desired layer number were infused with 

200 µL of DuPont Krytox 103 and left vertically tilted for 10 min to drain excess lubricant. 

They were subsequently connected to silicone tubing and conditioned with water for 20 min 

at 10 ml/min with water flowing out of the glass tubes and collecting in a waste container. 

After the conditioning step, a closed loop of the silicone tube and the glass tube was created 

before beginning water circulation. Care was taken to avoid air bubbles. After specific time 

points at the desired flow rate, the flow was stopped and the water drained from the tube. 

Then, sliding angles were measured using individual 70 µL droplets of water on a tilting 

stage. All measurements were averaged over at least five droplets. All experiments were 

performed in triplicate. For the staining experiments, a water soluble blue dye (Dharma 

Pigment 60 Blue Dye, Dharma Trading Co.) was mixed with water in a 1:4 ratio. The glass 

tube samples subjected to 24 h of water flow at 10 ml/min were held at an approximately 45° 

tilt while 1 mL of the prepared solution was added drop wise into each tube and rotated to 

ensure exposure to the entire surface of the tube. Then, the tube was tilted vertically to drain 
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excess dye solution. Data quantification was performed with ImageJ as specified in the 

supporting information. 

Protein adhesion. After 24 h of DI water flow at 10 ml/min, 1 mL of Alexa Fluor 350 

conjugated streptavidin (Life Technologies) solution at a concentration of 0.06 mg/ml was 

flowed in the glass tubes for 10 min. The samples were subsequently illuminated with UV 

light at an excitation wavelength of 350 nm to indicate areas of protein adhesion to the tube 

surface. Images were taken upon UV excitation and further quantified using ImageJ as 

specified in the supporting information. 

Tape peel test. 9 bilayers of PDADMA and silica spheres were assembled onto a silicon wafer 

as described above. The samples were sintered at 100 °C, 300 °C, 500 °C, 700 °C, and 1100 

°C (ramped at 2°C/min from room temperature to the specified temperature, 2 h at the 

specified temperature, and then ramped down at 2°C/min to room temperature). Adhesive 

tape (Scotch Magic Tape) was applied and removed from the samples fifteen times and then 

imaged using scanning electron microscopy to determine the degree of silica removal from 

the substrate. Before imaging in the SEM, the samples were subjected to piranha to remove 

adhesive residues on the substrate.  

 
Supporting Information  
Additional movies, experimental details, lubricant film thickness and stability under shear, 
LbL coatings on different materials are shown in Supporting Information. 
Supporting Information is available from the Wiley Online Library or from the author. 
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1) Large area substrates 

 
Figure SI1. A LbL SLIPS coating (5 deposited layers) on a large, 17x17 cm2 glass panel demonstrating 
scalability of the process. The pictures are time-lapsed images showing the repellency of olive oil from the 
coated glass panel and are taken from Movie 1. 
 

2) Quartz Crystal Microbalance data 
 

 
Figure SI2: QCM-D data: change in resonance frequency (a) and dissipation (b). As the dissipation is much 
smaller than the change in resonance frequency, the system can be treated as a stiff film and the resonance 
frequency change can be directly converted into the deposited mass using Sauerbrey’s equation.41  
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3) Contact angles of water on dry, fluorosilanized samples 

 
Figure SI3: Static contact angles of dry, fluorosilanized coatings with different layer thicknesses. The water 
contact angle levels at 120° for coating with four layers onwards, indicating a complete filling of the substrate 
with particles. The surfaces do not show superhydrophobic properties due to the small size of the nanoparticles 
(diameter 20nm). 
 

4) Quantification of adhesion data 
The center cross-section from each of the glass tubes in the Figure 8a image was cut in equal 
dimensions as a representative portion of the entire tube. The images were processed using the 
ImageJ threshold feature to generate corresponding images with black areas representing 
coverage by the blue dye (Figure  SI4). The software was subsequently used to determine the 
area covered by the black regions (Table SI1).   

 
Figure SI4. Glass tubes treated with Dharma Pigment 60 Blue Dye (after 24 hours of water flow at 10 mL/min) 
and the corresponding black and white image showing the area covered by the dye was used to reveal any 
pinning points in the coated tubes after flow. The piranha cleaned control displayed complete coverage by the 
dye whereas the layer 9 sample contained minimal pinning points.  
 
 
Table SI1. Area covered by the blue dye in the glass tube. These values were used to generate the plot in Figure 
8a. 

 
SiO2-OH SiO2-13F 1 LBL 5 LBL 9 LBL 

% Area Covered 98.286 79.556 16.092 0.382 0.014 

 
Similarly, the center cross-section from each of the glass tubes in Figure 8b was cut 

out in equal dimensions as a representative portion of the entire tube. The images were 
processed using ImageJ to generate corresponding images in 8-bit grey scale. The software 
was used to produce a table tabulating the total area of the image, mean grey scale value, and 
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integrated density of each image (Table SI3). Background mean grey scale values were 
obtained from the top right non-fluorescent portion of Figure 8b (Table SI2). The following 
formula was used to generate the corrected total fluorescent values:   
Total Fluorescence Intensity = Integrated Density – (Image area x Mean fluorescence of 
background readings). This technique[55] allows for quantification of the total image 
fluorescence and thus, degree of protein adhesion (Figure SI5). The plot in Figure 8b was 
used to generate these values. This technique was used as opposed to the above method for 
calculating the total area coverage because the threshold feature in ImageJ did not allow 
accurate control of coverage over the fluorescently illuminated areas. 

   
              

Figure SI5. Glass tubes were incubated with Alexa Fluor 350 conjugated streptavidin for 10 min (after 24 hours 
of water flow at 10 mL/min). A corresponding grey scale image was used to generate a histogram with the mean 
value indicating mean fluorescence intensity.  
 
Table SI2: Background mean grey scale values were obtained from non-fluorescent sections of Figure 8b and 
then averaged. The final averaged mean value was used to generate the Corrected Total Fluorescence values in 
Table SI3.  

Background Area Mean 
1 1404 0.039 
2 1512 0.078 
4 1584 0.191 
5 1170 0.076 

Average 
 

0.096 
Table SI3: Tabulating the total area of the images, mean grey scale values, and integrated densities with the 
corresponding total fluorescence.  

 
Area Mean Integrated Density Corrected Total Fluorescence 

SiO2-OH 21238 13.437 285373 283334.152 
 SiO2-13F 22386 47.598 1065540 1063390.944 

1 LBL 22308 43.172 963073 960931.432 
5 LBL 22022 12.445 274058 271943.888 
9 LBL 22308 13.952 311249 309107.432 

 
5) Lubricant film thickness and shear stability 

We compared the lubricant film thickness in samples prepared by calcination and by oxygen 
plasma treatment prior to silanization for both types of samples (after conditioning by vertical 
placement for 10 minutes) and for samples subjected to shear forces (using a spin-coating 
setup) to force lubricant out of the structures. The lubricant layer thickness was determined 
gravimetrically by measuring the weight of the samples before and after lubrication and 
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spinning at different rotational speeds consecutively for 1 min. Figure SI6 and Table SI4 show 
the measured lubricant thicknesses for the two types of samples as a function of the spinning 
speed. With increasing shear force, more lubricant is removed from the substrate. However, 
even at the highest spinning speed tested, the lubricant layer thickness (675 nm) was larger 
than the thickness of the coating (we used a coating of nine layers, with an approximate 
thickness of 100 nm), indicating that a lubricating film covering the nanostructures remained 
on the surface. Further, no differences between plasma treated and calcined samples were 
found, indicating comparable solid-lubricant interactions of the two different types of coating 
methods.  
 
 

 
Figure SI6. Lubricant layer thickness as a function of spinning speed for samples prepared from calcination, 
acid piranha surface activation and silanization (red dots) and samples prepared from oxygen plasma surface 
activation and silanization (blue dots) without any calcination step.  
 
Table SI4. Gravimetrical determination of the lubricant mass and layer thickness for samples before and after 
subjection to shear forces by spinning. 

Spin speed /rpm 
Lubricant weight /mg*cm-2 
  

Lubricant layer thickness / nm 
  

  plasma calcined plasma calcined 
  9 player 9 layer 9 player 9 layer 

0 1.09 1.09 5849 5859 
1000 0.50 0.50 2680 2684 
3000 0.20 0.20 1091 1092 
5000 0.13 0.13 674 675 

 
We then evaluated and compared the repellency performance of the lubricated samples 

prepared from calcination and plasma treatment after spincoating (Figure SI7) by measuring 
sliding angles of water and octane (10µl droplets). Both samples had a total number of nine 
deposited silica nanoparticle layers. Plasma treated and calcined samples showed similar 
repellency performance. The lubricated coatings maintained low octane sliding angles, even 
after spinning at 5000rpm. For water, a slight increase in sliding angles at elevated rotational 
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speeds was detected. However, the measured sliding angles of around 10° were still 
substantially smaller than for dry, fluorosilanized coatings (shown as dotted line in Figure 
SI7), indicating the presence of a thin lubricant layer after application of high shear forces. 
 
 

 
Figure SI7. Sliding angles of water and octane for substrates with 9 deposited silica nanoparticle layers for 
substrates prepared from 2 different methods before and after application of rotational shear forces performed in 
a spin-coater. Calcined, piranha treated, fluorosilanized and lubricated (red bars) as well as oxygen plasma 
treated, fluorosilanized and lubricated coatings (black bars) showed similar sliding angles for both water and 
octane. The dashed line shows sliding angles measured on coatings with a similar number of silica nanoparticle 
layers without application of the lubricant.  
 

6) Layer-by-layer SLIPS coatings on different materials 
 

 
Figure SI8. SEM images of layer-by-layer coatings on aluminum with different deposition cycles. 
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Figure SI9. Static contact angle of a 5 µl water droplet on aluminum (a) and poly(methylmethacrylate) (b) 
surfaces as a function of the number of deposited silica layers after oxygen plasma treatment (1min, 10sccm O, 
100W) and silanization with (1H,1H,2H,2H-tetrahydrotridecafluorooctyl)-trichlorosilane. 
 
 

 
Figure SI 10a. Failure of untreated metal substrates (stainless steel and aluminum) and silica nanoparticle 
coated, fluorosilanized samples without addition of lubricant to repel stained octane. Effective repellency of 
octane without staining the surface is achieved only after infiltration of the coating with fluorinated lubricant.  
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Figure SI 10b. Failure of untreated polymer substrates (poly-methyl methacrylate, poly propylene, poly sulfone) 
and silica nanoparticle coated, fluorosilanized samples without addition of lubricant to repel stained octane. 
Effective repellency of octane without staining the surface is achieved only after infiltration of the coating with 
fluorinated lubricant.  
 
 
Table SI5. Dynamic contact angles of water on different substrates coated with a layer-by-layer silica 
nanoparticle coating (7 deposited layers). 
 

Substrate 
Material 

Advancing/Receding contact angles /° Contact angle hysteresis /° 
Uncoated Dry coating Lubricated 

coating 
Uncoated Dry coating Lubricated 

coating 
Glass wetted 117±6/72±3 122±1/120±1 wetted 45±3 2±1 

Aluminium 71±2/10±5 152±5/96±6 119±1/116±2 62±2 63±4 2±1 
Stainless Steel 83±1/15±4 156±4/97±4 119±1/118±1 68±5 85±5 1±1 

PMMA 90±2/45±3 128±8/77±13 119±1/119±1 45±3 51±15 1±1 
PP 107±2/63±7 150±5/84±5 120±1/119±1 44±4 66±6 1±1 

PSu 62±4/53±1 138±8/78±6 120±1/118±1 9±4 60±10 2±1 
 
 
 
Table SI6. Dynamic contact angles of octane on different substrates coated with a layer-by-layer silica 
nanoparticle coating (7 deposited layers). 
 

Substrate  
Material 

Advancing/Receding contact angles /° Contact angle hysteresis /° 
Uncoated Dry coating Lubricated 

coating 
Uncoated Dry 

coating 
Lubricated 

coating 
Glass wetted 62±1/21±6 50±1/49±1 wetted 41±6 1±1  

Aluminium wetted 63±2/11±3 51±2/49±1 wetted 51±4 2±1 
Stainless Steel wetted 64±2/12±3 52±1/51±2 wetted 52±4 1±1 

PMMA wetted 58±3/12±4 52±1/50±2 wetted 47±4 2±1 
PP wetted 58±3/11±3 52±1/51±1 wetted 48±6 1±1 

PSu wetted 62±1/10±1 53±1/51±1 wetted 44±5 2±1 
 
 
 
 
 
 


