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Abstract

The evolutionary puzzle of cooperation describes situatitss where cooperators pro-
vide a fitness benefit to other individuals at some cost to theselves. Under Darwinian
selection, the evolution of cooperation is a conundrum, whreas non-cooperation (or
defection) is not. In the absence of supporting mechanismgooperators perform
poorly and decrease in abundance. Evolutionary game theorprovides a powerful
mathematical framework to address the problem of cooperatin using the prisoner’s
dilemma. One well-studied possibility to maintain cooper#éon is to consider struc-
tured populations, where each individual interacts only wth a limited subset of the
population. This enables cooperators to form clusters sucthat they are more likely
to interact with other cooperators instead of being exploied by defectors. Here we
present a detailed analysis of how a few cooperators invadend expand in a world of
defectors. If the invasion succeeds, the expansion proces&es place in two stages:
first, cooperators and defectors quickly establish a local quilibrium and then they
uniformly expand in space. The second stage provides goodtiesates for the global
equilibrium frequencies of cooperators and defectors. Undr hospitable conditions,
cooperators typically form a single, ever growing cluster mterspersed with specks of
defectors, whereas under more hostile conditions, coopexas form isolated, compact
clusters that minimize exploitation by defectors. We provile the first quantitative as-
sessment of the way cooperators arrange in space during ingen and find that the
macroscopic properties and the emerging spatial patternsaveal information about

the characteristics of the underlying microscopic interations.



1 Introduction

Cooperation is a fundamental principle of biological syséehat organizes lower level entities
into higher level units — genes form chromosomes, cells forganisms, and individuals form
societies (Maynard Smith & Szathmary, 1995). Howevergimergence of cooperation poses
an enduring challenge to evolutionary biologists: If caapien is costly to the individual and
benefits only the interaction partners, then Darwinianctigle should favour non-cooperating
defectors and eliminate cooperation. In the absence ofastipg mechanisms, this outcome
is inevitable, despite the fact that mutual cooperationrédgrred over mutual defection. The
most prominent mathematical metaphor to study such inierecis given by the prisoner’s
dilemma: in pairwise interactions, cooperation (C) pregé benefib to the partner at some
costc to the cooperatorb(> ¢), while defection (D) neither bears any costs nor provides a
benefits. The net gains for the player’s joint behaviour camvhtten in the form of a payoff
matrix:

If co-player cooperates If co-player defects

Payoff to cooperatory b—c —c 1)

Payoff to defector: b 0

Strictly speaking the prisoner’s dilemma is defined in teahthe ranking of the four payoffs.
This particular parameterization in termsbadndc is biologically intuitive and mathematically
convenient. The crucial point is that defection pays maespective of the partner’s decision
and is thus the dominant strategy. Cooperators will theeedavindle and eventually everybody
ends up with a payoff of zero instead of the more favourabhard for mutual cooperation
b — c. This characterizes the conflict of interest between inldigls and the group, which
defines social dilemmas (Dawes, 1980, Hawew®l., 2006). Over the last decades, different
mechanisms have been proposed to promote and maintainratiopgHamilton, 1964, Hauert
et al., 2002, 2007, Nowak, 20®6 Nowak & Sigmund, 1998, Trivers, 1971, Wilson & Sober,

1994) including spatially structured populations withilied local interactions (Nowak & May,
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1992). If individuals are arranged on a lattice and intecendy with their nearest neighbours,
then cooperators may thrive by forming compact clusterschvincreases interactions with
other cooperators while reducing exploitation by defextor

Spatial structure affects the evolutionary process in garzex 2 games, i.e. in pairwise
interactions with two strategic options (Hauert, 2002, <Dkt & Nowak, 200@), and notably
enables cooperators to survive in populations playing tleper’s dilemma. Considering the
equilibrium frequencies of cooperators and defectorstiicpopulations demonstrates that the
clustering advantages are substantial for small cosetwetit ratios:/b, but are unable to offset
the exploitation by defectors above a threshold vatue,> )\, such that cooperators disappear
(Szabd & Toke, 1998). For increasingb, the system undergoes a critical phase transition,
characterized by diverging fluctuations in the cooperatat defector frequencies (Szabo &
Hauert, 2003). These results have led to the common belief that spatiaitsire is necessarily
beneficial for cooperation. While this holds for prisonelilemma interactions, it is not univer-
sally applicable. In fact, in the snowdrift game — a closelated social dilemma with relaxed
conditions such that cooperators and defectors can cowmder conditions where cooperators
are doomed in the prisoner’s dilemma — spatial structurenafiirns out to be detrimental to
cooperation (Doebeli & Hauert, 2005, Hauert, 2808auert & Doebeli, 2004).

In finite populations, evolution is stochastic such thatdbmbination of selection and ran-
dom drift eventually leads to the fixation of one or the otheategic type (Nowak, 20G6
Nowaket al., 2004). In such situations, cooperation is favoured if thatfon probability of a
single cooperatop, in a defector population exceeds the fixation probabilitst neutral mu-
tant (o > 1/N whereN is the population size). For weak selection, i.e. if paydffiedences
between cooperators and defectors are sipalls analytically accessible for various types of
microscopic updating mechanisms (Ohtsetial., 2006, Tayloret al., 2007). In particular, for
the payoff matrix (1), the conditiop- > 1/N implies that the fixation probability of a single

defector,pp, in a cooperator population js, < 1/N (Taylor et al., 2007, Wild & Traulsen,



2007). Hence, if mutations are rare, the population sperute time in the cooperator state
than in the defector state. In the prisoner’s dilemma, ifdbath of a randomly chosen individ-
ual triggers a competition among its neighbours to repdpulee vacant site with a success rate
proportional to their payoffs, then a particularly simptendition is obtained: evolution favours
cooperation wheneveér> ¢ - k holds, whereg: denotes the number of interaction partners.

This work complements studies on prisoner’s dilemma gams$ructured populations by
investigating the process of cooperators invading a wdrttbtectors. We demonstrate that after
an initial relaxation time, the number of cooperators alsvgyows quadratically irrespective
of the cost-to-benefit ratio/b, and we find that two distinct modes of growth exist: (i) for
smallc/b, cooperators expand essentially as a single ever growirsteclwhereas (i) for larger
¢/b, cooperators form an increasing number of small clustetis htfle variation in size. Our
simulations confirm that the probability of invasion is egsdly independent of the initial
number of cooperators provided that they form at le&st & cluster (Hauert, 2001, Killingback
etal., 1999, Paget al., 2000). In addition, our simulations show that behind theagion front,
cooperators and defectors quickly reach a local equilibyiwhich supports analytical results
based on pair approximation (Ellnetral., 1998, Le Gaillarcet al., 2003, Ohtsuket al., 2006,
van Baalen & Rand, 1998).

2 Model

In order to investigate the invasion dynamics of coopesgaitodetail, consider a square lattice
S x S where every site is occupied by a single individual. Inifigdll individuals are defectors,
except for as x s cluster of cooperators in the centre of the lattise{ 1,3,5,...,15 and
30). Each individual engages in pairwise interactions witltthMoore neighbourhood, i.e.
with the eight nearest neighbours reachable by a chessskingve. The payoffs accrued in

these interactions determine the individual's reprodwediiness (or its propensity to propagate



its strategy). Rescaling of the payoff matrix (1) reduces phisoner’s dilemma to a single

parameter:/b:
1 0
2
L+¢/b ¢/b

The updating of the strategy of every individual as well athefpopulation can be implemented
in various ways as illustrated by the diversity of approacinethe literature (see e.g. Hauert,
2002, Nakamaret al., 1997, 1998, Ohtsuki & Nowak, 20af, Szabb & Téke, 1998). The
characteristic features of the invasion process that weeptenere, however, are essentially in-
dependent of the detailed updating procedure. We verifisddbustness using various update
rules of the individuals (fully deterministic to highly steastic) and of the population (syn-
chronous updating or non-overlapping generations versgscaronous updating or continuous
time). For the simulations presented in the following settwe chose asynchronous updating
of the population and an individual updating of intermeelisttochasticity, which can be inter-
preted as a spatial analogue of the replicator dynamicsa focal individualx is randomly
selected to reassess and update its strategy; (ii) the fpafyafand of all its neighbours are
determined and (iii) the focal playarprobabilistically compares its payoff with the payoff of
its neighbours.x adopts the strategy of neighboyrwith a probabilityw, = (P, — P,)/A
provided that the payoff off exceeds the payoff at, and with probability zero otherwise.
A = Pnax— Pmin is @ normalization constant to ensurg € [0, 1]. Givenw, for all neighbours,
x does not change strategy with probability= Hy(l — w, ). With probabilityl — p, the focal
player adopts the strategy of a neighbour with relative gbiity w,/w wherew = Ey wy.
This approach recovers the replicator dynamics (HofbauSigtnund, 1998, Taylor & Jonker,
1978) in the limit of infinite population sizes and large riddgurhoods where the focal individ-
ual compares its payoff to a single randomly chosen neighbou

The above microscopic update procedure refers to a mechavhiere individuals preferen-

tially imitate the strategy of more successful neighboéus equivalent interpretation in terms
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of replication can be obtained by translating the diffengrtbabilities into propensities that

each neighbour succeeds in placing clonal offspring ondbalfsite.

3 Results

3.1 Cooperator Survival

Cooperation is inherently prone to exploitation by defextand thus the survival probability
of cooperatorsg, hinges on the cooperator’s ability to offset the costs afpsration with
benefits accrued from interactions with other cooperatarsingle cooperator in a sea of de-
fectors performs poorly, and its only hope is to propagaesitategy through random drift.
Since players never adopt worse performing strategies lirsetup, single cooperators never
survive and readily disappear. For other, more stochaptiate rules the odds of survival are
not zero but the chances remain slim. For example, even ltgwn favours cooperation in
the Moran process under weak selection, the survival pibtyatf a single cooperator is only
of the order ofl /N and hence only for small population sizes reliable resw@tslwe achieved
through individual based simulations. Moreover, underkagsdection random drift dominates,
which makes it much harder to extract characteristic festaf the evolutionary process. In
contrast, our approach based on strong selection faesitdear-cut conclusions.

Forc/b < A =~ 0.15 the survival probabilityy- of an initial cluster ofs x s cooperators
(s > 3) is very high and only marginally affected by the cost-tows# ratioc/b (see Fig. 1a).
The pivotal role o x 3 clusters in determining whether cooperators thrive has besognized Fig. 1
earlier (Hauert, 2001, Killingbacét al., 1999, Nowak & May, 1993, Pags al., 2000) and is about
confirmed by our results. Feyb < \, cooperators can survive by forming compact clusters drede
thereby minimizing exploitation by defectors. Fgh > A\ however, the clustering advantage
provided by the spatial setting is insufficient, and coofsinvariably go extinct irrespective

of their initial abundance.



3.2 Cooperator Expansion

A close inspection of the invasion process of cooperateesals two distinct dynamical regimes:
an initial phase of slower growth giving way to a phase of gigantly faster expansion (see
Fig. 1b). The invasion dynamics in both phases follows a pdwection, i.e. the number of
cooperators:. increases as a function of timeaccording ton.(t) = a; t% wherea,; indicates
the growth rate of cooperators in each phase (1, 2) and the exponenig characterize their
spreading in space. Estimates of the parametgrg were obtained by two separate fits: the
first fit up to timeT}, which marks the end of the first phase, and the second fit’Bftevhich
indicates the beginning of the second phase. The transiergepbetweefi; andT; is ade-
quately described by a superposition of the two power fonstin.(t) = a; t* + a, t% (see
Fig. 1b).

In the first phase, both parametersandd; decrease with increasing cost-to-benefit ratios
¢/b, which indicates slower growth under less favourable dimrs for cooperators. The factor
a, also depends on the size of the initial cluster of coopesatdhe small exponents; < 1,
are remarkable because an arbitrary but uniform spatiaresipn process yields an exponent of
2 (or, more generally, an exponent bfin D-dimensional space). The reason for the observed
smalld; is that cooperators expand during the first phase, but detesimultaneously invade
the cooperator’s initial territory. This indicates thatogdl equilibration process among coop-
erators and defectors is taking place behind the invasant.fin line with this, the relaxation
time 7} of this initial phase increases with the size of the initialster and also increases for
larger cost-to-benefit ratiagb, because higher costs or smaller benefits hinder the propaga
of cooperation.

In the second phase, the growth rate of cooperatpegyain decreases with increasity®-
ratios, but the growth exponent remains essentially cahata, ~ 2, which confirms the theo-
retical expectations of a uniform spatial expansion precliete thatl, shows small variations

around2 because the rate of growth is not locally uniform and depemdthe cluster shape:
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cooperators along smooth edges have higher propensitsliferate than cooperators sitting
on corners. However, as the expansion progresses and thegenwicooperators increases,
such effects become less important and are averaged owf) whggests thaim; .., dy — 2
holds.

The growth exponents;, d, not only characterize the spreading of cooperators in sjbate
also determine the growth of the region exposed to the iowasi cooperators or, equivalently,
determine the information propagation speed. Thus, ingbersd phase, the number of individ-
uals that are aware of the invading cooperators grows apped&ly asN,(t) = ay t9? ~ ay 2.
Note that N,(¢) essentially corresponds to the area enveloping the notssadly contigu-
ous cluster(s) of cooperators. The equilibrium frequerfoyomperators is therefore given by
fe = limy_ o n.(t)/N2o(t). Note thatn.(t) /No(t) = as/as, Which is independent of time. Thus,
if n.(t) andNy(t) are known at some particular times (they do not need to beumssimul-
taneously) good estimates of the equilibrium frequencfesooperators and defectors can be
obtained. In simulations, a convenient tiieis defined by the first cooperator reaching the
boundary of the lattice. At this timey,(T') = S*r/4 provides a good approximation wit$?
representing the lattice or population size. Note thattémsls to systematically overestimate
N, (T) because (i) the centre of the area covered by cooperatorbavayshifted over time and
(ii) only a single cooperator reached the boundary at timé\ conservative estimation of the

equilibrium fraction of cooperator§. is therefore given by

T 4
222 = T 3)

Je= 0 © No(T) ~ S2r

For good estimated, should lie well in the second regime of the invasion proc&ébg. estima-

tion of f. is not applicable to the first growth phase because it rehet®e fact that cooperators

and defectors behind the invasion front have reached a émpalibrium, and this is violated

in early stages of the invasion process. A summary of the f& dad equilibrium estimates is

given in Table 1. SincéVy(¢) relates to the area affected by the invasion of cooperatansii- Table 1
about

here



cates an accessible quantity for experimental approatiresxample experiments of growing

microbial populations on plates.

3.3 Cluster Size

The fraction of cooperatorg. depicted in Fig. 1b is linked to the spatial arrangement of co
operators, which in turn is determined by the geometry, {heating and the payoff matrix.
Macroscopic features such as the number of contiguousectust cooperators, their typical
size as well as their shape during cooperator expansioalrtherefore interesting characteris-
tics of the underlying microscopic interactions. Fig. 2whdypical snapshots of the distindEig. 2
spatial patterns for two different values of the cost-todfé ratioc/b at timeT', i.e. when the about
first cooperator reaches the boundary of the necessaritg fattice in our simulations. Undehere
benign conditions for cooperation (smajb), usually a single large contiguous cluster of coop-
erators grows with small embedded specks of defectors. &ahg the invasion front, several
isolated cooperators and tiny separated cooperator fansaére found. A contiguous cluster
consists of cooperators that have at least one other cdoparaong their neighbours. In con-
trast, under more hostile conditions for cooperation @argb), cooperators form numerous
small compact clusters. Typically, none of these clustest Bpecks of defectors because they
would readily split the cluster into smaller ones.

For increasing:/b-ratios, the cluster size decreases, while the number eferisiincreases
(see Fig. 3a). Note that for smallb, the tiny cooperator formations along the invasion front
lead to a bimodal distribution of the cluster size. In ordedtétermine the typical average cluster
size and eliminate the effects of isolated cooperatorsouitintroducing an arbitrary threshold
size, the average cluster size is weighted such that thehtvefgeach cluster corresponds to
its size. The cluster size and cluster count delineate twtindi regimes: foe/b < 0.1 (cf. Fig. 3
Fig. 2a), few rather big clusters dominate the expansiongg®whereas fdr.1 < ¢/b < A =~ about

0.15 (cf. Fig. 2b), numerous compact clusters minimize expltmitaby defectors. As notedhere
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before (cf. Fig. 1)\ marks the extinction threshold of cooperators such that for> X the
clustering advantages of cooperators are no longer sulfitbeoffset exploitation by defectors.

Note that for smalt/b, the cluster size keeps increasing as invasion progressetyis is
not true for larger:/b-ratios, where cooperators break up into smaller clustestalar size.

As c¢/bincreases and approacheghe cluster size steadily decreases, but it cannot become a
bitrarily small. In our case, cluster sizes of at Ie@stooperators seem to be required to sustain
cooperation. The decrease in cluster size is accompanied lnycrease in the cluster count.
Interestingly, the cluster count exhibits a peak ngar= 0.13. For largerc/b, the cluster size
keeps decreasing at a slow rate, while the cluster counsdyoigkly, which leads to an increase
in the distance between adjacent clusters. This repulsgbmeen clusters of cooperators arises
from those fortunate defectors that are able to exploitrs¢\@usters simultaneously. Their
high payoffs increase their chances to invade and usuatiyaesome clusters. Increasing the
typical distance between clusters reduces this risk.

The small variance in the size of contiguous clusters irtdicthat a typical cluster size ex-
ists asc/b approaches. This is remarkable because in closely related equilibsystems, this
limit leads to diverging fluctuations in the frequency of peaators (Szab6 & Hauert, 2088).
Hence, the fluctuations are caused by variations in the nuailotusters rather than their sizes.
Forc¢/b < 0.1 no typical cluster size exists and cooperators usually k@ a single large
cluster. The cluster size distribution is bi-modal due taumber of tiny runaway clusters along
the periphery (see Fig. 2a).

For0.1 < ¢/b < X\ atypical cluster size exists, which defines the relevantiascale for
local processes. This means that as the invasion progreaksetypical cluster size becomes
much smaller than the overall area covered by the invadiog@&ators (see Fig. 2b). In this
case, the system can approach local equilibrium in areamdbéhe invasion front. This is
supported by the conditional probability that a neighbdua cooperator is another cooperator,

q¢eje» Which quickly reaches its equilibrium value during thetfiggowth phase (not shown).
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In contrast, if cooperators expand as a single cluster withezlded specks of defectors (see
Fig. 2a), these specks are not in proper equilibrium bectdnesiebackground keeps expanding.
Neverthelessq, . rapidly changes during the first phase and increases onihystiuring the

second phase (not shown). The time whgp ceases to change rapidly coincides with the
transition from the first to the second growth phase; thithiur supports that the first phase

constitutes a local equilibration process.

3.4 Cluster Shape

Under increasingly hostile conditions for cooperatorsy@ac/b-values), the cluster shape be-
comes more and more important. Compact and convex clusipeshmaximize interactions
with other cooperators and minimize exploitation by defext The shape of a single cluster
can be defined as the ratio of interactions within the clusteio interactions with the surround-
ing defectorsP. Thus,y, is reminiscent of an area-to-periphery ratity °). In continuous two
dimensional space the ratity P? is invariant with respect to the cluster size. Unfortunatsiis
invariance no longer holds in discrete lattice space. Irotal take this into account, the shape
v, Of each cluster is normalized such that a single line of craipes (minimalA, maximal
P) yields~, = 0 whereas a square of cooperators (close to the maximum &ord minimum
for P) returnsy, = 1, irrespective of the cluster size. The mean (normalizeatelr shape

is weighted by the cluster size to eliminate distortions thueenegade cooperators along the
invasion front (see Fig. 3b)y exhibits the same two distinct dynamical regimes as the@lus
size and count (cf. Fig. 3a). Foyb < 0.1, ~y is surprisingly small due to the embedded specks
of defectors and exhibits large variations because of tlaiable numbers. Far/b > 0.1, v

quickly increases as numerous small compact clusters qferators form.
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4 Conclusions

Under favourable conditions, i.e. for low costs and highdfiés, cooperators are able to in-
vade a spatially extended world of defectors. The abilitiptan clusters enables cooperators to
persist, because spatial aggregation enables more fremqueractions with other cooperators
while reducing exploitation by defectors. The invasion obgerators occurs in two phases:
During the first phase, the number of cooperators incredeedysbecause the expansion of
cooperators is partly offset by defectors invading theahitluster of cooperators. The first
phase thus establishes a local equilibrium between cotmpsrand defectors. Consequently,
the duration of this phase depends on the size of the initister and can be neglected if the
invasion was initiated by few cooperators. During the sdqumase, cooperators uniformly ex-
pand into defector territory. Under increasingly hostitaditions (larger/b), the expansion
speed decreases but the number of cooperators alwayssasraecording to a quadratic func-
tion. Interestingly, cooperators and defectors readilgt firemselves in a local equilibrium in
the wake of the invasion front. Such local equilibration fast process compared to the inva-
sion dynamics (or in contrast to global equilibration), alfitg that has also been recognized in
analytical studies using the technique of pair approxiamaflLe Gaillardet al., 2003, Matsuda
et al., 1992, van Baalen & Rand, 1998). Due to the fast equilibnatgnod estimates of the
equilibrium frequencies of cooperators and defectors eamltained already from the invasion
process (see Table 1). In fact, the dynamics in early stdggedy predicts the evolutionary fate
of cooperators and defectors.

The difference between local and global dynamics suggesttral separation of time
scales. This is used to calculate the fixation probabilitc@bdperatorsyq, in the limit of
weak selection (Ohtsulet al., 2006). Note that for the update rule chosen hgre< 1/52
always holds §? denotes the population size). Thus, the probability thahgles cooperator

takes over is always less than that of a neutral mutant. Enmsins true if several cooperators
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attempt to invade as compared to an equal number of neutralnmsu However, even though
evolutionary dynamics never favours cooperation, codpesand defectors may co-exist for an
exceedingly long time. In the absence of mutations, anyefsystem with a stochastic update
rule must eventually reach a homogeneous absorbing stidt@liefectors or all cooperators,
but whether these states can be reached within reasonatdddia rather different question
(Taylor et al., 2006, Traulseret al., 2007). The outcome not only strongly depends on the
population size, but also on the existence and stabilityomfa() equilibria where cooperators
and defectors can co-exist (Traulsenal., 2006,b). Thus, whether cooperators manage to
invade a population of defectors is largely independentlodtiver they take over the population
and displace defectors.

The invasion of cooperators can essentially unfold acogrth two distinct scenarios: under
benign conditions (smalt/b-ratios), cooperators expand and form a single large cootig
and continuously growing cluster interspersed with ligfgecks of defectors (see Fig. 2a). In
contrast, under hostile conditions (largé-values), cooperators split up and form numerous
smaller compact clusters of a typical size and the embedubks disappear (see Fig. 2b). The
typical size decreases with increasing values/of but once it drops below a threshold size,
cooperation can no longer be sustained and disappears.r boskde conditions, cooperators
break up and form numerous isolated clusters of increascwglvex shape (see Fig. 3b), which
reduces interactions with defectors and thus minimizeoésagtion.

Spatial structures, or limited local interactions, leac$sortment. The strength and type
of assortment depends on the geometry, the payoffs as well #se update rules. In the spa-
tial prisoner’s dilemma, the formation of clusters genesgtositive assortment of cooperator-
cooperator interactions, which is crucial for their sualivUnder harsher conditions (larger
¢/b), positive assortment becomes more important, as refléntede increasingly convex
shapes. At some point(b > \), the assortment required to offset exploitation by defiexctan

be no longer achieved and cooperators disappear. Painap@ation deals analytically with
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assortment up to first order, but cannot be easily extendaddount for macroscopic features
such as cluster count, size and shape. The present studgesavfirst numerical attempt to
link macroscopic features and microscopic mechanisms.

The characteristics of the invasion process are robustregibect to variations of the system
size or modifications of the update rules. Changing from e@ssonous to synchronous popula-
tion updates (overlapping versus non-overlapping geioarsitand adopting different rules for
strategy propagation — e.g. based on the Moran process (Mb®82, Nowalet al., 2004) or
referring to situations where errors or uncertainties neaylto the adoption of worse perform-
ing strategies (Hauert & Szabo, 2005, Szabo & Toke, 1998)roduce only minor corrections
to quantitative features such as the invasion speed, bquiti estimates or the maximueib-
ratio for which cooperators can persist.

The macroscopic spatio-temporal patterns emerging tlirdlkig invasion of cooperators
in a spatially extended world of defectors reveal chargtierfeatures of the underlying mi-
croscopic interactions and provide an outlook on the l@rgitbehaviour of the system. The
cluster size of cooperators reflects the cost-to-benefit oditcooperation, and the local equi-
librium of cooperators and defectors behind the invasiontfprovides good estimates for the

global equilibrium frequencies of the two strategies at @imlater evolutionary stage.
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Table

c/b
0.02
0.02
0.12
0.12

Table 1: Fit and simulation data characterizing the invasion of cooperators for two different
initial cluster sizes and two cost-to-benefit ratios. The number of cooperators n.(t) increases
according to n.(t) = a;t%, where i refers to the first and second growth phase (cf. Fig. 1b).
T indicates the number of generations until the first cooperator reaches the boundary on a

1000? lattice (averaged over 100 runs). The estimated and simulated equilibrium fractions of

initial cluster size
3x3
30 x 30
3x3
30 x 30

ay dq
3.34 1.17
51.14 0.80
1.11  1.03
44.51 0.43

a2
0.14
0.36
0.01
0.02

da
2.07
1.95
2.06

1.94

T
1683
1625
6515
6280

cooperators are given by f1°°Y (see Eq. (3)) and £5™S, respectively.
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ftheory
4

0.849
0.848
0.519
0.514

e
0.932
0.932
0.578
0.578



Figures

Figure 1:Survival probability o and growth characteristics of invading cooperators. a For initial
cluster sizes of s x s with s > 3, the survival probability is close to 1 and essentially independent
of s (A, s = 3; 0,5 = 5; e, s = 15) and the cost-to-benefit ratio ¢/b up to the extinction threshold
A = 0.15, where cooperators can no longer survive irrespective of their initial abundance. o¢ is
determined over 1000 runs on a 115 x 115 lattice and cooperators are assumed to survive if they
reached the boundary. b The growth of the number of cooperators n.(t) displays two distinct
regimes: A first phase of slow growth that corresponds to a local equilibration process of the
initial cluster, followed by a second phase representing the expansion of cooperators. Both
regimes follow a power function of the form n.(t) = a;t% but with distinct growth exponents
(d1 < 1inthe first phase and d, =~ 2 in the second phase; see Table 1). The dashed line shows
the superposition of the two fits n.(t) = a1t +ast®. Vertical lines mark the end of the first (77)
and the beginning of the second growth phase (13) as used for fitting the power function. The

expansion process is shown for a 30 x 30 cluster on a 10002 lattice averaged over 100 runs.

Figure 2:Typical snapshots of the invasion of cooperators (blue) in a world of defectors (red) for
a small cost-to-benefit ratio (¢c/b = 0.02) and b for ¢/b closer to the extinction threshold (¢/b =
0.12). Along the interface separating cooperators and defectors, some individuals recently
switched from defection to cooperation (green) or vice versa (yellow). a Cooperators expand
as a single contiguous cluster with embedded specks of defectors, and a few isolated tiny
cooperator formations along the invasion front. In this snapshot there is one large cluster of
size 23187 accompanied by 14 single, isolated cooperators and the average weighted cluster
shape is v = 0.078. The fraction of cooperators is f. = 0.58 and ¢.|. = 0.89. b Cooperators form
numerous small compact clusters. There are 143 clusters ranging from a single cooperator to
a cluster of size 1987, with a weighted average size of 537 and shape v = 0.356. The fraction of
cooperators is f. = 0.37 and g.|. = 0.76. The snapshots are shown for an initial 15 x 15 cluster

on a 200 lattice and can be reproduced using the VirtualLabs (Hauert, 2006b).
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Figure 3:Macroscopic features of the invasion of cooperators: a cluster size (e) and count (o)
as well as b cluster shape ~ for increasing cost-to-benefit ratios ¢/b. a As suggested by the
snapshots in Fig. 2, the cluster size decreases with ¢/b, while the number of clusters increases.
For ¢/b < 0.1, few sizeable clusters dominate the expansion, which means that the cluster size
keeps increasing as invasion continues. In contrast, the big clusters break up and numerous
small clusters are formed for ¢/b > 0.1. b The same two distinct regimes are reflected in the
mean cluster shape ~ weighted by the cluster size. For ¢/b < 0.1, ~ is very low because of
numerous embedded specks of defectors but displays a large variance due to their variable
numbers. In contrast, compact clusters with convex shapes form for ¢/b > 0.1 such as to
minimize interactions with defectors. For an initial cluster of 15 x 15 cooperators, the cluster
size, count and shape are determined when cooperators reach the boundary of a 1152 lattice
and averaged over 1000 runs. Cluster size and shape are weighted by the cluster size (see
text). Vertical bars indicate the standard deviation (the standard error lies within the size of the

symbols).
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