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Abstract

The evolutionary puzzle of cooperation describes situations where cooperators pro-

vide a fitness benefit to other individuals at some cost to themselves. Under Darwinian

selection, the evolution of cooperation is a conundrum, whereas non-cooperation (or

defection) is not. In the absence of supporting mechanisms,cooperators perform

poorly and decrease in abundance. Evolutionary game theoryprovides a powerful

mathematical framework to address the problem of cooperation using the prisoner’s

dilemma. One well-studied possibility to maintain cooperation is to consider struc-

tured populations, where each individual interacts only with a limited subset of the

population. This enables cooperators to form clusters suchthat they are more likely

to interact with other cooperators instead of being exploited by defectors. Here we

present a detailed analysis of how a few cooperators invade and expand in a world of

defectors. If the invasion succeeds, the expansion processtakes place in two stages:

first, cooperators and defectors quickly establish a local equilibrium and then they

uniformly expand in space. The second stage provides good estimates for the global

equilibrium frequencies of cooperators and defectors. Under hospitable conditions,

cooperators typically form a single, ever growing cluster interspersed with specks of

defectors, whereas under more hostile conditions, cooperators form isolated, compact

clusters that minimize exploitation by defectors. We provide the first quantitative as-

sessment of the way cooperators arrange in space during invasion and find that the

macroscopic properties and the emerging spatial patterns reveal information about

the characteristics of the underlying microscopic interactions.
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1 Introduction

Cooperation is a fundamental principle of biological systems that organizes lower level entities

into higher level units – genes form chromosomes, cells formorganisms, and individuals form

societies (Maynard Smith & Szathmáry, 1995). However, theemergence of cooperation poses

an enduring challenge to evolutionary biologists: If cooperation is costly to the individual and

benefits only the interaction partners, then Darwinian selection should favour non-cooperating

defectors and eliminate cooperation. In the absence of supporting mechanisms, this outcome

is inevitable, despite the fact that mutual cooperation is preferred over mutual defection. The

most prominent mathematical metaphor to study such interactions is given by the prisoner’s

dilemma: in pairwise interactions, cooperation (C) provides a benefitb to the partner at some

costc to the cooperator (b > c), while defection (D) neither bears any costs nor provides any

benefits. The net gains for the player’s joint behaviour can be written in the form of a payoff

matrix:

If co-player cooperates If co-player defects

Payoff to cooperator: b − c −c

Payoff to defector: b 0

(1)

Strictly speaking the prisoner’s dilemma is defined in termsof the ranking of the four payoffs.

This particular parameterization in terms ofb andc is biologically intuitive and mathematically

convenient. The crucial point is that defection pays more irrespective of the partner’s decision

and is thus the dominant strategy. Cooperators will therefore dwindle and eventually everybody

ends up with a payoff of zero instead of the more favourable reward for mutual cooperation

b − c. This characterizes the conflict of interest between individuals and the group, which

defines social dilemmas (Dawes, 1980, Hauertet al., 2006). Over the last decades, different

mechanisms have been proposed to promote and maintain cooperation (Hamilton, 1964, Hauert

et al., 2002, 2007, Nowak, 2006b, Nowak & Sigmund, 1998, Trivers, 1971, Wilson & Sober,

1994) including spatially structured populations with limited local interactions (Nowak & May,
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1992). If individuals are arranged on a lattice and interactonly with their nearest neighbours,

then cooperators may thrive by forming compact clusters, which increases interactions with

other cooperators while reducing exploitation by defectors.

Spatial structure affects the evolutionary process in general 2 × 2 games, i.e. in pairwise

interactions with two strategic options (Hauert, 2002, Ohtsuki & Nowak, 2006a), and notably

enables cooperators to survive in populations playing the prisoner’s dilemma. Considering the

equilibrium frequencies of cooperators and defectors in lattice populations demonstrates that the

clustering advantages are substantial for small cost-to-benefit ratiosc/b, but are unable to offset

the exploitation by defectors above a threshold value,c/b > λ, such that cooperators disappear

(Szabó & Tőke, 1998). For increasingc/b, the system undergoes a critical phase transition,

characterized by diverging fluctuations in the cooperator and defector frequencies (Szabó &

Hauert, 2002a). These results have led to the common belief that spatial structure is necessarily

beneficial for cooperation. While this holds for prisoner’sdilemma interactions, it is not univer-

sally applicable. In fact, in the snowdrift game – a closely related social dilemma with relaxed

conditions such that cooperators and defectors can co-exist under conditions where cooperators

are doomed in the prisoner’s dilemma – spatial structure often turns out to be detrimental to

cooperation (Doebeli & Hauert, 2005, Hauert, 2006a, Hauert & Doebeli, 2004).

In finite populations, evolution is stochastic such that thecombination of selection and ran-

dom drift eventually leads to the fixation of one or the other strategic type (Nowak, 2006a,

Nowaket al., 2004). In such situations, cooperation is favoured if the fixation probability of a

single cooperator,ρC , in a defector population exceeds the fixation probability of a neutral mu-

tant (ρC > 1/N whereN is the population size). For weak selection, i.e. if payoff differences

between cooperators and defectors are small,ρC is analytically accessible for various types of

microscopic updating mechanisms (Ohtsukiet al., 2006, Tayloret al., 2007). In particular, for

the payoff matrix (1), the conditionρC > 1/N implies that the fixation probability of a single

defector,ρD, in a cooperator population isρD < 1/N (Taylor et al., 2007, Wild & Traulsen,
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2007). Hence, if mutations are rare, the population spends more time in the cooperator state

than in the defector state. In the prisoner’s dilemma, if thedeath of a randomly chosen individ-

ual triggers a competition among its neighbours to repopulate the vacant site with a success rate

proportional to their payoffs, then a particularly simple condition is obtained: evolution favours

cooperation wheneverb > c · k holds, wherek denotes the number of interaction partners.

This work complements studies on prisoner’s dilemma games in structured populations by

investigating the process of cooperators invading a world of defectors. We demonstrate that after

an initial relaxation time, the number of cooperators always grows quadratically irrespective

of the cost-to-benefit ratioc/b, and we find that two distinct modes of growth exist: (i) for

smallc/b, cooperators expand essentially as a single ever growing cluster whereas (ii) for larger

c/b, cooperators form an increasing number of small clusters with little variation in size. Our

simulations confirm that the probability of invasion is essentially independent of the initial

number of cooperators provided that they form at least a3×3 cluster (Hauert, 2001, Killingback

et al., 1999, Pageet al., 2000). In addition, our simulations show that behind the invasion front,

cooperators and defectors quickly reach a local equilibrium, which supports analytical results

based on pair approximation (Ellneret al., 1998, Le Gaillardet al., 2003, Ohtsukiet al., 2006,

van Baalen & Rand, 1998).

2 Model

In order to investigate the invasion dynamics of cooperators in detail, consider a square lattice

S×S where every site is occupied by a single individual. Initially, all individuals are defectors,

except for as × s cluster of cooperators in the centre of the lattice (s = 1, 3, 5, . . . , 15 and

30). Each individual engages in pairwise interactions withinits Moore neighbourhood, i.e.

with the eight nearest neighbours reachable by a chess king’s move. The payoffs accrued in

these interactions determine the individual’s reproductive fitness (or its propensity to propagate
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its strategy). Rescaling of the payoff matrix (1) reduces the prisoner’s dilemma to a single

parameterc/b:






1 0

1 + c/b c/b






. (2)

The updating of the strategy of every individual as well as ofthe population can be implemented

in various ways as illustrated by the diversity of approaches in the literature (see e.g. Hauert,

2002, Nakamaruet al., 1997, 1998, Ohtsuki & Nowak, 2006a,b, Szabó & Tőke, 1998). The

characteristic features of the invasion process that we present here, however, are essentially in-

dependent of the detailed updating procedure. We verified this robustness using various update

rules of the individuals (fully deterministic to highly stochastic) and of the population (syn-

chronous updating or non-overlapping generations versus asynchronous updating or continuous

time). For the simulations presented in the following section, we chose asynchronous updating

of the population and an individual updating of intermediate stochasticity, which can be inter-

preted as a spatial analogue of the replicator dynamics: (i)a focal individualx is randomly

selected to reassess and update its strategy; (ii) the payoff of x and of all its neighbours are

determined and (iii) the focal playerx probabilistically compares its payoff with the payoff of

its neighbours.x adopts the strategy of neighboury with a probabilitywy = (Py − Px)/∆

provided that the payoff ofy exceeds the payoff ofx, and with probability zero otherwise.

∆ = Pmax−Pmin is a normalization constant to ensurewy ∈ [0, 1]. Givenwy for all neighbours,

x does not change strategy with probabilitypx =
∏

y(1−wy). With probability1−px the focal

player adopts the strategy of a neighbour with relative probability wy/w wherew =
∑

y wy.

This approach recovers the replicator dynamics (Hofbauer &Sigmund, 1998, Taylor & Jonker,

1978) in the limit of infinite population sizes and large neighbourhoods where the focal individ-

ual compares its payoff to a single randomly chosen neighbour.

The above microscopic update procedure refers to a mechanism where individuals preferen-

tially imitate the strategy of more successful neighbours.An equivalent interpretation in terms
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of replication can be obtained by translating the differentprobabilities into propensities that

each neighbour succeeds in placing clonal offspring on the focal site.

3 Results

3.1 Cooperator Survival

Cooperation is inherently prone to exploitation by defectors and thus the survival probability

of cooperators,σC , hinges on the cooperator’s ability to offset the costs of cooperation with

benefits accrued from interactions with other cooperators.A single cooperator in a sea of de-

fectors performs poorly, and its only hope is to propagate its strategy through random drift.

Since players never adopt worse performing strategies in our setup, single cooperators never

survive and readily disappear. For other, more stochastic update rules the odds of survival are

not zero but the chances remain slim. For example, even if evolution favours cooperation in

the Moran process under weak selection, the survival probability of a single cooperator is only

of the order of1/N and hence only for small population sizes reliable results can be achieved

through individual based simulations. Moreover, under weak selection random drift dominates,

which makes it much harder to extract characteristic features of the evolutionary process. In

contrast, our approach based on strong selection facilitates clear-cut conclusions.

For c/b < λ ≈ 0.15 the survival probabilityσC of an initial cluster ofs × s cooperators

(s ≥ 3) is very high and only marginally affected by the cost-to-benefit ratioc/b (see Fig. 1a).

The pivotal role of3×3 clusters in determining whether cooperators thrive has been recognized Fig. 1

about

here

earlier (Hauert, 2001, Killingbacket al., 1999, Nowak & May, 1993, Pageet al., 2000) and is

confirmed by our results. Forc/b < λ, cooperators can survive by forming compact clusters and

thereby minimizing exploitation by defectors. Forc/b > λ however, the clustering advantage

provided by the spatial setting is insufficient, and cooperators invariably go extinct irrespective

of their initial abundance.
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3.2 Cooperator Expansion

A close inspection of the invasion process of cooperators reveals two distinct dynamical regimes:

an initial phase of slower growth giving way to a phase of significantly faster expansion (see

Fig. 1b). The invasion dynamics in both phases follows a power function, i.e. the number of

cooperatorsnc increases as a function of timet according tonc(t) = ai tdi whereai indicates

the growth rate of cooperators in each phase (i = 1, 2) and the exponentsdi characterize their

spreading in space. Estimates of the parametersai, di were obtained by two separate fits: the

first fit up to timeT1, which marks the end of the first phase, and the second fit afterT2, which

indicates the beginning of the second phase. The transient phase betweenT1 andT2 is ade-

quately described by a superposition of the two power functions:nc(t) = a1 td1 + a2 td2 (see

Fig. 1b).

In the first phase, both parametersa1 andd1 decrease with increasing cost-to-benefit ratios

c/b, which indicates slower growth under less favourable conditions for cooperators. The factor

a1 also depends on the size of the initial cluster of cooperators. The small exponents,d1 < 1,

are remarkable because an arbitrary but uniform spatial expansion process yields an exponent of

2 (or, more generally, an exponent ofD in D-dimensional space). The reason for the observed

smalld1 is that cooperators expand during the first phase, but defectors simultaneously invade

the cooperator’s initial territory. This indicates that a local equilibration process among coop-

erators and defectors is taking place behind the invasion front. In line with this, the relaxation

time T1 of this initial phase increases with the size of the initial cluster and also increases for

larger cost-to-benefit ratiosc/b, because higher costs or smaller benefits hinder the propagation

of cooperation.

In the second phase, the growth rate of cooperatorsa2 again decreases with increasingc/b-

ratios, but the growth exponent remains essentially constant atd2 ≈ 2, which confirms the theo-

retical expectations of a uniform spatial expansion process. Note thatd2 shows small variations

around2 because the rate of growth is not locally uniform and dependson the cluster shape:
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cooperators along smooth edges have higher propensities toproliferate than cooperators sitting

on corners. However, as the expansion progresses and the number of cooperators increases,

such effects become less important and are averaged out, which suggests thatlimt→∞ d2 → 2

holds.

The growth exponentsd1, d2 not only characterize the spreading of cooperators in space, but

also determine the growth of the region exposed to the invasion of cooperators or, equivalently,

determine the information propagation speed. Thus, in the second phase, the number of individ-

uals that are aware of the invading cooperators grows approximately asN2(t) = α2 td2 ≈ α2 t2.

Note thatN2(t) essentially corresponds to the area enveloping the not necessarily contigu-

ous cluster(s) of cooperators. The equilibrium frequency of cooperators is therefore given by

fc = limt→∞ nc(t)/N2(t). Note thatnc(t)/N2(t) = a2/α2, which is independent of time. Thus,

if nc(t) andN2(t) are known at some particular times (they do not need to be measured simul-

taneously) good estimates of the equilibrium frequencies of cooperators and defectors can be

obtained. In simulations, a convenient timeT is defined by the first cooperator reaching the

boundary of the lattice. At this time,N2(T ) = S2π/4 provides a good approximation withS2

representing the lattice or population size. Note that thistends to systematically overestimate

N2(T ) because (i) the centre of the area covered by cooperators mayhave shifted over time and

(ii) only a single cooperator reached the boundary at timeT . A conservative estimation of the

equilibrium fraction of cooperatorsfc is therefore given by

fc =
a2

α2

≈
a2T

2

N2(T )
=

4

S2π
a2T

2. (3)

For good estimates,T should lie well in the second regime of the invasion process.The estima-

tion of fc is not applicable to the first growth phase because it relies on the fact that cooperators

and defectors behind the invasion front have reached a localequilibrium, and this is violated

in early stages of the invasion process. A summary of the fit data and equilibrium estimates is

given in Table 1. SinceN2(t) relates to the area affected by the invasion of cooperators,it indi- Table 1

about

here
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cates an accessible quantity for experimental approaches,for example experiments of growing

microbial populations on plates.

3.3 Cluster Size

The fraction of cooperatorsfc depicted in Fig. 1b is linked to the spatial arrangement of co-

operators, which in turn is determined by the geometry, the updating and the payoff matrix.

Macroscopic features such as the number of contiguous clusters of cooperators, their typical

size as well as their shape during cooperator expansion reveal therefore interesting characteris-

tics of the underlying microscopic interactions. Fig. 2 shows typical snapshots of the distinctFig. 2

about

here

spatial patterns for two different values of the cost-to-benefit ratioc/b at timeT , i.e. when the

first cooperator reaches the boundary of the necessarily finite lattice in our simulations. Under

benign conditions for cooperation (smallc/b), usually a single large contiguous cluster of coop-

erators grows with small embedded specks of defectors. Onlyalong the invasion front, several

isolated cooperators and tiny separated cooperator formations are found. A contiguous cluster

consists of cooperators that have at least one other cooperator among their neighbours. In con-

trast, under more hostile conditions for cooperation (larger c/b), cooperators form numerous

small compact clusters. Typically, none of these clusters host specks of defectors because they

would readily split the cluster into smaller ones.

For increasingc/b-ratios, the cluster size decreases, while the number of clusters increases

(see Fig. 3a). Note that for smallc/b, the tiny cooperator formations along the invasion front

lead to a bimodal distribution of the cluster size. In order to determine the typical average cluster

size and eliminate the effects of isolated cooperators without introducing an arbitrary threshold

size, the average cluster size is weighted such that the weight of each cluster corresponds to

its size. The cluster size and cluster count delineate two distinct regimes: forc/b < 0.1 (cf. Fig. 3

about

here

Fig. 2a), few rather big clusters dominate the expansion process whereas for0.1 < c/b < λ ≈

0.15 (cf. Fig. 2b), numerous compact clusters minimize exploitation by defectors. As noted
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before (cf. Fig. 1),λ marks the extinction threshold of cooperators such that forc/b > λ the

clustering advantages of cooperators are no longer sufficient to offset exploitation by defectors.

Note that for smallc/b, the cluster size keeps increasing as invasion progresses,but this is

not true for largerc/b-ratios, where cooperators break up into smaller clusters of similar size.

As c/b increases and approachesλ, the cluster size steadily decreases, but it cannot become ar-

bitrarily small. In our case, cluster sizes of at least50 cooperators seem to be required to sustain

cooperation. The decrease in cluster size is accompanied byan increase in the cluster count.

Interestingly, the cluster count exhibits a peak nearc/b = 0.13. For largerc/b, the cluster size

keeps decreasing at a slow rate, while the cluster count drops quickly, which leads to an increase

in the distance between adjacent clusters. This repulsion between clusters of cooperators arises

from those fortunate defectors that are able to exploit several clusters simultaneously. Their

high payoffs increase their chances to invade and usually destroy some clusters. Increasing the

typical distance between clusters reduces this risk.

The small variance in the size of contiguous clusters indicates that a typical cluster size ex-

ists asc/b approachesλ. This is remarkable because in closely related equilibriumsystems, this

limit leads to diverging fluctuations in the frequency of cooperators (Szabó & Hauert, 2002a,b).

Hence, the fluctuations are caused by variations in the number of clusters rather than their sizes.

For c/b < 0.1 no typical cluster size exists and cooperators usually expand as a single large

cluster. The cluster size distribution is bi-modal due to a number of tiny runaway clusters along

the periphery (see Fig. 2a).

For 0.1 < c/b < λ a typical cluster size exists, which defines the relevant spatial scale for

local processes. This means that as the invasion progresses, the typical cluster size becomes

much smaller than the overall area covered by the invading cooperators (see Fig. 2b). In this

case, the system can approach local equilibrium in areas behind the invasion front. This is

supported by the conditional probability that a neighbour of a cooperator is another cooperator,

qc|c, which quickly reaches its equilibrium value during the first growth phase (not shown).
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In contrast, if cooperators expand as a single cluster with embedded specks of defectors (see

Fig. 2a), these specks are not in proper equilibrium becausetheir background keeps expanding.

Nevertheless,qc|c rapidly changes during the first phase and increases only slowly during the

second phase (not shown). The time whenqc|c ceases to change rapidly coincides with the

transition from the first to the second growth phase; this further supports that the first phase

constitutes a local equilibration process.

3.4 Cluster Shape

Under increasingly hostile conditions for cooperators (largerc/b-values), the cluster shape be-

comes more and more important. Compact and convex cluster shapes maximize interactions

with other cooperators and minimize exploitation by defectors. The shape of a single clusterγs

can be defined as the ratio of interactions within the cluster, A, to interactions with the surround-

ing defectors,P . Thus,γs is reminiscent of an area-to-periphery ratio (A/P ). In continuous two

dimensional space the ratioA/P 2 is invariant with respect to the cluster size. Unfortunately, this

invariance no longer holds in discrete lattice space. In order to take this into account, the shape

γn of each cluster is normalized such that a single line of cooperators (minimalA, maximal

P ) yieldsγn = 0 whereas a square of cooperators (close to the maximum forA and minimum

for P ) returnsγn = 1, irrespective of the cluster size. The mean (normalized) cluster shapeγ

is weighted by the cluster size to eliminate distortions dueto renegade cooperators along the

invasion front (see Fig. 3b).γ exhibits the same two distinct dynamical regimes as the cluster

size and count (cf. Fig. 3a). Forc/b < 0.1, γ is surprisingly small due to the embedded specks

of defectors and exhibits large variations because of theirvariable numbers. Forc/b > 0.1, γ

quickly increases as numerous small compact clusters of cooperators form.
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4 Conclusions

Under favourable conditions, i.e. for low costs and high benefits, cooperators are able to in-

vade a spatially extended world of defectors. The ability toform clusters enables cooperators to

persist, because spatial aggregation enables more frequent interactions with other cooperators

while reducing exploitation by defectors. The invasion of cooperators occurs in two phases:

During the first phase, the number of cooperators increases slowly because the expansion of

cooperators is partly offset by defectors invading the initial cluster of cooperators. The first

phase thus establishes a local equilibrium between cooperators and defectors. Consequently,

the duration of this phase depends on the size of the initial cluster and can be neglected if the

invasion was initiated by few cooperators. During the second phase, cooperators uniformly ex-

pand into defector territory. Under increasingly hostile conditions (largerc/b), the expansion

speed decreases but the number of cooperators always increases according to a quadratic func-

tion. Interestingly, cooperators and defectors readily find themselves in a local equilibrium in

the wake of the invasion front. Such local equilibration is afast process compared to the inva-

sion dynamics (or in contrast to global equilibration), a finding that has also been recognized in

analytical studies using the technique of pair approximation (Le Gaillardet al., 2003, Matsuda

et al., 1992, van Baalen & Rand, 1998). Due to the fast equilibration, good estimates of the

equilibrium frequencies of cooperators and defectors can be obtained already from the invasion

process (see Table 1). In fact, the dynamics in early stages already predicts the evolutionary fate

of cooperators and defectors.

The difference between local and global dynamics suggests anatural separation of time

scales. This is used to calculate the fixation probability ofcooperators,ρC , in the limit of

weak selection (Ohtsukiet al., 2006). Note that for the update rule chosen here,ρC < 1/S2

always holds (S2 denotes the population size). Thus, the probability that a single cooperator

takes over is always less than that of a neutral mutant. This remains true if several cooperators
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attempt to invade as compared to an equal number of neutral mutants. However, even though

evolutionary dynamics never favours cooperation, cooperators and defectors may co-exist for an

exceedingly long time. In the absence of mutations, any finite system with a stochastic update

rule must eventually reach a homogeneous absorbing state with all defectors or all cooperators,

but whether these states can be reached within reasonable time is a rather different question

(Taylor et al., 2006, Traulsenet al., 2007). The outcome not only strongly depends on the

population size, but also on the existence and stability of (local) equilibria where cooperators

and defectors can co-exist (Traulsenet al., 2006a,b). Thus, whether cooperators manage to

invade a population of defectors is largely independent of whether they take over the population

and displace defectors.

The invasion of cooperators can essentially unfold according to two distinct scenarios: under

benign conditions (smallc/b-ratios), cooperators expand and form a single large contiguous

and continuously growing cluster interspersed with littlespecks of defectors (see Fig. 2a). In

contrast, under hostile conditions (largec/b-values), cooperators split up and form numerous

smaller compact clusters of a typical size and the embedded specks disappear (see Fig. 2b). The

typical size decreases with increasing values ofc/b, but once it drops below a threshold size,

cooperation can no longer be sustained and disappears. Under hostile conditions, cooperators

break up and form numerous isolated clusters of increasingly convex shape (see Fig. 3b), which

reduces interactions with defectors and thus minimizes exploitation.

Spatial structures, or limited local interactions, lead toassortment. The strength and type

of assortment depends on the geometry, the payoffs as well ason the update rules. In the spa-

tial prisoner’s dilemma, the formation of clusters generates positive assortment of cooperator-

cooperator interactions, which is crucial for their survival. Under harsher conditions (larger

c/b), positive assortment becomes more important, as reflectedin the increasingly convex

shapes. At some point (c/b > λ), the assortment required to offset exploitation by defectors can

be no longer achieved and cooperators disappear. Pair approximation deals analytically with
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assortment up to first order, but cannot be easily extended toaccount for macroscopic features

such as cluster count, size and shape. The present study provides a first numerical attempt to

link macroscopic features and microscopic mechanisms.

The characteristics of the invasion process are robust withrespect to variations of the system

size or modifications of the update rules. Changing from asynchronous to synchronous popula-

tion updates (overlapping versus non-overlapping generations) and adopting different rules for

strategy propagation – e.g. based on the Moran process (Moran, 1962, Nowaket al., 2004) or

referring to situations where errors or uncertainties may lead to the adoption of worse perform-

ing strategies (Hauert & Szabó, 2005, Szabó & Tőke, 1998)– introduce only minor corrections

to quantitative features such as the invasion speed, equilibrium estimates or the maximumc/b-

ratio for which cooperators can persist.

The macroscopic spatio-temporal patterns emerging through the invasion of cooperators

in a spatially extended world of defectors reveal characteristic features of the underlying mi-

croscopic interactions and provide an outlook on the long-term behaviour of the system. The

cluster size of cooperators reflects the cost-to-benefit ratio of cooperation, and the local equi-

librium of cooperators and defectors behind the invasion front provides good estimates for the

global equilibrium frequencies of the two strategies at a much later evolutionary stage.
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Table

c/b initial cluster size a1 d1 a2 d2 T f theory
c f sims

c

0.02 3 × 3 3.34 1.17 0.14 2.07 1683 0.849 0.932

0.02 30 × 30 51.14 0.80 0.36 1.95 1625 0.848 0.932

0.12 3 × 3 1.11 1.03 0.01 2.06 6515 0.519 0.578

0.12 30 × 30 44.51 0.43 0.02 1.94 6280 0.514 0.578

Table 1: Fit and simulation data characterizing the invasion of cooperators for two different

initial cluster sizes and two cost-to-benefit ratios. The number of cooperators nc(t) increases

according to nc(t) = ait
di , where i refers to the first and second growth phase (cf. Fig. 1b).

T indicates the number of generations until the first cooperator reaches the boundary on a

10002 lattice (averaged over 100 runs). The estimated and simulated equilibrium fractions of

cooperators are given by f theory
c (see Eq. (3)) and f sims

c , respectively.
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Figures

Figure 1:Survival probability σC and growth characteristics of invading cooperators. a For initial

cluster sizes of s×s with s ≥ 3, the survival probability is close to 1 and essentially independent

of s (△, s = 3; ⋄, s = 5; •, s = 15) and the cost-to-benefit ratio c/b up to the extinction threshold

λ ≈ 0.15, where cooperators can no longer survive irrespective of their initial abundance. σC is

determined over 1000 runs on a 115×115 lattice and cooperators are assumed to survive if they

reached the boundary. b The growth of the number of cooperators nc(t) displays two distinct

regimes: A first phase of slow growth that corresponds to a local equilibration process of the

initial cluster, followed by a second phase representing the expansion of cooperators. Both

regimes follow a power function of the form nc(t) = ait
di but with distinct growth exponents

(d1 < 1 in the first phase and d2 ≈ 2 in the second phase; see Table 1). The dashed line shows

the superposition of the two fits nc(t) = a1t
d1 +a2t

d2 . Vertical lines mark the end of the first (T1)

and the beginning of the second growth phase (T2) as used for fitting the power function. The

expansion process is shown for a 30 × 30 cluster on a 10002 lattice averaged over 100 runs.

Figure 2:Typical snapshots of the invasion of cooperators (blue) in a world of defectors (red) for

a small cost-to-benefit ratio (c/b = 0.02) and b for c/b closer to the extinction threshold (c/b =

0.12). Along the interface separating cooperators and defectors, some individuals recently

switched from defection to cooperation (green) or vice versa (yellow). a Cooperators expand

as a single contiguous cluster with embedded specks of defectors, and a few isolated tiny

cooperator formations along the invasion front. In this snapshot there is one large cluster of

size 23187 accompanied by 14 single, isolated cooperators and the average weighted cluster

shape is γ = 0.078. The fraction of cooperators is fc = 0.58 and qc|c = 0.89. b Cooperators form

numerous small compact clusters. There are 143 clusters ranging from a single cooperator to

a cluster of size 1987, with a weighted average size of 537 and shape γ = 0.356. The fraction of

cooperators is fc = 0.37 and qc|c = 0.76. The snapshots are shown for an initial 15 × 15 cluster

on a 2002 lattice and can be reproduced using the VirtualLabs (Hauert, 2006b).
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Figure 3:Macroscopic features of the invasion of cooperators: a cluster size (•) and count (⋄)

as well as b cluster shape γ for increasing cost-to-benefit ratios c/b. a As suggested by the

snapshots in Fig. 2, the cluster size decreases with c/b, while the number of clusters increases.

For c/b < 0.1, few sizeable clusters dominate the expansion, which means that the cluster size

keeps increasing as invasion continues. In contrast, the big clusters break up and numerous

small clusters are formed for c/b > 0.1. b The same two distinct regimes are reflected in the

mean cluster shape γ weighted by the cluster size. For c/b < 0.1, γ is very low because of

numerous embedded specks of defectors but displays a large variance due to their variable

numbers. In contrast, compact clusters with convex shapes form for c/b > 0.1 such as to

minimize interactions with defectors. For an initial cluster of 15 × 15 cooperators, the cluster

size, count and shape are determined when cooperators reach the boundary of a 1152 lattice

and averaged over 1000 runs. Cluster size and shape are weighted by the cluster size (see

text). Vertical bars indicate the standard deviation (the standard error lies within the size of the

symbols).
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