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Robust routes to induce chirality in centrosymmetric systems are not only of 

fundamental interest in unraveling the origin of single chirality as found in nature, but also 

have a broad range of practical applications including optical devices,[1-3] sensors,[4] 

pharmaceuticals,[5] and advanced structural components.[6] Since many chiral systems show 

distinctive properties depending on their handedness,[4, 7-8] elucidating routes to induce chiral 

symmetry breaking and to control the handedness across different length scales is crucial. In 

general, the emergence of chiral structures of single handedness relies on a two-step process: 

(i) spontaneous symmetry breaking followed by (ii) full amplification of this chiral imbalance 

to yield a uniform configuration. On the molecular scale, experimental demonstrations of such 

processes have been reported only for few crystallizing systems and chemical reactions,[9-12] 

in which the amplification relies on activating and inhibiting interactions at the molecular 

scale.[13] Extending these principles to larger length scales requires fundamentally different 

concepts. Although centrosymmetric nanopost arrays[14-16]  and swellable confined nanoscale  

gel films[17-18] were recently reported to form chiral structures in the absence of chiral 
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induction, no study has been reported on the spontaneous and reversible chiral symmetry 

breaking and subsequent full amplification to yield large areas of ordered structures with 

single handedness.  

 Guided by a theoretical model, we here exploit buckling in rationally designed 

supported cellular structures at the mesoscale to reversibly switch between the initially achiral 

configuration and subsequent uniform left- or right- handed configurations. Moreover, we 

demonstrate that the underlying principles can be generalized using different geometries, 

materials, stimuli, and length scales. Although buckling is often regarded as a failure mode to 

avoid in structural materials, there are numerous natural[19-20] and artificial[21-28] systems that 

use it to their advantage. Buckling of surface-attached strips[29] and free-standing structures[30] 

has been studied extensively, but little has been known about mechanical instabilities in 

surface-attached cellular structures. Moreover, while the deformation and unique mechanical 

properties of chiral cellular structures have been the focus of many studies,[31-32] here we 

demonstrate spontaneous and reversible chiral symmetry breaking in initially achiral 

structures followed by full amplification of the chiral imbalance across the entire structure to 

yield configurations of single handedness.  

 We start by recognizing that the formation of a chiral pattern, in which all vertices 

rotate in the same direction, requires that all the individual plates buckle in a higher mode 

comprising an integer number of complete sinusoids, as shown in Figure 1 (a, bottom) for a 

honeycomb as a model cellular structure. Therefore, simply buckling a free-standing 

honeycomb structure is not sufficient to form a chiral structure, since this induces a first-order 

mode in all plates,[30, 33] leading to an achiral configuration where adjacent vertices alternately 

rotate clockwise and counterclockwise, as shown in Figure 1(a, top). However, the attachment 

of the cellular structure to a rigid substrate allows higher order buckling modes, so that one 

can design architectures capable of deforming into either achiral or chiral configurations. 
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Based on elastic plate theory, we anticipate that the buckling mode can be controlled by 

carefully designing the dimensions of the cellular architecture. Furthermore, we expect that 

the connectivity of these cellular structures contributes to the uniform spreading of the chiral 

pattern once the symmetry is locally broken. 

To define the design criteria and predict the deformation of the ensemble, we 

conducted elastic buckling analysis of an individual supported thin plate. Assuming that the 

thin plate of length l, height h, and thickness t may be described as a linear elastic material 

with Young’s modulus E, Poisson’s ratio n, and bending stiffness 𝐷 = 𝐸𝑡%/[12(1 − n,)], its 

buckling behavior is described by[34]  

                                                                                 (1) 

where w is the deflection in the out-of-plane direction and denotes the differential swelling 

strain which is assumed to be uniform within the plate. To consider the effect of the 

neighboring plates in the lattice structures, we assume the two vertical edges at x=0 and x=l to 

be supported (i.e. w=0 and ), so that the solution of Eq. (1) has the form 

, m being an integer (see Supporting Information). For a plate attached to a 

rigid substrate (i.e. free at y=h and clamped at y=0), the critical swelling strain and the 

wavelength 2l/m of the corresponding mode can then be solved as a function of the aspect 

ratio l/h, as shown in Figure 1(b). This stability diagram unambiguously reveals that in an 

initially straight plate with 0<l/h<2.321 a buckling pattern with half sinusoidal wavelength (i.e. 

m=1) will emerge upon reaching a critical swelling strain, resulting in an achiral pattern 

(space group: P31m). Differently, if 2.321<l/h<4.015 the buckling will be a full sinusoid (i.e. 

m=2), yielding a chiral pattern (space group: P6). To fully define the geometry of supported 
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cellular structure for experiments, we investigated the effect of the thickness of the plates 

using non-linear finite element analyses (see Supplementary Methods and Supplementary 

Figures S1 and S2). These numerical calculations show that the thickness only marginally 

affects the buckling modes (Supplementary Figure S2), confirming that the buckling-induced 

pattern of supported cellular structures is dictated by the aspect ratio l/h of the individual 

plates.  

Having ascertained the critical design parameters, to test the validity of our analytical 

model we fabricated surface-attached cellular structures with aspect ratios l/h that correspond 

to different regimes in the stability diagram, as indicated by the circular markers in Figure 

1(b). We started with macro-scale honeycomb structures (l=5 mm) comprising few unit cells 

and made from silicone rubber (see Experimental). When swelled, the structures yielded 

either chiral, achiral or mixed patterns (Figure 2(a) and Supplementary Figure S3), exactly as 

predicted by our analysis (Figure 1(b)). We then fabricated samples comprising a larger 

number of unit cells with geometry corresponding to both the achiral (l/h=2, t/h=0.37 and l=5 

mm) and chiral (l/h=3.17, t/h=0.40 and l=5 mm) regime in the stability diagram. Furthermore, 

since the analytical model is not limited to a specific cellular geometry, we also fabricated 

macroscale (l=5 mm) square lattices comprising plates with the same aspect ratio (Figure 2b). 

Again all the samples buckled as predicted by the analytical model (Figure 2c,d-left/center), 

showing that the design principles can be applied to different geometries.  

Because the pattern formation exploits a mechanical instability that is scale-

independent (where the continuum assumption holds), we extended the principle to 

microscale honeycombs (l=20 µm) made from epoxy resin (see Supplementary Methods). The 

structures buckled upon immersion in N-methyl-2-pyrrolidone, and the stability diagram again 

correctly predicted the emergence of either chiral or achiral patterns (Figures 2(c,d)-right). 

Subsequently evaporating the solvent led to reconversion of the buckled structures back into 
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the original configurations, demonstrating that the controlled pattern formation is fully 

reversible.  

Although all the experimental results show an excellent agreement with the analytical 

predictions, we observed a racemic mixture of chiral domains displaying both right- and left- 

handedness evolved from several nucleation events. At the boundaries of these domains 

(shown as yellow lines in Figure 2), the plates buckled either in the 1st or 3rd mode. Avoiding 

such racemic mixtures and making defect-free patterns with a single-handedness thus requires 

the prevention of multiple nucleation sites. We therefore gradually wetted the samples from a 

single location. This approach induced a unique nucleation event that propagated over the 

entire sample to yield uniform buckling patterns (Figure 3(a)). Remarkably, we observed that 

during the spreading of the pattern some plates initially buckled either in the wrong direction 

or with an unpredicted mode (Figure 3(b)). These defects were, however, repaired upon 

propagation of the swelling front through the defect site when the majority of the plates 

connected to the defect buckled correctly. The interconnected cellular architecture is therefore 

crucial to conserve the propagation of a single handedness over the entire substrate (Figure 

3(d)) by allowing a self-repair mechanism through connected plates.  

While instabilities can be induced by a number of stimuli, including thermal, electrical, 

and mechanical loadings (Supplementary Figure S4), the convenience, versatility and, most 

importantly, the reversibility and directionality of the reconfiguration process that arises from 

swelling-induced buckling enables a unique mechanism where chirality can be chosen, 

reversibly written and amplified as described below. 

Repeated swelling-unswelling revealed that the same buckling pattern reoccurred 

every time. The structure thus possesses memory of deformation, likely embedded in a 

previous reorganization of the polymeric network, which can steer the chiral outcome in a 
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subsequent symmetry breaking event. This memory effect can be used to select the 

handedness of the chiral patterns at will. Since statistical analyses showed equal probability of 

left-handed and right-handed patterns in rapidly swollen structures (Figure 4(a,b)), one can 

map the domains of different handedness and choose a region of desired handedness as a seed. 

After unswelling the structure back into the initial pattern, we can initiate the slow, directional 

swelling of the structure starting from one of the mapped domains (Figure 4(c)). Remarkably, 

when the progressing pattern reached the previously identified domain boundaries, the 

handedness of the spreading pattern was still preserved, thereby overwriting the memory of 

these domains to yield patterns of uniform handedness by the repair mechanism discussed 

above. When the structure subsequently was unbuckled by drying and rapidly swollen again, 

we recovered the single-chirality pattern, confirming that the memory of initially racemic 

domains was indeed overwritten. This chiral memory is also durable: even after four months 

the memory is still preserved. Information on the handedness can thus be stored, read out, and 

overwritten providing a versatile programmable mechanism. 

Guided by an analytical model and numerical calculations, here we show a proof of 

principle of buckling-induced local symmetry breaking and subsequent spreading of a chiral 

pattern to yield globally uniform configurations of single handedness in supported cellular 

structures. We experimentally demonstrate that this strategy offers a unique range of 

advantages: (i) it can be applied to structures with various length scales (where the continuum 

hypothesis holds); (ii) the reconfiguration occurs upon application of different stimuli and 

using different materials, so that it can be used to dynamically alter surface properties and 

morphology; (iii) the transformation can be made fully reversible; and (iv) most importantly, 

it can be controlled to yield either uniform achiral or chiral configurations with user-defined 

handedness. 
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In contrast to molecular symmetry-breaking reactions and crystallization systems, both 

the nucleation and propagation of chirality can be visualized directly to unravel the underlying 

mechanisms and fully control the pattern formation. This process not only provides a 

remarkable example of spontaneous symmetry breaking, but also outlines a general strategy in 

which a judicious choice of dimensions, materials, stimuli and architectonic designs provides 

a foundation for a wide range of multidisciplinary basic and applied studies. For example, our 

results could be used to design templates to facilitate fabrication of free-standing chiral 

structures. Moreover, in structures with sizes comparable to the wavelength of the light, our 

approach could lead to the design of novel thin film polarization converters, waveguides and 

circular dichroism spectroscopy substrates.  
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Figures and Captions 

 

Figure 1. Design of structures. (a) Schematic approach to the design of supported cellular 

architectures with buckling-induced chiral or achiral reconfigurations. First, the cellular 

structure is deconstructed into individual supported plates and the wavelength l of their 

buckling pattern is calculated. Then, the buckled pattern of the structure is reconstructed by 

connecting individual buckled plates. The color-coded arrows indicate the handedness of the 

vertices. (b) Results of the buckling analysis for a single supported thin, elastic plate are 

plotted in a stability diagram. Upon reaching a critical swelling strain , buckling modes of cr
swe
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both half and full sinusoids can be achieved by adjusting l/h (the aspect ratio of the plate), 

resulting in respectively achiral and chiral patterns upon reconstruction of the cellular 

architecture. The circular black markers and corresponding Roman numbers indicate the 

aspect ratio l/h of macroscale honeycomb lattices (l=5 mm and t/l=0.18, see Figure 2(a)) that 

were fabricated and tested to verify the validity of the analytical model. 
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Figure 2. Verification of the stability diagram. (a) Buckling patterns of macroscale 

honeycombs with different aspect ratio l/h (t/l=0.18 and l=5 mm for all samples). The Roman 

numbers indicate the corresponding marker in the stability diagram (Figure 1(b)). The 

observed buckling mode (m) is shown below each image. Note that a mixture of modes is 

found for geometries lying on the boundary of adjacent regimes. (b)-(d) Buckling-induced 

reversible pattern formation in a supported macro-scale honeycomb lattice (left), macro-scale 

square lattice (center) and micro-scale honeycomb lattice (right) upon rapid swelling. (b) 

Optical images of original, undeformed structures. (c) For l/h=2, t/h=0.37, buckling induces 

an achiral pattern. (d) For l/h=3.17, t/h=0.40, a chiral pattern is observed. These buckling 

patterns are in agreement with the analytical predictions, but multiple domains are observed, 

whose boundaries are highlighted by the yellow dashed lines. The insets show zoomed-in 

images of the buckled patterns within the domains (top) and at the domain boundaries 

(bottom). The color-coded arrows indicate the handedness of the vertices. 
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Figure 3. Uniform pattern formation by controlling nucleation. (a) Time-lapse series showing 

a single nucleation event and subsequent slow spreading of a buckling-induced chiral pattern 

by gradually wetting from a single location. (b) Time-lapse series of the self-repairing process. 

The initial defect in the form of few clockwise vertices (blue) is overwhelmed by the 

surrounding counterclockwise vertices (red), thus amplifying the chiral patterns of the nucleus. 

(c)-(d) The combination of the unique nucleation event and amplification mechanism results 

in either uniform achiral (l/h=2, t/h=0.37) (c) or chiral (l/h=3.17, t/h=0.40) (d) patterns. 

Zoomed-in images of the buckled patterns are shown in the insets; the color-coded arrows 

indicate the handedness of the vertices. 
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Figure 4. Memory effect allowing readout, selection and overwriting of the handedness of the 

chiral pattern. (a) An example of a rapidly swollen macro-scale square lattice structures, 

showing a racemic mixture of left- and right-handed domains. (b) Statistical probabilities of 

the vertices rotate into right- and left-handed configurations from nine independent 

experiments using different samples. The error bar indicates the standard deviation of the 

respective probability. (c) These chiral domains can be selected and amplified. For this, we 

first map the chiral domains upon rapid swelling. Subsequently the structure is reconverted 

into the unbuckled configuration, where the handedness map is given in faded red and blue. 

Buckling is then initiated at a location selected from the chirality map to induce a uniform 

pattern of the desired handedness. If the structure is subsequently unbuckled and rapidly 
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swollen, the uniform pattern is recovered, demonstrating that the chiral memory of the 

original racemic pattern is overwritten. 

 
Experimental 
 

Fabrication of samples: Macroscale (l=5 mm) surface-attached hexagonal and square 

cellular structures were fabricated by first making negative molds using a 3D printer (Connex 

500 available from Objet, Ltd.) that subsequently were used to make positive structures from 

a silicone rubber (Elite Double 32 available from Zhermack). The structures were attached to 

rigid back plates. Two microscale surface-attached hexagonal structures (l=20 µm) were 

fabricated for this study. The aspect ratios of the macroscale and microscale plates are (l/h=2, 

t/h=0.37) and (l/h=3.17, t/h=0.40) for achiral and chiral structures, respectively. The 

microscale structures were first fabricated in <100> Si wafers. Replicas of the silicon masters 

were fabricated using soft lithography-based methods[35] with commercially available UV-

curable epoxy (UVO-114 from Epoxy Technology, Billerica, MA). 

Buckling-induced pattern formation: Buckling was induced by swelling, using hexane and 

N-methyl-2-pyrrolidone (NMP) for silicon rubber and epoxy structures, respectively. The 

resulting patterns were recorded using a Nikon D90 digital SLR camera for the macroscale 

samples and a Leica DMRX microscope connected to a QImaging Evolution VF cooled color 

CCD camera for the microscale samples. 
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Buckling-induced reversible pattern formation in a supported macro-scale honeycomb lattice 
(left), macro-scale square lattice (center) and micro-scale honeycomb lattice (right) upon 
swelling. The combination of the unique nucleation event and amplification mechanism 
results in either uniform achiral or chiral patterns. Zoomed-in images of the buckled patterns 
are shown in the insets; the color-coded arrows indicate the handedness of the vertices. 
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Supplementary Methods 

Theoretical model for buckling of a supported elastic plate.  

To gain more insight into the response of surface attached cellular structures, we start by 

investigating buckling of the individual cell edges consisting of rectangular plates of length l, 

height h and thickness t (see Figure 1(a)) subjected to isotropic swelling.  

Foppl-von Karman equations. For the sake of simplicity, we focus on thin plates, so that 

shear deformations through the thickness of the plate can be neglected, and consider a 

deformation that takes a point on the center-surface with coordinates (x,y,0) to its deformed 

state (x+ux(x,y), y+uy(x,y), w(x,y)). Assuming that the thin plate may be described as a linear 

elastic material with Young’s modulus E, Poisson’s ratio n, and bending stiffness D= E 

t3/[12(1-n2)], then balance of forces in the plane and out of the plane directions leads to the 

Foppl-von Karman equations [1-2] 

              	𝜎12,2 = 0,								D(w,7777 + w,9999 + 2	w,7799) − t	w,;<𝜎,12 = 0,							𝑖, 𝑗 = 𝑥, 𝑦            (1) 

where 𝐴,B = 𝜕𝐴/𝜕𝑥.  Assuming isotropic swelling, the in-plane stresses are given by 

                          𝜎12 =
D

EF
[𝜀12 +	 EH (𝜀BB	 +	𝜀II)𝛿12] −

D

EH
𝜀KL𝛿12		!!!!!!!!!!!!!!!!!!!!!!!!!!!"2) 

where 𝛿12 is the Kronecker delta, 𝜀12 =
E
,
M𝑢1,2 + 𝑢2,1O +

E
,
𝑤,1𝑤,2 is the in-plane strain tensor 

and 𝜀KL  denotes the strain caused by swelling of the material.  

n
n
n

n
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Boundary conditions. In a 2D cellular structure attached to a substrate that is very stiff and 

swells by a negligible amount, clamped conditions can be assumed for each individual plate at 

y=0, 

                              𝑢B(𝑥, 0) = 𝑢I(𝑥, 0) = 𝑤(𝑥, 0) = 𝑤,I(𝑥, 0) = 0                                     (3) 

while the condition that the boundary at y=h is free of torques and forces implies that 

𝜎II(𝑥, ℎ) = 𝜎BI(𝑥, ℎ) = 0, 

          		𝑤,II(𝑥, ℎ) + 𝑤,BB(𝑥, ℎ) = 𝑤,III(𝑥, ℎ) + (2 − )𝑤,BBI(𝑥, ℎ) = 0.                (4) 

Finally, in a lattice where the junctions cannot move but are free to rotate for each plate the 

boundary conditions at x=0, l read 

           𝑢B(𝑥, 𝑦) = 𝑤(𝑥, 𝑦) = 0, 𝑤,BB(𝑥, 𝑦) + 𝑤,II(𝑥, ℎ) = 0,				𝑎𝑡	𝑥 = 0, 𝑙              (5) 

Buckling. We start by noting that Eqns. (1)-(5) are identically satisfied when 

                     𝑢B(𝑥, 𝑦) = 𝑤(𝑥, 𝑦) = 0, 𝑢I(𝑥, 𝑦) = 𝜀KL(1 + )𝑦,                               (6) 

resulting in uniform strains and stresses and zero deflection. However, this solution is not 

always stable and above a critical value of swelling strain, 𝜀KLTU , non-planar solutions appear. 

To test the stability of the solution Eq. (6), we introduce incremental deformations as follows 

           uW;(x, y) = u;(x, y) +ε	u;
(E)(x, y), wZ(x, y) = w(x, y) +ε	w(E)(x, y)																					(7) 

where 𝜀 is a small parameter that characterizes the size of the perturbation superimposed on 

the finite deformation. Introducing Eq. (7) in Eq. (1) and retaining only the first order terms in 

𝜀, a single non-trivial incremental equilibrium equation is obtained 

n n

n

n
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                         𝑤,BBBB
(E) + 2𝑤,BBII

(E) + 𝑤,IIII
(E) + D	\	]^_

`
𝑤,BB
(E) = 0                                      (8) 

Assuming the out-of-plane deflection is of the form 𝑤(E)(𝑥, 𝑦) = 𝑓(𝑦)sin	 e	f	B
g

 (m being an 

integer) on substituting it into Eq. (8) and using the boundary conditions (3)-(5), an ordinary 

differential equation for f(y) is obtained 

                                                    (9)
 

  The general solution of a fourth order differential equation like Eq. (9) is given as, 

                              𝑓(𝑦) = 𝐶E	𝑒Hj	I + 𝐶,	𝑒j	I + 𝐶%	cos(𝛽	𝑦) + 𝐶n	sin(𝛽	𝑦)             (10) 

Where a and b are as following, 

                           ,               (11) 

The coefficients C1, C2, C3 and C4 in Eq. (10) are determined by imposing the boundary 

conditions (3)-(5). More specifically, the boundary conditions (3) are satisfied if 
 

                                              𝐶E =
opqHorj

,j
,			𝐶, = −orjFopq

,j
	                                    (12) 

and the function f(y) can be represented in the form 

                      𝑓(𝑦) = 𝐶%[cos(𝑦𝛽) − cosh(𝑦𝛼)] + 𝐶n usin(𝑦𝛽) −
q
j
sinh(𝑦𝛼)v       (13) 

Substituting the above expression in Eq. (4), we get two linear homogeneous equations in 

terms of C3 and C4. The critical value of swelling strain, 𝜀KLTU , is determined by equating to 

zero the determinant of these equations.  
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We solve this boundary value problem numerically and study the normalized critical 

strain w
x]^_yz 	
\x  

and corresponding buckling modes as a function of the plate aspect ratio l/h, as 

shown in Figure 1(b). It is interesting to observe that higher buckling modes (i.e. m>1) can be 

achieved for increasing values of l/h. By contrast, we notice that for a plate with free edges 

both at y=0 and y=h only modes with half wavelength (i.e. m=1) are possible. 

Numerical simulations of buckling for supported cellular structures 

Since our analytical model is based on the theory for thin elastic plates, to fully account 

for the effect of thickness, we further investigated the buckling of surface-attached lattice 

structures using non-linear finite element (FE) analyses. The FE calculations were conducted 

within the nonlinear code ABAQUS/Standard, version 6.8-2. In the numerical analyses, 

buckling of cellular structures of infinite planar extent perfectly bonded to a rigid substrate 

was investigated and for that sake of computational efficiency, the analyses were conducted 

on representative volume elements (RVEs) (see Figure S1).  

The instability of the structures was investigated conducting a Bloch wave analysis [5-6], 

a staple of physics long used to examine electronic, photonic and phononic band structures in 

periodic lattices. Although instabilities may alter the initial periodicity of the solid, they can 

be still detected investigating the response of just one unit cell of the material introducing 

boundary conditions provided by Bloch theory. While a real natural frequency corresponds to 

a propagating wave, a complex natural frequency identifies a perturbation exponentially 

growing with time. Therefore, the transition between a stable and an unstable configuration is 

detected when the frequency vanishes and the new periodicity after instability is provided by 

the corresponding Bloch wave vector. Here, the finite-element method was used to perform 

the Bloch wave analysis [5].  
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FE models were constructed using 20-nodes, quadratic elements (ABAQUS element type 

C3D20). The accuracy of each mesh was ascertained through a mesh refinement study. In the 

analysis the bottom surface of the structures was considered to be perfectly bonded to a rigid 

substrate, while the top surface was free. Moreover, a series of constraint equations were 

applied to the lateral surfaces of the RVE providing Floquet quasi-periodic boundary 

conditions. The material was modeled as elastic nearly incompressible Neo-Hookean material 

and swelling was used to induce buckling. 

   The results for the four structures in the Figure S2 showed the same buckling mode 

predicted by the analytical model based on Foppl-von Karman equations. More specifically, 

for l/h=2 and t/h=0.37 buckling induces the formation of an achiral pattern with reduced 

symmetry for both the hexagonal and square architecture. Differently, a chiral pattern is 

induced by mechanical instabilities when l/h=3.17 and t/h=0.40. Finally, we note that for a 

square lattice with l/h=2 and t/h=0.37 at the onset of instability the initial periodicity is broken, 

leading to an enlarged RVE with 2×2 original RVEs.  

Furthermore, the numerical calculations clearly show that the thickness only marginally 

affects the buckling modes. In Figure S2(b) we report the critical modes for supported square 

lattices with t/h=0.1, 0.3 and 0.5. These results demonstrate that the buckling mode is not 

affected by t/h. The numerical simulations thus confirm that by simply controlling the aspect 

ratio l/h of supported-cellular structure in initial honeycomb structure either achiral or chiral 

configurations can be formed.  

Experimental verification of the stability diagram 

   Having ascertained the critical design parameters, to verify the validity of our analytical 

model we fabricated surface-attached cellular structures with aspect ratio l/h that correspond 

to different domains in the stability diagram. More specifically, we started with macro-scale 
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honeycomb structures (l=5 mm) comprising 19 hexagonal units and made from silicone 

rubber (see Fabrication section for details). We fabricated 13 samples characterized by l=5 

mm, t=0.9 mm and h such that l/h=1, 1.33, 1.66, 2, 2.33, 2.66, 3, 3.33, 3.66, 4, 4.33,4.66 and 5, 

as indicated by the markers in Figure S3(a). Immersing the sample in hexane swelled the 

polymer, and within a few seconds the initially straight cell walls buckled to yield either 

chiral, achiral or mixed patterns (Figure S3(b)), exactly as predicted by the stability diagram 

(Figure 1(b)). This set of experimental results clearly confirms the validity of our analytical 

model.  

Fabrication 

Macro-scale structures. Macro-scale (l=5 mm) surface-attached hexagonal and square 

cellular structures were fabricated by making negative molds using a 3D printer (Connex 500 

available from Objet, Ltd.) and replicating positive structures with a silicone rubber (Elite 

Double 32 available from Zhermack). Before replication, a releasing agent (Easy Release 200 

available from Smooth-On, Inc.) was sprayed on to the molds for easy separation. The 

structures were attached to rigid back plates.  

Micro-scale structures. Two micro-scale different surface-attached hexagonal structures 

were fabricated for this study, with aspect ratios that corresponded to both achiral (l/h=2, 

t/h=0.37) and chiral (l/h=3.17, t/h=0.40) structures. The honeycomb structures yielding an 

achiral buckled pattern comprise individual plates with a thickness of 3.7 µm, a length of 20 

µm, and a height of 10 µm. The prochiral structures consist of an array of plates with 

thickness of 2.5 µm, a length of 20 µm, and a height of 6.3 µm. The different aspect ratio 

honeycomb structures used for this study were first fabricated in <100> Si wafers. The wafers 

were vapor primed with Hexamethyldisilazane (HMDS) to improve photo resist adhesion. 

SPR700 was used as a resist. Nikon 5´ i-line stepper was used to expose the coated wafers 
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followed by post exposure bake and resist development using Microposit MF CD26. 

Descumming was performed prior to Bosch advanced silicon etch [3] in an STS deep reactive 

ion etching (DRIE) tool. C4F8 and SF6 chemistry was used for Si etching. Veeco profilometers 

and cross sectional SEM (Zeiss) was used to characterize and optimize exposure conditions 

etch rate and etch profile. The Si wafers were given a final overcoat of C4F8 to aid in the 

replication process. Scalloping on the plates of honeycomb structures is the result of the 

Bosch etch process [3-4] and is also visible in the polymer replicas. Replicas of the silicon 

masters were fabricated using soft lithography-based methods with commercially available 

UV-curable epoxy (UVO-114 from Epoxy Technology, Billerica, MA) as described in a 

previous paper [7].  

Buckling-induced pattern formation through swelling 

   Swelling was used to trigger instability in the considered supported cellular structures. 

Buckling occurred due to compressive stresses arising from the geometric constraint that 

suppresses swelling near the rigid substrate where the structure is clamped.  

Macro-scale structures. Instability of fabricated structures was induced by swelling the 

structures with hexane. We started by rapidly immersing the samples in hexane. We observed 

the formation of buckled patterns in excellent agreement with the analytical predictions, but 

characterized by multiple domains that evolved from different nucleation sites. To make 

defect-free samples, we carefully controlled nucleation and propagation of the pattern. A 

plastic tube (Intramedic polyethylene tubing with ID=0.38 mm, OD=1.09 mm available from 

Becton, Dickinson and Company) was used to gradually wet the samples starting from a 

single location and the solvent was introduced through a syringe pump (PHD 2000 available 

from Harvard Apparatus) at a flow rate of 0.1-0.4 mL/min. The resulting patterns were 

recorded using Nikon D90 digital SLR camera. 
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Micro-scale structures. Buckling was induced by swelling the structures with N-methyl-2-

pyrrolidone (NMP) (available from Sigma Aldrich). We started by rapidly immersing the 

structures in the solvent, leading to the formation of multiple domains. To make defect-free 

samples, we floated them on the solvent so that the structure swelled from one side by wetting.  

The resulting patterns were recorded by optical microscope (Leica DMRX connected to a 

QImaging Evolution VF cooled color CCD camera). 

Buckling-induced pattern formation through compression 

   We demonstrated that the pattern formation can be extended to different stimuli, by 

inducing buckling through mechanical loading. We performed compression experiment on 

microscale honeycomb structures made of UV curable epoxy and comprising an array of 

plates with a thickness of 3.7 µm, a length of 20 µm, and a height of 10 µm (l/h=2, t/h=0.37). 

Figure S4 shows the compressed (left) vs. uncompressed (right) areas of a single sample. An 

exceptionally uniform achiral buckled pattern is observed in the compressed area. 
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 Supplementary Figures and Captions 

 

 

 

Supplementary Figure S1. Top views of hexagonal and square cellular structures. Notice 

that l is defined as the center-to-center distance between adjacent vertices. The magnified 

portions of the structure show the representative volume elements (RVE) of the corresponding 

architecture.      
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Supplementary Figure S2. (a) Critical buckling modes predicted by numerical analysis. 

Buckling modes predicted by the Bloch wave analysis for supported hexagonal and square 

lattices with (l/h=2, t/h=0.37) and (l/h=3.17, t/h=0.40). The handedness of adjacent vertices 

has been highlight with red (right-handed) or blue (left-handed) arrows. The top views of 

buckled patterns are outlined by solid curves on the top surface of the structure to facilitate 

visualization. (b) Critical buckling modes predicted by numerical analysis for supported 

square lattices with t/h=0.1, 0.3 and 0.5. The buckling mode is found not to be affected by t/h. 

This confirms that buckling-induces pattern of supported cellular structures is dictated by the 

aspect ratio l/h. 
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Supplementary Figure S3. Experimental verification of the stability diagram. (a) To verify 

the validity of our analytical model, we fabricated macroscale honeycomb structures (l=5 mm, 

t=0.9 mm, h=1-5 mm) made from silicone rubber with different aspect ratio l/h, as indicated 

by the markers in the stability diagram. (b) Buckling patterns observed in samples with 

different l/h. Modes characterized by m=1, m=2 and m=3 are observed, exactly as predicted 

by the analytical model. Moreover, mixtures of modes with m=1-2 and m=2-3 are found for 

geometries lying on the boundary of adjacent regimes (Figure S3(a)). 
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Supplementary Figure S4. Scanning electron microscope (SEM) image of buckled patterns 

formed by compression of surface-attached honeycombs. Compression was applied to the left 

half of a micro-scale honeycomb structure (l/h=2, t/h=0.37). The compressed region shows a 

uniform, 1st mode buckled pattern. 

 

 

 
 


