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Abstract—This paper presents the results of a pilot study to
assess the feasibility of using accelerometer data to estimate the
severity of symptoms and motor complications in patients with
Parkinson’s disease. A support vector machine (SVM) classifier
was implemented to estimate the severity of tremor, bradykine-
sia and dyskinesia from accelerometer data features. SVM-based
estimates were compared with clinical scores derived via visual in-
spection of video recordings taken while patients performed a series
of standardized motor tasks. The analysis of the video recordings
was performed by clinicians trained in the use of scales for the
assessment of the severity of Parkinsonian symptoms and motor
complications. Results derived from the accelerometer time series
were analyzed to assess the effect on the estimation of clinical scores
of the duration of the window utilized to derive segments (to even-
tually compute data features) from the accelerometer data, the use
of different SVM kernels and misclassification cost values, and the
use of data features derived from different motor tasks. Results
were also analyzed to assess which combinations of data features
carried enough information to reliably assess the severity of symp-
toms and motor complications. Combinations of data features were
compared taking into consideration the computational cost asso-
ciated with estimating each data feature on the nodes of a body
sensor network and the effect of using such data features on the
reliability of SVM-based estimates of the severity of Parkinsonian
symptoms and motor complications.

Index Terms—Body sensor networks, Parkinson’s disease,
support vector machines (SVMs), wearable sensors.
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I. INTRODUCTION

PARKINSON’s disease affects about 3% of the population
over the age of 65 years and more than 500,000 U.S. res-

idents. The characteristic motor features of the disease include
tremor, bradykinesia (i.e., slowness of movement), rigidity (i.e.,
resistance to externally imposed movements), and impaired pos-
tural balance. The primary biochemical abnormality in Parkin-
son’s disease is a deficiency of dopamine due to degeneration of
neurons in the substantia nigra pars compacta. Current therapy
is based on augmentation or replacement of dopamine, using the
biosynthetic precursor levodopa or drugs that activate dopamine
receptors [1]. These therapies are successful for some time, but
most patients eventually develop motor complications [2]. Com-
plications include wearing-off, the abrupt loss of efficacy at the
end of each dosing interval, and dyskinesias, involuntary and,
at times, violent writhing movements. Wearing-off and dysk-
inesias produce substantial disability, and frequently interfere
with medical therapies [3], [4]. Furthermore, variations in the
severity of symptoms and motor complications (referred to as
“motor fluctuations”) are observed during dosing intervals.

Currently available tools for monitoring motor fluctuations
are limited [5], [6]. In clinical practice, information about mo-
tor fluctuations is usually obtained by asking patients to recall
the number of hours of ON (i.e., when medications effectively
attenuate tremor) and OFF time (i.e., when medications are not
effective). This kind of self-report is subject to perceptual bias
(e.g., patients often have difficulty distinguishing dyskinesia
from other symptoms) and recall bias. Another approach is the
use of patient diaries, which can improve reliability by record-
ing symptoms as they occur, but does not capture many of the
features useful in clinical decision making [7].

Researchers have investigated for some time the use of sens-
ing technology to monitor Parkinsonian symptoms in the home
and community settings. Ghika et al. [8] and Spieker et al. [9]
were among the first investigators to explore the use of ac-
celerometers and other sensing technology to monitor patients
over extended periods of time. Until recently, however, the
technology was not adequate to clinically apply these meth-
ods. Recent advances in miniature sensor technology, wireless
communication, signal processing, and pattern recognition have
dramatically changed this situation. Consequently, our research
group [10], [11] and others [12]–[16] have focused their ef-
forts on leveraging such advances to develop systems capable
of monitoring longitudinal changes in the severity of Parkinso-
nian symptoms and motor complications. Such systems could
facilitate the titration of medications in patients with late stage
Parkinson’s disease showing severe motor fluctuations.

1089-7771/$26.00 © 2009 IEEE
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Despite recent advances in wearable technology [17] and the
development of software that optimizes the use of resources in
body sensor networks [18], [19], the use of low-power radios
based on the IEEE 802.15.4 standard that has been adopted for
implementing the majority of the available body sensor networks
is still marked by excessive power consumption thus preventing
long-term monitoring of patients unless one implements ad hoc
strategies. To decrease power consumption requirements, our
research team and others have pursued solutions that minimize
the amount of information to be transferred wirelessly from the
nodes to the base station of the monitoring system. This goal can
be met by extracting (on the body sensor network nodes) and
wirelessly transmitting features estimated from the raw data,
instead of transmitting the raw data itself.

A limitation of previous work toward developing systems to
monitor patients with Parkinson’s disease is the lack of integra-
tion between wearable technology and the algorithms proposed
to estimate the severity of Parkinsonian symptoms and motor
complications. Previous work has not carefully considered the
need for designing signal processing procedures that can be im-
plemented on the nodes of a body sensor network thus minimiz-
ing the amount of data to be transferred from the network nodes
to the base station. The use of data features that can be estimated
on the network nodes and its impact on the error affecting the
estimates of the severity of symptoms and motor complications
(derived via pattern recognition techniques implemented on a
computer connected with the body sensor network) has never
been assessed before. Another limitation of previous studies is
their narrow focus on a single symptom (e.g., tremor) or a single
motor complication (e.g., dyskinesia). Clinical management of
patients with Parkinson’s disease requires instead that complex
interactions of medications with multiple symptoms and motor
complications be monitored over time, assessed, and integrated
into algorithms for the clinical management of these patients.

II. MATERIALS AND METHODS

A. Data Collection

Twelve individuals were recruited in the study, ranging in age
from 46 to 75 years, with a diagnosis of idiopathic Parkinson’s
disease (Hoehn & Yahr stage 2 to 3, i.e., mild to moderate bilat-
eral disease) [20]. Subjects delayed their first medication intake
in the morning so that they could be tested in a “practically de-
fined OFF” state (baseline trial). This approach is used clinically
to observe patients during their most severe motor symptoms.
Subjects were instructed to perform a series of standardized
motor tasks utilized clinically to evaluate patients with Parkin-
son’s disease. These motor tasks are part of the motor section of
the Unified Parkinson’s Disease Rating Scale [21] and included
finger-to-nose (reaching and touching a target), finger tapping,
repeated hand movements (opening and closing both hands),
heel tapping, quiet sitting, and alternating hand movements (re-
peated pronation/supination movements of the forearms). Fig. 1
shows pictures taken during the execution of these tasks. After
completion of the baseline trial, subjects took their medications
and were then tested using the same procedure every 30 min.
Data was collected during seven trials performed at intervals

of 30 min. Video recordings were made during each trial so
that a clinical evaluation of the severity of tremor, bradykinesia,
and dyskinesia could be performed later on. A clinical expert
examined the video recordings and provided clinical scores rep-
resenting the severity of tremor, dyskinesia, and bradykinesia
for each motor task performed by patients during each trial.
Such assessment relied upon the Unified Parkinson’s Disease
Rating Scale [20], which provides five discrete levels of sever-
ity ranging from 0 to 4. Clinical scores provided by clinicians
via visual examination of the video recordings were compared
with estimates derived from the accelerometer data using the
methods described in the following sections.

Uniaxial accelerometer sensors positioned on the upper and
lower limbs (as shown in Fig. 2) were used to gather movement
data during performance of the earlier-described standardized
series of motor tasks. The axes of the accelerometers utilized
to capture movements of the upper extremities were oriented in
the anteroposterior direction (for subjects standing with arms
on the side of the body and palms touching the thighs). The
axes of the accelerometers positioned on the lower extremities
were oriented distally (“down” when subjects were standing).
In this pilot study, we did not use wireless sensors because a
suitable platform was not available when the study was started.
Rather, we gathered sensor data via a tethered ambulatory sys-
tem (Vitaport 3, Temec BV, The Netherlands). Accelerometers
with the same characteristics as the ones utilized as part of the
wireless sensor platform developed later on (as described next)
were used for the experiments. Data was sampled at 100 Hz.

B. Feature Extraction

Raw accelerometer data were high-pass filtered with a cut-
off frequency of 1 Hz to remove the effect of gross changes in
the orientation of body segments [13]. An additional filter was
applied to isolate the frequency components of interest for esti-
mating each symptom or motor complication. Specifically, the
time series were bandpass filtered with bandwidth 3–8 Hz for
the analysis of tremor, and low-pass filtered with a cutoff fre-
quency of 3 Hz for the analysis of bradykinesia and dyskinesia.
All filters were implemented as infinite impulse response (IIR)
filters based on an elliptic design.

The accelerometer time series were segmented using a rect-
angular window randomly positioned throughout the record-
ings gathered during performance of each motor task [10].
Features were extracted from 30 data segments (i.e., epochs)
for each motor task for each trial. Five different types of fea-
tures were estimated from the accelerometer data: the range of
amplitude of each channel, the root mean square (rms) value
of each accelerometer signal, two cross-correlation-based fea-
tures (i.e., the peak of the normalized cross-correlation func-
tion derived from pairs of accelerometer time series and the
time lag corresponding to such peak value; the normaliza-
tion of the cross-correlation function limited its values be-
tween −1 and 1), two frequency-based features (i.e., the dom-
inant frequency component and the ratio of the energy as-
sociated with the dominant frequency component to the to-
tal energy), and the signal entropy [22]. The choice of such
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Fig. 1. Motor tasks performed by subjects during each trial. The tasks included: (a) and (b) finger to nose (right and left), (c) and (d) finger tapping, (e) and (f)
opening/closing the hands, (g) and (h) heel tapping, (i) sitting, and (j) alternating hand movements.

Fig. 2. Schematic representation of the position of sensors on the body to
gather accelerometer data. The SHIMMER platform we envision to use in
future studies is also shown.

features was based on previous work that allowed us to
identify features sensitive to changes in the severity of Parkin-
sonian symptoms and motor complications and motor tasks that
are suitable to capture movement characteristics associated with

TABLE I
MOTOR TASKS UTILIZED FOR ESTIMATION OF SEVERITY SCORES

tremor, bradykinesia, and dyskinesia [10]. Table I provides a
list of the motor tasks used to assess the severity of tremor,
bradykinesia, and dyskinesia. It is worth mentioning that, while
in some cases, the motor tasks themselves were inadequate to
estimate the severity of a given symptom or motor complication
(e.g., the heel tapping task does not lend itself to classifying
the severity of dyskinesia), in other cases, the decision to ex-
clude a motor task was made based on the lack of appropriate
sensors. For instance, the open/close hands task could poten-
tially be suitable to estimate the severity of bradykinesia, but
the setup would require the use of either inertial sensors on the
hands or the use of electromyography to capture the activity
of muscles controlling the rhythmic opening and closing of the
hands.
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C. Support Vector Machines (SVMs)

Estimating accelerometer data features for all the sensors uti-
lized in the experiments produced large feature sets. In pilot
work [10], [11], projection algorithms, clustering techniques,
and measures of cluster quality were used to assess the suit-
ability of the accelerometer-based feature sets to estimate the
severity of tremor, bradykinesia, and dyskinesia. Encouraged by
the results of our pilot work, we decided to develop a classifier
to estimate the severity of Parkinsonian symptoms and motor
complications based on accelerometer data features. We chose
to use SVMs [23] due to the success of this approach in many
classification problems. SVMs demonstrate good generalization
performance [23]. We used the PRTools4 toolbox to implement
SVM [24]. The specific SVM implementation we adopted relies
on the one-versus-rest approach to tackle the multiclass classifi-
cation problem. Three different kernels (i.e., exponential, radial
basis, and polynomial kernels) were utilized and results were
compared.

D. Optimization of the Algorithms

Optimization of the algorithms was achieved by minimizing
the error affecting the estimates of clinical scores measuring
the severity of tremor, bradykinesia, and dyskinesia that we de-
rived using SVM. Values derived using the earlier-described
methods were compared with the scores provided by clinicians
based on visual inspection of video recordings taken while pa-
tients performed a standardized series of motor tasks. For all the
procedures described next, we used a tenfold cross-validation
technique. The technique was utilized to analyze data on an
individual basis, i.e., the algorithms were trained on a subject-
by-subject basis. This approach is justified by the fact that
our interest is for developing methods to track longitudinal
changes in the severity of Parkinsonian symptoms and motor
complications on an individual basis rather than on a group
basis.

First, we studied the effect of the length of the window used
to select epochs of accelerometer data and derive data features.
Our objective was to achieve average estimation errors below
5%. This value conservatively approximates the interrater vari-
ability that marks the use of the Unified Parkinson’s Disease
Rating Scale, the clinical scale utilized in this study to assess
the severity of symptoms and motor complications [21]. We uti-
lized window lengths ranging from 1 to 7 s with increments of
1 s. Then, we explored the effect of three different SVM kernels:
polynomial, exponential, and radial basis kernels. We tested four
different values (0.1, 10, 100, and 1000) of the misclassifica-
tion cost parameter “C” used to train the SVM. Results were
also analyzed to compare the error affecting the estimates of
the severity of tremor, bradykinesia, and dyskinesia calculated
by using feature sets from data recorded during performance of
different motor tasks. These analyses aimed at identifying mo-
tor tasks suitable to achieve reliable estimates of the severity of
Parkinsonian symptoms or motor complications. Finally, we as-
sessed the impact of individual data features and combinations
of data features on the error affecting the estimates provided by
SVM. We considered five feature types: data range, rms value,

cross-correlation-based features, frequency-based features, and
signal entropy. Analyses were performed for each feature type
(i.e., feeding the SVM with only one feature type) and all possi-
ble combinations of features (i.e., all possible combinations of
two feature types, three feature types, four feature types, and all
five feature types). Consequently, a total of 31 different combi-
nations of feature types were tested (i.e.,

∑5
r=1

n !
r !(n−r)!

∣∣∣
n=5

).

E. Toward the Use of a Body Sensor Network

In this study, data were collected using a tethered ambulatory
system in the laboratory environment. For clinical applications
in the home and community settings, it would be desirable to
utilize a wireless system. The sensor platform we envision to
use for clinical application of the methodologies herein inves-
tigated is the Intel Digital Health Group’s Sensing Health with
Intelligence, Modularity, Mobility, and Experimental Reusabil-
ity (SHIMMER) [25].

SHIMMER (Fig. 2) is a body sensor network that consists
of nodes equipped with a TI MSP430F1611 microprocessor, a
Chipcon CC2420 IEEE 802.15.4 2.4 GHz radio, a MicroSD card
slot, a triaxial microelectromechanical systems accelerometer—
the Freescale MMA7260Q—and, optionally, a Bluetooth radio
that allows streaming of sensor data at high rates. The SHIM-
MER device measures 1.75′′ × 0.8′′ × 0.5′′ and weighs 10 g.
The MicroSD card slot allows up to 2 GB of flash memory.
Given the amount of flash memory available on the body sen-
sor network nodes in the application discussed in this paper,
wireless communication can be used solely when the protocol
requires synchronizing multiple units, and when researchers are
interested in performing spot checks on the quality of the data.
This characteristic of the SHIMMER platform substantially re-
duces power consumption compared to the alternative in which
no data are stored on the nodes and the radio is constantly
utilized.

To monitor the quality of the recordings, one can rely upon es-
timating data features on the nodes with available computational
resources and wirelessly transmitting only such data features.
Building this capability into a body sensor network would al-
low clinical personnel to check that data captured during the
monitoring interval are satisfactory and carry the information
they need. One challenge to implementing this strategy is the
limited availability of computational resources on the nodes.
This requires performing a tradeoff between the relevance of
the clinical information captured by a given data feature and
the computational cost associated with its estimation. Also, one
has to consider that estimating certain data features requires
the use of the radio to transmit data from one node to another.
This is the case for the cross-correlation-based features. Fea-
tures should therefore be ranked first according to the “cost”
associated with their estimation (including computational cost
and power consumption associated with data transmission) and
then sorted according to their impact on the error affecting the
estimates of the severity of Parkinsonian symptoms and motor
complications.

To assess the computational cost of deriving each of the data
features of interest on the SHIMMER platform, we estimated
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Fig. 3. Effect of the window length on the error affecting the estimates of
clinical scores derived via analysis of the accelerometer data. Estimation error
values were averaged across all the motor tasks to derive the box plots for (a)
tremor, (b) bradykinesia, and (c) dyskinesia. Results were derived on a subject-
by-subject basis and are shown as aggregate data.

the time needed to compute such features for a 5 s epoch of
accelerometer data. For this purpose, we implemented and exe-
cuted procedures to calculate data features on the sensor nodes
(i.e., on the MSP430F1611 processor). Start and end times of
the interval required for the data feature estimation were mea-
sured by reading the value of a register incremented using a
32 kHz clock. Estimates were obtained for 50 epochs and av-
erage values of the time needed to compute different features
were compared.

III. RESULTS

A. Selecting the Optimal Window Length

Fig. 3 shows the results achieved when segmenting ac-
celerometer data with different window lengths. In the box plot,
the horizontal line represents the median value, the box shows
the interval from the lower quartile to the upper quartile, and
the whiskers show the range covered by the data (excluding
outliers). Outliers, indicated each by a plus sign, were detected
as points exceeding 1.5 times the interquartile range. Estima-
tion error values were obtained by utilizing all feature types and
by implementing SVM using a third-order polynomial kernel.
Similar results were obtained using other kernels. A significant
decrease in the average estimation error for tremor, bradykine-
sia, and dyskinesia can be seen when increasing the window

length from 1 to 4 s. Error values appear to plateau with a
window of 5 s or longer. The median values of the estima-
tion errors for a window of 5 s were below the 5% target. The
longer the windows we adopt, the larger the collected dataset
would need to be in order to avoid high correlation among
epochs utilized to derive each feature value. Therefore, one
should adopt the shorter window that allows one to achieve the
desired estimation error. The results summarized in Fig. 3 sup-
ported the choice of a 5 s window for extracting data features
to estimate the severity of Parkinsonian symptoms and motor
complications.

Interestingly, the pattern of decrease in estimation error val-
ues observed when increasing the window length utilized to
segment the accelerometer data into epochs is slightly different
for tremor compared to bradykinesia and dyskinesia. A shorter
window appears to be suitable for estimating clinical scores of
tremor compared to the window needed to reliably estimate the
severity of bradykinesia and dyskinesia. This observation is not
unexpected. In fact, tremor is marked by a rhythmic component
of movement between 4 and 7 Hz. A relatively short window
therefore captures this behavior reliably. Also, the presence of
several outliers is shown in Fig. 3 for estimating tremor (more
than bradykinesia and dyskinesia). A detailed inspection of the
data indicated that the outliers for tremor were due to the results
for one individual whose recordings appeared to be marked by
low SNR. This observation suggests that the proposed method
performs well for patients with severe tremor and that perfor-
mance of the algorithms worsens for patients with mild to mod-
erate tremor (therefore showing smaller displacement of the
body segments with lower SNRs marking the recordings). The
limited number of patients tested in this study did not allow
us to perform additional analyses to explore the correlation be-
tween the reliability of the results and the severity of tremor.
For bradykinesia and dyskinesia, we anticipated the need for
using a longer window to segment the data than the one used
for tremor because bradykinesia and dyskinesia are marked by
lower frequency components than tremor. Bradykinesia by def-
inition consists of slower, lower frequency movements. Dyski-
nesia is marked by “bursts” of movements that can be observed
every few seconds. It is not surprising, therefore, that the esti-
mation error values we derived for a window length of 1 and
2 s were higher for bradykinesia and dyskinesia compared to
tremor.

B. Selecting the Optimal SVM Kernel

Fig. 4 shows a box plot of the results obtained when different
kernels were utilized to implement the SVM. Estimation error
values were derived by averaging results for all motor tasks for
each Parkinsonian symptom and motor complication. Results
were derived on a subject-by-subject basis and shown as aggre-
gate data. Although results were derived for all window length
values, Fig. 4 shows only the results obtained when a 5 s window
was used to segment the accelerometer data. No major differ-
ences were observed in estimation error values across the three
kernels. Interestingly, differences were noted when the misclas-
sification cost parameter “C” that led to minimum estimation
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Fig. 4. Effect of different SVM kernels on the error affecting the estimates
of clinical scores derived via analysis of the accelerometer data. Estimation
error values were averaged across all the motor tasks to derive the box plots
for (a) tremor, (b) bradykinesia, and (c) dyskinesia. Results were derived on a
subject-by-subject basis and are shown as aggregate data.

error values for each of the kernels was taken into consider-
ation. In general, a decrease in error values was observed for
all kernels when we increased the misclassification cost param-
eter “C” from 0.1 to 1000. This result was expected because
the complexity of the classifier increases with increasing “C”
values. No significant decrease in error value was observed for
the results derived using the polynomial kernel for “C” values
greater than 10, whereas a significant decrease in estimation
error value for the exponential and the radial basis kernels was
observed when the “C” value was further increased to 100. This
observation suggests that the polynomial kernel discriminates
the classes better than the other two kernels.

C. Selecting Suitable Motor Tasks

Results of the analyses that we performed to identify motor
tasks suitable to estimate the severity of each symptom and
motor complication are summarized in Fig. 5. Data features
for these results were estimated using a 5 s window. The SVM
was built using a third-order polynomial kernel. Results were
derived on a subject-by-subject basis and shown as aggregate
data via box plots for each symptom and motor complication
for the motor tasks that we selected for the study, as shown in

Fig. 5. Effect of selecting different motor tasks on the error affecting the
estimates of clinical scores derived via analysis of the accelerometer data.
Results are shown for (a) tremor, (b) bradykinesia, and (c) dyskinesia. Box
plots of estimation errors are shown for the following motor tasks: Task#1)
finger to nose—right; Task#2) finger to nose—left; Task#3) finger tapping—
right; Task#4) finger tapping—left; Task#5) open/close hand—right; Task#6)
open/close hand—left; Task#7) heel tapping—right; Task#8) heel tapping—
left; Task#9) sitting; and Task#10) alternating hand movements. Results were
derived on a subject-by-subject basis and are shown as aggregate data.

Table I. Results are not shown for motor tasks not suitable to
build a classifier of a given symptom or motor complication.

In general, no major differences were observed in the esti-
mation error values obtained by using feature sets pertaining to
different motor tasks, although the use of data from certain tasks
appeared to achieve lower estimation error values and variabil-
ity of the results compared to other tasks. The fact that several
tasks appeared to be suitable for estimating the severity of each
symptom and motor complication is an important result. This
observation suggests that Parkinsonian symptoms and motor
complications lead to distinct features of movement that can be
captured irrespective of the specific motor task a patient is en-
gaged into. This is a very promising result because it indicates
that there is high likelihood that the analyses presented in this
manuscript could be extended to motor tasks associated with
activities of daily living.

D. Selecting Accelerometer Features

Table II summarizes the results derived to assess the effect of
individual data feature types and combinations of feature types
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TABLE II
EFFECT OF UTILIZING DIFFERENT NUMBERS OF FEATURE TYPES

on the reliability of the estimates derived for clinical scores of
tremor, bradykinesia, and dyskinesia. Error values were com-
puted for estimates obtained using a window of 5 s to derive
epochs for the computation of data features and applying SVM
with a third-order polynomial kernel. Results are shown for a
single feature type, two feature types, etc., up to all five feature
types. Numerical values shown in Table II are for the mini-
mum and maximum estimation error values for each symptom
and motor complication. Average and standard deviation values
across subjects were derived for the best (i.e., minimum esti-
mation error value) and worst (i.e., maximum estimation error
value) cases.

Results for tremor show that the estimation error value can be
as low as 6.6% even when using a single feature type. This result
was obtained using the signal entropy feature. When excluding
the signal entropy feature and cross-correlation-based features
(the two feature types that were found to require the larger
amount of body sensor network resources—see results below),
the smallest estimation error value was obtained by relying on
frequency-based features and was equal to 12.9%. A decrease in
estimation error value was achieved when combinations of two
and three feature types were utilized. With two feature types, the
lowest average error (3.1%) was obtained by utilizing rms value
and data range features. When three feature types were utilized,
the lowest average estimation error (2.5%) was achieved by
using the rms value, the data range, and the signal entropy
features. A slightly higher estimation error (3.4%) was achieved
using rms value, data range, and frequency-based features.

Results for bradykinesia showed that, in general, clinical
scores for this symptom can be estimated with higher relia-
bility (i.e., lower estimation error) than scores for tremor. When

using only one feature type, an estimation error value as low
as 2.2% was achieved by utilizing cross-correlation-based fea-
tures. The lowest value of estimation error that was achieved
without using cross-correlation-based features and the signal
entropy feature was 6.1%. This value of estimation error was ob-
tained by using frequency-based features. When combinations
of two feature types were considered, the lowest estimation error
achievable without using cross-correlation-based features and
the signal entropy feature was 2.5%. This value of estimation
error was obtained combining data range and frequency-based
features. When three feature types were used, the best result was
achieved by combining rms value, cross-correlation-based, and
signal entropy feature types. The combination not using cross-
correlation-based and signal entropy feature types was marked
by an estimation error of 2.2%.

Results for dyskinesia showed estimation error values similar
to those obtained for bradykinesia. An estimation error value
of 3.7% was achieved using the signal entropy feature. The
minimum estimation error value achieved without relying on
cross-correlation-based and signal entropy feature types was
obtained by relying on the rms value feature and was equal to
6.0%. When using two feature types, an estimation error value
of 1.9% was obtained by using cross-correlation-based features
and the signal entropy feature. The best result achieved when
combining features that did not include cross-correlation-based
features and the signal entropy feature was the one derived by
combining the rms value and the range of amplitude of the ac-
celerometer time series, in which case the estimation error was
equal to 4.9%. The best result for combinations of three feature
types was an estimation error of 1.8% (achieved when using
frequency-based, cross-correlation-based, and signal entropy
feature types). A slightly increased estimation error (i.e., 3.2%)
was obtained when using a combination of feature types not in-
cluding cross-correlation-based features and the signal entropy
feature.

E. Estimating Signal Features on the Nodes of a Body Sensor
Network

Table III summarizes the time that we estimated to be nec-
essary to compute each data feature over a 5 s window for
data sampled at 100 Hz on the nodes of the body sensor net-
work. Estimating data range feature values required approx-
imately 2.5 ms. The estimation of the rms feature value re-
quired about 20 ms. Performing a fast Fourier transformation
(FFT) required about 450 ms. Its computation accounted for
the majority of the time needed to estimate the dominant fre-
quency component (489 ms) and the ratio of energy associated
with the dominant frequency component to the total energy
(508 ms). Estimating the signal entropy value required about
1.1 s. Estimating cross-correlation-based features required more
than 1.6 s. These results suggest that the data range and rms
value features can be estimated on the nodes of the body sensor
network without major interference with other operations (e.g.,
data sampling and transferring data to the MicroSD card), and
that estimating features requiring to perform an FFT is also fea-
sible on the nodes of the body sensor network but at a greater
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TABLE III
ESTIMATES OF THE TIME REQUIRED TO CALCULATE FEATURES

computational cost. Furthermore, the results suggest that the sig-
nal entropy feature should only be used for off-line analysis of
the data as its estimation requires more than 1 s on the node. Our
results also indicate that cross-correlation-based features should
be only estimated off-line. Besides, it must be observed that es-
timation of cross-correlation-based features on the body sensor
nodes would require transmitting at least one of the accelerom-
eter time series between nodes, leading to significant power
consumption.

IV. DISCUSSION AND CONCLUSION

In this study, we proposed a new method to estimate the sever-
ity of tremor, bradykinesia, and dyskinesia from accelerometer
data and performed a thorough assessment of several parameters
of the proposed algorithms. It was determined that a window of
5 s (utilized to derive data segments and extract features from the
accelerometer time series) is optimal to achieve minimum esti-
mation error, while allowing the utilization of recordings of only
30 s. SVM were implemented and the use of three different ker-
nels was compared. A third-order polynomial kernel was found
to be preferable to the other tested kernels based on the observa-
tion that the polynomial kernel provided satisfactory results for a
smaller misclassification cost value. The results were compared
across all the motor tasks. Although differences were observed
among estimation error values for different motor tasks, several
motor tasks performed equally well. This suggests that the pro-
posed accelerometer features capture aspects of the movement
patterns that are not specific to a given motor task. This further
suggests that the proposed analyses could be extended to other
motor tasks, possibly including recordings of activities of daily
living.

Furthermore, we studied the impact on the estimation error
of utilizing different combinations of the feature types. The pri-
mary objective of this part of the study was to assess whether
reliable results could be achieved without relying on feature
types that are associated with high power consumption require-
ments. Results indicated that it is possible to reliably estimate
clinical scores on the basis of three feature types that are com-
patible with implementation on the SHIMMER platform: the
rms value, the data range value, and two frequency-based fea-
tures (i.e., the dominant frequency and the ratio of energy of
the dominant frequency component to the total energy). When
we utilized these features, we achieved average estimation error

values of 3.4% for tremor, 2.2% for bradykinesia, and 3.2% for
dyskinesia.

To our knowledge, the work presented in this paper is the first
attempt of pursuing an integrated development of a wearable
system and algorithms to assess the severity of symptoms and
motor complications in patients with Parkinson’s disease. The
development of signal processing and pattern recognition algo-
rithms was performed considering the power consumption re-
quirements of an available body sensor network, i.e., the SHIM-
MER platform by Intel. The memory capacity of the SHIMMER
platform allows raw accelerometer data to be stored on the nodes
thus minimizing the amount of information to be transmitted
through the radio, resulting in a significant decrease in power
consumption. The implemented firmware used to estimate ac-
celerometer data features on the nodes enables the option of
transmitting features, as opposed to raw accelerometer data,
when a spot check to assess the quality of the recordings is
required. Therefore, the use of the radio in the proposed body
sensor network configuration is limited to 1) sporadic bursts
of information to synchronize the clocks of the different nodes
and 2) periodic access to either the raw data or accelerometer
feature sets to check the quality of the recordings during patient
monitoring. This configuration allows us to monitor patients for
several days without recharging the batteries of the body sensor
network nodes.

Ongoing studies by our research team are focused on further
developing the procedures presented in this paper. In the ex-
periments performed in this study, we chose to ask patients to
withdraw their medications prior to the data collection in order
to maximize the observed magnitude of the changes in severity
of symptoms and motor complications. Although this proce-
dure is utilized in clinical settings, it would be preferable to
monitor patients during “normal” motor fluctuation cycles. We
have therefore initiated a study in which patients are observed
without asking them to withdraw their medications. Another as-
pect of the study that we plan to expand upon is the number of
symptoms and motor complications that are tracked during the
monitoring period. For clinical purposes, it would be desirable
to capture the severity of rigidity as well as the occurrence of
freezing episodes (i.e., times when patients experience severe
difficulties initiating movement). Finally, we plan to test the
techniques presented in this paper in patients undergoing medi-
cation adjustments. Monitoring outcomes in this context would
facilitate the titration of medications and would provide an ob-
jective (and easy to gather) measure of longitudinal changes in
patient status that occur because of the degenerative nature of
Parkinson’s disease.
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the Università di Roma “La Sapienza”.

He serves as Director of the Motion Analysis Lab-
oratory, Spaulding Rehabilitation Hospital, Boston,
MA. He is an Assistant Professor in the Department of
Physical Medicine and Rehabilitation, Harvard Med-
ical School, Boston, and is a member of the Affiliated
Faculty of the Harvard–MIT Division of Health Sci-
ences and Technology, Cambridge, MA. His current

research interests focus on technology in rehabilitation with special emphasis
on wearable technology and robotics.

Dr. Bonato is an Elected Member of the IEEE Engineering in Medicine and
Biology Society (EMBS) AdCom, and President of the International Society
of Electrophysiology and Kinesiology. He served as Chair of the IEEE EMBS
Technical Committee on Wearable Biomedical Sensors and Systems in 2008
and has been a member of this committee since its inception in 2006.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on December 30, 2009 at 15:55 from IEEE Xplore.  Restrictions apply. 


