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Abstract 

This study investigates the origins of variation in the structures of global interorganizational 
networks across industries. We combine empirical analyses of existing interorganizational networks 
with an agent-based simulation model of network emergence. Our insights are twofold. First, we find 
that differences in technological dynamism across industries and the concomitant demands for value 
creation engender variation in firms’ collaborative behaviors. Specifically, firms in technologically 
dynamic industries on average pursue more open networks, which foster access to new and diverse 
resources that help sustain continuous innovation. By contrast, firms in technologically stable 
industries on average pursue more closed networks, which foster reliable collaboration and help 
preserve existing resources. Second, we show that because of the observed cross-industry differences 
in firms’ collaborative behaviors, the emergent industry-wide networks take on distinct global forms. 
Technologically stable industries feature clan networks, characterized by low global connectedness and 
medium-to-strong community structures. Technologically dynamic industries, by contrast, feature 
community networks, characterized by high connectedness and medium community structures. 
Convention networks, which feature high global connectedness and weak community structures, were 
not evident among the empirical networks we examined. The findings of this study advance an 
environmental-contingency theory of network formation. 
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INTRODUCTION 

Studies of how social structures shape the behaviors and outcomes of actors constitute a vibrant area 

of organizational research. Prior work on the social structures of corporate actors has indicated that 

the structure of an interorganizational network helps explain a range of collective outcomes of 

organizations, such as diffusion of norms, knowledge, or other resources (Rogers, 2003; Uzzi and 

Spiro, 2005). Recent studies, in turn, have demonstrated that networks in different 

interorganizational settings often have distinct global features. For example, studies of partnership 

networks among firms demonstrate that the global structures of these networks differ across 

industries on a number of structural dimensions (Rosenkopf and Schilling, 2007). However, while 

there is mounting evidence that variations in global networks may help explain collective outcomes, 

there are limited insights regarding why global networks differ across different industrial contexts. 

Yet, without a systematic understanding of the antecedents of variation in global, industry-wide 

network structures, it may be difficult to draw a link between the properties of global networks and 

the collective outcomes they engender for firms.  

This paper examines the networks of technology partnerships among firms and explores why 

their global, industry-wide structures differ across industries. Global networks represent the 

interlinked structure of ego networks (i.e., ego and its direct contacts, as well as the connections 

among those contacts) and thus capture the overall system of firms and their ties in a given industry.  

Global networks of technology partnerships are critical for the transfer of knowledge and resources 

among organizations. They have thus been shown to affect a wide range of private and collective 

outcomes of firms (e.g., Owen-Smith and Powell, 2004). In developing our theory, we build on the 

basic property of complex social systems whereby the emergence of distinct global networks can be 

traced to individual actors' collaborative behaviors (e.g., Coleman, 1990; Buskens and van de Rijt, 

2008). Partnership networks constitute a highly dynamic setting in which firms constantly reshape 
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their ties due to the economic imperatives of value creation. These dynamics are highly consequential 

for the structure of the emergent industry-wide networks (Powell, White, Koput, and Owen-Smith, 

2005).  

We seek to advance existing theory by exploring whether and to what extent the variation in 

firms' collaborative behaviors across industries helps explain the variation in industry-wide network 

structures. We thus aim to understand why and how firms’ collaborative behaviors differ across 

industries and whether these differences are sufficient to explain the emergence of distinct global 

networks across industries. Accomplishing these goals requires two analytical steps. First, we 

examine whether the differences in value-creation demands across industries lead to a significant 

variation in the collaborative behaviors of firms. Though a range of behaviors can characterize the 

formation of interorganizational networks, we focus on those behaviors that have received particular 

attention in prior research. Specifically, we study how firms pursue either more closed or more open 

ego networks. Pursuing a closed ego network entails forming ties to those partners that are directly 

connected to one another; pursuing an open ego network, in turn, involves forming ties to those 

partners that are not directly connected (Burt, 2012). 

Building on prior findings about the contribution of open and closed networks to firm 

advantage across different industrial contexts (Rowley, Behrens, and Krackhardt, 2000), our theory 

postulates that firms’ collaborative behaviors are closely associated with the requirements of value 

creation imposed by an industry’s technological regime. In particular, we focus on the technological 

dynamism of an industry, which reflects the extent to which firms in that industry emphasize 

investments in research and development [R&D] (Chan, Lakonishok, and Sougiannis, 2001). We 

posit that, in technologically dynamic industries, firms are first and foremost driven to pursue more 

diverse resources and knowledge as critical inputs to innovation, and that doing so is best enabled by 

open ego-network structures. In technologically stable industries, by contrast, firms may be driven to 
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preserve their existing resources and ensure reliable cooperation, which are best enabled by closed 

ego-network structures. We therefore anticipate that firms in technologically dynamic industries will 

on average display stronger tendencies toward open ego networks than those in technologically 

stable industries.   

In the second step, we examine whether the variation in firm-level behaviors is sufficient to 

explain the differences in global, industry-level networks. To do so, we construct an agent-based 

simulation model of network emergence. The model operates under the conditions of varying 

technological dynamism across industries. This feature of the model helps us determine whether, in 

the presence of many other forces driving interfirm ties, the variation in firms’ collaborative 

behaviors along the continuum of closed to open networks can explain the emergence of different 

global networks. To capture the possible variation in global networks, we develop a general typology 

of interorganizational network structures in relation to their technological environment.  

 To provide a comprehensive test of our arguments, we use a combination of statistical 

analyses and agent-based computer simulations. In order to explore whether firms’ collaborative 

behaviors differ systematically across industries with different technological regimes, we analyze the 

formation of interfirm R&D partnerships from 1983 to 1999 statistically. The analyzed data cover a 

wide range of industries with varying emphasis on R&D, including the automotive sector, 

biotechnology and pharmaceuticals, chemicals, microelectronics, new materials, and 

telecommunications. In order to examine whether the variation in firms’ collaborative behaviors 

shapes different industry-wide networks, we then use an agent-based model. The agent-based model 

positions us well to address the aggregate complexity of firms' interactions, which may be 

complicated by varying collaborative preferences of firms as well as by possible exogenous 

perturbations. This approach is particularly fruitful because global networks represent highly dynamic 

systems: they take shape as a result of the interactions among multiple actors and exhibit aggregate 



 5 

properties that cannot be predicted from the properties of individual actors. Moreover, the processes 

by which global networks form may be highly non-linear and non-deterministic, obscuring the link 

between local behaviors and the global outcome (Skvoretz, 2002; Davis, Eisenhardt, and Bingham, 

2007). 

Jointly, our analyses represent a key step toward an environmental contingency theory of 

network formation. This theory proposes a close association between the characteristics of the 

environment in which actors reside—which include its technological regime and the associated 

institutionalized practices and norms—and the processes of network formation among actors. We 

expect that these features of actors' external context and the collaborative behaviors they induce are 

among the main reasons for the variation in global network structures across different types of social 

and economic environments. 

THEORY: TECHNOLOGICAL DYNAMISM AND NETWORK FORMATION  

A key insight from the studies of complex social systems is that the interactions of individual actors 

as they form new network ties critically shape the structural properties of the emergent global system 

(Coleman, 1986). In our context, this implies that depending on exactly how individual firms 

collaborate with partners, different global network structures may emerge. Admittedly, in forming 

new partnerships firms can exhibit a range of behaviors. Yet, recent research indicates that one 

central differentiator is the extent to which firms pursue either closed or open ego networks (Li and 

Rowley, 2002; Rosenkopf and Padula, 2008; Ahuja, Polidoro, and Mitchell, 2009; Sytch, 

Tatarynowicz, and Gulati, 2012). A closed ego network occurs when a firm forms ties to the partners 

of its current partners; an open ego network occurs when a firm forges relationships with alters that 

are unconnected to its current partners.  

A particularly intriguing insight into the formation of closed and open ego networks is that 

they may be driven by fundamentally different motivations on the part of firms. The pursuit of 
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closed networks has been linked primarily to ensuring reliable collaboration and preserving existing 

resources. Since information on other firms is imperfectly distributed and the costs of partner search 

are high, firms often prefer to form connections to alters about whom they can obtain private 

information through shared third-party ties (Gulati, 1995). Furthermore, having a third party in 

common begets a situation in which two partners do not necessarily have to bear the full costs of the 

partnership. The common third party can provide protection against opportunistic pursuits and offer 

effective recourse in conflict situations (Larson, 1992). Finally, by enabling quick diffusion of 

reputational insights, closed ego networks can make it prohibitively costly for partners to engage in 

self-seeking behaviors to the detriment of the firm (Greif, 1989; Ahuja, 2000). These features of 

closed networks make them particularly effective in ensuring reliable collaboration and minimizing 

the transaction costs of partnering.   

In contrast, a central motivation for the pursuit of open ego networks is that such structures 

enable more entrepreneurial firms to acquire diverse information, knowledge, and resources (Burt, 

1992). Partners that are not directly connected to one another are believed to represent distinct 

network clusters with diverse technological knowledge and information endowments. Much 

innovative activity entails recombining existing knowledge elements (Schumpeter, 1934), and open 

networks can enable firms to leverage such diversity in pursuit of superior innovation outcomes. 

This benefit—access to diverse information—is largely unavailable to firms with closed networks. 

This is because ties among similar firms (Powell et al., 2005; Ahuja et al., 2009) and the loss of 

diversity due to increased knowledge and information sharing among densely connected firms (Lazer 

and Friedman, 2007) typically result in greater homogeneity of knowledge in closed networks.  

In view of the fundamental tradeoff between the benefits and costs of closed and open ego 

networks, we expect that firms’ collaborative behaviors may vary depending on the environmental 

requirements for value creation. Specifically, it is possible that slow-paced and technologically stable 
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industrial settings, in which firms focus on the preservation and incremental growth of the existing 

resource base, will tend to engender more closed ego networks. In such industries, closed ego 

networks may help ensure collaborative continuity via high levels of trust and reputational lock-ins, 

both of which help firms to preserve their existing resources. In contrast, technologically dynamic 

industries will tend toward more open ego networks, where opportunities to leverage heterogeneous 

knowledge from diverse partners may outweigh the benefits of resource preservation. This argument 

builds, in part, on the work of Rowley, Behrens, and Krackhardt (2000) who showed that closed ego 

networks were more beneficial in the slow-paced steel industry than in the semiconductor industry, 

which was characterized by significantly greater technological dynamism and innovation demands. 

Three points are worth noting with respect to this argument. First, in order to distinguish 

between closed and open ego networks, firms need not necessarily act as astute networkers. Instead 

of tracing their own network position or that of their potential partner, organizational agents may 

select partners on the basis of the demands for value creation imposed by their industry. For 

example, in highly dynamic industries where innovation is at the core of competitive advantage, firms 

may be driven to select those partners who can provide a unique and diverse combination of skills, 

knowledge, and resources. Organizational agents may identify such partners by monitoring other 

firms' innovation activities, including their new product announcements and patent grants. As firms 

are reaching out to partners with different technological profiles, who are likely to reside in more 

distant parts of the network and far beyond firms' existing contacts, these efforts may eventually 

result in the formation of more open ego networks.  

Less technologically dynamic industries, by contrast, may drive firms to emphasize lower 

transaction costs and preservation of existing resources while downplaying continuous innovation. 

Under these conditions, a key criterion for partner selection is likely to be the moral hazard 

associated with a new partnership. A potential partner’s reliability, in turn, may be most easily gauged 
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on the basis of the information provided by the firm’s existing or past contacts. Sharing a third-party 

connection with a potential collaborator can provide further assurance of reliable collaboration in the 

form of a reputational lock-in, and the parties can also reasonably expect the common contact to act 

as a mediator in emerging disputes (e.g., Black, 1976), precluding the escalation of conflict and 

further reducing the anticipated transaction costs. Taken together, these motivations may lead firms 

in industries characterized by stable technological regimes to favor the formation of closed networks. 

The second point is that our argument concentrates on firms’ average tendencies to form 

open or closed ego networks across industries, and we naturally examine the entire spectrum of 

firms' collaborative behaviors and the resulting network positions. We therefore do not rule out the 

possibility of encountering hybrid network positions, whereby firms can pursue closed and open ego 

networks simultaneously (Burt, 2005). Indeed, we expect that the differences in technological 

regimes across industries should result in a pull toward either end of the hypothesized spectrum of 

behaviors, rather than the formation of purely closed or purely open ego networks.  

Finally, it is important to note that our argument about how firms’ collaborative behaviors 

vary across industries focuses on (a) capturing firms' average tendencies toward open or closed ego 

networks in a given industry, and (b) comparing those average tendencies across industries. In other 

words, we expect that the collaborative behaviors of individual firms may vary both within a given 

industry and over time, and we incorporate such firm-level heterogeneity in our analyses. We simply 

anticipate that the differences in firms’ average behaviors across industries can be associated with cross-

industry variations in technological regimes. In sum, the arguments advanced above lead us to 

formulate the following hypothesis: 

Hypothesis 1: Firms' pursuit of open and closed networks is associated with the technological regime 
prevailing in their industry, such that firms in technologically stable industries will form more closed ego 
networks while firms in technologically dynamic industries will form more open ego networks. 
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COROLLARY: EMERGENCE OF DISTINCT GLOBAL NETWORK STRUCTURES 

Network analysts have devised a comprehensive set of concepts to describe the global properties of 

social systems (Wasserman and Faust, 1994). Within this vast array of concepts, network connectedness 

and the network's community structure stand out as fundamental for understanding how global 

networks shape actors' outcomes (see Figure 1 below). Scholars have observed that high network 

connectedness and strong community structure help explain a range of global network processes, 

such as diffusion of innovations (Wejnert, 2002), exchange of information (Dodds, Muhamad, and 

Watts, 2003), social influence (Moody, 2001), and the spread of infectious diseases (Anderson and 

May, 1991). In interorganizational networks in particular, both concepts have been linked to the 

adoption of innovations, diffusion of governance practices, and dissemination of knowledge among 

organizations (e.g., Davis and Greve, 1997; Rogers, 2003; Uzzi and Spiro, 2005). Network 

connectedness reflects the extent to which actors in the network can reach one another via a network 

path (see Figures 1a and 1b). High network connectedness thus indicates that most firms can access 

one another via an existing network path of some length. This property allows for uninterrupted 

flows of new information, knowledge, and influence. By contrast, low connectedness indicates that 

most firms may be isolated from one another. 

 Unlike connectedness, community structure captures the distribution (rather than existence) 

of network ties throughout the network (Reagans and McEvily, 2003; Moody, 2004; Centola and 

Macy, 2007; Sytch and Tatarynowicz, 2014a). Strong community structure indicates that the 

distribution of ties is uneven and the network is characterized by the presence of many smaller 

subgroups (or communities) of densely interconnected firms. By contrast, weak community structure 

suggests a more even distribution of ties, such that no dense subgroups can be distinguished (see 

Figures 1c and 1d). Network community structure has been linked to a variety of collective 

outcomes. For example, dense network communities have been shown to enable the development of 
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unique pools of knowledge among firms (Sytch and Tatarynowicz, 2014a) and to act as vehicles of 

cohesion, social norms, and influence (e.g., Rogers, 2003; Greve, 2009). Some studies have also 

suggested that network communities are among the key conditions necessary to withstand 

homogeneity pressures and sustain sufficient levels of knowledge diversity in creative environments 

(Uzzi and Spiro, 2005; Lazer and Friedman, 2007; Gulati, Sytch, and Tatarynowicz, 2012). 

------------------------------ 
Figure 1 about here 

------------------------------ 

As a corollary to our first hypothesis, it is reasonable to expect that as firms respond to the 

value-creation demands of their industry by pursuing either more open or more closed ego networks, 

the emergent global networks should vary in terms of their connectedness and community structure.  

Holding all other network properties constant, we can expect that, in sparsely connected partnership 

systems (Rosenkopf and Schilling, 2007), the formation of more open ego networks should lead to 

higher levels of connectedness but weaker community structures. As firms extend their partnerships 

into wider swaths of the partnership system, the number of widely dispersed ties should go up while 

the number of local ties should go down, thus increasing the system's connectedness. Yet, since in 

sparse networks communities generally tend to be weaker by virtue of containing fewer internal ties, 

the process of redistributing ties to distant parts of the network may come at the expense of the 

strength of local community structure. By the same token, sparse interorganizational networks are 

likely to be subject to opposite pressures in those industries where firms generally pursue more 

closed (rather than more open) ego networks. Since in those industries firms tend to place their ties 

in more local parts of the network, the emergent systems should be characterized by stronger 

community structures but lower levels of connectedness. Such tradeoffs were anticipated in some 

formal representations of network dynamics in interpersonal settings (Rapoport, 1957; Skvoretz, 

Fararo, and Agneessens, 2004) and in empirical work on the dynamics of interorganizational 
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networks (Gulati et al., 2012). Considering the arguments advanced above, we thus formulate the 

following hypothesis:  

Hypothesis 2. Variations in firms’ average propensity to pursue open versus closed ego networks observed 
across different industries will lead to the emergence of distinct types of global, industry-wide networks showing 
significantly different levels of network connectedness and community structure.  
 
When applied to low-density networks, the hypothesis above builds on a rather 

straightforward association between the formation of open or closed ego networks by firms and the 

emergent global properties of network connectedness and community structure. In application to 

real-world systems, however, this hypothesis leaves several questions open. First, although we 

anticipate that the pursuit of open and closed ego networks will vary across different industrial 

settings, it is unclear how significant this variation will be. Thus, we cannot plausibly predict to what 

extent our conceptualization will provide sufficient explanation for the differences in global networks 

that are observed empirically. Clearly, low variation in firm behaviors may weaken the relationship 

between firm-level behaviors and the emergent industry-level networks. Second, even if we find that 

the variation in firms' collaborative behaviors is substantial and may potentially explain the observed 

differences in global networks, the precise nature of this relationship remains unclear. For instance, 

we cannot hypothesize exactly at what levels of firms’ preferences for open versus closed ego 

networks the expected transitions from low to high network connectedness and from strong to weak 

community structure will occur. It is unclear whether both properties will follow a linear pattern of 

change as implied by our argument, or will feature more complex, non-linear paths. For instance, 

some studies of main component formation have indicated that connectedness is rather malleable, 

while changes in community structure are generally more difficult to trigger (Newman and Watts, 

1999). Such non-linear paths could engender the emergence of intermediate network forms, which 

could for example combine high levels of network connectedness with strong community structure.  
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To address these complexities, we test the above arguments using an agent-based simulation 

model. Doing so offers two benefits. First, an agent-based model does not impose strict assumptions 

of linearity on the hypothesized relationships. Second, the model enables us to achieve an abstract 

and yet detailed representation of real-world network dynamics in which the network's properties are 

assumed to co-evolve with the behaviors of actors. This results in an interdependent system in which 

the evolving network is influenced not just by firms' direct interactions within dyads but also by their 

indirect contact to other firms, as well as by the emergent global network itself. Importantly, our 

approach reflects a growing emphasis on agent-based models in organizational research that occurs 

alongside the growing interest in network dynamics and emergence (Ahuja, Soda, and Zaheer, 2012).  

ANALYSIS  

Variation in Firms' Collaborative Behaviors 

Our first hypothesis predicted that firms' propensities to form more open versus more closed ego 

networks will vary across different technological regimes. To test this hypothesis, we used data on 

technology partnerships in the automotive, biotechnology and pharmaceuticals, chemicals, 

microelectronics, new materials, and telecommunications sectors. The breadth of our sample allowed 

us to capture significant variation in technological dynamism across different industries and thus 

positioned us well to examine whether and to what extent this variation could help explain the 

differences in firms’ collaborative behaviors. In order to examine the micro-dynamics of network 

formation, we tracked partnerships formed in each industry from 1983 to 1999. Because 

collaborative partnerships were rare prior to 1980 (Hagedoorn, 1996), focusing on this period 

enabled us to provide a detailed account of the collaborative history of each industry. We obtained 

our data from the Collaborative Agreements and Technology Indicators (CATI) database, which is 

among the most well-established and frequently used sources of data on technology partnerships 

(e.g., Hagedoorn, 1993; Gulati, 1995; Gomes-Casseres, Hagedoorn, and Jaffe, 2006). This database 
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tracks a broad range of partnerships that entail knowledge exchange and development of new 

products or technologies, including joint ventures, contractual agreements, R&D consortia, and 

licensing deals (Rosenkopf and Schilling, 2007). Overall, our data included 8,810 distinct technology 

partnerships formed by 4,400 firms.  

 We followed the standard procedures of prior research in using these partnerships to map 

the industry-wide, global interorganizational networks. Over 95% of the partnerships were bilateral, 

and we treated them accordingly as dyadic network ties. We decomposed the remaining multilateral 

partnerships into sets of dyadic ties (Stuart, 1998). Because information on partnership terminations 

was limited, we built on prior work suggesting that interorganizational partnerships last on average 

for five years (e.g., Kogut, 1988a; Gulati and Gargiulo, 1999; Stuart, 2000; Lavie and Rosenkopf, 

2006). To reproduce the evolution of each interorganizational system in our data from 1987 to 1999, 

we thus constructed thirteen annual global networks for each industry.1  

We anticipated that firms in technologically dynamic industries will be likely to form more 

open ego networks, while firms in technologically stable industries will be likely to form more closed 

ego networks. In line with prior research, we captured the technological dynamism of an industry by 

measuring its research-and-development intensity (RDI). This index captures the aggregate R&D 

spending of firms in an industry per year divided by the sum of firms' total assets (Chan et al., 2001). 

Extant research indicates that a technologically dynamic industry should exhibit high levels of RDI 

because its competitive dynamics are likely to be driven by innovation and technological change 

(Chan et al., 2001; Rosenkopf and Schilling, 2007). We obtained the data on firms' R&D spending 

                                                 
1 It is worth noting that some prior studies of interorganizational networks considered a broader spectrum of interfirm 
ties and used other sampling strategies. For example, in their study of an interorganizational network in biotechnology 
and pharmaceuticals, Powell, White, Koput, and Owen-Smith (2005) examined various financing, sales, and marketing 
agreements among dedicated biotechnology companies, while excluding ties between pharmaceutical firms. Nonetheless, 
their global network still showed some remarkable similarities to the system mapped here, includign high network 
connectedness (Ibid: Footnote 17) and some discernible community structure (Ibid: Footnote 13). We thank Jason 
Owen-Smith for providing us additional data that facilitated these comparisons. 
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from Compustat and Orbis. Table 1 shows the average RDI measured for the six industries in our 

sample. The values indicate noticeable differences in average industry-level technological dynamism.2  

------------------------------ 
Table 1 about here 

------------------------------ 

To differentiate between closed and open ego networks, we used Burt’s (1992) measure of 

ego network constraint, defined as 2( )i ij ik kj

j k

c      . Here, ij  indicates the fraction of i’s ties 

with j, jk  indicates the fraction of i’s ties with k, and kj  indicates the fraction of k’s ties with j. This 

index increases with the extent to which ego’s contacts become more connected to each other and 

decreases as they become more separated. Since the pursuit of closed ego networks involves forming 

ties to those partners who are directly connected to each other, firms that exhibit this behavior 

should obtain higher levels of network constraint. By contrast, firms that are forming ties to those 

partners who are not directly connected to each other should obtain lower constraint levels.  

Based on the analysis of ego networks, we then estimated how likely an average firm in each 

industry is to pursue a more open (versus more closed) ego network. In measuring these behaviors, 

we focused only on those firms that had formed at least one new tie in any year. Doing so allowed us 

to focus on the behavior of the individual firm, rather than change in the surrounding network. For 

each focal firm, we first estimated the firm's probability of forming a more open ego network in any 

year (pi). Figure 2 illustrates this procedure. Suppose that from t = 0 to t = 3, A had increased its 

constraint twice (from t = 0 to t = 1, and from t = 1 to t = 2), and lowered it once (from t = 2 to t = 

3). This means that A’s propensity to form a more open network was pA = (0+0+1)/3 = 0.33. Using 

the same procedure, we estimated B's and C's propensities as pB = 0.66 and pC = 0, respectively.  

 

                                                 
2 In additional analyses, we verified these results for a larger sample of industries. Specifically, we used data from Booz & 
Company’s “Global Innovation 1000” series on R&D spending of 1,000 public companies over 2005-2011 to derive the 
average levels of RDI for our six industries in that period as well as for software & internet, aerospace and defense, and 
consumer-goods sectors. We found a consistent rank ordering of industries in terms of their technological dynamism. 
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------------------------------ 
Figure 2 about here 

------------------------------ 

Following this estimation, we checked the distribution of pi values for firms in each industry 

against a number of commonly known distribution functions. Our results indicated that the best fit is 

provided by using two discrete parameters: (a) the fraction of firms with zero probability of forming 

more open ego networks at any time (fracp=0), and (b) the average probability that the remaining 

firms will form more open networks (p). Both parameters are reported in Table 1. We then explored 

the correlation between firms' average propensities to form more open ego networks and industry-

level RDI. The results are summarized in Table 1: the correlation between RDI and fracp=0 is -0.99, p 

< 0.001; the correlation between p and RDI is 0.75, p < 0.1. This result supports our first hypothesis 

that predicted more open ego networks for industries with greater levels of technological dynamism.  

In additional analyses, we explored whether these differences in firms’ collaborative 

behaviors could be attributed to an industry’s degree of maturity rather than its technological 

dynamism. First, we specified a regression model in which we estimated the effect of an industry’s 

RDI on a focal firm’s collaborative behavior while controlling for the effect of industry maturity 

directly. Our dependent variable was Constraint change, defined as ci,t - ci,t+1, where ci,t and ci,t+1 

represent the firm's network constraint in years t and t+1, respectively. A positive value indicated the 

pursuit of a more open ego network while a negative value indicated the pursuit of a more closed 

network. Our analysis again focused on those firms that had formed at least one new partnership in 

any given year. Independent variables included Industry-level RDI defined as the R&D intensity of an 

industry in year t, and Industry maturity defined as the 5-year average yearly growth rate in the number 

of firms in the industry. We specified this variable as 


 

 


2

1 1

2

1/5 ( )/
t

y y y

y t

n n n , where y = t is the 

focal year and nt is the total number of firms operating in the industry in year t (e.g., Klepper and 

Graddy, 1990; McGahan and Silverman, 2001). Lower growth rates typically characterize more 
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mature industries that face diminishing market opportunities and increasing consolidation. In 

contrast, higher growth rates are typically associated with younger industries. We obtained the yearly 

counts of firms operating in each given industry from the CRSP database. In the model, we also 

controlled for a range of other possible determinants of firms' collaborative behaviors, all lagged by 

one year with respect to the dependent variable (see Table 2 for a full list of control variables). 

------------------------------ 
Table 2 about here 

------------------------------ 

Given the nested structure of the data, we used a multilevel mixed-effects regression model 

to mitigate the risk of biased parameter estimates and incorrect standard errors (Snijders and Bosker, 

1999). Specifically, we applied a three-level model with the firm's Constraint change in a given year 

estimated at Level 1 and random intercepts specified at the firm level (Level 2) as well as the industry 

level (Level 3). Our additional analyses indicated that adding random coefficients at any level does 

not improve model fit. Table 3 reports the descriptive statistics and correlations for the independent 

and control variables. The mean VIF of 1.83 suggested that multicollinearity is not a serious concern 

(Belsey, Kuh, and Welsch, 1980). The results in Table 4 show that the effect of Industry-level RDI on a 

firm's propensity to form a more open ego network is positive and significant (b = 1.769, p < 0.01). 

This evidence confirms Hypothesis 1 and the earlier findings of our correlation analysis. Notably, 

this effect holds even when accounting for the effects of industry maturity (the coefficient estimate 

for Industry growth rate is statistically insignificant), firm-level R&D expenses, firm size and financial 

condition, as well as the firm's current levels of network constraint.3  

----------------------------------- 
Tables 3 & 4 about here 

----------------------------------- 

                                                 
3 We also examined the possibility that more mature industries could be characterized by more densely interconnected 
partnership systems. Such dense networks could make it harder for firms to pursue more open network positions. Our 
analyses revealed that the empirical networks analyzed in this study are characterized by statistically similar density levels, 
which rules out the possibility that our results could be driven by network density. 
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Variation in Global Network Structures 

In line with Hypothesis 2, we investigated whether and to what extent the empirically established 

differences in firms' collaborative behaviors could explain the variation in global industry-wide 

networks. As noted earlier, we assessed the variation in global networks using the properties of 

network connectedness and community structure (Figure 1). We defined network connectedness as 

 
2

/k

k

C n N , where nk is the size of the k-th network component and N is the size of the 

network. This index captures how many components exist in the network and how they vary in size. 

Its possible values range from close to 0 for a highly disconnected network that contains many 

smaller components, to 1 for a fully connected network that consists of a single large component. 

To measure community structure, we used the clustering method proposed by Girvan and 

Newman (2002), which represents a particularly robust approach to community detection.4 In order 

to find the optimal partitioning of the network into communities, this method utilizes a measure of 

modularity defined as  1/ ( { })kk kk

k

Q e e e . Here, e is the total number of ties in the network, kke  is 

the number of ties in the k-th community, and { }kke  is the expected average number of ties within 

communities estimated from a baseline network that connects firms at random while preserving the 

same number and distribution of ties as in the observed network. This method thus helps evaluate to 

what extent the observed community structure is statistically different from that found at random. 

However, since the number of possible community partitionings increases exponentially with 

network size, in partitioning our networks we utilized an optimization algorithm based on simulated 

annealing (Guimerà and Amaral, 2005). This method quickly finds the maximum value of modularity 

                                                 
4 Our conceptualization of network communities builds on the structural accounts of communities as dense and cohesive 
social groups whose members are closer to each other than to other actors in the system (e.g., Laumann, Galaskiewicz, 
and Marsden, 1978; Laumann and Marsden, 1979). This view is consistent with studies that built on the behavioral 
account of communities as interactional fields (Kaufman, 1959; Turk, 1970; Kasarda and Janowitz, 1974), where network  
communities were considered as being shaped by local interactions and the resulting social proximities among actors. 
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associated with the best community partitioning of a given network and is particularly efficient for 

medium-sized networks, such as those in our data (Danon, Diaz-Guilera, Duch, and Arenas, 2005). 

Table 5 reports the values of network connectedness and community structure along with 

the size, average degree, and density of each network in our data, averaged over the study period. As 

expected, we found the six networks to exhibit rather distinct global forms, ranging from highly 

connected (biotechnology and pharmaceuticals, microelectronics, telecom) to highly disconnected 

systems (automotive, chemicals, new materials); and from strong (biotechnology and 

pharmaceuticals, chemicals, new materials) to medium community structures (automotive, 

microelectronics, telecommunications). Somewhat unexpectedly, we also found that the anticipated 

tradeoff between network connectedness and community structure does not apply to all industries: 

the network in biotechnology and pharmaceuticals had both high connectedness and strong 

community structure.5   

------------------------------ 
Table 5 about here 

------------------------------ 

 To recapitulate our findings so far, our statistical analyses indicated that firms’ collaborative 

behaviors differ across industries, in line with the variations in industries' technological regimes. We 

also found that there are substantial differences in the observed global, industry-wide networks with 

respect to their connectedness and community structure. Hypothesis 2, in turn, leads us to explore 

whether these global differences in network structure can be attributed to the observed variations in 

firm behaviors. Answering this question requires an agent-based simulation model for two reasons.  

First, conducting agent-based simulation essentially allows us to perform a series of experiments, 

where actual firm behaviors can be compared with numerous counterfactuals, many of which are not 

observed in our data. Doing so can position us to better understand the often complex and non-

linear linkages that relate local actor behaviors to the emergence of global systems in social and 

                                                 
5 Additional analyses confirmed that the observed structural differences among industry-wide networks persist over time. 
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economic settings (Schelling, 1978). Second, through experimenting along the entire continuum of 

firms' collaborative behaviors from closed to open ego networks, we can also gain a better 

understanding of the possible transitions among different global network forms and of their resultant 

typology. Therefore, an agent-based model can provide deeper insight into how strongly the 

observed network forms differ from one another, as well as how strongly they differ from other 

possible network forms that may not be observed in empirical data (Bonabeau, 2002).  

Agent-based Model of Interorganizational Network Emergence 

We simulated the process of network emergence by starting from a random Erdös-Rényi network 

with a fixed number of N firms and k ties per firm on average, where any two firms were connected 

with the same probability k/(N-1) (Erdos and Renyi, 1959). This approach offered several 

advantages (for a range of alternative starting conditions, see Appendix 2). First, starting from a 

purely random network that is unlikely to be the result of any systematic processes of tie formation 

among firms provided an uncontaminated testing ground for exploring how the simulated firm 

behaviors could transform and shape the emergent global network structures. Second, an Erdös-

Rényi network also helped us approximate the empirically observed variation in partnership counts 

among firms in a given industry (Rosenkopf and Schilling, 2007).6 We applied constant network size 

and network density to keep consistent analytic conditions across different simulations. 

The global network emerges as firms form new ties with one another, thereby realizing their 

preferences for more open or more closed ego networks.7 The model distinguishes between open 

and closed ego networks using Burt's (1992) measure of network constraint. Figure 3 illustrates how 

                                                 
6 The distribution of tie counts in the Erdös-Rényi network is roughly Poisson (Newman, 2010). 
7 Rather than having firms choose between open and closed ego networks, an alternative model would be to allow firms 
to connect either locally within their own network community or globally outside their community. Such a model would 
perhaps be able to explain the observed changes in community structure and network connectedness more directly. One 
key limitation that makes this model less plausible, however, is that not all interorganizational networks contain strong 
community structure that may equally affect firms’ collaborative behaviors (Rosenkopf and Schilling, 2007). According to 
our results, for example, the strength of community structure varies from medium to strong between different contexts. 
Our model, which limits firms' focus to their ego networks (rather than broader communities) thus allows for extending 
the analysis to a wider spectrum of interorganizational networks with variable degrees of community structures. 
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this process works. Suppose that A is the ego; B, D, and E are A's current contacts; and C, F, G and 

H are A's potential alters. A first ranks the alters according to its expected change in network 

constraint. For illustrative purposes, Figure 3 provides A’s constraint at time t (cA,t = 0.59) and its 

expected constraint at t+1 following the formation of a tie to a given alter (cA,t+1=[0.46, 0.48, 0.66]). 

In our example, the greatest negative change in ego's network constraint is associated with alter G 

(cA,t+1 = 0.46); the greatest positive change is associated with alter C (cA,t+1=0.66). Depending on ego's 

preference for a more open or more closed ego network, A should thus partner either with G or C.  

------------------------------ 
Figure 3 about here 

------------------------------ 

We defined an ego's decision to pursue a more open versus more closed ego network using a 

probabilistic parameter p. In technical terms, this parameter reflected the ego's probability to pursue 

an alter associated with the largest decrease in network constraint for the ego. The ego's probability to 

pursue an alter associated the largest increase in constraint was thus 1 - p. To ensure some degree of 

matching between the preferences of the ego and the alter, a tie would be formed only if it was 

consistent with the alter’s preference structure as well.8 Otherwise, the ego would pursue the next 

best option. We set the same level of p for all firms in an industry and used this modeling approach 

to distinguish a given industry from another collaborative setting characterized by a different level of 

p. However, even though all firms in an industry were thus subject to the same average propensity to 

pursue a more open ego network, in practice the model featured substantial behavioral heterogeneity 

among firms because of the stochastic nature of this process, which allowed individual firms to act 

differently than the average firm. In addition, each firm could also be exposed to different local 

                                                 
8 We modeled this process by allowing the alter to reject a tie if forming it would not change its constraint in the desired 
direction. The ego would then simply move down the list to the next available alter, with the possibility of not forming 
any new tie at all. This process was thus kin to a satisficing behavioral model (Simon, 1947). An alternative would be to 
consider a maximizing model, in which both actors have to draw maximum benefits from the new tie. We discuss this 
possibility in the robustness section. 
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opportunities in terms of the availability and access to potential alters (cf. Ibarra, Kilduff, and Tsai, 

2005). Taken together, these factors ensured close representation of a real-world industrial setting.  

Building on prior work, we also included a range of other behavioral mechanisms to ensure a 

highly realistic model. First, since organizational agents are unlikely to observe the entire social space 

around them, we assumed that the ability of an ego to observe any potential alter declines as a 

function of network distance (Friedkin, 1983). Formally, the probability that i could observe j was 

specified as 1/(dij-1), where dij was the number of links along the shortest network path between i 

and j. Should j be entirely unobservable to i by virtue of residing in a different network component, 

we assumed that the connection is still possible, albeit with a very low probability equal to 1/(N-1). 

This rule allowed us to consider the dynamics of real interorganizational networks where both 

isolates and unconnected components can sometimes join the core of the network.9 

Second, we assumed that two partners can terminate their existing tie and that the likelihood 

of termination varies with the duration of a relationship. In modeling this process, we built on prior 

research indicating that partnership terminations are often time-consuming and costly, and that 

partners typically avoid premature terminations before their contract expires (Malhotra and 

Lumineau, 2011). Consistent with the observation that interorganizational partnerships have a clear 

average lifespan (Kogut, 1988b; Gulati, 1995; Stuart, 2000), we specified a normal distribution for the 

duration of ties with the mean of 10 and a standard deviation of 2 time steps. With the simulation 

length of 100 time steps, our analysis thus extended over 10 full partnership rounds by firms.10  

Third, to preserve constant network density over time, we set the number of ties terminated 

in each time step equal to the number of new ties created by firms in that time step. We formalized 

                                                 
9 Information on potential partners may also travel outside the network and come from other sources such as media, the 
Internet, or various industry events and conferences (Rosenkopf, Metiu, and George, 2001). As a result, even those firms 
that dissolve all their ties may still find a way to from new partnerships and to reenter the network (Powell et al., 2005). 
10 It may be helpful to apply these modeling choices to the dynamics of real interorganizational ties, where two simulation 
steps may correspond to one year in the data. This means that 10 time steps correspond to 5 years, which constitutes the 
typical lifespan of a interorganizational tie in our empirical sample. Our entire analysis should thus be regarded as 
equivalent to tracing the evolution of a real interorganizational network over the period of 50 years. 
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this process by first selecting two random subsets of firms that were chosen independently of each 

other but could overlap. Both subsets had the same size set to 15% of the entire network, which 

reflected the dynamics of real interorganizational networks in our data. Then, each firm in the first 

subset was allowed to create one new tie per time step, while each firm in the second subset was 

allowed to delete one existing tie per time step. Finally, we also provided additional model realism by 

allowing firms to connect to entirely new partners as well as to their current or past partners. 

Results: Empirical Validation Against Data 

We aimed to validate the model by exploring how closely it represents real collaborative behaviors of 

firms observed across different industrial settings. A useful validation test entails examining whether 

—when supplied with the actual collaborative behaviors of firms—the model reproduces roughly the 

same levels of network connectedness and community structure as those found in the real world 

(Davis et al., 2007). We specified firms' collaborative behaviors using the empirical values of the 

fraction of firms with zero probability to form an open ego network (fracp=0) and the propensity of 

the remaining firms to create a more open ego network (p). To guarantee some baseline concordance 

with the conditions of each industry, we also matched the size and density of the simulated networks 

with their corresponding empirical values (see Table 1). For each industry, we conducted 100 

simulations to ensure that the results are not affected by stochastic variation, and recorded the 

average levels of connectedness and community structure along with their standard deviations.  

 We then compared those values statistically with the corresponding properties obtained from 

real interorganizational networks using z-scores. Specifically, for network connectedness we used 

 [ ( )]/C Cz C E C , where C is the connectedness of the empirical network, while E(C) and C  

are the average and standard deviation of connectedness measured for the simulated network (Szell, 

Lambiotte, and Thurner, 2010). For community structure, we used  [ ( )]/Q Qz Q E Q  where Q 

is the modularity of the empirical network, while E(Q) and  Q  are the average and standard 
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deviation of simulated modularity. Results (Table 6) reveal close empirical correspondence of the 

simulated networks, indicating that our model is valid (Davis et al., 2007).11 

------------------------------ 
Table 6 about here 

------------------------------ 

Results: Topological Transitions and Variation in Global Networks 

 To understand the link between firms' behaviors and the emergent global networks more 

precisely, we extended our agent-based simulation across the entire range of conceivable values of 

fracp=0 and p.  We obtained those values by varying both parameters over the maximum range from 0 

to 1 in 0.01 increments. This procedure resulted in a comprehensive set of 101  101 = 10,201 

analytic cases. To achieve a more realistic representation of an interorganizational setting, we again 

followed our descriptive results and those of prior research in specifying the key parameters of the 

model (Rosenkopf and Schilling, 2007). This involved modeling a medium-sized network of 200 

firms, with an average of 4 ties per firm (see Appendix 2 for alternative specifications). For each set 

of p values, we simulated the network for 100 time steps to ensure stability in the emergent global 

properties (see Appendix 1 for a formal analysis). To mitigate stochastic variance, we repeated the 

simulation 100 times for each analytic case and recorded the average levels of network connectedness 

and community structure. The complete analysis thus involved 1,020,100 different simulation runs. 

We summarize the findings in Figure 4 using two-dimensional heat maps. The results are 

consistent with the basic intuition of our second hypothesis, which suggests that as firms' propensity 

for open ego networks increases, the emergent global networks should become more connected and 

should exhibit weaker community structures. Two results are particularly striking, however. First, 

Figure 4a indicates that a sharp initial increase in network connectedness occurs over a relatively 

                                                 
11 The results of this test support our model but cannot explicitly rule out other behavioral mechanisms that could be 
present in our empirical context and could possibly lead to other types of global networks. We therefore additionally 
tested a range of alternative models of network formation among firms. We report the results in the robustness section. 
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narrow range of p values, thus resembling a rapid phase transition toward a globally connected 

network form (Holme and Newman, 2006). Second, Figure 4b documents that community structure 

follows a more stable pattern over p; it is noteworthy, however, that the initial increase in p is 

accompanied by growing (rather than declining) community structure. This appears somewhat at 

odds with our second hypothesis, which predicted that in sufficiently sparse systems the formation 

of open ego networks should weaken (rather than strengthen) community structure.12  

To gain a better understanding of exactly when the changes in p result in different global 

network forms, Figure 5 examines the transitions in connectedness and community structure over 

the entire scale of p values. Using a representative set of scenarios with low fracp=0, medium fracp=0, 

and high fracp=0, we first fitted a series of Bézier curves to smooth out the average results obtained 

across different simulations (Farin, 1997). Using their first-order derivatives, we then assessed at 

precisely at which p values the fitted curves indicate key inflections in network connectedness and 

community structure.13 The results suggest a rather complex, non-linear pattern of co-variance that 

occurs along the same set of inflection points (p = 0.15, fracp=0 = 0; p = 0.22, fracp=0 = 0.35; and p = 

0.34, fracp=0 = 0.70 for both properties). Within this pattern of co-variance, there are certain intervals 

that are characterized by rather intuitive transitions, such as the rapid growth of a highly connected 

system at low p values and the subsequent decline in community structure at medium-to-high p 

values. However, the results also indicate that a simple linear trade-off effect between network 

                                                 
12 One way to understand these results is to explore where the observed changes in community structure may come 
from: the inside or the outside of the main network component. As firms create more open ego networks, the initial 
boost in community structure may come from the outside and be the result of integration of other, smaller network 
components into the main component. However, given only weak firm propensities toward open ego networks, this 
process is unlikely to fully absorb other components and eliminate any emergent community structure. Instead, the 
integrated components may continue to exist inside the main component as distinct network communities. But once the 
transition toward a connected network is over, firms' opportunity to pursue more open ego networks by connecting to 
outside components may diminish. Instead, firms may be increasingly required to pursue open ego networks by 
connecting across the separate network communities that exist inside the main component. These dynamics may thus 
form the basis of an initial rise and a subsequent decline of community structure, as observed in our results. 
13 These analyses are not reported but are available upon request. 
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connectedness and community structure does not occur at all levels of p. Instead, the plots show a 

concurrent rise in both properties at low p and a stable pattern of connectedness at medium-to-high p.14  

------------------------------ 
Figure 4 about here 

------------------------------ 
------------------------------ 

Figure 5 about here 
------------------------------ 

Results: General Typology of Emergent Global Networks  

Based on the above results, we identify three distinct archetypes of global networks that emerge as a 

result of varying firm preferences towards more open versus more closed ego networks. These 

network archetypes are characterized by significant differences in network connectedness and 

community structure (see also Figure 6). The first network archetype is characterized by low 

connectedness and medium-to-strong community structures. Because this configuration is 

reminiscent of a set of clans with strong in-group ties and almost no ties to other groups, we call it a 

clan network (Figure 6a). In our results, clans were associated with the lowest firm propensities to 

form more open ego networks. For example, in the set of scenarios with fracp=0 = 0, clan networks 

were found for p < 0.15.  

 The second network archetype is characterized by high connectedness and strong community 

structure. It is noteworthy that this structure corresponds to an intermediate network form linked to 

the critical non-linearities that were uncovered by our agent-based model. In view of the sparsely 

interconnected and dense network communities that populate this system, we call it a community 

network (Figure 6b). Our analysis indicated that community networks are associated with firms’ 

moderate propensities towards forming more open ego networks. For example, in the set of 

                                                 
14 We also found that connectedness plateaus at around C = 0.8 instead of reaching the maximum value of 1.0. One 
explanation for this outcome could be that by dissolving their ties, firms automatically introduce some fractures into the 
global system which then serve to prevent the emergence of a single-component network (our online supplementary 
material provides some videos that illustrate this process). 
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scenarios with fracp=0 = 0, community networks were found from p = 0.15, where community 

structure peaks at Q = 0.7, to p = 0.65, where community structure drops below Q = 0.5.  

Finally, the third network archetype is characterized by high connectedness and medium-to-

weak community structures.15 Notably, this structure features more disorder than the previous two, 

bearing some resemblance to a large public gathering or a convention; we therefore call it a convention 

network (Figure 6c). In our results, convention networks were associated with strong firm propensities 

towards more open ego networks. For example, in the set of scenarios with fracp=0 = 0, convention 

networks were found for p > 0.65. Using a series of one-way ANOVA models (Table 7), we found 

that this typology represents a set of statistically significant differences in network connectedness and 

community structure (connectedness: F = 278,270.49, p < 0.001; community structure: F = 

10,960.46, p < 0.001). The complete typology is visualized in Figure 6d.16  

------------------------------ 
Figure 6 about here 

------------------------------ 
------------------------------ 

Table 7 about here 
------------------------------ 

 

In a representative application of our typology, we explored which network archetypes 

characterize the six industries in our data. Given that the networks in automotive, chemicals, and 

new materials were found to combine low-to-medium connectedness with strong community 

structures, and that this configuration seemed to be the result of relatively weak firm propensities 

towards more open ego networks, we can classify these systems as clan networks. In turn, the networks 

in biotechnology and pharmaceuticals, microelectronics, and telecommunications were all found to 

                                                 
15 Our description of a convention network as a network with weak community structure is consistent with some other work 
on network cohesion including, for example, the work of Moody and White (2003), which defined cohesion as the 
presence of multiconnectivity among a group of actors. According to this view, cohesive social groups are the ones that 
manage to withstand separation even in the face of losing multiple in-group ties. Although it is possible that an entire 
global network could display such a property by virtue of offering sufficient tie redundancy to withstand separation, the 
convention networks we traced in our model were not sufficiently dense to provide such system-level cohesion. 
16 We also validated these differences post hoc using the Tukey-Kramer test of deviance, which allowed us to compare a 
given network archetype directly against the other two types using a standard t-score. The results of this additional test 
consistently indicated significant pairwise differences in network connectedness and community structure (p < 0.001). 
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combine high connectedness with strong community structures and were driven by moderate firm 

propensities towards open ego networks. Hence we can classify them as community networks. To 

illustrate this classification, in Figure 7 we provide two real-world images of (a) a clan network in new 

materials in 1994, and (b) a community network in telecommunications in 1994. Broadly speaking, 

these results suggest that clan networks may be associated with technologically stable environments, 

while community networks may arise in environments that are characterized by greater technological 

dynamism. Notably, our data showed no evidence of an existing convention network. We address 

this finding in the discussion section. 

------------------------------ 
Figure 7 about here 

------------------------------ 

DISCUSSION  

This study was motivated by the recognition that global networks in different social and economic 

settings vary in terms of their structural properties, and that this variation can be consequential for a 

range of collective outcomes. With this insight in mind, we set out to explore the antecedents of the 

differences in global network structure. Our methods combined agent-based simulation models with 

empirical analyses of interorganizational partnership networks in six industries. The study showed 

that firms’ collaborative behaviors vary with the technological dynamism of their industry, and that 

this variation leads to the emergence of three distinct global network archetypes.  

Overall, our findings represent an important step toward an environmental contingency 

theory of network formation, which proposes a close association between the characteristics of the 

environment in which actors reside and the processes of network formation among actors. We thus 

suggest that organizations may be responding to environmental demands not only in terms of their 

internal organizational design (Lawrence and Lorsch, 1967), but also in terms of their collaborative 

behaviors with other organizations. The main findings of the study are twofold. First, we found that 
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in technologically dynamic industries firms on average tend to pursue more open ego networks. In 

contrast, in technologically stable industries firms on average tend to pursue more closed ego 

networks. This effect likely indicates that firms in technologically dynamic industries may favor the 

pursuit of novel and non-redundant knowledge and resources over the preservation of existing 

resources, which is best enabled by open ego networks. In technologically stable industries, in turn, 

firms may favor the preservation of their existing resource base over access to new knowledge and 

resources, which is best enabled by closed ego networks.  

Second, we found that the variations in firms' collaborative behaviors closely explain why and 

how the interorganizational networks that emerge in different industries vary in terms of their global 

topology. Specifically, our results indicated that even though the local differences in firms' behaviors 

may seem rather subtle, they still result in entirely different global network forms that exhibit 

distinctive levels of network connectedness and community structure, and which emerge from 

complex interactions between firms' behaviors and global network structure. With respect to this 

non-trivial finding, our results indicated that technologically stable industries are characterized by the 

emergence of clan networks that feature weak network connectedness and medium-to-strong 

community structures, while technologically dynamic industries are characterized by the emergence 

of community networks that feature high network connectedness and medium community structures.  

Interestingly, while our model indicated the emergence of a third network type, a convention 

network that exhibits high connectedness and weak community structure and is linked to high firm 

propensities toward open ego networks, such a network was not found in our data. One possible 

explanation is that firms might be driven toward closed ego networks by a number of potent forces. 

For example, the formation of closed ego networks could correlate with geographic proximity, which 

could enable firms to draw on the economic efficiencies and the institutional support mechanisms of 

a regional cluster (Krugman, 1991; Marquis, 2003). Alternatively, firms could agglomerate into dense 
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network communities based on structural similarities and homophily (Powell et al., 2005). Finally, 

forming closed ego networks could be driven by inertia and the comfort of familiarity, which might 

overshadow the economic imperatives of collaboration (Li and Rowley, 2002).  

The same forces might also serve to align firms’ private goals with the shared goal of creating 

a global network that serves the entire collective. This conjecture is consistent with research in 

complexity science showing that many complex systems self-organize in distinct ways, and that this 

self-organization can reduce the costs of tie formation or make the system more robust to failure 

(Simon, 1962; Boisot and McKelvey, 2010). It is also relevant that self-organization may be adaptive 

and may occur in response to the environment. By this logic, firms might be increasingly adapting 

their collaborative behaviors to respond to the requirements of value creation present in their 

industry. Should one network type be better suited to satisfy these requirements (e.g. a community 

network), it may be more likely to form and be sustained over time than others. Though our theory 

focused on the requirement of knowledge transfer among firms, future research could extend this 

logic to a wider range of systems and outcomes (e.g., Powell et al., 2005). In some systems, for 

example, environmental adaptation could reflect the need to minimize the costs of forming new ties 

or the need to avoid network failure (Jackson and Wolinski, 1996; Schrank and Whitford, 2011).  

The Implications of Global Network Types for Collective Outcomes  

To manage the scope of the study, we have deliberately limited our analyses to firms’ collaborative 

behaviors and the resulting variation in global, industry-wide network forms. Of course, underlying 

this focus is an assumption that variation in global networks is consequential for a range of collective 

outcomes. We briefly explored the validity of this assumption in our supplementary analyses, where 

we modeled a simple process of knowledge diffusion across an industry. In line with prior research, 

we considered a basic process of diffusion where the probability of knowledge transfer between two 

firms is a function of (a) existence of a network tie between them, and (b) their familiarity and trust 
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in each other (Rogers, 2003). We modeled firms' familiarity and trust using the total number of their 

current and past direct ties and the fraction of ties held to the same third parties, respectively (Gulati, 

1995). We considered a realistic model of network diffusion where new knowledge diffuses in 

parallel with the process of network emergence (Cowan, 2005).17 We subsequently evaluated how 

quickly and broadly knowledge can diffuse across such an emergent global network. 

Our results indicated that, among the three archetypes of networks analyzed in this study, 

community networks have the greatest capacity to sustain the diffusion dynamics. Such networks 

facilitate the spread of new knowledge for two reasons. First, they help attain higher levels of 

network connectedness, which allows knowledge to spread more widely across the emergent system. 

Second, they also help firms develop a higher degree of familiarity and trust in each other, which is 

enabled by the structure of dense and cohesive network communities. Clan networks provide a 

relatively strong community structure as well, but they fail to offer enough global range to facilitate 

knowledge access. Thus, in comparison with community networks, clan networks inhibit diffusion. 

Interestingly, we found that clan networks tend to perform better at spreading new 

knowledge among firms than convention networks. Given that firms are significantly more isolated 

from one another in a clan than in a convention network, we expected to see the opposite result (cf. 

Davis and Greve, 1997; Westphal, Gulati, and Shortell, 1997). In additional analyses, we found that 

clan networks provide a highly dynamic network setting that assures sufficient access to new 

knowledge via temporary ties that span different network components (see Online Supplements 2-3). 

Over time, these transient bridges may serve as effective substitutes for permanent connections, 

mitigating the negative effects of low network connectedness that characterizes a clan network.  

                                                 
17 Modeling the dynamics of network formation independently from the dynamics of diffusion is consistent with the bulk 
of empirical work on diffusion which typically assumes independence between the two processes (e.g., Haunschild, 1994; 
Davis and Greve, 1997). Furthermore, a model in which diffusion interferes with network formation might preclude us 
from capturing the precise impact of the emergent global network on diffusion outcomes. Of course, in some diffusion 
scenarios, the dynamics of network formation could be shaped by actors' desire to access knowledge via newly formed 
ties. Future work could examine such complex dynamics between network structure and diffusion in more detail. 
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One example of a transient bridging tie in our data was the joint venture created in 1989 by 

the Japanese automaker Daihatsu and Balkancar, a state-owned Bulgarian manufacturer of large 

utility vehicles. The goal of this partnership was to exchange knowledge and pool resources to 

produce the first Japanese-Bulgarian truck. Though the partnership got off to a good start and 

managed to enable substantial knowledge transfer, it got dissolved as political turmoil swept across 

Eastern Europe in the early 1990s. The two companies have not collaborated since, and ties between 

the members of their respective network communities have been equally rare. Another example of a 

transient bridge was the 1992 alliance between BP and the Japanese new materials specialist Ube 

Industries. Their goal was to transfer knowledge and technology with hr goal to develop a new line 

of low-density plastics. The contract expired in 1997 and no subsequent agreements between the two 

firms have been registered. Given that the network communities to which both firms belonged 

remained separated over time, this transient bridge also stands out for its role in supporting 

knowledge flows across wide parts of the interorganizational network (see Online Supplement 3). 

Existing studies treat network connectedness as the key determinant of network diffusion 

(Coleman, Katz, and Menzel, 1957; Watts and Strogatz, 1998; Cowan, 2005). Our study and the 

examples above, however, suggest that global access does not necessarily require high levels of static 

network connectedness. Even if the global network appears as being rather disconnected, this static 

image could mask the system's capacity to compensate through short-term transient bridging ties that 

can offer sufficient range, albeit over short periods of time. An important implication of this finding 

is that understanding collective outcomes may require reframing connectedness as a dynamic network 

property. As suggested by our additional results, understanding connectedness as a dynamic property 

can significantly enhance our conclusions with respect to the link between structure and diffusion.  

Contributions to Studies of Social Systems 
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This paper offers several contributions to studies of social systems. First, we advance the study of 

social embeddedness of economic action (Baker, 1984; Granovetter, 1985; Uzzi, 1996) by exploring 

the relationship between the micro-processes of tie formation by individual actors and the emergent 

macro-structures of their social system. Our primary insight is that the variation in actors’ network 

behaviors observed across different social and economic contexts helps explain the emergent 

variation in global networks, and we find that these differences are stable over time. Our work thus 

extends recent research on network variation that focused on a single social context (Rosenkopf and 

Padula, 2008; Zaheer and Soda, 2009; Gulati et al., 2012). In relation to this work., we show that 

global networks may show different structures not just over time but also across different contexts. 

More importantly, we relate these differences to varying behavioral tendencies of actors, such as the 

propensity to form open or closed ego networks, and demonstrate their linkage to different industrial 

settings, their levels of technological dynamism, and the associated requirements for value creation. 

Second, the typology of global networks developed in this paper offers fruitful opportunities 

for a comprehensive analysis of a wider range of social systems. Our typology provides conceptual 

and analytical guidance with respect to the linkage between the differences in actors’ collaborative 

behaviors and the salient transitions between different global network forms. These transitions 

characterize the emergence of distinct archetypes of clan, community, and convention networks that feature 

pronounced differences in network connectedness and community structure, and that seem to exert 

profound effects on actors' collective outcomes. It is worth noting that the scope of our argument is 

conditioned by generally low network density that characterizes interorganizational networks. Yet, 

since similarly sparse networks occur in other settings as well (Podolny and Baron, 1997), we believe 

that our typology has the potential for generalizability to a broader range of collaborative contexts.  

In particular, the typology of clan, community, and convention networks allows for a more 

precise classification of sparse global networks than do alternative typologies that use such measures 
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as betweenness centralization, closeness centralization, degree centralization, and the small-world 

quotient (e.g., Uzzi and Spiro, 2005). First of all, our typology is applicable to a broader range of 

network structures, including highly fragmented structures for which many of these alternative 

measures are undefined. Since the emergent clan, community, and convention networks are differentiated in 

part by their degree of network connectedness, using our typology can allow scholars to precisely 

assess not only how global networks differ structurally but also how they shape actors' collective 

outcomes. Additional analyses we conducted showed that none of the alternative measures 

mentioned above could capture the emergent differences in global networks as precisely as the 

combination of network connectedness and community structure. The centralization metrics 

produced only two crude network forms, whereas the small-world quotient turned out to be higher 

for conventions than for clans. Unsurprisingly, we also found that the typology of clan, community, 

and convention networks significantly outperforms the alternative typologies in terms of explaining 

diffusion outcomes (by a factor of 1.8 to 8.8 depending on which alternative typology was used).  

Third, the results of this study also contribute to the ongoing debate about the varying 

implications of social structures in different environments (Rowley et al., 2000; Xiao and Tsui, 2007). 

More specifically, our results establish a connection between firms' collaborative behaviors and the 

technological dynamism of their industry, which is essential for understanding the variation in global 

network forms. This connection helps reconcile some of the conflicting findings regarding how 

social networks emerge and how they affect actors' actions and outcomes (cf. Kilduff and Brass, 

2010). For example, this study sheds more light on why closed ego networks may prevail in the 

technologically stable contexts such as the automotive industry or new materials (Gulati, 1995) but 

not in the dynamic context such as biotechnology and pharmaceuticals (Sytch and Tatarynowicz, 

2014b). Our study also helps clarify why chemical companies have been found to benefit from closed 

ego networks (Ahuja, 2000), while companies in the media sector (Zaheer and Soda, 2009) and the 
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semiconductor industry (Rowley et al., 2000) have been found to gain greater advantages from open 

ego networks. Though our goal has not been to examine how a firm's network position affects its 

performance, the findings of this study suggest that one way for future research to explore this link 

would be to account for baseline differences in the value-creation regimes across different industries.
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Appendices 
 
Appendix 1: Stability of the Emergent Global Networks  

We examine the stability condition at t = 100 time steps for a large network with N firms and a small 
number of K components (K << N). Network connectedness is inversely proportional to K, such 
that C = 1/K. We also assume that every component has the same size n, such that n = N/K, and 
that every firm has the same network constraint, such that average constraint equals the constraint of 
any given firm. For this condition to hold, we assume maximum density of ties within components.  
 Given these simplifying assumptions, it is quite straightforward to show that any changes in 
network connectedness will be related to the changes in network constraint as long as network size is 
fixed (which is true in our model). First, we derive firms’ average network constraint (ci) as:  
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By substituting n = N/K and rearranging the terms, we obtain: 
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Since K << N, 1 + K/(N-K) → 1. By substituting, we can simplify the above equation to:  
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By solving the above for K, we get: 
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The above formula captures the relationship between the number of components K and the network 
constraint of any firm. To derive the association between network connectedness C and network 
constraint, we substitute K = 1/C and solve for C: 
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This suggests that network connectedness decreases proportionally to a firm's constraint (0  ci  1). 
The precise rate at which connectedness decreases is given by the derivative of C with respect to ci: 
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This formal result captures the relationship between stability of the global network (C') and stability 
of firms' ego networks. It suggests that once firms obtain their optimal constraint levels such that no 
further changes can be made, then – ceteris paribus – the emergent global network should stabilize as 
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well.18 To understand when this happens, we explored how long it takes for a typical firm to obtain 
an optimal constraint level. To do so, we assumed that the firm must replace all its initial ties, which 
were assigned to it at random at t = 0. Since the likelihood of forming a new tie is 0.15 and every 

firm is initially assigned 4 ties, replacing these ties will take 4/0.15  27 time steps. The most critical 
changes in the firm's ego network should thus occur over the first 20-30 time steps of the model. 
 We validate this conclusion through simulation and present the results in Figure 8. Figure 8a 
traces firms' average constraint levels in a typical clan network (fracp=0 = 0.9, p = 0.1), community 
network (fracp=0 = 0.7, p = 0.3), and convention network (fracp=0 = 0.2, p = 0.8). Figures 8b-8c, in 
turn, plot the related changes in network connectedness and community structure, respectively. The 
results show that stable ego constraints indeed emerge just over the 20-30 time steps of the model 
and are closely related to the emergence of stability in global network properties.  

----------------------------- 
Figure 8 about here 

----------------------------- 

Appendix 2: Robustness Analyses 

We conducted a number of additional tests to see if our results are robust to alternative parameters 
or model specifications. First, we tested some alternative values of network size and density. In our 
main analysis, we used the values that were supplied by our own data and were also consistent with 
prior work on interorganizational networks (Rosenkopf and Schilling, 2007). In additional tests, we 
extended our modeling to a broader range of network sizes (N = 2,000 and N = 20,000) and density 

levels (2  k  6). The results were similar to those reported in the paper. The only difference was 
when we applied an extremely low network density (k = 2). Under these conditions, the emergent 
network was too sparse to obtain global connectedness at any p. This suggests that our findings 
could be less applicable to extremely sparse systems that preclude the formation of a large main 
component (Callaway, Newman, Strogatz, and Watts, 2000). While such extremely sparse networks 
are rare in the interorganizational setting, some studies have identified the occurrence of sparse 
networks in certain industries, such as footwear or paper mills (Rosenkopf and Schilling, 2007).  

Second, we varied the starting conditions of the simulation. We specifically extended the set 
of initial networks to two other stylized networks, such as (a) the regular network where every firm is 
connected to four other firms, and (b) the small-world network where most firms are connected to 
four other firms but 10% of the firms are randomly reconnected (Watts and Strogatz, 1998). Further, 
in addition to the Erdös-Rényi random network model used in the paper, we also tested a few 
alternative random models with variable degree distributions. These included (a) a normal degree 
distribution with the mean and standard deviation of 4.0, (b) a log-normal distribution with the mean 

and standard deviation of 4.0, (c) an exponential distribution with  = 2.5, and (d) a power-law 

distribution with  = 2.5. All these models produced similar results to our main model.19 

                                                 
18 Equation (3) leads to similar conclusions with respect to the relationship between firms' average network constraint 
and the network's community structure. Consider a simple network with K interconnected network communities( rather 
than components), where community structure Q increases proportionally to K. Following the same reasoning as above, 

we can express the stability of global community structure as a function of stable ego networks as    2( ) /(1 )i iQ c N c . 
19 In addition to reaffirming the robustness of our main model, changing the initial degree distribution also allowed us to 
validate our assumptions with respect to the costs of interorganizational ties. Our theory postulated that one reason why 
firms might choose between open and closed ego networks is related the benefit and costs of these distinct positions, 
which may vary across industries. Yet, interorganizational partnerships could also involve other types of costs, such as 
the costs of managing and coordinating across different collaborations. By considering other degree distributions, we 
were able to account for these various types of costs indirectly. For example, a normal degree distribution implied that 
firms could realize certain benefits and synergies from multiple ties, however only as long as their number does not 
exceed the mean value of four. Beyond this threshold, the partnership costs would start to rise and would eventually 



 37 

Third, we considered a model with greater behavioral heterogeneity of firms in an industry. 
Our main model assumed that firms in a given industry would choose between open and closed ego 
networks with a certain probability p equal for all firms. This specification offered the best fit to the 
empirical data. In an alternative specification, we assumed that p is not fixed but varies randomly 
across the population of firms. We considered five model versions using a normal distribution of p 
values with the mean set between 0 and 1 and the standard deviation increased from 0.1 to 0.5, in 
steps of 0.1. Introducing this additional behavioral heterogeneity did not affect our main results. 

Fourth, we revisited our assumptions regarding firms' visibility across the wider network. The 
assumption we made in the main analysis was that the extent to which an ego can observe potential 
alters is inversely proportional to network distance. One possibility to extend this model is to restrict 
an ego's visibility to a certain maximum range, beyond which no alter can be "seen". To implement a 
limited range of visibility, we therefore specified an alternative model where the ego can observe only 
those alters who are up to dmax links away. We tested values from dmax = 2, which corresponds to the 
shortest possible distance between any two unconnected firms, to dmax = 10, which corresponds to 
the longest distance measured for any two firms in our dataset. The results remained unchanged. 

Fifth, we considered two alternative models of tie formation between firms that deviate from 
the satisficing model implemented in the paper. These included (a) a model in which both firms do 
not maximize their benefits but merely strive for a change that reflects their individual preferences in 
terms of obtaining higher or lower constraint, and (b) a model in which both firms strive to obtain 
the maximum change in constraint. The results of the first model were similar to our main results. 
The second model, in turn, showed the same pattern of co-variance between network connectedness 
and community structure, but with absolute values of both properties substantially lower than those 
observed in our data. Such a poor fit was particularly evident in the case of the automotive industry, 
chemicals, and new materials, where firms were generally found to pursue more closed ego networks. 
For this set of industries, we found that the maximizing model on average underestimates the true 
level of network connectedness by about 75% and of community structure by about 60%. 

Sixth, we considered an alternative mechanism by which firms could dissolve their existing 
ties. To reflect the contractual nature of interorganizational partnerships, in the main analysis we 
assumed that partnership duration is solely a function of time. In the alternative model, we also 
tested whether, in addition to the passage of time, tie dissolution could be driven by firms' desire to 
create a more open or more closed ego network. Yet, we found that this model yields a substantially 
poorer fit for lower p values, producing networks with substantially lower network connectedness  
(on average 50% below the main results) and weaker community structures (on average 80% below 
the main results). As a result, we were unable to validate this model against any empirical case. 

Seventh, rather than specifying network connectedness as a variation in component sizes, we 
measured connectedness as a fraction of dyads accessible to one another via an existing network path 
of some length. This alternative measure turned out to be strongly correlated with the original 
measure used in the paper (at over 0.8), and the main results remained unchanged.  

Finally, we verified our model against two other models of network formation established by 
prior research: (a) a model in which firms select between entirely new partners and the partners they 
already know through previous ties (e.g., Beckman, Haunschild, and Phillips, 2004; Baum, Rowley, 
Shipilov, and Chuang, 2005), and (b) a model in which firms follow the strategy of preferential 
attachment by favoring highly central partners over those with fewer ties (e.g., Barabási and Albert, 
1999; Powell et al., 2005). We first checked whether both models are supported empirically. We 
found that our data provides some support for the first model but not the second, offering no 

                                                                                                                                                              
exceed the benefits. The power-law distribution, in turn, implied an exponential increase in partnership costs. Such an 
increase might eventually outweigh any benefits and synergies that firms could realize from having multiple ongoing ties. 
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evidence of preferential attachment among firms. This insight is consistent with some recent 
empirical work on the dynamics of interorganizational networks showing that firms are unlikely to be 
unconditionally attracted towards more central partners (Powell et al., 2005; Gulati et al., 2012). We 
then checked the validity of the first model that distinguishes between new and known partners and 
found that it substantially underestimates the true levels of network connectedness (by 60%) and 
community structure (by 65%) across our six empirical cases. This suggests that when compared to 
other established models of interorganizational networks, the model proposed in this study provides 
a highly realistic representation of firms' collaborative behaviors in various industrial contexts. 
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Tables & Figures 
     
Table 1. The fraction of firms with zero propensity for open ego networks (fracp=0), average propensity of the remaining 
firms to create open networks (p), and the average industry-level R&D intensity (RDI) over 1987–1999. 

Industry fracp=0 p RDI Industry fracp=0 p RDI 

Automotive 0.808 0.343 0.039 Microelectronics 0.760 0.433 0.050 

Biotech & pharma 0.630 0.406 0.075 New materials 0.832 0.247 0.031 

Chemicals 0.787 0.314 0.038 Telecom 0.764 0.352 0.048 

 

 

 

Table 2. Full list of control variables used in the regression model.  

Variable Definition 

Sales Firm's sales in year t. Captures firm size (logged due to skewed distribution). 

ROA Firm's return on assets, defined as the ratio between the firm's net income and its total assets. Captures firm's financial 
condition in year t. 

Firm-level RDI Firm's R&D intensity, defined as the ratio between firm's R&D spending and its total assets in year t. Controls for the 
possibility that the formation of an open ego network could reflect the firm's own technological dynamism rather than 
the dynamism of an entire industry (logged due to skewed distribution). 

Firm's network constraint Firm's network constraint in year t. Accounts for the characteristics of the firm's current ego-network position. 

Network size Total number of firms present in the network in year t. Controls for the possibility that a larger interorganizational 
network could make it structurally easier for firms to pursue open ego networks. 

Network average degree Average number of network ties per firm in year t. Controls for the possibility that a sparser interorganizational system 
could make it structurally easier for firms to pursue open ego networks. 

Industry concentration Herfindahl–Hirschman index of industry concentration (Hirschman, 1964), defined as the sum of squares of the annual 
sales of the 50 largest firms in the industry. Captures the industry's competitive intensity in year t.  

Year-level fixed effects Set of 11 binary indicators for the observation year; 1987 is specified as the default year.  

 

 

 

Table 3. Descriptive statistics and bivariate correlations matrix. 

 Variable Mean SD 1 2 3 4 5 6 7 8 9 

DV Constraint change 0.169 0.235          

1 Sales (log) 7.779 3.079 1.000         

2 ROA -0.014 0.274 0.473 1.000        

3 Firm-level RDI (log) 0.257 0.509 -0.699 -0.566 1.000       

4 Firm's network constraint 0.480 0.348 -0.275 -0.082 0.128 1.000      

5 Network size 328.658 148.865 -0.371 -0.204 0.359 -0.022 1.000     

6 Network avg. degree 3.973 0.646 0.153 0.089 -0.183 -0.210 -0.368 1.000    

7 Industry concentration 0.201 0.155 -0.031 0.014 0.008 -0.039 0.195 -0.098 1.000   

8 Industry-level RDI 0.054 0.020 -0.443 -0.216 0.462 -0.033 0.642 -0.166 0.038 1.000  

9 Industry growth rate 0.030 0.019 -0.052 -0.024 0.066 0.093 -0.063 -0.251 0.473 0.058 1.000 
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Table 4. Three-level mixed-effects regression model with random intercepts. 

 Model 

Constant -0.136** 

 (0.061)  

Sales (log) 0.001    

 (0.002)  

ROA 0.017    

 (0.017)  

Firm-level RDI (log) 0.009    

 (0.012)  

Firm's network constraint 0.550*** 

 (0.012)  

Network size -0.000   

 (0.000)  

Network avg. degree 0.002    

 (0.011)  

Industry concentration 0.030    

 (0.039)  

Year-level fixed effects Included 
  
Industry-level RDI 1.769*** 

 (0.585)  

Industry growth rate 0.733    

 (2.113)  

Observations 1,253 

Log-likelihood 654.6 

                                                            Standard errors in parentheses; ***p<.01, **p<.05, *p<.10. 

 
 

 

Table 5. Network size (N), average degree (k), network density (D), network connectedness (C), and community 
structure (Q), averaged over 1987-1999. 

Industry N k D C Q Industry N k D C Q 

Automotive 179 3.24 0.02 0.21 0.64 Microelectronics 212 4.39 0.02 0.51 0.59 

Biotech & pharma 386 4.13 0.01 0.44 0.76 New materials 336 4.00 0.01 0.09 0.73 

Chemicals 311 4.07 0.01 0.20 0.73 Telecom 291 4.03 0.01 0.48 0.67 

 

 

 

Table 6. Analysis of the results on network connectedness [E(C)] and community structure [E(Q)] produced by the 
model with respect to the empirical values (Table 4). Model fit is evaluated using two z-scores: one for network 
connectedness (zC) and the other for community structure (zQ). Insignificant z-scores indicate good model fit. 

Industry E(C) E(Q) zC zQ Industry E(C) E(Q) zC zQ 

Automotive 0.20 0.63 -0.19† 0.09† Microelectronics 0.51 0.60 -0.05† -0.24† 

Biotech & pharma 0.46 0.75 -0.24† 0.42† New materials 0.11 0.71 0.07† -0.65† 

Chemicals 0.22 0.69 0.21† -0.38† Telecom 0.47 0.69 -0.01† 0.48† 

†Difference insignificant at any standard level (two-tailed test). 
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Table 7. Tukey-Kramer tests of pairwise deviance between network connectedness and community structure. 

Network property Test t-score 

Network connectedness Clans vs. communities -355.62*** 

 Clans vs. conventions -904.60*** 

 Communities vs. conventions -432.03*** 

Community structure  Clans vs. communities -135.07*** 

 Clans vs. conventions -70.09*** 

 Communities vs. conventions 70.94*** 

                   *** Difference significant at p < 0.001. 
 

 
 
 Fig. 1. Network connectedness and community structure. 
 
(a) low connectedness    (b) high connectedness        (c) weak communities              (d) strong communities 

    

 
 
 
Fig. 2. Estimation of a firm's propensity to pursue open ego networks. Fig. 3. The process by which network ties 

are formed (A is the ego, B-H are alters). 
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Fig. 4. Network connectedness and community structure produced by the simulation model at t = 100 time steps. 

(a) network connectedness (b) community structure  

  

 

 
 
 
 
Fig. 5. Smooth Bézier curves capturing the critical transitions in network connectedness and community structure. The 
curves represent three distinct scenarios with low fracp=0 = 0, medium fracp=0 = 0.35, and high fracp=0 = 0.70, respectively. 

(a) network connectedness (b) community structure                        

  
 
 
 
 

Fig. 6. Typical structure of a (a) clan network, (b) community network, and (c) convention network. Figure 6d 
summarizes the overall typology with respect to fracp=0 and p.  

(a) clan network     (b) community network        (c) convention network            (d) overall network typology 
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Fig. 7. Two representative images of a clan network and a community network obtained from the dataset. 

(a) new materials industry in 1994 (clan network)          (b) telecommunications industry in 1994 (community network) 

  
 
 
 
 

Fig. 8. Relationship between the stability of firms' ego networks (a) and the emergent global network properties (b-c). 

(a) stability of network constraint           (b) stability of connectedness                 (c) stability of community structure 

   
 
 
 



 44 

References 
 
Ahuja, G. 
2000 "Collaboration networks, structural holes, and innovation: A longitudinal study." Administrative Science Quarterly, 

45: 425-455. 
Ahuja, G.,F. Polidoro, and W. Mitchell 
2009 "Structural hompohily or social asymmetry? The formation of alliances by poorly embedded firms. ." Strategic 

Management Journal, 30: 941-958. 
Ahuja, G.,G. Soda, and A. Zaheer 
2012 "The Genesis and Dynamics of Organizational Networks." Organization Science, 23: 434-448. 
Anderson, R. M., and R. M. May 
1991 Infectious Diseases of Humans. Oxford: Oxford University Press. 
Baker, W. E. 
1984 "The social structure of a national securities market." American Journal of Sociology, 89: 775-811. 
Barabási, A.-L., and R. Albert 
1999 "Emergence of scaling in random networks." Science, 286: 509-512. 
Baum, J. A. C.,T. J. Rowley,A. V. Shipilov, and Y.-T. Chuang 
2005 "Dancing with strangers: Aspiration performance and the search for underwriting syndicate partners." 

Administrative Science Quarterly, 50: 536-575. 
Beckman, C. M.,P. R. Haunschild, and D. J. Phillips 
2004 "Friends or strangers? Firm-specific uncertainty, market uncertainty, and network partner selection." Organization 

Science, 15: 259-275. 
Belsey, D. A.,E. Kuh, and R. E. Welsch 
1980 Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: Wiley. 
Boisot, M., and B. McKelvey 
2010 "Integrating Modernist and Postmodernist Perspectives on Organizations: A Complexity Science Bridge." Academy 

of Management Review, 35: 415-433  
Bonabeau, E. 
2002 "Agent-based modeling: Methods and techniques for simulating human systems." PNAS, 99: 7280-7287. 
Burt, R. S. 
1992 Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University Press. 
2005 Brokerage and Closure: An Introduction to Social Capital. Oxford: Oxford University Press. 
Buskens, V., and A. van de Rijt 
2008 "Dynamics of Networks if Everyone Strives for Structural Holes." American Journal of Sociology, 114: 371–407. 
Callaway, D. S.,M. E. J. Newman,S. H. Strogatz, and D. J. Watts 
2000 "Network Robustness and Fragility: Percolation on Random Graphs." Physical Review Letters, 85: 5468-5471. 
Centola, D., and M. Macy 
2007 "Complex contagions and the weakness of long ties." American Journal of Sociology, 113: 702-734. 
Chan, L. K. C.,J. Lakonishok, and T. Sougiannis 
2001 "The stock market valuation of research and development expenditures." Journal of Finance, LVI: 2431-2456. 
Coleman, J. S. 
1986 "Social theory, social research, and a theory of action." American Journal of Sociology, 6: 1309–1335. 
1990 Foundations of Social Theory. Cambridge, MA: Harvard University Press. 
Coleman, J. S.,E. Katz, and H. Menzel 
1957 "The diffusion of an innovation among physicians." Sociometry, 20: 253-270. 
Cowan, R. 
2005 "Network models of innovation and knowledge diffusion." In S. Breschi, and F. Malerba (eds.), Clusters, Networks 

and Innovation: 29-53. Oxford: Oxford University Press. 
Danon, L.,A. Diaz-Guilera,J. Duch, and A. Arenas 
2005 "Comparing community structure identification." Journal of Statistical Mechanics: Theory and Experiment: P09008. 
Davis, G. F., and H. R. Greve 
1997 "Corporate elite networks and governance changes in the 1980s." American Journal of Sociology, 103: 1-37. 
Davis, J. P.,K. M. Eisenhardt, and C. B. Bingham 
2007 "Developing theory through simulation methods." Academy of Management Review, 32: 480-499. 
Dodds, P. S.,R. Muhamad, and D. J. Watts 
2003 "An experimental study of search in global social networks." Science, 301: 827–829. 
Erdos, P., and A. Renyi 



 45 

1959 "On random graphs." Publicationes Mathematicae, 6: 290-297. 
Farin, G. 
1997 Curves and surfaces for computer-aided geometric design. Fifth edition. New York: Morgan Kaufmann. 
Friedkin, N. E. 
1983 "Horizons of observability and limits of informal control in organizations." Social Forces, 62: 54-77. 
Girvan, M., and M. E. J. Newman 
2002 "Community structure in social and biological networks." PNAS, 99: 7821-7826. 
Gomes-Casseres, B.,J. Hagedoorn, and A. Jaffe 
2006 "Do alliances promote knowledge flows?" Journal of Financial Economics, 80: 5-33. 
Granovetter, M. S. 
1985 "Economic action and social structure: The problem of embeddedness." American Journal of Sociology, 91: 481-

510. 
Greif, A. 
1989 "Reputation and coalitions in medieval trade: Evidence on the Maghribi traders." Journal of Economic History, 49: 

857-882. 
Greve, H. R. 
2009 "Bigger and safer: The diffusion of competitive advantage." Strategic Management Journal, 30: 1-23. 
Guimerà, R., and L. A. N. Amaral 
2005 "Functional cartography of complex metabolic networks." Nature, 433: 895-900. 
Gulati, R. 
1995 "Social structure and alliance formation patterns: A longitudinal analysis." Administrative Science Quarterly, 40: 

619-652. 
Gulati, R., and M. Gargiulo 
1999 "Where do interorganizational networks come from?" American Journal of Sociology, 104: 1439-1493. 
Gulati, R.,M. Sytch, and A. Tatarynowicz 
2012 "The rise and fall of small worlds: Exploring the dynamics of social structure." Organization Science, 23: 449-471. 
Hagedoorn, J. 
1993 "Understanding the rationale of strategic technology partnering: Inter-organizational modes of cooperation and 

sectoral differences." Strategic Management Journal, 14: 371-385. 
1996 "Trends and patterns in strategic technology partnering since the early seventies"." Review of Industrial 

Organization, 1: 601-616. 
Haunschild, P. R. 
1994 "How much is that company worth?: Interorganizational relationships, uncertainty, and acquisition premiums." 

Administrative Science Quarterly, 39: 391-411. 
Hirschman, A. O. 
1964 "The Paternity of an Index." American Economic Review, 54: 761. 
Holme, P., and M. E. J. Newman 
2006 "Nonequilibrium phase transition in the coevolution of networks and opinions." Physical Review E, 74: 056108  
Jackson, M. O., and A. Wolinski 
1996 "A strategic model of social and economic networks." Journal of Economic Theory, 71: 44-74. 
Kasarda, J. D., and M. Janowitz 
1974 "Community attachment in mass society." American Sociological Review, 39: 328-339. 
Kaufman, H. F. 
1959 "Toward an interactional conception of community." Social Forces, 38: 8-17. 
Klepper, S., and E. Graddy 
1990 "The Evolution of New Industries and the Determinants of Market Structure." Rand Journal of Economics, 21: 

27–44. 
Kogut, B. 
1988a "Joint ventures: Theoretical and empirical perspectives." Strategic Management Journal, 9: 319-332. 
1988b "A study of the life cycle of joint ventures." In F. Contractor, and P. Lorange (eds.), Cooperative Strategies in 

International Business: 169-186. Lexington, MA: Lexington Books. 
Krugman, P. 
1991 Geography and Trade. Cambridge: MIT Press. 
Larson, A. 
1992 "Network dyads in entrepreneurial settings: A study of the governance of exchange relationships." Administrative 

Science Quarterly, 37: 76-104. 
Laumann, E. O.,J. Galaskiewicz, and P. V. Marsden 



 46 

1978 "Community structure as interorganizational linkages." In R. Turner, et al. (eds.), Annual Review of Sociology: 455-
484. Palo Alto, CA. 

Laumann, E. O., and P. V. Marsden 
1979 "The analysis of oppositional structures in political elites." American Sociological Review, 44. 
Lavie, D., and L. Rosenkopf 
2006 "Balancing exploration and exploitation in alliance formation." Academy of Management Journal, 49: 797-818. 
Lazer, D., and A. Friedman 
2007 "The network structure of exploration and exploitation." Administrative Science Quarterly, 52: 667-694. 
Li, S. X., and T. J. Rowley 
2002 "Inertia and evaluation mechanisms in interorganizational partner selection: syndicate formation among US 

investment banks." Academy of Management Journal, 45: 1104-1119. 
Malhotra, D., and F. Lumineau 
2011 "Academy of Management Journal." Trust and collaboration in the aftermath of conflict: The effects of contract 

structure, 54: 981-998. 
Marquis, C. 
2003 "The pressure of the past: Network imprinting in intercorporate communities." Administrative Science Quarterly, 

48: 655-689. 
McGahan, A. M., and B. S. Silverman 
2001 "How does innovative activity change as industries mature?" International Journal of Industrial Organization, 19: 

1141–1160. 
Moody, J. 
2004 "The Structure of a Social Science Collaboration Network." American Sociological Review, 69: 213-238. 
Moody, J., and D. R. White 
2003 "Social Cohesion and Embeddedness." American Sociological Review, 68: 103-127. 
Newman, M. E. J. 
2010 Networks: An Introduction. Oxford: Oxford University Press. 
Newman, M. E. J., and D. J. Watts 
1999 "Scaling and percolation in the small world network model." Physical Review E, 60: 7332-7342. 
Owen-Smith, J., and W. W. Powell 
2004 "Knowledge networks as channels and conduits: The effects of spillovers in the Boston biotechnology community." 

Organization Science, 15: 5-21. 
Podolny, J. M., and J. N. Baron 
1997 "Resources and relationships: Social networks and mobility in the workplace." American Sociological Review, 62: 

673-693. 
Powell, W. W.,D. R. White,K. W. Koput, and J. Owen-Smith 
2005 "Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences." 

American Journal of Sociology: 1132-1205. 
Rapoport, A. 
1957 "A Contribution to the Theory of Random and Biased Nets." Bulletin of Mathematical Biophysics, 19: 257–271. 
Reagans, R., and B. McEvily 
2003 "Network structure and knowledge transfer: The effect of cohesion and range." Administrative Science Quarterly, 

48: 240-267. 
Rogers, E. M. 
2003 Diffusion of Innovations, 5th Edition. New York: Free Press. 
Rosenkopf, L.,A. Metiu, and V. P. George 
2001 "From the bottom up? Technical committee activity and alliance formation." Administrative Science Quarterly, 46: 

748-772. 
Rosenkopf, L., and G. Padula 
2008 "Investigating the microstructure of network evolution: Alliance formation in the mobile communications 

industry." Organization Science, 19: 669-687. 
Rosenkopf, L., and M. Schilling 
2007 "Comparing alliance network structure across industries: Observations and explanations." Strategic 

Entrepreneurship Journal, 1: 191-209. 
Rowley, T.,D. Behrens, and D. Krackhardt 
2000 "Redundant governance structures: An analysis of structural and relational embeddedness in the steel and 

semiconductor industries." Strategic Management Journal, 21: 369-386. 
Schelling, T. C. 
1978 Micromotives and Macrobehavior. New York: Norton. 



 47 

Schrank, A., and J. Whitford 
2011 "The Anatomy of Network Failure." Sociological Theory, 29: 151-177. 
Schumpeter, J. 
1934 The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle. 

Cambridge, MA: Harvard University Press. 
Simon, H. A. 
1947 Administrative Behavior: A Study of Decision-making Processes in Administrative Organizations. New York: The 

Free Press. 
Simon, H. A. 
1962 "The architecture of complexity." Proceedings of the American Philosophical Society, 106: 467–482. 
Skvoretz, J. 
2002 "Complexity Theory and Models for Social Networks." Complexity, 8: 47-55. 
Skvoretz, J.,T. J. Fararo, and F. Agneessens 
2004 "Advances in biased net theory: definitions, derivations, and estimations." Social Networks 26: 113–139. 
Snijders, T. A. B., and R. J. Bosker 
1999 Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. London: Sage. 
Stuart, T. E. 
1998 "Network positions and propensities to collaborate: An investigation of strategic alliance formation in a high-

technology industry." Administrative Science Quarterly, 43: 668-698. 
Stuart, T. E. 
2000 "Interorganizational alliances and the performance of firms: A study of growth and innovation rates in a high-

technology industry." Strategic Management Journal, 21: 791-811. 
Sytch, M., and A. Tatarynowicz 
2014a "Exploring the Locus of Invention: The Dynamics of Network Communities and Firms' Invention Productivity." 

Academy of Management Journal, 57: 249-279. 
2014b "Friends and Foes: The Dynamics of Dual Social Structures." Academy of Management Journal, 57: 585-613. 
Sytch, M.,A. Tatarynowicz, and R. Gulati 
2012 "Toward a theory of extended contact: Incentives and opportunities for bridging across network communities." 

Organization Science, Forthcoming. 
Szell, M.,R. Lambiotte, and S. Thurner 
2010 "Multi-relational Organization of Large-scale Social Networks in an Online World." PNAS, 107: 13636-13641. 
Turk, H. 
1970 "Interorganizational networks in urban society: Initial perspective and comparative research." American 

Sociological Review, 35: 1-19. 
Uzzi, B. 
1996 "The sources and consequences of embeddedness for the economic performance of organizations: The network 

effect." American Sociological Review, 61: 674-698. 
Uzzi, B., and J. Spiro 
2005 "Collaboration and creativity: The small world problem." American Journal of Sociology, 111: 447–504. 
Wasserman, S., and K. Faust 
1994 Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press. 
Watts, D. J., and S. H. Strogatz 
1998 "Collective dynamics of small-world networks." Nature, 393: 440-442. 
Wejnert, B. 
2002 "Integrating models of diffusion of innovation: A conceptual framework." Annual Review of Sociology, 28: 297–

326. 
Westphal, J. D.,R. Gulati, and S. M. Shortell 
1997 "Customization or conformity? An institutional and network perspective on the content and consequences of TQM 

adoption." Administrative Science Quarterly, 42: 366-394. 
Xiao, Z., and A. S. Tsui 
2007 "When brokers may not work: The cultural contingency of social capital in Chinese high-tech firms." 

Administrative Science Quarterly, 52: 1-31. 
Zaheer, A., and G. Soda 
2009 "Network evolution: The origins of structural holes." Administrative Science Quarterly, 54: 1-31. 
 

 


