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There are two major structural paradigms in robotics: soft machines, which are conformable, 

durable, and safe for human interaction; and traditional rigid robots, which are fast, precise, 

and capable of applying high forces. Here, we bridge the paradigms by enabling soft 

machines to behave like traditional rigid robots on command. To do so, we exploit laminar 

jamming, a structural phenomenon in which a laminate of compliant strips becomes strongly 

coupled through friction when a pressure gradient is applied, causing dramatic changes in 

mechanical properties. We develop rigorous analytical and finite element models of laminar 

jamming, and we experimentally characterize jamming structures to show that the models are 

highly accurate. We then integrate jamming structures into soft machines to enable them to 

selectively exhibit the stiffness, damping, and kinematics of traditional rigid robots. The 

models allow jamming structures to be efficiently designed to meet arbitrary performance 

specifications, and the physical demonstrations illustrate how to construct systems that can 

behave like either soft machines or traditional rigid robots at will, such as continuum 

manipulators that can rapidly have joints appear and disappear. Our study aims to foster a new 

generation of mechanically versatile machines and structures that cannot simply be classified 

as “soft” or “rigid.” 
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1. Introduction 

Soft machines and traditional rigid robots have distinct forms and functions. Soft 

machines (e.g., elastomeric bending actuators[1,2] and dielectric elastomer grippers[3,4]) are 

made of compliant materials and bend or twist continuously along their length. Their 

actuation mechanism is typically distributed throughout their volume. Traditional rigid robots 

(e.g., robotic arms and humanoids) are made of stiff materials and bend or translate discretely 

at joints. Their actuation mechanism is usually confined to these joints. The structure of soft 

machines allows them to conform to complex shapes,[5,6] withstand crushing loads,[7] dampen 

impacts, and interact safely with the body.[8,9] In contrast, the structure of traditional rigid 

robots enables them to perform tasks quickly, precisely, and with high resolution, as well as 

resist deformation, apply high forces, and oscillate with minimal decay. 

To make more versatile robots, researchers have aimed to enable soft machines to 

selectively behave like traditional rigid robots. In particular, soft machines have been 

constructed with materials and structures that can exhibit tunable stiffness and damping in 

order to attain the mechanical properties of traditional robots. These components include low-

melting-point materials,[10,11] shape-memory materials,[12,13] magnetorheological (MR) 

fluids,[14] and granular structures.[9,15] Nevertheless, most of these technologies cannot achieve 

a wide range of stiffness and damping values per unit weight (MR fluids, granular structures), 

have low resolution of stiffness and damping values (low-melting-point materials), transition 

between these values slowly (low-melting-point materials, shape-memory materials), and/or 

have poor resistance to bending moments (MR fluids, granular structures).[9,16] Furthermore, 

none of these technologies have yet enabled devices to rapidly transition between the 

continuous deformations typical of soft machines and the discrete, jointed deformations 

typical of traditional robots. Previous efforts towards this goal have been limited by slow 

transition times, high stiffnesses when no power is applied, and low efficiencies.[10,17] 



  

3 

 

The laminar jamming (a.k.a., “layer jamming”) phenomenon is a promising alternative 

to these technologies (Figure 1A-B). Laminar jamming structures are lightweight and can be 

rapidly actuated; moreover, they can achieve excellent range and resolution of stiffness and 

damping values with high resistance to bending moments. A laminar jamming structure 

consists of a laminate of flexible strips or sheets. In its default state, the laminate is highly 

compliant. However, when a pressure gradient is applied (in this study, by enclosing the 

laminate in an airtight envelope and applying a vacuum to the envelope), increased frictional 

interactions dramatically augment the bending stiffness of the structure; in addition, at high 

loads, the structure dissipates energy. Researchers have applied laminar jamming to 

haptics,[18-20] medical devices,[21,22] and soft actuators.[23,24] Nevertheless, these studies have 

not yet provided analytical or computational models for laminar jamming beyond an initial 

deformation phase, making design of practical jamming structures an arduous process. 

Furthermore, they have not yet explored how laminar jamming can be used to transform 

bending kinematics. 

In this paper, we model laminar jamming in detail and demonstrate how the 

technology can bridge the gap between soft machines and traditional rigid robots. 

Specifically, we develop an analytical model that mathematically captures how two-layer 

jamming structures behave over all major phases of deformation. We then develop finite 

element models that extend these predictions to many-layer jamming structures, as well as 

describe how their stiffness and damping depend on critical design inputs (e.g., the vacuum 

pressure). These models are validated through rigorous experimental characterization. 

Together, the analytical and finite element models present researchers with the first means to 

rapidly and accurately design jamming structures to meet arbitrary design requirements. 

We then demonstrate the capabilities of laminar jamming structures by integrating 

them into real-world pneumatic and cable-driven soft machines. In the process, we achieve 

two novel functions that illustrate how these machines can reversibly emulate traditional rigid 
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robots: 1) shape-locking, in which a compliant system can selectively manifest a stiff version 

of a desired shape and preserve it, even after powering off the actuators, and 2) variable 

kinematics, in which a compliant system can transition between continuous bending and 

discrete, jointed bending on command. The variable kinematics function is then used to build 

a two-fingered grasper that can perform pinch grasps on small objects, as well as wrap grasps 

on objects of eight times the diameter. These demonstrations prove the feasibility of using 

laminar jamming to build mechanically versatile machines and structures that exhibit both 

soft and traditional behavior. 

 

2. Results 

 

2.1. Analytical Modeling 

As described earlier, when a vacuum is applied to a laminar jamming structure, the 

bending stiffness increases dramatically. Previous studies have shown that the stiffness 

increases by a factor of 𝒏𝟐, where 𝒏 is the number of layers in the structure; thus, applying a 

vacuum to a structure with just thirty-two layers can increase its stiffness by three orders of 

magnitude. However, the vacuumed jamming structure sustains this increased stiffness only 

over a limited range of loads, beyond which the stiffness declines.[18,21] 

In our investigation, physical reasoning suggested that this behavior reflected three 

phases of deformation in a vacuumed jamming structure (Figure 1C-D): 1) In pre-slip, the 

layers are cohesive, and the stiffness of the structure is a factor of 𝒏𝟐 greater than the stiffness 

without vacuum. No energy is dissipated, and the damping (i.e., dissipated energy per unit 

deflection) is zero. As the structure is loaded, the longitudinal shear stress along the interfaces 

between layers begins to rise. 2) In the transition regime, the longitudinal shear stress along 

certain regions of the interfaces equals the maximum possible shear stress, which is 

determined by the coefficient of friction and the pressure gradient. Layers begin to slip along 



  

5 

 

those regions, and the stiffness of the structure decreases. Energy is dissipated to friction, and 

the damping increases. 3) In full-slip, all layers have slipped along the full length of their 

interfaces. The stiffness of the structure is minimal, and the damping is maximal. 

 

To mathematically capture this behavior, we derived an analytical model that 

rigorously described the deformation and mechanical properties of jamming structures during 

these phases. Our model was based on Euler-Bernoulli beam theory; however, we extended 

the theory to describe how mechanical behavior was affected by vacuum pressure, friction at 

the interfaces between layers, and slip along the interfaces. Governing equations were derived 

using equilibrium and moment-stress relations, and general boundary conditions were 

formulated (SI: Analytical Modeling: Governing Equations and Boundary Conditions). 

The boundary-value problem was then solved for a two-layer cantilevered jamming structure 

under a uniform distributed load (SI: Analytical Modeling: Explicit Solution); this case was 

chosen to illustrate slip propagation (i.e., growth of the regions along which layers slip), 

which is exhibited by most jamming structures. 

The model predicted the elastica (i.e., the shape), stiffness, dissipated energy, and 

damping of the jamming structure. The model also predicted the transition loads (i.e., the 

loads at which the jamming structure shifts from one deformation phase to the next), as well 

as the length of the region along which the layers slipped. Furthermore, it provided the 

functional dependence of all the preceding quantities on dimensions, material properties, the 

vacuum pressure, and the applied load (SI: Analytical Modeling: Summary of Formulae). 

For example, the model showed that the full-slip damping force was given succinctly by 

𝝁𝑷𝒃𝒉, where 𝝁 is the coefficient of friction, 𝑷 is the vacuum pressure, 𝒃 is the width of a 

layer, and 𝒉 is the height. Dimensionless forms of the equations in the model were derived as 

well (SI: Analytical Modeling: Dimensionless Forms). The model was evaluated for an 
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example structure (Figure 2), and the results were corroborated by two-layer finite element 

models (SI: Finite Element Modeling: Two-Layer Jamming Structures). 

 

2.2. Finite Element Modeling and Experimental Characterization 

 

Although the analytical model rigorously predicted the mechanical behavior of two-

layer jamming structures, designers may desire to build real-world jamming structures with 

additional layers to further adjust their properties. Our analytical model can be directly 

extended to describe many-layer jamming structures (SI: Analytical Modeling: Extending 

the Model). However, the process is algebraically taxing, and numerical methods may be 

preferred. 

To predict the mechanical behavior of many-layer jamming structures, we conducted 

finite element simulations. The jamming structures were modeled as 2D plane-strain 

structures with dimensions, material properties, boundary conditions, and loads equal to those 

of real-world jamming structures used later in experimental validation (SI: Finite Element 

Modeling: Stiffness and Damping of Many-Layer Jamming Structures). Furthermore, 

simultaneous frictional contact was allowed to occur at all interfaces, and large-deformation 

analysis was enabled. No fitting parameters were used. 

The results of the finite element simulations were used to quantify how critical design 

inputs affected major performance metrics of many-layer jamming structures. Specifically, 

the number of layers, vacuum pressure, and coefficient of friction of the layers were varied, 

and the stiffness and damping values of the jamming structures during pre-slip and full-slip 

were extracted. The polynomial relationship between each input and output was determined, 

and the resulting scaling relations were tabulated (SI: Finite Element Modeling: Functional 

Dependencies). For example, full-slip damping was found to scale linearly with number of 

layers, vacuum pressure, and coefficient of friction. 
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To evaluate the accuracy of the finite element models, experimental characterization 

of many-layer jamming structures was conducted. Jamming structures were fabricated 

according to a multi-step process (SI: Experimental Characterization: Fabrication 

Process), and the repeatability of the structures was assessed (SI: Experimental 

Characterization: Repeatability Analysis). The jamming structures were highly repeatable 

from loading cycle to loading cycle and sample to sample. The many-layer jamming 

structures were then tested in three-point bending for various numbers of layers and vacuum 

pressures (SI: Experimental Characterization: Stiffness and Damping Characterization 

Process). Transverse force and maximum deflection was recorded, and finite element 

predictions were compared to experimental data (Figure 3). The finite element models 

predicted experimental results with exceptional accuracy. 

 

2.3. Useful Functions 

 

2.3.1. Shape-Locking 

Two real-world capabilities of laminar jamming structures were demonstrated by 

integrating them into soft machines. First, the shape-locking function was demonstrated. A 

pneumatically powered soft bending actuator was fabricated (SI: Functions and 

Applications: Shape-Locking), and a twenty-layer jamming structure was adhered to the 

ventral surface (i.e., the longitudinal surface closer to the center of curvature when the 

actuator was inflated). The actuator was then pressurized. When the actuator was 

depressurized, the system naturally returned to its undeformed configuration; however, when 

a vacuum was applied to the jamming structure before the actuator was depressurized, the 

system preserved its shape with high fidelity (Figure 4). 

 

2.3.2. Variable Kinematics 
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Next, the variable kinematics function was demonstrated. A robotic system was 

designed that consisted of three major parts: a silicone rubber substrate, a three-part jamming 

structure (i.e., three stacks of material, separated by narrow gaps), and a cable routed through 

the substrate to actuate bending (Figure 5A). Note that when the rubber substrate and the 

vacuumed state of the jamming structure are considered separately, their bending kinematics 

are entirely distinct. The substrate bends continuously along its length, whereas the vacuumed 

jamming structure bends discretely at its narrow gaps, which act as joints. When the substrate 

and the jamming structure are adhered, the bending kinematics of the system may vary 

between these two extremes. 

To enable the system to transition between continuous and discrete kinematics, the 

bending stiffnesses of the substrate and jamming structure were judiciously selected. The 

thickness of the substrate was chosen so that 𝒌𝒔𝒖𝒃 = (𝒌𝒋𝒂𝒎
𝒏𝒗 ∗ 𝒌𝒋𝒂𝒎

𝒗  )
𝟏

𝟐, where 𝒌𝒔𝒖𝒃 is the 

bending stiffness of the substrate, 𝒌𝒋𝒂𝒎
𝒏𝒗  is the stiffness of the jamming structure without 

vacuum, and 𝒌𝒋𝒂𝒎
𝒗  is the pre-slip stiffness of the jamming structure with vacuum. (In 

equivalent terms, 𝒌𝒔𝒖𝒃 was the geometric mean of the unjammed and jammed stiffnesses.) In 

addition, the number of layers in the jamming structure was chosen so that 𝒌𝒋𝒂𝒎
𝒗 >> 𝒌𝒋𝒂𝒎

𝒏𝒗 . 

Thus, when no vacuum was applied and the cable was pulled, the stiffness of the system 

would be dominated by 𝒌𝒔𝒖𝒃, and the system would bend continuously. When vacuum was 

applied, the stiffness would be dominated by 𝒌𝒋𝒂𝒎
𝒗 , and the system would bend discretely. 

To evaluate this concept prior to prototyping, finite element simulations of the system 

were conducted (SI: Finite Element Modeling: Variable Kinematics). The system was 

modeled as a multi-part 2D plain-strain structure fixed at one end, and to approximate cable 

loading, a pure moment load was applied at the free end. The shape of the system was 

visualized, and the ratio of maximum to mean curvature (
𝜿𝒎𝒂𝒙

𝜿𝒎𝒆𝒂𝒏
) was computed along the 

ventral arc as a measure of discreteness. When no vacuum was applied, the system deformed 
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continuously, and 
𝜿𝒎𝒂𝒙

𝜿𝒎𝒆𝒂𝒏
  remained low. When vacuum was applied, the system deformed 

discretely, and 
𝜿𝒎𝒂𝒙

𝜿𝒎𝒆𝒂𝒏
  increased by a factor of 𝟔. 𝟔𝟓 at high loads (Figure 5B-C). 

 

Finally, a prototype of the system was fabricated (SI: Functions and Applications: Variable 

Kinematics). The prototype deformed according to finite element predictions, and application 

of vacuum allowed it to select between continuous and discrete kinematics (Figure 5D). 

 

2.4. Application 

 

2.4.1. Two-Fingered Grasper 

In robotic hands, compliant fingers that bend continuously can facilitate wrap grasps 

around large objects,[25] whereas rigid fingers that bend discretely at joints can facilitate pinch 

grasps around smaller objects;[26,27] it is challenging to design and fabricate hands capable of 

both. To accomplish the task, we built a two-fingered grasper in which each finger consisted 

of a cable-actuated variable kinematics system with a rounded fingertip. When no vacuum 

was applied and the cables were pulled, the fingers bent continuously, and the device could 

perform a stable wrap grasp on a ball of diameter 𝟐𝟎 𝒄𝒎. When vacuum was applied first, the 

fingers bent discretely, and the device could perform a stable pinch grasp on a ball of one-

eighth the diameter (Figure 5E). 

To evaluate the stability of the grasps, multi-axis stiffness measurements were 

conducted and a perturbation test was performed (SI: Functions and Applications: Two-

Fingered Grasper). Stiffness measurements showed that the maximum bending stiffness of a 

finger increased by at least a factor of thirty-two when vacuum was applied. Simultaneously, 

the off-axis bending stiffness (i.e., the stiffness along the perpendicular bending axis) 

increased by a factor of 𝟐. 𝟓, and the torsional stiffness increased by a factor of 𝟐. 𝟕. 
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Furthermore, perturbation tests demonstrated that the force required to dislodge the small ball 

was at least a factor of eight greater when vacuum was applied and the discretely-bending 

fingers were used, compared to when no vacuum was applied and the continuously-bending 

fingers were used. As an additional feature, applying vacuum after the continuously-bending 

fingers performed a grasp increased their resistance to further deformation. 

 

3. Discussion 

 

3.1. Modeling 

Earlier studies of laminar jamming exclusively predicted the stiffness of jamming 

structures during pre-slip, as well as the first transition load (i.e., the load at which the 

structures move from pre-slip to the transition regime).[18,21,28] In contrast, our analytical 

model predicted the elastica, stiffness, energy dissipation, and damping of two-layer jamming 

structures during pre-slip, the transition regime, and full-slip, as well as determining both the 

first transition load and the second transition load (i.e., the load at which the structures move 

from the transition regime to full-slip). Our finite element models of many-layer jamming 

structures then extended the predictions of the analytical model to structures with arbitrary 

numbers of layers. Thus, the analytical and finite element models completely described the 

mechanical behavior of jamming structures over all three phases of deformation. 

Together, the models provide designers with an accurate and efficient means to predict 

the mechanical behavior of arbitrary jamming structures. In particular, no models have existed 

for mechanical behavior in the transition regime or full-slip. To determine how a particular 

jamming structure will behave in these phases, designers have had to fabricate and 

characterize the structure. In our experience, this process requires hours of continuous labor 

per structure. In contrast, the analytical model can predict experimental behavior for a two-
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layer jamming structure immediately, and a finite element simulation can predict 

experimental behavior for a many-layer structure in less than one hour without supervision. 

In addition, the functional dependencies of performance metrics on design inputs were 

extracted for many-layer jamming structures. These relations provide researchers with a rapid 

means to meet arbitrary design requirements. For instance, if the full-slip stiffness of a 

jamming structure must be reduced by a factor of four (e.g., for an orthosis that softens at high 

loads for user safety), the relations show that the number of layers or vacuum pressure can be 

reduced by a factor of four, or the coefficient of friction can be reduced by a factor of two 

(Table S1). Likewise, if the full-slip damping of a jamming structure must be increased by a 

factor of four (e.g., for a field robot that dampens impacts to protect components), then the 

number of layers, vacuum pressure, or coefficient of friction can be increased by a factor of 

four. The vacuum pressure can be controlled on command with a vacuum regulator; thus, full-

slip stiffness and damping can be adjusted in real-time. The finite element models can be used 

to derive functional dependencies between additional performance metrics and design inputs 

as desired. Note that although the models and experiments in this study investigated jamming 

structures with a maximum of twenty layers, the extracted functional dependencies are 

applicable to structures with arbitrary numbers of layers; however, as the number of layers 

increases, it may become challenging to physically achieve a homogeneous vacuum pressure 

throughout the structure. 

 

3.2. Useful Functions 

Previous studies applied laminar jamming to diverse applications. However, these 

studies almost exclusively used laminar jamming to control stiffness; furthermore, when the 

jamming structures were integrated with actuators, the structures controlled the stiffness of the 

system while the actuators were continuously powered. We expanded on these capabilities by 

demonstrating shape-locking and variable kinematics. The former enables soft machines to 



  

12 

 

preserve their shape after the actuation input is removed, whereas the latter enables them to 

select between continuous and discrete bending. 

Shape-locking illustrates one way in which laminar jamming structures can enable soft 

machines to reversibly emulate traditional rigid robots. Nearly all traditional robotic arms can 

navigate to an arbitrary location in their workspace and resist static loading. Furthermore, 

some arms have brakes that allow them to resist loading after power is disconnected. Shape-

locking endows soft machines with precisely this ability, as it enables them to achieve an 

arbitrary configuration, lock in place, and resist static loading, even after disconnecting the 

actuation input. Soft machines can thus save power by requiring no control effort to preserve 

their shape; furthermore, soft machines with high material strain (e.g., McKibben actuators) 

can be deflated after locking, mitigating the risk of catastrophic rupture. Shape-locking may 

also be achieved by combining soft actuators with other materials and structures capable of 

tunable stiffness and damping, such as recently-developed thermally-activated fibers and 

composites;[29-31] however, laminar jamming offers a promising combination of rapid 

actuation, human safety, and high range of bending stiffness between the deforming and 

shape-locked states. 

Variable kinematics comprises a second way in which laminar jamming structures can 

link the behavior of soft machines and traditional rigid robots. Specifically, this function can 

allow soft machines to rapidly transform between a highly compliant state in which they can 

conform to arbitrary shapes, and a rigid, jointed state in which they can behave like a serial 

manipulator. As demonstrated in this study, variable kinematics can enhance the performance 

of robotic graspers. Moreover, this capability can be useful for any device where both 

conformability and rigidity are desired (e.g., in surgical devices that must traverse 

vasculature, but subsequently apply high forces). 

More generally, variable kinematics facilitates the modeling, sensing, and control of 

soft machines. For traditional rigid robots, multi-rigid-body mechanics can describe forward 
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and inverse kinematics; on the other hand, soft machines require the mathematical tools of 

continuum mechanics, which are generally far more complex. Furthermore, in traditional rigid 

robots, a small number of sensors can accurately estimate configuration; in soft machines, 

many sensors are required. Because modeling and sensing is more complex for soft machines, 

control is inherently more difficult.[32] Variable kinematics allows soft machines to behave 

like multi-rigid-body systems, with rigid links connected by joints. Thus, they can be modeled 

and sensed like traditional rigid robots, greatly simplifying their control. (It is interesting to 

note that octopuses use variable kinematics to simplify control, creating joints along their 

tentacles to facilitate fetching tasks.[33]) 

 

3.3. Limitations 

Our modeling and demonstrations have three notable limitations, each of which can be 

resolved as described. First, in our finite element models of many-layer jamming structures, 

the execution time of the simulations scaled linearly with the number of layers; for models of 

jamming structures with exceptionally high numbers of layers, the time may become 

prohibitive. Nevertheless, as the numbers of layers increases in a jamming structure with a 

fixed total thickness, the structure may be accurately approximated as a single crystal with a 

single slip system. This structure can be simulated more simply than a multi-layer structure, 

reducing execution time (SI: Finite Element Modeling: Limiting Behavior). 

Second, in our shape-locking demonstration, our prototype still required a vacuum 

source to be connected after depressurization. Thus, the device would be challenging to 

operate in environments where supporting equipment is unavailable. This difficulty could be 

resolved by using a one-way valve to maintain vacuum after the vacuum input is 

disconnected. 

Third, in our demonstrations, vacuum was used to actuate the jamming structures. As a 

result, the maximum pressure gradient acting on the jamming structures was limited to the 
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absolute ambient pressure, which in turn reduced the maximum load that could be sustained 

by the structures before their stiffness declined. This limit may be overcome by using 

electrostatic actuation[28] or elastic actuation, in which the layers are reversibly compressed by 

an external elastic structure (e.g., a mesh envelope[24] or spring clips (SI: Additional 

Concepts: Spring-Based Jamming)). 

 

4. Conclusion 

This paper demonstrates how the nonlinear structural phenomenon of laminar 

jamming can bridge the paradigms of soft robotics and traditional rigid robotics. We have 

derived an analytical model for two-layer jamming structures over all major phases of 

deformation, constructed highly accurate finite element models of many-layer laminar 

jamming structures, and extracted functional dependencies of major performance metrics on 

critical design inputs. We have demonstrated two novel functions, shape-locking and variable 

kinematics, that illustrate how laminar jamming can reversibly endow soft machines with 

behavior typical of traditional rigid robots. We also built a simple grasper capable of both 

pinch grasps and wrap grasps, demonstrating how laminar jamming can enhance the 

performance of real-world soft robotic systems. Collectively, our work elucidates the 

mechanics of laminar jamming, accelerates the design process of jamming structures, and 

provides a foundation for creating mechanically versatile machines and structures that cannot 

simply be categorized as “soft” or “rigid.” 

 

5. Experimental Section 

The following is an abridged description of the methods used in this study. For 

complete detail, see Supporting Information. 
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Analytical Modeling: The axial strain fields in each layer of the jamming structure were 

approximated as a superposition of a field that varied linearly with the vertical coordinate and 

a field that was constant with the vertical coordinate. An interfacial displacement variable was 

defined. Moment-stress relations and static equilibrium were used to derive governing 

equations for sections of the structure with cohesive interfaces and sections with slipped 

interfaces. Boundary conditions were formulated for clamped and free boundaries, and 

continuity conditions were defined to couple cohesive and slipped interfaces. The boundary-

value problem was then explicitly solved to determine the elastica of a cantilevered jamming 

structure with a uniform distributed load in the pre-slip regime, transition regime, and full-slip 

regime. During the transition regime, the location of the transition between cohesive and 

slipped interfaces was also determined. The results were then used to derive stiffness, energy 

dissipation, and damping in each regime, as well as critical loads between the regimes. 

Dimensionless parameters were defined to nondimensionalize all results. 

 

Finite Element Modeling: All finite element models were constructed using finite element 

simulation software (ABAQUS 6.14r2, Dassault Systèmes, Villacoublay, France). In the finite 

element models of the two-layer and many-layer jamming structures, each layer was 

approximated as a 2D plane-strain structure. Pressure equal to vacuum pressure was applied 

to all outer surfaces, and loads were subsequently applied. Large-deformation analysis was 

enabled, and the interfaces between the layers were defined as contact surfaces with a penalty 

friction formulation. A uniform mesh was used consisting of square four-node bilinear plane-

strain quadrilateral elements with reduced integration. Each layer was meshed with two 

elements across its thickness. 

In the finite element models of the variable kinematics structures, the rubber substrate 

and each of the jamming structures was modeled as a homogeneous 2D plane-strain structure. 

To simulate the vacuum-on condition, the elastic modulus of the jamming structure was 
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assigned to that of paper, and to simulate the vacuum-off condition, the modulus was reduced 

by a factor of 𝒏𝟐, with 𝒏 = 𝟐𝟎 to match experimental conditions. Cable actuation was 

approximated as a pure moment load. Large-deformation analysis was enabled. A uniform 

mesh was used consisting of square four-node bilinear plane-strain quadrilateral hybrid 

elements with reduced integration. The structure was meshed with four elements across its 

thickness. 

 

Fabrication of Jamming Structures: The jamming structures were fabricated in five distinct 

steps. 1) Sheets of copy paper (HP Ultra White Multipurpose Copy Paper) were cut into strips 

on a laser cutter (VLS4.60, Universal Laser Systems, Inc., Scottsdale, AZ). 2) An acrylic 

frame enclosing the strips was cut on the laser cutter. The height of the acrylic frame was 

selected to be greater than the total thickness of the strips. The frame was used only for 

fabrication and did not comprise part of the jamming structure. 3) A sheet of thermoplastic 

polyurethane (TPU) (American Polyfilm, Inc., Branford, CT) was formed to the acrylic frame 

on a vacuum former (Formech 300XQ, Formech International Limited, Hertfordshire, UK). 4) 

The strips of paper and TPU tubing (Eldon James Corp., Denver, CO) were placed into the 

frame. The TPU sheet was folded over its contents, and the assembly was pressed in a heat 

press (Powerpress, Fancierstudio, Hayward, CA) at 𝟏𝟎𝟎 °𝑪. Since the height of the acrylic 

frame was greater than the total thickness of the strips, the force of the heat press was 

concentrated on the frame; thus, only the region of the TPU sheet above the frame was sealed. 

The frame was then removed from the assembly. The remaining components comprised a 

jamming structure. 5) The end of the structure containing the TPU tubing was sandwiched 

between two conforming aluminum blocks. The blocks were heated to 𝟏𝟕𝟏 °𝑪 on the heat 

press, creating a circumferential seal around the tubing. The blocks were then removed from 

the assembly. 
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Experimental Characterization: Jamming structures were tested on a three-point bending 

fixture in a universal materials testing device (Instron 5566, Illinois Tool Works, Norwood, 

MA). The structures were placed on the fixture and connected to a manual vacuum regulator 

(EW-07061-30, Cole-Parmer, Vernon Hills, IL) set to the desired pressure. The loading anvil 

of the testing device was lowered at a rate of 𝟐𝟓 𝒎𝒎 𝒎𝒊𝒏−𝟏 until reaching the desired 

maximum displacement. Force and displacement measurements were simultaneously 

recorded. 

 

Functions and Applications: All molds were designed using CAD software (Solidworks 2015, 

Dassault Systèmes, Villacoublay, France) and 3D printed using a stereolithography-based 

printer (Objet30 Scholar, Stratasys, Ltd., Eden Prairie, MN). For the actuator used in shape-

locking demonstrations, a two-part mold was designed, and the actuator was cast from shore 

10A platinum-cure silicone rubber (Dragon Skin 10 Medium, Smooth-On, Inc., Macungie, 

PA). The actuator and jamming structure were bonded using silicone building sealant (Dow 

Corning 795, Dow Corning, Midland, MI). 

For the substrate used in the variable kinematics demonstrations, a one-part mold was 

designed with an inserted rod to create a channel for an actuation cable. The substrate was 

cast from high-stiffness PDMS rubber (Sylgard 184, Dow Corning, Midland, MI). The 

substrate and three-part jamming structure were again bonded using silicone building sealant. 

The cable consisted of braided polyethylene (Hollow Spectra, BHP Tackle, Harrington Park, 

NJ) and was tensioned using a turnbuckle mechanism. 

 

For the fingertips of the fingers in the two-fingered grasper, a two-part mold was 

designed, and the fingertip was cast from shore 00-10A silicone rubber (Ecoflex 00-10, 

Smooth-On, Inc., Macungie, PA). Multi-axis stiffness tests and perturbation tests were 
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performed using a digital force gauge (Chatillon DFI10, AMETEK Sensors, Test & 

Calibration, Berwyn, PA) and custom-built fixtures. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Fundamental behavior of laminar jamming structures. A) Schematic of a jamming 

structure. B)  When vacuum is off, the layers bend independently, and the structure has low 

bending stiffness. When vacuum is on, the layers bend as a cohesive unit, and the structure 

has high bending stiffness. C) However, when vacuum is on, the layers are cohesive only until 

a critical force. For higher forces, longitudinal shear stress is large enough to cause the layers 

to slip at certain points along their interfaces. D) Summary of mechanical behavior. When 

vacuum is off, the structure has low bending stiffness, which is proportional to the slope of 

the curves. When vacuum is on, the structure has three deformation regimes. In pre-slip, the 

bending stiffness is maximal and constant. After the first critical load, the structure enters the 

transition regime, in which the layers begin to slip. The bending stiffness decreases. After the 

second critical load, the structure enters full-slip, in which the layers have slipped at all 

possible points along their interfaces. The bending stiffness is minimal and constant. When 

slip occurs, energy is dissipated to friction between the layers, and the structure behaves 

plastically.  

 

 
 

Figure 2. Analytical model of two-layer jamming structures. A) Schematic of example 

jamming structure. B) Elastica of jamming structure for increasing loads. The slipped region 

is highlighted at each load; because shear stress decreases along the 𝑥-direction, the slipped 

region initiates at the clamped end and grows toward the free end. Two-layer finite element 

models corroborated that slip occurred in analytically-predicted regions. C) Bending stiffness 
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is proportional to the slope of the load-versus-deflection curve; as expected, the stiffness 

transitions from a minimal to a maximal value. Damping is proportional to the slope of the 

dissipated-energy-versus-deflection curve; damping transitions from zero to a maximal value. 

Finite element models closely corroborated analytically-predicted stiffness and damping 

values. (SI: Analytical Modeling: Case Study) 

 

 
 

Figure 3. Finite element predictions and experimental validation for many-layer jamming 

structures. Jamming structures were loaded in three-point bending. Each experimental curve 

in fact consists of a mean curve and shaded error bar that spans ±1 standard deviation; the 

maximum deviation on any curve is 0.24 𝑁, indicating high repeatability. The minimum 

coefficient of determination (𝑅2) between finite element and experimental data is 0.9879, 

demonstrating exceptional predictive accuracy. (No experimental data is shown for coefficient 

of friction, as friction could not be precisely adjusted.) Hysteresis and damping predictions 

were experimentally evaluated as well (Figure S6). 

 

 
 

Figure 4. Demonstration of shape-locking function. A-D) A jamming structure consisting of 

twenty layers of copy paper was deformed into various shapes; vacuum was then applied, and 

the shape was preserved in all cases. E) A twenty-layer jamming structure was then adhered 

to a pneumatic soft actuator. The actuator was initially pressurized to 16 𝑘𝑃𝑎 to achieve a 

desired bending angle. F1) In a first test, no vacuum was applied to the jamming structure, 
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and the actuator was depressurized. The composite structure immediately returned to its 

undeformed state. F2) In a second test, a vacuum pressure of 85 𝑘𝑃𝑎 was first applied to the 

jamming structure, and the actuator was then depressurized. Quantity 𝑅2 between the arc of 

the ventral surface in E and the same arc in F2 was 0.9835. Thus, the system preserved its 

shape with high fidelity. 

 

 
 

Figure 5. Finite element modeling and experimental demonstration of variable kinematics 

function. A) Schematic of variable kinematics system. B-C) Finite element simulations of 

variable kinematics behavior at increasing cable loads. At the highest load, the ratio of 

maximum to mean curvature increased by a factor of 6.65 with vacuum on, quantitatively 

verifying the creation of joints. D) Experimental validation of variable kinematics system. E) 

A two-fingered grasper was constructed in which each finger consisted of a variable 

kinematics system with a rounded fingertip. When no vacuum was applied to the fingers, the 

grasper could conform to a large ball, hold it aloft, and resist perturbation, thus performing a 

stable wrap grasp. When vacuum was applied, the grasper could perform a stable pinch grasp 

on a ball of one-eighth the diameter. 
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The laminar jamming phenomenon is used to bridge the paradigms of soft machines and 

traditional rigid robots. Analytical and finite element models of laminar jamming structures 

are developed and experimentally validated. Prototypes and simulations demonstrate that the 

structures can provide soft robotic systems with tunable stiffness, damping, and kinematics, 

including the ability to activate or deactivate joints on command. 
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Analytical Modeling 
 

Governing Equations 
 

Consider a two-layer jamming structure. Let each layer be approximated as a thin 

beam with a width 𝑏, height ℎ, length 𝐿, elastic modulus 𝐸, Poisson’s ratio 𝜈, and 

coefficient of friction 𝜇. 

 

Define a coordinate system with the origin located on the left edge of the structure at 

the interface between the layers (Figure S1A). Let the 𝑥-axis be horizontal (i.e., along 

the length of the undeformed structure), and let the 𝑦-axis be vertical (i.e., along the 

height of the undeformed structure). 

 

Let the jamming structure be subject to a pressure gradient 𝑃. In this study, the 

jamming structure is actuated by enclosing the layers in an airtight envelope and 

applying a vacuum to the envelope. The pressure gradient 𝑃 is equal to the vacuum 

pressure (i.e., the pressure in the envelope below ambient pressure). Thus, under 

standard atmospheric conditions, 𝑃 has a maximum value of 1 𝑎𝑡𝑚. 

 

Now let the jamming structure be loaded in the transverse direction. As the load 

increases, the longitudinal shear stress along the interface between the layers 

increases. At some regions of the interface, the longitudinal shear stress may be less 

than the maximum frictional stress (i.e., 𝜏𝑓, which is equal to 𝜇𝑃). These regions will 

remain cohesive (i.e., points that are initially coincident along the interface will remain 

coincident). On the other hand, at other regions of the interface, the longitudinal shear 

stress may equal the maximum frictional stress. These regions will slip (i.e., points 

that are initially coincident along the interface will move relative to each another), 

unless a boundary condition prevents slip from occurring. 

 

We can write governing equations for cohesive sections of the jamming structure (i.e., 

sections of the jamming structure where the interface is cohesive) and slipped sections 

of the structure (i.e., sections of the jamming structure where the interface will slip, 

unless a boundary condition prevents slip from occurring). 

 

 Cohesive Sections 
 

For cohesive sections of the jamming structure, we can write governing 

equations by directly using Euler-Bernoulli beam theory. The axial strain fields 

in the layers of the jamming structure are 

 
𝜖1(𝑥, 𝑦) = −𝜅(𝑥)𝑦  



  

26 

 

𝜖2(𝑥, 𝑦) = −𝜅(𝑥)𝑦  

 

where 𝜖1(𝑥, 𝑦) and 𝜖2(𝑥, 𝑦) are the axial strains in the bottom and top layers, 

respectively, and 𝜅(𝑥) is the curvature along the interface. 

 

Let us assume the layers are elastic and isotropic. The corresponding stress 

fields are 

 
𝜎1(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 (1) 

𝜎2(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 (2) 

 

Note that when we later compare analytical results to finite element results, we 

substitute the plane-strain modulus 𝐸̅ =
𝐸

1−𝜈2 for the elastic modulus, as 𝑏 ≫ ℎ 

for the layers of the jamming structure that is investigated (SI: Finite Element 

Model: Two-Layer Jamming Structure). 

 

We derive the first governing equation using the relationship between the 

resultant moment and the axial stress in the jamming structure (Figure S1B). 

The moment-stress relation for a single beam is given by 𝑀(𝑥) =

∫ −𝜎(𝑥, 𝑦)𝑦 𝑑𝑆
𝑆

, where 𝜎(𝑥, 𝑦) is the axial stress and 𝑆 is the cross-section of 

the beam. For a two-layer jamming structure, 

 

𝑀(𝑥) = ∫ −𝜎1(𝑥, 𝑦)𝑦 𝑑𝑆1
𝑆1

+ ∫ −𝜎2(𝑥, 𝑦)𝑦 𝑑𝑆2
𝑆2

(3) 

 

where 𝑆1 and 𝑆2 are the cross-sections of the bottom and top layers, 

respectively. Substituting equations (1) and (2), 

 
𝑀(𝑥) = 2𝜅(𝑥)𝐸𝐼 (4) 

 

where 𝐼 is the second moment of area of a cross-section of the top layer about 

the interface between the layers (i.e., 
𝑏ℎ3

3
). Equation (4) is the only governing 

equation for cohesive sections of the jamming structure. 

 

Slipped Sections 
 

In slipped sections of the jamming structure, each layer may have a distinct 

neutral axis, and the vertical location of each neutral axis may vary in the 

horizontal direction. Thus, we can describe the axial strain fields in the bottom 

and top layers as  

 
𝜖1(𝑥, 𝑦) = −𝜅(𝑥)𝑦 + 𝐴1(𝑥) (5) 

𝜖2(𝑥, 𝑦) = −𝜅(𝑥)𝑦 + 𝐴2(𝑥) (6) 

 

where 𝐴1(𝑥) and 𝐴2(𝑥) are axial strain components that are introduced to 

allow the neutral axes of the layers to be distinct. 
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Again assuming the layers are elastic and isotropic, the corresponding stress 

fields are 

 
𝜎1(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 + 𝐸𝐴1(𝑥) (7) 

𝜎2(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 + 𝐸𝐴2(𝑥) (8) 

 

  Substituting into equation (3), 

 

𝑀(𝑥) = 2𝜅(𝑥)𝐸𝐼 + (𝐴1(𝑥) − 𝐴2(𝑥))𝐸𝐽 (9) 

 

where 𝐽 is the first moment of area of a cross-section of the top layer about the 

interface between the layers (i.e., 
𝑏ℎ2

2
).  

 

We derive two more equations by performing static force equilibrium. From 

equilibrium of thin sections of the bottom layer (Figure S1C) and top layer 

(Figure S1D), respectively, 

 

−𝜏(𝑥)𝑏𝑑𝑥 + ∫ 𝜎1(𝑥 + 𝑑𝑥, 𝑦) 𝑑𝑆1
𝑆1

− ∫ 𝜎1(𝑥, 𝑦) 𝑑𝑆1
𝑆1

= 0 

𝜏(𝑥)𝑏𝑑𝑥 + ∫ 𝜎2(𝑥 + 𝑑𝑥, 𝑦) 𝑑𝑆2
𝑆2

− ∫ 𝜎2(𝑥, 𝑦) 𝑑𝑆2
𝑆2

= 0 

 

where 𝜏(𝑥) is the shear stress exerted by the top surface of the bottom layer 

onto the bottom surface of the top layer. Substituting equations (7) and (8), 

 

−𝜏(𝑥)𝑏 + 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴1

𝑑𝑥
= 0  

𝜏(𝑥)𝑏 − 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴2

𝑑𝑥
= 0  

 

where 𝑆0 is the cross-sectional area of a single layer (i.e., 𝑏ℎ).  

 

In slipped sections of the jamming structure, 𝜏(𝑥) = 𝜏𝑓. Substituting, 

 

−𝜏𝑓𝑏 + 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴1

𝑑𝑥
= 0 (10) 

𝜏𝑓𝑏 − 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴2

𝑑𝑥
= 0 (11) 

 

Since the jamming structure is loaded in the transverse direction (and not in the 

axial direction), the integrals of axial stress over any cross-section should be 

zero. From equations (7) and (8), we find that 𝐴1(𝑥) + 𝐴2(𝑥) = 0. Thus, 

equations (9)-(11) can be simplified to 

 

𝑀(𝑥) = 2𝜅(𝑥)𝐸𝐼 + 2𝐴1(𝑥)𝐸𝐽 (12) 

−𝜏𝑓𝑏 + 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴1

𝑑𝑥
= 0 (13) 
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Equations (12) and (13) are the two governing equations for slipped sections 

of the jamming structure. 

 

 Strain-Displacement Relations 
 

  Slipped Sections 
 

For slipped sections of the jamming structure, it is useful to define variable 

𝛿1(𝑥) as the interfacial displacement for the bottom layer (i.e., the 

displacement of points along the top surface of the bottom layer) and variable 

𝛿2(𝑥) as the interfacial displacement for the top layer (i.e., the displacement of 

points along the bottom surface of the top layer). 

 

From equations (5) and (6), the axial strain fields at the interface (i.e., at 𝑦 =
0) simplify to 𝜖1(𝑥) = 𝐴1(𝑥) and 𝜖2(𝑥) = 𝐴2(𝑥). Thus, the interfacial 

displacements are related to 𝐴1(𝑥) and 𝐴2(𝑥) by the strain-displacement 

relations 

 

𝛿1(𝑥) = ∫ 𝐴1(𝑥) 𝑑𝑥 (14) 

𝛿2(𝑥) = ∫ 𝐴2(𝑥) 𝑑𝑥 (15) 

  

 Boundary Conditions 
 

In practice, a jamming structure may be subject to one of several boundary conditions 

along its length (e.g., clamped, pinned, roller-supported, free). We provide clamped 

and free boundary conditions that will be relevant for our analysis of a cantilevered 

jamming structure. Additional boundary conditions can be readily derived for other 

physical scenarios. 

 

 Cohesive Sections 
 

  Clamped Conditions 

 

Clamped boundary conditions at 𝑥 = 𝑎 in cohesive sections of the 

jamming structure are 

  
𝑤(𝑎) = 0 (16) 

𝑑𝑤

𝑑𝑥
(𝑎) = 0 (17) 

   

where 𝑤(𝑥) is the transverse deflection of the jamming structure at the 

interface (i.e., at 𝑦 = 0). 

 

 Slipped Sections 
 

  Clamped Conditions 
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As in cohesive sections, clamped boundary conditions at 𝑥 = 𝑎 in 

slipped sections of the jamming structure are 

  
𝑤(𝑎) = 0 (18) 

𝑑𝑤

𝑑𝑥
(𝑎) = 0 (19) 

 

We can also formulate additional clamped boundary conditions for 

slipped sections that will be useful in our solution. At a clamped point, 

or at a boundary between slipped and cohesive sections, no interfacial 

displacements can occur. Thus,  

 
𝛿1(𝑎) = 0 (20) 

𝛿2(𝑎) = 0  

 

Free Conditions 

 

For a free boundary at 𝑥 = 𝑏, we know 𝜎1(𝑏, 𝑦) = 𝜎2(𝑏, 𝑦) = 0.  

Substituting into equations (7) and (8) and again noting that 𝐴1(𝑥) +
𝐴2(𝑥) = 0, we find the boundary condition 

  

𝜅(𝑏) = 0 (21) 

 

Continuity and Equilibrium 
 

If a cohesive section and a slipped section of a jamming structure are adjacent, 

transverse deflections and slopes must be continuous. Symbolically, if the 

sections share a boundary at 𝑥 = 𝑐, 

 

𝑤(𝑐−) = 𝑤(𝑐+) (22) 
𝑑𝑤

𝑑𝑥
(𝑐−) =

𝑑𝑤

𝑑𝑥
(𝑐+) (23) 

 

In addition, axial stress is in equilibrium across the boundary (i.e., 𝜎1(𝑐−, 𝑦) =
𝜎1(𝑐+, 𝑦) and 𝜎2(𝑐−, 𝑦) = 𝜎2(𝑐+, 𝑦)). Substituting equations (1), (2), (7), and 

(8) and evaluating at 𝑦 = 0, we also find the conditions 

 

𝐴1(𝑐𝑠𝑙𝑖𝑝) = 0 (24) 

𝐴2(𝑐𝑠𝑙𝑖𝑝) = 0  

 

where 𝑐𝑠𝑙𝑖𝑝 denotes the slipped side of the boundary.  

 

Explicit Solution 
 

In general, for a vacuumed jamming structure subject to small loads, we expect that 

the longitudinal shear stress along all regions of the interface will be less than the 

maximum frictional stress. The jamming structure will remain entirely cohesive. We 

call this loading regime pre-slip. 
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As we progressively increase the load, we expect that the longitudinal shear stress 

along some regions of the interface will equal the maximum frictional stress. Along 

these regions, the layers will slip (except in areas where boundary conditions prevent 

slip from occurring), and along other regions, the layers will remain cohesive. We call 

this loading regime the transition regime. 

 

Finally, past a certain load, we expect that the longitudinal shear stress along all 

regions of the interface will equal the maximum frictional stress. The jamming 

structure will be entirely slipped, except at regions of the interface where boundary 

conditions prevent slip from occurring. We call this loading regime full-slip. 

 

We now solve the boundary problem for a typical jamming structure in each of these 

three loading regimes. We choose to analyze a cantilevered jamming structure 

clamped at 𝑥 = 0 and subject to a uniform distributed load 𝜔; such a case lucidly 

illustrates slip propagation (i.e., the gradual slip of adjacent layers along their 

interface), a mechanical phenomenon that jamming structures generally exhibit. (In 

contrast, a two-layer jamming structure in three-point bending would not exhibit slip 

propagation. Since longitudinal shear stress has a constant magnitude along the 

interface between the layers, the layers would slip along the full length of their 

interface at once.) 

 

Specifically, we will provide explicit solutions for the deflection 𝑤, effective stiffness 

𝑘, energy dissipated to friction 𝐸𝑑𝑖𝑠𝑠 , and effective damping 𝑑 of the jamming 

structure. We define the effective stiffness as the incremental relationship between the 

distributed load and the deflection at the free end (i.e., 𝑘 =
−𝜕𝜔

𝜕𝑤(𝑥=𝐿)
), and we define the 

effective damping as the incremental relationship between the dissipated energy and 

the deflection at the free end (i.e., 𝑑 =
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝑤(𝑥=𝐿)
). (Note that 𝜔 is assumed to act in the 

negative 𝑦-direction; thus, positive 𝜔 results in negative 𝑤. The negative sign in 𝑘 

ensures that stiffness is positive as desired.) 

 

Throughout the solution, we will use the small-deformation approximation 𝜅(𝑥) ≅
𝑑2𝑤

𝑑𝑥2 , where 𝜅(𝑥) is the curvature of the jamming structure. This approximation allows 

the boundary-value problem to be explicitly solved, thus granting us deeper insight 

into the behavior of jamming structures. Note that when we later compare the results 

of the analytical model to the results of the finite element model (in which no small-

deformation approximation is made), the analytical results still predict the finite 

element results with high accuracy (SI: Finite Element Model: Two-Layer 

Jamming Structure). 

 

  Resultant Shear and Moment 
 

For a jamming structure clamped at 𝑥 = 0 with a uniform distributed load 𝜔, 

the resultant shear is 

 

𝑉(𝑥) = 𝜔(𝐿 − 𝑥) (25) 

 

and the resultant moment is 
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𝑀(𝑥) = −
𝜔𝐿2

2
+ 𝜔 (𝐿𝑥 −

𝑥2

2
) (26) 

 

Pre-slip Regime 
 

Deflection 

 

During pre-slip, the jamming structure is cohesive. Thus, we can start 

with governing equation (4). Substituting equation (26) into equation 

(4) and solving for 
𝑑2𝑤

𝑑𝑥2 , 

 

𝑑2𝑤

𝑑𝑥2
= −

𝜔𝐿2

4𝐸𝐼
+

𝜔𝐿

2𝐸𝐼
𝑥 −

𝜔

4𝐸𝐼
𝑥2 

 

Integrating twice, 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4 + 𝐶1𝑥 + 𝐶2 (27) 

 

Applying clamped boundary conditions (18) and (19) at 𝑥 = 0, 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4 

 

which is a standard result from Euler-Bernoulli beam theory. 

 

Substituting the explicit expression for 𝐼 provided earlier (i.e., 𝐼 =
𝑏ℎ3

3
), 

we find the equivalent expression 

 

𝑤(𝑥) = −
3𝜔𝐿2

8𝐸𝑏ℎ3
𝑥2 +

𝜔𝐿

4𝐸𝑏ℎ3
𝑥3 −

𝜔

16𝐸𝑏ℎ3
𝑥4 (28) 

   

   Stiffness, Dissipated Energy, and Damping 

 

Substituting equation (28) into the definition of the effective stiffness 

of the jamming structure, 

 

𝑘 =
16𝐸𝑏ℎ3

3𝐿4
(29) 

 

Note that the effective stiffness is constant. Thus, the coefficient of 

friction and the vacuum pressure have no effect on the stiffness in the 

pre-slip regime. 

 

Since there is no slip in the pre-slip regime, no energy is dissipated to 

friction. Thus, the dissipated energy and effective damping are 

 
𝐸𝑑𝑖𝑠𝑠 = 0 (30) 

𝑑 = 0 (31) 
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Transition Regime 
 

From equation (25), the resultant shear is maximum at the clamped end of the 

jamming structure and zero at the free end; thus, longitudinal shear stress is 

also maximum at the clamped end and zero at the free end. Therefore, we 

expect that the layers would begin slipping along their interface near the 

clamped end, and that the slipped region would grow until reaching the free 

end. 

 

Thus, in the transition regime, we can divide the jamming structure into a 

slipped section and a cohesive section. Let 𝜒 be the value of 𝑥 where the 

interface transitions from slipped to cohesive. We do not know 𝜒 a priori and 

will solve for its value. 

 

Slipped Section (𝟎 ≤ 𝒙 ≤ 𝝌) 

 

  Deflection 

 

To calculate 𝑤(𝑥) in the slipped section of the jamming 

structure in the transition regime, we first find general 

expressions for 𝐴1(𝑥), 𝛿1(𝑥), and 𝑤(𝑥). 

 

We begin with 𝐴1(𝑥). Solving for 
𝑑𝐴1

𝑑𝑥
 in governing equation 

(13) and integrating, 

 

𝐴1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0
𝑥 −

𝐽

𝑆0

𝑑2𝑤

𝑑𝑥2
+ 𝐶2 (32) 

 

We proceed to 𝛿1(𝑥). Substituting equation (32) into strain-

displacement relation (14), 

 

𝛿1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0

𝑥2

2
 −

𝐽

𝑆0

𝑑𝑤

𝑑𝑥
+ 𝐶2𝑥 + 𝐶1 (33) 

 

Finally, we proceed to 𝑤(𝑥). Substituting equation (26) into 

governing equation (12) and solving for 
𝑑2𝑤

𝑑𝑥2 , 

 

𝑑2𝑤

𝑑𝑥2
= −

𝜔𝐿2

4𝐸𝐼
+

𝜔

2𝐸𝐼
(𝐿𝑥 −

𝑥2

2
) −

𝐽

𝐼
𝐴1(𝑥)  

 

   Substituting equation (32), 

 

𝑑2𝑤

𝑑𝑥2
(1 − 

𝐽2

𝑆0𝐼
) = −

𝜔𝐿2

4𝐸𝐼
+

𝜔

2𝐸𝐼
(𝐿𝑥 −

𝑥2

2
) −

𝐽

𝐼
(

𝜏𝑓𝑏

𝐸𝑆0
𝑥 + 𝐶2) 

 

   Integrating twice, 
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𝑤(𝑥) (1 −  
𝐽2

𝑆0𝐼
) = −

𝜔𝐿2

4𝐸𝐼

𝑥2

2
 +

𝜔

2𝐸𝐼
(𝐿

𝑥3

6
−

𝑥4

24
) −

𝐽

𝐼
(

𝜏𝑓𝑏

𝐸𝑆0

𝑥3

6
+ 𝐶2

𝑥2

2
) + 𝐶3𝑥 + 𝐶4 (34) 

 

We can now apply clamped boundary conditions to equations 

(32)-(34) to explicitly solve for 𝑤(𝑥). Applying conditions 

(19) and (20) to equation (33) at 𝑥 = 0, we find 𝐶1 = 0. Next, 

applying conditions (18) and (19) to equation (34) at 𝑥 = 0, 

we find 𝐶3 = 𝐶4 = 0. Finally, applying conditions (24) and 

(20) to equations (32) and (33), respectively, at 𝑥 = 𝜒, 

 

0 =
𝜏𝑓𝑏

𝐸𝑆0
𝜒 −

𝐽

𝑆0

𝑑2𝑤

𝑑𝑥2
|

𝑥=𝜒

+ 𝐶2 (35) 

0 =
𝜏𝑓𝑏

𝐸𝑆0

𝜒2

2
 −

𝐽

𝑆0

𝑑𝑤

𝑑𝑥
|

𝑥=𝜒
+ 𝐶2𝜒 (36) 

 

These equations must be consistent with the expressions for 
𝑑𝑤

𝑑𝑥
|

𝑥=𝜒
 and 

𝑑2𝑤

𝑑𝑥2
|

𝑥=𝜒
 that can be derived from equation (34). 

Enforcing consistency and solving equations (35) and (36) for 

𝐶2 and 𝜒, we find one trivial solution (where 𝜒 = 0) and one 

non-trivial solution. The non-trivial solution is 

 

𝐶2 =
3(𝜏𝑓𝑏)

2
𝐼

4𝜔𝐸𝑆0𝐽
−

𝜔𝐿2𝐽

16𝐸𝑆0𝐼
−

3𝜏𝑓𝑏𝐿

4𝐸𝑆0

(37) 

𝜒 =
3𝐿

2
−

3𝜏𝑓𝑏𝐼

𝜔𝐽
(38) 

 

Substituting equation (37) into equation (34) and solving for 

𝑤(𝑥), we find 

 

𝑤(𝑥) =
1

1−
𝐽2

𝑆0𝐼

((
𝜔(𝐿𝐽)2

32𝐸𝑆0𝐼2 +
3𝜏𝑓𝑏𝐿𝐽

8𝐸𝑆0𝐼
−

3(𝜏𝑓𝑏)
2

8𝜔𝐸𝑆0
−

𝜔𝐿2

8𝐸𝐼
) 𝑥2  + (

𝜔𝐿

12𝐸𝐼
−

𝜏𝑓𝑏𝐽

6𝐸𝑆0𝐼
) 𝑥3 −

𝜔

48𝐸𝐼
𝑥4) (39) 

 

As desired, equation (39) is the deflection in the slipped section 

of the jamming structure in the transition regime. Equation (38) 

provides the length of the slipped section (i.e., the length of the 

slipped region along the interface between the layers) as a 

function of the distributed load and the maximum frictional 

stress. 

 

If we substitute the explicit expressions for 𝐽, 𝐼, and 𝜏𝑓 provided 

earlier (i.e., 𝑆0 = 𝑏ℎ, 𝐽 =
𝑏ℎ2

2
, 𝐼 =

𝑏ℎ3

3
, and 𝜏𝑓 = 𝜇𝑃) into 

equations (38) and (39) and simplify, we find the equivalent 

expressions 

 

𝜒 =
3𝐿

2
−

2𝜇𝑃𝑏ℎ

𝜔
(40) 
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𝑤(𝑥) = (
9𝜇𝑃𝐿

4𝐸ℎ2
−

3(𝜇𝑃)2𝑏

2𝜔𝐸ℎ
−

39𝜔𝐿2

32𝐸𝑏ℎ3
) 𝑥2 + (

𝜔𝐿

𝐸𝑏ℎ3
−

𝜇𝑃

𝐸ℎ2
) 𝑥3 −

𝜔

4𝐸𝑏ℎ3
𝑥4 (41) 

 

This form of the expressions shows the exact functional 

dependence of the slipped length and the deflection on all 

critical design inputs (i.e., dimensions, material properties, the 

vacuum pressure, and the distributed load). Note that as the 

distributed load increases, the slipped length grows from a 

minimum value of zero to a maximum value of the length of the 

structure; the critical loads at which the slipped length begins 

and finishes growing are provided later in equations (56) and 

(57). In addition, the growth rate of the slipped length (i.e., 
𝑑𝜒

𝑑𝜔
) 

scales with the vacuum pressure and the inverse square of the 

distributed load. 

 

    Stiffness, Dissipated Energy, and Damping 

 

We previously defined the effective stiffness k of the jamming 

structure as the incremental relationship between the distributed 

load and the deflection at the tip. Since equation (41) is only 

valid for the slipped section of the jamming structure (i.e., for 

0 ≤ 𝑥 ≤ 𝜒, where 𝜒 < 𝐿), we do not yet know the deflection at 

the free end. Thus, we postpone the calculation of 𝑘 to our 

subsequent investigation of the cohesive section. 

 

Nevertheless, all the energy dissipated to friction in the 

transition regime arises in the slipped section, as no slip occurs 

in the cohesive section. Thus, we can calculate the dissipated 

energy 𝐸𝑑𝑖𝑠𝑠 . 

 

We first compute 𝛿1(𝑥) and 𝛿2(𝑥). Substituting equation (37), 

equation (39), and the result 𝐶1 = 0 all into equation (33), 

 

𝛿1(𝑥) =
1

(1 −
𝐽2

𝑆0𝐼)

(36(𝜏𝑓𝑏𝐼)
2

− 36𝜔𝜏𝑓𝑏𝐿𝐽𝐼 + 9(𝜔𝐿𝐽)2) 𝑥 + (24𝜔𝜏𝑓𝑏𝐽𝐼 − 12(𝜔𝐽)2𝐿)𝑥2 + 4(𝜔𝐽)2𝑥3

48𝜔𝐸𝑆0𝐽𝐼
(42) 

 

From the earlier result 𝐴1(𝑥) + 𝐴2(𝑥) = 0 and the clamped 

boundary condition 𝛿2(0) = 0, we find the intuitive result 

𝛿2(𝑥) = −𝛿1(𝑥). We can define 𝛿𝑟(𝑥) as the relative 

displacement between points that were initially coincident on 

the interface (i.e., 𝛿1(𝑥) − 𝛿2(𝑥)). Thus, 𝛿𝑟(𝑥) = 2𝛿1(𝑥). 

 

The dissipated energy 𝐸𝑑𝑖𝑠𝑠 is the local frictional force per unit 

length at the interface, multiplied by the relative interfacial 

displacement, integrated over the length of the slipped section. 

Symbolically, 
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𝐸𝑑𝑖𝑠𝑠 = ∫ 𝜏𝑓𝑏𝛿𝑟(𝑥)𝑑𝑥
𝜒

0

(43) 

 

Substituting 𝛿𝑟(𝑥), 

 

𝐸𝑑𝑖𝑠𝑠 =
1

(1 −
𝐽2

𝑆0𝐼)

36(𝜏𝑓𝑏)
3
(𝜒𝐼)2 + 4𝜔(𝜏𝑓𝑏𝜒)

2
𝐽𝐼(4𝜒 − 9𝐿) + 𝜔2𝜏𝑓𝑏(𝜒𝐽)2(9𝐿2 − 8𝐿𝜒 + 2𝜒2)

48𝜔𝐸𝑆0𝐽𝐼  

 

Substituting the explicit expressions for 𝐼, 𝐽, 𝜏𝑓, and 𝜒, we find 

the equivalent expression 

 

𝐸𝑑𝑖𝑠𝑠 =
256(𝜇𝑃)5(𝑏ℎ)4 − 768𝜔𝐿(𝜇𝑃)4(𝑏ℎ)3 + 864(𝜔𝐿𝑏ℎ)2(𝜇𝑃)3 − 432(𝜔𝐿)3(𝜇𝑃)2𝑏ℎ + 81(𝜔𝐿)4𝜇𝑃

192𝜔3𝐸ℎ2
(44) 

 

This form of the expression shows the exact functional 

dependence of the dissipated energy in the transition regime on 

all critical design inputs (i.e., dimensions, material properties, 

the vacuum pressure, and the distributed load). 

 

Finally, as described earlier, we define the effective damping d 

as the incremental relationship between 𝐸𝑑𝑖𝑠𝑠 and the maximum 

deflection. From the chain rule, we know that 
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝑤(𝑥=𝐿)
=

𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔

𝜕𝜔

𝜕𝑤(𝑥=𝐿)
. Simplifying,  𝑑 = −𝑘

𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔
. Again, we cannot 

yet calculate 𝑑 of the jamming structure in the transition regime, 

as we have had to postpone our calculation of 𝑘 to the 

subsequent investigation of the cohesive section. 

 

Cohesive Section (𝝌 ≤ 𝒙 ≤ 𝑳): 

 

   Deflection 

 

To solve for 𝑤(𝑥) in the cohesive section of the jamming 

structure in the transition regime, we may begin with equation 

(27). Repeating for clarity, 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4 + 𝐶1𝑥 + 𝐶2 (45) 

 

Applying continuity boundary conditions (22) and (23) at 𝑥 =
𝜒, we find 𝐶1 = 0, 

 

𝐶2 =
1

𝑆0𝐼 − 𝐽2
(

−9𝜔𝐿4𝐽2

256𝐸𝐼
+

9𝜏𝑓𝑏𝐿3𝐽

32𝐸
−

27(𝜏𝑓𝑏𝐿)
2
𝐼

32𝜔𝐸
+

9(𝜏𝑓𝑏)
3

𝐿𝐼2

8𝜔2𝐸𝐽
−

9(𝜏𝑓𝑏)
4

𝐼3

16𝜔3𝐸𝐽2
)  

 

and 
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𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4

+
1

𝑆0𝐼 − 𝐽2
(

−9𝜔𝐿4𝐽2

256𝐸𝐼
+

9𝜏𝑓𝑏𝐿3𝐽

32𝐸
−

27(𝜏𝑓𝑏𝐿)
2

𝐼

32𝜔𝐸
+

9(𝜏𝑓𝑏)
3

𝐿𝐼2

8𝜔2𝐸𝐽

−
9(𝜏𝑓𝑏)

4
𝐼3

16𝜔3𝐸𝐽2
) 

 

   Substituting the explicit expressions for 𝐼, 𝐽, and 𝜏𝑓, we find 

 

𝑤(𝑥) = −
3𝜔𝐿2

8𝐸𝑏ℎ3
𝑥2 +

𝜔𝐿

4𝐸𝑏ℎ3
𝑥3 −

𝜔

16𝐸𝑏ℎ3
𝑥4 +

27𝜇𝑃𝐿3

16𝐸ℎ2
−

(𝜇𝑃)4𝑏3ℎ

𝜔3𝐸
+

3(𝜇𝑃)3𝑏2𝐿

𝜔2𝐸
−

27(𝜇𝑃)2𝑏𝐿2

8𝜔𝐸ℎ
−

81𝜔𝐿4

256𝐸𝑏ℎ3
(46) 

 

    Stiffness, Dissipated Energy, and Damping 

 

As equation (46) is valid for the cohesive section of the 

jamming structure (i.e., for 𝜒 ≤ 𝑥 ≤ 𝐿), we now know the 

deflection at the free end in the transition regime and can 

calculate the effective stiffness 𝑘. Substituting equation (46) 

into the definition of 𝑘, 

 

𝑘 =
−256𝜔4𝐸𝑏ℎ3

768(𝜇𝑃𝑏ℎ)4 − 1536𝜔𝐿(𝜇𝑃𝑏ℎ)3 + 864(𝜔𝐿𝜇𝑃𝑏ℎ)2 − 129(𝜔𝐿)4
(47) 

 

Note that the effective stiffness of the jamming structure in the 

transition regime is a function of both the distributed load and 

the vacuum pressure. 

 

We can now solve for the effective damping 𝑑 of the jamming 

structure in the transition regime as well. Substituting equations 

(47) and (44) into the earlier result 𝑑 = −𝑘
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔
, 

 

𝑑 =
1024(𝜇𝑃𝑏ℎ)5 − 2048𝜔𝐿(𝜇𝑃𝑏ℎ)4 + 1152(𝜔𝐿)2(𝜇𝑃𝑏ℎ)3 − 108(𝜔𝐿)4𝜇𝑃𝑏ℎ

768(𝜇𝑃𝑏ℎ)4 − 1536𝜔𝐿(𝜇𝑃𝑏ℎ)3 + 864(𝜔𝐿𝜇𝑃𝑏ℎ)2 − 129(𝜔𝐿)4
(48) 

 

Note that the effective damping of the jamming structure in the 

transition regime is a function of both the distributed load and 

the vacuum pressure as well. 

 

  Full-slip Regime 
 

   Deflection 

 

To solve for 𝑤(𝑥) of the jamming structure in the full-slip regime, we 

may begin with equation (32), as well as equation (34) after applying 

clamped boundary conditions (18) and (19) at 𝑥 = 0. Providing for 

clarity, 
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𝐴1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0
𝑥 −

𝐽

𝑆0

𝑑2𝑤

𝑑𝑥2
+ 𝐶2 (49) 

 

𝑤(𝑥) (1 − 
𝐽2

𝑆0𝐼
) = −

𝜔𝐿2

4𝐸𝐼

𝑥2

2
 +

𝜔

2𝐸𝐼
(𝐿

𝑥3

6
−

𝑥4

24
) −

𝐽

𝐼
(

𝜏𝑓𝑏

𝐸𝑆0

𝑥3

6
+ 𝐶2

𝑥2

2
) (50) 

 

We cannot apply continuity boundary conditions (22) and (23), as the 

entire interface has slipped and the value of 𝜒 has now exceeded the 

length of the structure. However, we may apply free boundary 

condition (21) at 𝑥 = 𝐿. Evaluating, we find 𝐶2 =
−𝜏𝑓𝑏𝐿

𝐸𝑆0
. Substituting 

into equation (50) and solving for 𝑤(𝑥), 

 

𝑤(𝑥) =
1

1 − 
𝐽2

𝑆0𝐼

((
𝜏𝑓𝑏𝐿𝐽

2𝐸𝑆0𝐼
−

𝜔𝐿2

8𝐸𝐼
) 𝑥2 + (

𝜔𝐿

12𝐸𝐼
−

𝜏𝑓𝑏𝐽

6𝐸𝑆0𝐼
) 𝑥3 −

𝜔

48𝐸𝐼
𝑥4) (51) 

 

Substituting the explicit expressions for 𝐼, 𝐽, and 𝜏𝑓, we find the 

equivalent expression 

 

𝑤(𝑥) = (
3𝜇𝑃𝐿

𝐸ℎ2
−

3𝜔𝐿2

2𝐸𝑏ℎ3
) 𝑥2 + (

𝜔𝐿

𝐸𝑏ℎ3
−

𝜇𝑃

𝐸ℎ2
) 𝑥3 −

𝜔

4𝐸𝑏ℎ3
𝑥4 (52) 

 

Note that the deflection of the jamming structure in the full-slip regime 

is a function of the coefficient of friction and the vacuum pressure. In 

contrast, the deflection of a two-layer structure with a frictionless 

interface (or equivalently, the deflection of a two-layer structure when 

no vacuum is applied) is 𝑤(𝑥) = −
3𝜔𝐿2

2𝐸𝑏ℎ3 𝑥2 +
𝜔𝐿

𝐸𝑏ℎ3 𝑥3 −
𝜔

4𝐸𝑏ℎ3 𝑥4, 

which depends on neither the coefficient of friction nor the vacuum 

pressure. 

 

Stiffness, Dissipated Energy, and Damping 

 

Substituting equation (52) into the definition of the effective stiffness 

of the jamming structure, 

 

𝑘 =
4𝐸𝑏ℎ3

3𝐿4
(53) 

 

Note that the effective stiffness of the jamming structure in the full-slip 

regime is constant. In addition, this stiffness is equal to the effective 

stiffness of a two-layer structure with a frictionless interface (or 

equivalently, the stiffness of a two-layer structure when no vacuum is 

applied). 

 

Analogous to the slipped section of the transition regime, to calculate 

𝐸𝑑𝑖𝑠𝑠, we first compute 𝛿𝑟(𝑥). We may begin with equation (33). 

Repeating for clarity, 
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𝛿1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0

𝑥2

2
 −

𝐽

𝑆0

𝑑𝑤

𝑑𝑥
+ 𝐶2𝑥 + 𝐶1  

 

Applying clamped boundary conditions (19) and (21) at 𝑥 = 0, we 

find 𝐶1 = 0. Substituting equation (52) and the earlier result 𝐶2 =
−𝜏𝑓𝑏𝐿

𝐸𝑆0
, 

 

𝛿1(𝑥) =
1

(1 −
𝐽2

𝑆0𝐼)

(3𝜔𝐿2𝐽 − 12𝜏𝑓𝑏𝐿𝐼)𝑥 + (6𝜏𝑓𝑏𝐼 − 3𝜔𝐿𝐽)𝑥2 + 𝜔𝐽𝑥3

12𝐸𝑆0𝐼
 

 

As before, 𝛿𝑟(𝑥) = 2𝛿1(𝑥). Substituting into equation (43) with 𝜒 =
𝐿, 

 

𝐸𝑑𝑖𝑠𝑠 =
1

(1 −
𝐽2

𝑆0𝐼)

3𝜔𝜏𝑓𝑏𝐿4𝐽 − 16(𝜏𝑓𝑏)
2

𝐿3𝐼

24𝐸𝑆0𝐼
 

 

Substituting the explicit expressions for 𝐼, 𝐽, and 𝜏𝑓, we find the 

equivalent expression 

 

𝐸𝑑𝑖𝑠𝑠 =
9𝜔𝜇𝑃𝐿4 − 32(𝜇𝑃)2𝑏ℎ𝐿3

12𝐸ℎ2
(54) 

 

Note that the dissipated energy in the full-slip regime is a function of 

both the distributed load and the vacuum pressure. 

 

Finally, substituting equations (53) and (54) into the simplified 

expression for the effective damping of the jamming structure (i.e., 𝑑 =

−𝑘
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔
), we find 

 

𝑑 = 𝜇𝑃𝑏ℎ (55) 

 

Note that the effective damping of the jamming structure in the full-slip 

regime is independent of the distributed load, but scales with the 

vacuum pressure. This result suggests that damping may be controlled 

in a real-world jamming structure over a continuum of values by 

forcing the structure into the full-slip regime and varying vacuum 

pressure as desired. This concept is investigated later for many-layer 

jamming structures (SI: Additional Concepts: Continuously-

Variable Damping). 

 

  Transition Loads Between Regimes 
 

Let us define the first transition load 𝜔1 to be the load at which the jamming 

structure shifts from the pre-slip regime to the transition regime. The first 

transition load can be found by solving equation (40) for 𝜔 when 𝜒 = 0. 

Explicitly, 
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𝜔1 =
4𝜇𝑃𝑏ℎ

3𝐿
(56) 

 

Let us define the second transition load 𝜔2 to be the load at which the 

jamming structure shifts from the transition regime to the full-slip regime. The 

second transition load can be found by solving equation (40) for 𝜔 when 𝜒 =
𝐿. Explicitly, 

 

𝜔2 =
4𝜇𝑃𝑏ℎ

𝐿
(57) 

 

  Summary of Formulae 
 

Equation (28) describes the deflection of the two-layer jamming structure 

during the pre-slip regime, and equation (29) describes the effective stiffness 

of the structure in this regime. Equations (30) and (31) describe the dissipated 

energy and the effective damping, which are zero. 

 

Equations (40), (41), and (46) describe the deflection of the jamming 

structure during the transition regime (in both the slipped and cohesive sections 

of the structure), and equation (47) describes the effective stiffness of the 

structure in this regime. Equations (44) and (48) describe the dissipated 

energy and the effective damping, respectively. 

 

Equation (52) describes the deflection of the structure during the full-slip 

regime, and equation (53) describes the effective stiffness of the two-layer 

structure during this regime. Equations (54) and (55) describe the dissipated 

energy and the effective damping, respectively. 

 

Finally, equations (56) and (57) describe the loads at which the jamming 

structure shifts between consecutive regimes. 

 

Thus, we have formulated a complete model for the kinematics, stiffness, 

dissipated energy, and damping of a two-layer jamming structure over all 

major phases of deformation. 

 

Dimensionless Forms 
 

Through nondimensionalization, all the preceding formulae can be 

dramatically simplified. We can define dimensionless variables 𝑤∗ =
𝑤

𝐿
, 𝑥∗ =

𝑥

𝐿
, 𝑘∗ =

𝑘

𝐸
, 𝐸𝑑𝑖𝑠𝑠

∗ =
𝐸𝑑𝑖𝑠𝑠

𝐸𝐿3 , 𝑑∗ =
𝑑

𝐸𝐿2, 𝜔
∗ =

𝜔

𝐸𝐿
, 𝜇∗ = 𝜇, 𝑃∗ =

𝑃

𝐸
, 𝑏∗ =

𝑏

𝐿
, and ℎ∗ =

ℎ

𝐿
. We can also define the composite dimensionless variables 𝛼∗ = 𝑏∗ℎ∗3

 and 

𝛽∗ = 𝜇∗𝑃∗𝑏∗ℎ∗. Substituting these variables into the formulae, we find the 

following dimensionless formulae: 

 

 Pre-slip Regime 

 

𝑤∗ =
−3𝜔∗

8𝛼∗
𝑥∗2 +

𝜔∗

4𝛼∗
𝑥∗3 −

𝜔∗

16𝛼∗
𝑥∗4
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𝑘∗ =
16𝛼∗

3
 

 

𝐸𝑑𝑖𝑠𝑠
∗ = 0 

 

𝑑∗ = 0 

 

 Transition Regime 

  

𝑘∗ =
−256𝜔∗4𝛼∗

768𝛽∗4 − 1536𝜔∗𝛽∗3 + 864𝜔∗2𝛽∗2 − 129𝜔∗4
 

 

𝐸𝑑𝑖𝑠𝑠
∗ =

256𝛽∗5 − 768𝜔∗𝛽∗4 + 864𝜔∗2𝛽∗3 − 432𝜔∗3𝛽∗2 + 81𝜔∗4𝛽∗

192𝜔∗3𝛼∗
 

 

𝑑∗ =
1024𝛽∗5 − 2048𝜔∗𝛽∗4 + 1152𝜔∗2𝛽∗3 − 108𝜔∗4𝛽∗

768𝛽∗4 − 1536𝜔∗𝛽∗3 + 864𝜔∗2𝛽∗2 − 129𝜔∗4
 

 

  Slipped Section 

 

𝜒∗ =
3

2
−

2𝛽∗

𝜔∗
 

 

𝑤∗ = (
9𝛽∗

4𝛼∗
−

3𝛽∗2

2𝜔∗𝛼∗
−

39𝜔∗

32𝛼∗
) 𝑥∗2 + (

𝜔∗

𝛼∗
−

𝛽∗

𝛼∗
) 𝑥∗3 −

𝜔∗

4𝛼∗
𝑥∗4

 

 

  Cohesive Section 

 

𝑤∗ =
−3𝜔∗

8𝛼∗
𝑥∗2 +

𝜔∗

4𝛼∗
𝑥∗3 −

𝜔∗

16𝛼∗
𝑥∗4 +

27𝛽∗

16𝛼∗
−

𝛽∗4

𝜔3𝛼∗

+
3𝛽∗3

𝜔∗2𝛼∗
−

27𝛽∗2

8𝜔∗𝛼∗
−

81𝜔∗

256𝛼∗
 

 

 Full-slip Regime 

 

𝑤∗ = (
3𝛽∗

𝛼∗
−

3𝜔∗

2𝛼∗
) 𝑥∗2 + (

𝜔∗

𝛼∗
−

𝛽∗

𝛼∗
) 𝑥∗3 −

𝜔∗

4𝛼∗
𝑥∗4

 

 

𝑘∗ =
4𝛼∗

3
 

 

𝐸𝑑𝑖𝑠𝑠
∗ =

9𝜔∗𝛽∗ − 32𝛽∗2

12𝛼∗
 

 

𝑑∗ = 𝛽∗ 

 

 Transition Loads 
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𝜔1
∗ =

4𝛽∗

3
 

 

𝜔2
∗ = 4𝛽∗ 

 

Note that dimensionless deflections are found to depend on at most 4 

dimensionless parameters (i.e., 𝜔∗, 𝑥∗, 𝛼∗, and 𝛽∗); dimensionless stiffnesses 

and dissipated energies depend on at most 3 parameters (i.e., 𝜔∗, 𝛼∗, and 𝛽∗); 

dimensionless damping values depend on at most 2 parameters (i.e., 𝜔∗ and 

𝛽∗); and dimensionless transition loads depend on just 1 parameter (i.e., 𝛽∗). 

 

Case Study 
 

The analytical model was evaluated for an example two-layer jamming structure. Each 

layer had dimensions 𝑏 = 50 𝑚𝑚, ℎ = 0.1 𝑚𝑚, and 𝐿 = 250 𝑚𝑚, as well as a 

Poisson’s ratio 𝑣 = 0.156 and coefficient of friction 𝜇 = 0.65. These dimensions and 

material properties coincided with those of the real-life jamming structures examined 

later during experimental characterization (SI: Experimental Characterization: 

Characterization Process). 

 

If a two-layer jamming structure with the above properties consisted of compliant 

material, it would not slip until the structure exhibited exceptionally large deflections. 

Thus, the elastic modulus 𝐸 was set to 6 𝑇𝑃𝑎 in order to illustrate slip over a more 

reasonable range of deflection. In addition, as described earlier, the plane-strain 

modulus 𝐸̅ =
𝐸

1−𝜈2 was substituted for the elastic modulus in the analytical formulae, 

as 𝑏 ≫ ℎ. 

 

A vacuum pressure 𝑃 = 101 𝑘𝑃𝑎 was imposed, and a uniform distributed load 𝜔 =

7
𝑁

𝑚
 was applied over 100 equal increments. The elastica (i.e., shape), the deflection at 

the free end of the jamming structure, and the dissipated energy were computed for 

each load increment. 

 

Curvature Reversal 
 

For a typical cantilever beam under a uniform distributed load, the curvature of the 

beam maintains a consistent sign. However, for a two-layer jamming structure, the 

analytical model predicts that the curvature reverses (i.e., changes sign) along its 

length at moderate loads and higher. Curvature reversal can be seen on close 

inspection of the elastica in the case study (Figure 2B). 

 

The analytical model in the transition regime may provide a first explanation of this 

counterintuitive phenomenon. Because the net force on any cross section is zero, 

𝐴1(𝑥) + 𝐴2(𝑥) = 0 for all 𝑥. Furthermore, because the jamming structure is cohesive 

for 𝜒 ≤ 𝑥 < 𝐿, interfacial displacements must be zero at 𝑥 = 𝜒. Thus, positive values 

of 𝐴1(𝑥) within the slipped section of the jamming structure (i.e., 0 ≤ 𝑥 ≤ 𝜒) must be 

balanced by negative values of 𝐴1(𝑥) elsewhere in the slipped section; likewise, 

positive values of 𝐴2(𝑥) must be balanced by negative values of 𝐴2(𝑥). Equations (5) 

and (6) imply a similar (but not identical) relationship for 𝜅(𝑥). 
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Curvature reversal was corroborated in detail by finite element models of two-layer 

jamming structures, as well as finite element models and experimental observations of 

many-layer jamming structures (SI: Finite Element Modeling: Two-Layer 

Jamming Structures). 

 

Extending the Model 
 

The analytical modeling procedure for two-layer jamming structures can  

be adapted to solve for the deflection of jamming structures with arbitrary numbers of  

layers and arbitrary boundary conditions. 

 

Arbitrary Numbers of Layers 
 

Three important results may be simply derived for many-layer jamming 

structures. First, the elastica of a vacuumed jamming structure during the pre-

slip regime can be determined by approximating the structure as a cohesive 

thin beam and directly using Euler-Bernoulli beam theory to calculate 

deflection. 

 

Second, as cited in the main text, the bending stiffness of a vacuumed many-

layer jamming structure during the pre-slip regime is a factor of 𝑛2 greater than 

the stiffness when no vacuum is applied, where 𝑛 is the number of layers.[18] 

This result can be derived from second area moments of inertia. When a 

vacuumed jamming structure is in the pre-slip regime, the structure is cohesive, 

and the second area moment of inertia of the jamming structure is given by 𝐼 =
𝑏(𝑛ℎ)3

12
= 𝑛3 𝑏ℎ3

12
. When no vacuum is applied to a jamming structure, the layers 

are decoupled, and 𝐼 = 𝑛
𝑏ℎ3

12
. Since bending stiffness is proportional to 𝐼, the 

stiffness in the former case is a factor of 𝑛2 greater than that in the latter case. 

 

Third, the first transition load (i.e., the load at which a jamming structure shifts 

from the pre-slip regime to the transition regime) for many layer-jamming 

structures is given by 𝑉𝑚𝑎𝑥 =
2𝜇𝑃𝐴

3
, where 𝑉𝑚𝑎𝑥 is the maximum resultant shear 

at any cross-section of the beam, which is proportional to the applied load; and 

𝐴 is the total cross-sectional area (i.e., 𝑛𝑏ℎ).[28] This result can be derived from 

the definition of slip. Slip occurs when the maximum longitudinal shear stress 

at an interface equals the maximum possible shear stress. During the pre-slip 

regime, the maximum longitudinal shear stress occurs at the innermost 

interface and is given by the well-known formula 𝜏𝑚𝑎𝑥 =
3𝑉𝑚𝑎𝑥

2𝐴
. Furthermore, 

the maximum possible shear stress is 𝜇𝑃. Equating the two expressions and 

solving for 𝑉𝑚𝑎𝑥, we see 𝑉𝑚𝑎𝑥 =
2𝜇𝑃𝐴

3
. 

 

Despite the simplicity of deriving the previous three results, solving for the 

deformation of a many-layer jamming structure during the transition regime 

and full-slip regime is a far greater challenge. This paper has provided detailed 

methods for solving for the deformation of a two-layer jamming structure 

during these regimes; these methods may be extended to solve the many-layer 

problem as well. 

 



  

43 

 

For a many-layer jamming structure, strain distributions can again be defined 

for each layer as the superposition of a linear strain term and a unique axial 

strain term. The moment-stress relation can be used to derive a first governing 

equation. Static force equilibrium can then be performed on thin sections of 

each layer to derive subsequent governing equations. For the outermost layers, 

these equations would be similar to equations (10) and (11) for the two-layer 

jamming structure; for inner layers, shear stress would act on both the top and 

bottom surfaces of the thin section, producing a second shear stress term. 

 

Whereas slip propagates along one dimension (i.e., along the 𝑥-axis, as defined 

in Figure S1A) for a two-layer jamming structure, slip would propagate along 

two dimensions (i.e., along the 𝑥- and 𝑦-axes) for a many-layer jamming 

structure. Shear stress varies through the thickness of the structure, and slip 

would occur along distinct interfaces at disparate loads. Thus, a unique 𝜒 

variable would be required for each interface. Moreover, boundary conditions 

(24) and (20) would only be valid at 𝑥 = 𝜒 if 𝜒 corresponded to an interface 

located along the 𝑥-axis; for other interfaces, alternative boundary conditions 

would need to be formulated. For example, continuity of incremental 

interfacial displacements and axial strains may be enforced. 

 

Although the process of solving for the deflection of a many-layer jamming 

structure is straightforward, the solution itself may be algebraically taxing. 

Furthermore, the analytical solution would only be valid for small deflections. 

Thus, numerical solutions (e.g., finite element analysis) may be far more 

convenient. 

 

  Arbitrary Boundary Conditions 

 

For arbitrary boundary conditions, the direction of shear stress and frictional 

stress may change along the length of an interface. Thus, the signs in the 

governing equations based on static force equilibrium may vary throughout the 

jamming structure. Furthermore, each interface may consist of multiple slipped 

and cohesive regions. More than one 𝜒 variable would be necessary for each 

interface, along with continuity boundary conditions between adjacent slipped 

and cohesive sections of the structure. 

 

Finite Element Modeling 
 

All finite element models were constructed using finite element simulation software 

(ABAQUS 6.14r2, Dassault Systèmes, Villacoublay, France). Analysis of simulation results 

was performed using numerical computing software (MATLAB 2017a, MathWorks, Natick, 

MA). 

Two-Layer Jamming Structures 
 

A finite element model was constructed for a two-layer jamming structure. Each layer 

was approximated as a 2D plane-strain structure, and the jamming structure had 

dimensions, material properties, vacuum pressure, and distributed load equal to those 

specified in the case study for the analytical model of a two-layer jamming structure 

(SI: Analytical Modeling: Case Study). 
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Boundary conditions and loads were also identical to those used in the case study. 

First, pressure (equal to the vacuum pressure) was applied to all outer surfaces of the 

jamming structure; then, the uniform distributed load was applied as a ramp over 100 

equal increments. Large-deformation analysis was enabled. The interface between the 

two layers was chosen to be a contact surface with a penalty friction formulation. To 

mitigate undesired simulation of elastic slip, the slip tolerance was set to 5 ∗ 10−5. A 

uniform mesh was used that consisted of square four-node bilinear plane-strain 

quadrilateral elements with reduced integration (CPE4R). Each layer had two elements 

across its thickness. A mesh refinement study was conducted later for many-layer 

jamming structures to ensure that a finer mesh was not required (SI: Finite Element 

Modeling: Stiffness of Many-Layer Jamming Structures). The elastica, deflection 

at the free end, and dissipated energy were extracted at each load increment. 

The analytical model predicted finite element results for a two-layer jamming structure 

with high accuracy (Figure S2A-C). Elastica were predicted with coefficients of 

determination (𝑅2) between 0.9207 and 0.9759. Furthermore, the load-versus-

deflection curve of the structure was predicted with 𝑅2 = 0.9639, and the dissipated-

energy-versus-deflection curve was predicted with 𝑅2 = 0.9977. Note that finite 

element models of many-layer jamming structures were later found to predict 

experimental results with exceptional accuracy; thus, the analytical model was deemed 

predictive of real-world jamming structures as well. 

 

The curvature reversal phenomenon predicted by the analytical model (SI: Analytical 

Modeling: Curvature Reversal) was also corroborated by the finite element results 

(Figure S2D-E). For the analytical model, curvatures were computed for each of the 

analytical elastica in Figure S2A using appropriate first and second derivatives of the 

formulae for deflection (SI: Analytical Modeling: Summary of Formulae). For the 

finite element model, fourth-order best-fit polynomials were first determined for each 

of the finite element elastica in Figure S2A. Curvatures were then computed using 

appropriate first and second derivatives of the best-fit polynomials. The analytical 

curvature profiles (Figure S2D) were visually predictive of the finite element 

curvature profiles (Figure S2E), including the 𝑥-coordinates at which curvature 

reversal occurred. 

 

Curvature reversal was also observed later for both finite element models and 

experimental samples of many-layer jamming structures in three-point bending 

(Figure S2F). 

 

Stiffness of Many-Layer Jamming Structures 

Finite element models of many-layer jamming structures were constructed according 

to the same process used for two-layer jamming structures; however, the structures 

were loaded in three-point bending. Rollers (i.e., zero-vertical-displacement boundary 

conditions) were applied to two points on the bottom surface, 60 𝑚𝑚 from either side; 

the location of these virtual rollers coincided with the location of the rollers used later 

during experimental characterization. In addition, to stabilize the finite element model, 

a zero-horizontal-displacement boundary condition was applied at the center of the top 

surface of the structure. 
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After applying pressure to all outer surfaces of the jamming structure, a concentrated 

transverse displacement was applied to the midpoint of the top surface. The 

displacement had a minimum value of 0 𝑚𝑚 and a maximum value of 8 𝑚𝑚 and was 

applied as a ramp over 100 equal increments. The displacement range coincided with 

the range used later during experimental characterization. The interface between each 

pair of adjacent layers was chosen to be a contact surface with a penalty friction 

formulation. As with the two-layer jamming structures, a uniform mesh of square 

elements was used, and each layer had two elements across its thickness. 

A mesh refinement study was conducted to ensure that a finer mesh was not required. 

The study was performed for a twenty-layer jamming structure with vacuum pressure 

𝑃 = 71.1 𝑘𝑃𝑎 and coefficient of friction μ = 0.65. The number of elements across the 

thickness of each layer was varied between one and four (i.e., the areal density of 

elements was varied by a factor of sixteen). The one-element simulation did not 

converge; however, the two-, three-, and four-element simulations converged 

successfully. In each of the converged simulations, the transverse load and maximum 

deflection were extracted at each displacement increment. The converged simulations 

produced force-versus-maximum-deflection curves that were nearly indistinguishable 

(Figure S3A). The mean force difference between the two- and three-element 

simulations was 0.050 𝑁 (0.54% of the range of the two-element simulation), and the 

mean difference between the two-and four-element simulations was 0.073 𝑁 (0.78% 

of the range of the two-element simulation). Thus, it was deemed sufficiently accurate 

to mesh each layer with just two elements across its thickness. 

The three major design inputs (i.e., the number of layers 𝑛, vacuum pressure 𝑃, and 

coefficient of friction 𝜇) were then systematically varied. The quantity 𝑛 was varied 

from 5 to 20 in increments of 5 (with 𝑃 = 71.1 𝑘𝑃𝑎 and 𝜇 = 0.65); 𝑃 was varied 

from 23.7 𝑘𝑃𝑎 to 71.1 𝑘𝑃𝑎 in increments of 23.7 𝑘𝑃𝑎 (with 𝑛 = 20 and 𝜇 = 0.65); 

and 𝜇 was varied from 0.25 to 1 in increments of 0.25 (with 𝑛 = 20 and 𝑃 =
71.1 𝑘𝑃𝑎). For each set of design inputs, the transverse force and maximum deflection 

were extracted at each displacement increment. Recall that the effective stiffness 𝑘 is 

simply the slope of the force-versus-maximum-deflection curve. 

Aside from providing information about the macroscopic deformation of many-layer 

jamming structures, the finite element models also illustrated the microscopic 

phenomenon of the slipping of adjacent layers along their interface at high loads 

(Figure S3B-C). 

Damping of Many-Layer Jamming Structures 

In laminar jamming structures, the layers are coupled via dry friction. The relevant 

damping phenomenon is Coulomb damping, in which the damping force is 

independent of the rate of deformation (as opposed to viscous damping, in which the 

damping force is rate-dependent). Even when jamming structures are loaded quasi-

statically, energy is still dissipated. Thus, finite element models of jamming structures 

subject to static loading are sufficient to characterize damping, and dynamic 

simulations are not required. 

 

If interfacial velocities (i.e., the velocities at which adjacent layers slip) were high, the 

damping force could theoretically become rate-dependent. However, from the second 
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term of equation (33) in SI: Analytical Modeling: Explicit Solution, interfacial 

displacements are observed to scale with 
ℎ

𝐿
 times the transverse deflection, where ℎ is 

the thickness of a layer and 𝐿 is the length. In the jamming structures analyzed in the 

paper, ℎ is smaller than 𝐿 by four orders of magnitude; thus, interfacial velocities are 

negligible unless transverse velocities are exceptionally high. 

 

The finite element models to analyze damping were built according to the same 

process as the finite element models to analyze stiffness. However, after the maximum 

input displacement of 8 𝑚𝑚 was applied, the transverse load was reduced to 0 𝑁 over 

100 equal increments. The force-versus-maximum-deflection curves then illustrated 

hysteresis, and the area under the curves depicted the energy dissipated over the 

loading cycle (Figure S4). 

 

Recall that the effective damping 𝑑 is simply the dissipated energy per unit deflection.  

The quantity 𝑑 was not explicitly calculated, but can easily be determined. For each 

point on the force-versus-maximum-deflection curve, an elastic unloading line can be 

drawn (with a slope equal to that of the pre-slip loading line), and the area under the 

resulting curve can be computed. This area is the dissipated energy at that particular 

deflection. After performing this procedure for all points, the dissipated energy can 

then be plotted against deflection. The value of 𝑑 is the slope of this curve. 
 

Functional Dependencies 

The finite element simulations for the many-layer jamming structures were rerun over 

an extended displacement range (from 0 𝑚𝑚 to 16 𝑚𝑚 over 400 equal increments) to 

ensure that all structures entered the full-slip regime, allowing accurate measurement 

of full-slip stiffness and damping. Furthermore, the simulations were executed for 

larger sets of the design inputs to provide more data points for determining functional 

dependence. The numbers of layers examined were 2, 5, 7, 10, 12, 13, 15, 17, 18, and 

20; the vacuum pressures were 0.34, 11.9, 23.7, 35.6, 47.4, 59.3, 71.1, 83.0, 94.8, and 

101.1 𝑘𝑃𝑎; and the coefficients of friction were 

0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, and 0.8. 

For each simulation, best-fit lines were fit to the first 1% and the last 1% of the force-

versus-maximum-deflection curve. The slope of the former line approximated the 

effective stiffness 𝑘 during pre-slip, whereas the slope of the latter line approximated 

𝑘 during full-slip. A best-fit line was then fit to the last 1% of the dissipated-energy-

versus-maximum-deflection curve. The slope of this line approximated the effective 

damping 𝑑 during full-slip. (Recall that 𝑑 during pre-slip is simply 0). 

For each design input (e.g., number of layers), each performance metric (e.g., pre-slip 

stiffness) was plotted against the values of the design input (e.g., 2 layers, 5 layers, 7 

layers, etc.). Based on the formulae derived in the analytical model for two-layer 

jamming structures, it was hypothesized that the performance metrics for many-layer 

jamming structures had polynomial dependence on the design inputs. Thus, best-fit 

polynomials were fit to each plot; however, the appropriate order for each polynomial 

needed to be determined. 

Best-fit polynomials from zero- to fourth-order were tested on each plot, and the root-

mean-square error 𝑒𝑟𝑚𝑠 was computed for each polynomial. From physical reasoning, 
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pre-slip stiffness should be unaffected by the coefficient of friction 𝜇 and the vacuum 

pressure 𝑃, as jamming structures are cohesive in pre-slip; thus, the pre-slip stiffness 

should have zero-order dependence on 𝜇 and 𝑃. When zero-order polynomials (i.e., 

flat lines) were fit to the pre-slip stiffness plots for 𝜇 and 𝑃, it was found that 𝑒𝑟𝑚𝑠 ≅

0.0070
𝑁

𝑚𝑚
. This value quantified numerical noise in the finite element simulations 

and was used as the cutoff for determining the appropriate order of the best-fit 

polynomial for the other stiffness plots. Specifically, for a given pre-slip or full-slip 

stiffness plot, the lowest-order best-fit polynomial for which 𝑒𝑟𝑚𝑠 ≤ 0.0070
𝑁

𝑚𝑚
 was 

determined to be the appropriate polynomial. 

For the full-slip damping plots, dimensional analysis suggested that the 𝑒𝑟𝑚𝑠 threshold 

should be multiplied by a characteristic length in order to exhibit the correct units (i.e., 

[𝑁]). As the layers in a jamming structure slip in the direction of their length, the 

length 𝐿 = 250 𝑚𝑚 was chosen as the characteristic length, and 𝑒𝑟𝑚𝑠 ≅ 0.0070
𝑁

𝑚𝑚
∗

250 𝑚𝑚 = 1.8 𝑁 was used as the cutoff for determining the appropriate order of the 

best-fit polynomial for the damping plots. 

The polynomial orders were then tabulated to assess functional dependencies (Table 

S1). As expected, pre-slip and full-slip stiffness scaled with 𝑛3and 𝑛, respectively, 

where 𝑛 is the number of layers. Full-slip stiffness also scaled with 𝑃 and 𝜇2. In 

contrast, the analytical model predicted that the full-slip stiffness of a two-layer 

jamming structure  was independent of 𝑃 and 𝜇. The dependence of full-slip stiffness 

on these quantities in the finite element model is likely a result of contact pressure 

distributions arising from the concentrated load and roller supports. 

Full-slip damping scaled with 𝑛, 𝑃, and 𝜇. Damping should scale with the number of 

interfaces, which in turn scales with 𝑛; furthermore, damping should scale with the 

frictional stress at the interfaces, which again is equal to 𝜇𝑃 everywhere during full-

slip. Thus, these scaling relationships are also physically reasonable. Note that the 

scaling of full-slip damping with 𝑃 and 𝜇 was also predicted by the analytical model 

for a two-layer jamming structure. 

For practical applications, one final functional dependence is critical: the dependence 

of the first transition load for a many-layer jamming structure (i.e., the load at which 

the jamming structure moves from the pre-slip regime to the transition regime) on the 

design inputs. However, finite element analysis was not necessary to determine this 

dependence; as described earlier, the first transition load can be accurately predicted 

by Euler-Bernoulli beam theory and scales with 𝑛, 𝑃, and 𝜇 (SI: Analytical 

Modeling: Extending the Model). Note that the scaling of this load with 𝑃 and 𝜇 was 

predicted by the analytical model for a two-layer jamming structure as well. 

Limiting Behavior 
 

For practical applications, the limiting behavior of jamming structures may be useful 

to examine. Consider an application in which the bending stiffness ratio between the 

jammed and unjammed states must be maximized (e.g., for a splint that must gently 

conform to the shape of a limb and then stiffen to immobilize a joint). This goal can be 

accomplished by constructing the layers out of exceptionally thin material (e.g., metal 

foil) and stacking as many layers as possible within the total allowable height 𝐻. 
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When the structure is unjammed, the stiffness will be negligible, as the layers are thin 

and flexible. When the structure is jammed, the stiffness will be equal to that of a 

cohesive metal structure of height 𝐻. 

 

Nevertheless, such a configuration may have adverse consequences. If the structure is 

jammed and unintentionally forced into the full-slip regime (e.g., upon a collision), the 

structure will then exhibit a stiffness approximately equal to its unjammed stiffness; 

because the unjammed stiffness is negligible, the structure will yield catastrophically 

if the load is maintained. Obtaining accurate predictions of the load-deformation curve 

during the transition regime and full-slip may help designers avoid such consequences. 

Unfortunately, many-layer finite element simulations can be computationally 

expensive when the number of layers (and in turn, the number of contact interactions) 

are particularly large. 

 

One solution would be to approximate the system by the limiting case in which the 

layers of the jamming structure are infinitesimally thin, and an infinite number of 

layers are stacked within the height 𝐻. In other words, the structure is approximated as 

a continuum. The structure may then be modeled as a single crystal with a single slip 

system, with slip planes parallel to the 𝑥𝑧-plane and the slip direction parallel to the 𝑥-

axis. The structure may then be computationally modeled using existing finite element 

packages for crystal plasticity. 

 

 Variable Kinematics 

The variable kinematics system was modeled as four parts: one rubber substrate and 

three jamming structures adhered to the bottom. The substrate was approximated as a 

2D plane-strain structure with in-plane dimensions of 150 𝑚𝑚 x 20 𝑚𝑚. Each 

jamming structure represented a twenty-layer jamming structure, but was 

approximated as a homogeneous 2D plane-strain structure. The in-plane dimensions of 

each jamming structure were 49.33 𝑚𝑚 x 20 𝑚𝑚, and the thickness was equal to the 

total thickness of twenty layers of paper (i.e., 2 𝑚𝑚). Adjacent jamming structures 

were separated by 1 𝑚𝑚 gaps. 

Both the substrate and the jamming structures were approximated as elastic. The 

substrate in subsequent experimental validation was cast from high-stiffness PDMS 

rubber (Sylgard 184, Dow Corning, Midland, MI). To accurately model this substrate 

in finite element simulations, the stress-strain curve reported in the literature for the 

PDMS rubber in uniaxial tension was digitally traced over small deformations.[34] The 

elastic modulus was determined by computing the slope of the curve, and this elastic 

modulus (i.e., 19.1 𝑀𝑃𝑎) was assigned to the substrate in the finite element model. 

Each jamming structure was assigned an elastic modulus in its vacuum-on state and its 

vacuum-off state. In the vacuum-on state, the elastic modulus equaled that of paper 

(6 𝐺𝑃𝑎); in the vacuum-off state, the elastic modulus was reduced by a factor of 𝑛2 

(15 𝑀𝑃𝑎). The substrate and jamming structures were assigned a Poisson’s ratio of 

0.49 and 0.156, respectively. Finally, as described in the main text, the thickness of 

the rubber substrate was chosen such that the bending stiffness of the substrate (𝑘𝑠𝑢𝑏) 

was the geometric mean of the bending stiffness of the jamming structures in the 

vacuum-off state (𝑘𝑗𝑎𝑚
𝑛𝑣 ) and the bending stiffness in the vacuum-on state (𝑘𝑗𝑎𝑚

𝑣 ). 

Because the jamming structures were intended to deform exclusively in the pre-slip 
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regime, standard Euler-Bernoulli beam theory could be used to approximate bending 

stiffness simply as 𝐸𝐼, where 𝐸 is the elastic modulus and 𝐼 is the second area moment 

of inertia. Using this approximation, the desired thickness of the rubber substrate was 

5.0 𝑚𝑚. 

One end of the rubber substrate was fixed. To approximate the effect of cable 

actuation, a pure moment load was applied to a point on the free end. Two simulations 

were executed: one where the jamming structures were assigned their vacuum-off 

elastic modulus, and another where they were assigned their vacuum-on modulus. The 

magnitude of the moment loads were chosen such that the free end of the rubber 

substrate would nearly contact the fixed end at maximum load; the vacuum-off 

simulation had a maximum load of 350 𝑁 ∙ 𝑚𝑚, and the vacuum-on simulation had a 

maximum load of 1 𝑁 ∙ 𝑚𝑚. The loads were applied as ramps over 400 equal 

increments, and large deformation analysis was enabled. A uniform mesh was used 

that consisted of square four-node bilinear plane-strain quadrilateral hybrid elements 

with reduced integration (CPE4RH). Four elements were used across the thickness of 

the structure. 

For both the vacuum-on and vacuum-off cases, the shape of the variable kinematics 

system was visualized at each load increment. In addition, the coordinates of the nodes 

along the ventral surface of the system (i.e., the longitudinal surface with the smaller 

radius of curvature when the system was actuated) were extracted at each load 

increment. The exact local curvatures were then calculated along the surface using 

appropriate first and second derivatives of the coordinates. 

Experimental Characterization 
 

 Fabrication Process 
 

The many-layer jamming structures used in experimental characterization consisted of 

three parts: strips of copy paper (HP Ultra White Multipurpose Copy Paper), an 

envelope of thermoplastic polyurethane with a thickness of 0.038 𝑚𝑚 (American 

Polyfilm, Inc., Branford, CT), and thermoplastic polyurethane tubing with an outer 

diameter of 3 𝑚𝑚 (Eldon James Corp., Denver, CO). 

 

The fabrication process for the laminar jamming samples consisted of five major steps 

(Figure S4). First, the strips of copy paper were manufactured. Sheets of copy paper 

were placed on a laser cutter (VLS4.60, Universal Laser Systems, Inc., Scottsdale, 

AZ), and strips were cut along the machine direction of the paper (i.e., the long axis) 

(Figure S4A). 

 

Next, the thermoplastic polyurethane (TPU) envelope was created. A frame was cut on 

the laser cutter from acrylic plastic (Figure S4B); this frame defined the region of the 

TPU sheet that would be sealed in a later step. Since the TPU sheet was intended to 

form an envelope around the paper strips and TPU tubing, the shape of the frame 

comprised a close perimeter around these contents. Furthermore, since the frame 

would be in contact with hot elements in subsequent steps, it was coated with 

polytetrafluoroethylene (PTFE) tape to prevent adherence. 
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The TPU sheet was then formed to the acrylic frame on a vacuum former (Formech 

300XQ, Formech International Limited, Hertfordshire, United Kingdom) to create a 

pocket in which to place the paper and tubing (Figure S4C). After placing the paper 

and tubing into the pocket, the sheet of TPU was folded once upon itself to enclose the 

pocket (Figure S4D). The TPU sheet was then covered temporarily with a PTFE sheet 

and heat-sealed using a one-sided heat press (Powerpress, Fancierstudio, Hayward, 

CA) at 100 °𝐶. Since the heat conduction to the TPU was greatest through the acrylic 

frame, only the region of the TPU sheet in contact with the frame was sealed, forming 

an envelope. 

 

To prevent leakage of air into the envelope, another step was performed to improve 

the bond between the TPU envelope and the TPU tubing. A block of aluminum-6061 

was machined with a circular channel through its center, with the diameter of the 

channel equal to the diameter of the tubing. The block was then sawed in half through 

the channel, and each half was placed on either side of the tubing, sandwiching the 

tubing between the two sides of the TPU envelope (Figure S4E). The assembly was 

then covered temporarily with a PTFE sheet and heat-sealed at 171 °𝐶. Since only the 

aluminum blocks were in contact with the heating element of the heat press, only the 

region of the TPU envelope between the blocks was sealed. Thus, a circumferential 

seal of the TPU envelope onto the tubing was achieved. The jamming envelope was 

then trimmed to its final form (Figure S4F). 

 

Repeatability Analysis 
 

Five twenty-layer jamming structures were fabricated. Each sample was placed in a 

universal materials testing device (Instron 5566, Illinois Tool Works, Norwood, MA) 

and centered on a static three-point bending fixture (Instron 2810-400) with the 

supporting anvils (10 𝑚𝑚 diameter) set 130 𝑚𝑚 apart (Figure S5A). 

Vacuum pressure was controlled using a manual vacuum regulator (EW-07061-30, 

Cole-Parmer, Vernon Hills, IL). The TPU tubing in each sample was connected to the 

regulator via highly flexible polyurethane tubing in order to mitigate parasitic loading 

of the sample by the rigid regulator. Prior to each test, a vacuum pressure of 68 ±
1.7 𝑘𝑃𝑎 was applied, and a roller was used to remove residual air pockets from the 

sample.  

The loading anvil (10 𝑚𝑚 diameter) was attached to a 100 𝑁 load cell (Instron 2525-

807) and lowered at a rate of 5
𝑚𝑚

𝑚𝑖𝑛
 until contacting the sample. When the load cell 

measured a value of 0.010 𝑁, the transverse force and displacement of the loading 

anvil began to be recorded. The anvil was then lowered at a rate of 25
𝑚𝑚

𝑚𝑖𝑛
 until 

reaching a maximum displacement of 8 𝑚𝑚. Tests were conducted at approximately 

20% relative humidity. After each test, the sample was disconnected from the 

regulator and gently flexed multiple times to accelerate its return to ambient pressure. 

Each sample was tested ten consecutive times. 

Occasionally, the loading anvil initially contacted the jamming structure at protruding 

corners of the seam of its polyurethane envelope; this initial contact caused the 

materials testing device to undesirably begin measuring force and deflection prior to 

contacting the bulk of the jamming structure. To discard measurements of the corners 

of the envelope, we neglected data collected before a small initial force threshold of 
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0.050 𝑁 was reached, and we defined zero deflection as the deflection at this 

threshold. This procedure was always implemented, except for cases in which the 

force range during a test was comparable to 0.050 𝑁 (e.g., for five-layer samples in 

later experimental characterization). No further filtering or smoothing was performed 

on the raw data. 

 

For each sample, transverse force was plotted against maximum deflection for all ten 

trials. A mean curve was generated, and standard deviations were computed at each 

point on the mean curve (Figure S5B-F). The maximum standard deviation at any 

deflection was 0.2516 𝑁, which constituted 2.881% of the range of the mean curve 

for that sample. Thus, the mechanical behavior of the structures was highly repeatable 

from trial to trial, indicating that fatigue was negligible over the examined range of 

forces and deflections. 

The mean curves of all five samples were then aggregated, and a mean curve of the 

mean curves was generated (Figure S5G). The maximum standard deviation at any 

deflection was 0.1233 𝑁, which constituted 1.414% of the range of the curve. Thus, 

the mechanical behavior of the structures was also highly repeatable from sample to 

sample, demonstrating that the fabrication process was sufficiently precise. Together, 

the high trial-to-trial and sample-to-sample repeatability of the jamming structures 

showed that many samples and trials were not required in order to collect statistically 

representative data during experimental characterization. 

Materials Testing 

To provide a fair comparison between experimental and finite element results for 

many-layer jamming structures, the elastic modulus 𝐸 and coefficient of friction 𝜇 of 

the copy paper used in the jamming samples were experimentally measured; these 

values were then used as material properties of the layers in the finite element 

simulations. The elastic modulus was measured to be approximately 6 𝐺𝑃𝑎, and the 

coefficient of friction was measured to be approximately 0.65. Both properties were 

measured according to methods outlined in international paper testing standards,[35,36] 

and the values fell within the ranges reported in literature.[37,38] The Poisson’s ratio of 

the copy paper was challenging to measure; thus, a literature value of 0.156 was used 

instead.[37] 

 Stiffness Characterization Process 
 

The stiffness characterization tests were identical to those conducted for the 

repeatability analysis (SI: Experimental Characterization: Repeatability Analysis). 

However, fewer samples were tested and fewer trials were executed, as the 

repeatability analysis showed that many samples and trials were unnecessary. When 

conducting the tests for the effect of number of layers on stiffness, three samples were 

fabricated for each number of layers (i.e., three five-layer samples, three ten-layer 

samples, etc.), and each sample was tested four times at a constant vacuum pressure of 

71.1 ± 1.7 𝑘𝑃𝑎. When conducting the tests for the effect of vacuum pressure, three 

twenty-layer samples were made in total, and each sample was tested four times at 

vacuum pressures of 0, 23.7 ± 1.7, 47.4 ± 1.7, and 71.1 ± 1.7 𝑘𝑃𝑎. No tests were 

conducted for the effect of coefficient of friction, as this property could not be 

precisely varied experimentally. 
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For each testing group, transverse force was plotted against maximum deflection for 

all trials. Recall that the effective stiffness 𝑘 of a jamming structure in three-point 

bending is equal to the slope of the force-versus-maximum-deflection curve. Again, 

mean curves were generated, and standard deviations were computed at each point on 

the mean curve. 

Damping Characterization Process 

To evaluate finite element predictions for how major design inputs affected the 

damping of many-layer jamming structures, the damping of jamming structures was 

experimentally characterized as well. The tests were identical to those conducted for 

the stiffness characterization. However, after the loading anvil reached its maximum 

displacement of 8 𝑚𝑚, it was then retracted at a rate of 25
𝑚𝑚

𝑚𝑖𝑛
 until returning to its 

original position of 0 𝑚𝑚. The transverse force and displacement experienced by the 

loading anvil continued to be recorded during its retraction. Thus, the behavior of the 

jamming structures was measured both during loading and unloading. 

Due to the extreme similarity of the damping characterization tests to the stiffness 

characterization tests, a minimal number of samples were tested, and a minimal 

number of trials were conducted. When conducting the tests for the effect of number 

of layers on damping, one sample was fabricated for each number of layers, and each 

sample was tested once at a constant vacuum pressure of 71.1 ± 1.7𝑘𝑃𝑎. When 

conducting the tests for the effect of vacuum pressure, one twenty-layer sample was 

made, and the sample was tested once at vacuum pressures of 0, 23.7 ± 1.7, 47.4 ±
1.7, and 71.1 ± 1.7 𝑘𝑃𝑎. 

For each test, transverse force was plotted against maximum deflection for all trials. 

The unloading of the sample during each test allowed the hysteresis curve to be 

observed. The area under each hysteresis curve depicted the energy dissipated during 

the loading cycle, and the effective damping 𝑑 was simply the energy dissipated per 

unit deflection. Finite element results for many-layer jamming structures accurately 

predicted experimental results (Figure S6). Thus, finite element simulations were not 

only able to predict the stiffness of many-layer jamming structures, but also their 

damping behavior. 

Functions and Applications 
 

All molds for the subsequent demonstrations were designed using CAD software (SolidWorks 

2015, Dassault Systèmes, Villacoublay, France) and 3D printed using a stereolithography-

based printer (Objet30 Scholar, Stratasys, Ltd., Eden Prairie, MN). 

 Shape-Locking 

A soft pneumatic bending actuator was designed and fabricated based on previous 

literature.[2,39] The top of the actuator (i.e., the inflatable chambers) was cast using a 

two-part mold, whereas the bottom (i.e., a thick, flat layer to promote bending rather 

than extension) was cast using a one-part mold. All parts were cast from shore 10A 

platinum-cure silicone rubber (Dragon Skin 10 Medium, Smooth-On, Inc., Macungie, 

PA). A twenty-layer jamming structure was then designed and fabricated using the 



  

53 

 

techniques described earlier (SI: Experimental Characterization: Fabrication 

Process). The structure spanned the ventral surface of the actuator (i.e., the 

longitudinal surface with the smaller radius of curvature when the actuator was 

pressurized). Finally, the actuator and jamming structure were bonded using silicone 

building sealant (Dow Corning 795, Dow Corning, Midland, MI). 

The actuator and jamming structure were connected to pressure and vacuum inputs, 

respectively. The pressure source was regulated by a digital pressure regulator 

(ITV1031, SMC Pneumatics, Yorba Linda, CA), whereas the vacuum source was 

regulated by the device used in experimental characterization. The output from each of 

the regulators passed through two miniature pneumatic solenoid valves (V2 Valves, 

Parker Hannifin, Hollis, NH) before entering the actuator and jamming structure. The 

valves were controlled by pushbuttons and enabled the actuator and jamming structure 

to each have three states: a pressurizing (or vacuuming) state, a hold state where the 

internal pressure (or vacuum) is preserved, and a depressurizing (or vacuum-relieving) 

state. 

The actuator was pressurized to 16 𝑘𝑃𝑎, and a photograph was taken perpendicular to 

the bending plane. Two tests were then conducted. In the first test, the actuator was 

depressurized to 0 𝑘𝑃𝑎. In the second test, a vacuum of 85 𝑘𝑃𝑎 was first applied to 

the jamming structure, and the actuator was then depressurized to 0 𝑘𝑃𝑎. A 

photograph was again taken once the system came to rest. 

For each photograph, the arc of the ventral surface of the shape-locking system was 

digitally traced. The data points comprising each arc were then interpolated over 100 

equally spaced points. The coefficient of determination (𝑅2) value was computed 

between the two interpolated arcs. 

 Variable Kinematics 

The substrate of the variable kinematics system was fabricated according to the same 

process used for the actuator component of the shape-locking system. However, the 

substrate was cast using a one-part mold with an inserted hexagonal rod, which 

created a channel to route a cable; furthermore, the substrate was cast from high-

stiffness PDMS rubber (Sylgard 184, Dow Corning, Midland, MI). The jamming 

structure was also designed and fabricated according to the techniques described 

earlier, but with three distinct stacks of twenty strips separated by 1 𝑚𝑚 gaps within 

the TPU envelope. The jamming structure and rubber substrate were again bonded 

with silicone building sealant (Dow Corning 795, Dow Corning, Midland, MI). 

Braided polyethylene cable (Hollow Spectra, BHP Tackle, Harrington Park, NJ) was 

then routed through the channel in the substrate. The cable was tied at one end to a 

turnbuckle and at the other end to a small washer. During testing, the turnbuckles were 

manually twisted, which pulled the cable, compressed the washer against the end of 

the variable kinematics structure, and induced bending. 

Two-Fingered Grasper 

Each fingertip in the two-fingered grasper had a cylindrical surface with a radius of 

5 𝑚𝑚. The fingertips were cast using a two-part mold according to the same process 
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used for the shape-locking actuator and variable-kinematics substrate; however, the 

fingertips were cast from shore 00-10A silicone rubber (Ecoflex 00-10, Smooth-On, 

Inc., Macungie, PA). 

To test bending stiffness and off-axis bending stiffness, the cable was removed from 

the finger being tested, and the finger was clamped in the vertical position. A digital 

force gauge (Chatillon DFI10, AMETEK Sensors, Test & Calibration, Berwyn, PA) 

was moved along a rigid guiderail until contacting the finger 25 𝑚𝑚 from its distal 

end. The force gauge was then pushed forward in 12.5 𝑚𝑚 increments. To mitigate 

viscous effects, approximately five seconds were allowed to elapse, and the force 

measurement was then recorded. The test was conducted with vacuum off and vacuum 

on. When measuring bending stiffness, the force gauge was pushed in the direction of 

the thickness of the substrate; when measuring off-axis bending stiffness, the gauge 

was in the direction of the width. Because the minimum force measurable by the force 

gauge was 0.05 𝑁, any reading of 0.00 𝑁 was rounded to 0.05 𝑁; thus, the stiffness 

increases reported in the main text were worst-case (i.e., lowest possible) estimates. 

To measure the torsional stiffness of the fingers in the two-fingered grasper, a custom 

testing device was designed and fabricated. In the device, a finger was coupled to a 

pulley with a radius of 16.25 𝑚𝑚, which itself was coupled via a cable to a digital 

force gauge (Chatillon DFI10 AMETEK Sensors, Test & Calibration, Berwyn, PA) 

(Figure S7). Aside from the finger, cable, and force gauge, all components of the 

device were 3D printed (Objet30 Scholar, Stratasys, Ltd., Eden Prairie, MN). When 

the force gauge was pulled, the finger was twisted about its longitudinal axis. 

 

The force gauge was retracted in 12.5 𝑚𝑚 increments, and force measurements were 

recorded at each increment. The force measurements were multiplied by the radius of 

the pulley to calculate torque. Torque was then plotted against pull distance, and the 

slope was calculated to quantify the torsional stiffness of the finger. 

 

Additional Concepts 
 

Continuously-Variable Stiffness 
 

As first outlined in a previous study,[18] continuously-variable stiffness can be 

achieved by stacking multiple jamming structures that have independent vacuum 

inputs (Figure S8A). The bending stiffness of the composite structure is determined 

by the number of jamming structures that have vacuum applied (Figure S8B). If the 

layers are compliant and the number of layers within each jamming structure is small, 

the bending stiffness of the composite structure can be selected with high resolution. 

 

Many schemes are possible for distributing layers across the jamming structures. One 

particularly appealing scheme is a binary distribution (i.e., one 2-layer structure, one 

4-layer structure, one 8-layer structure, and so on). With such a scheme, a high 

dynamic range (i.e., the ratio of the stiffness range to the stiffness resolution) can be 

achieved. 

 

To demonstrate this behavior, a hypothetical case study was conducted (Figure S8C). 

Consider a continuously-variable stiffness structure consisting of thirty layers. Let 𝑘 

be the bending stiffness of a single layer. Consider the following three methods for 
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distributing the layers across jamming structures: 1) the layers are distributed by 

binary numbering across four jamming structures (i.e., one two-layer jamming 

structure, one four-layer, one eight-layer, and one sixteen-layer), 2) the layers are 

distributed nearly equitably across four jamming structures (i.e., two seven-layer 

structures and two eight-layer structures), and 3) the layers are distributed equitably 

across fifteen jamming structures (i.e., fifteen two-layer structures).  

 

The four-structure binary scheme has the superior stiffness range, best-case resolution, 

and maximum dynamic range, as well as a high number of unique stiffness values; 

furthermore, with four vacuum inputs, it is simple to physically implement. The 

fifteen-structure equitable scheme has superior worst-case resolution and minimum 

dynamic range, as well as the highest number of unique stiffness values; on the other 

hand, with fifteen inputs, it is challenging to implement. For most applications, a 

binary scheme may be preferred. 

 

Continuously-Variable Damping 
 

From finite element analysis, it was found that the full-slip damping of a many-layer 

jamming structure scales linearly with vacuum pressure. Thus, continuously-variable 

damping can be achieved simply by varying the vacuum pressure on a single jamming 

structure (Figure S8D). 

 

Finite element analysis also showed that the full-slip damping of a many-layer 

jamming structure scales linearly with the number of layers. In practical applications 

where high damping is desired but the pressure gradient is limited (e.g., with vacuum, 

where the gradient is limited to the ambient pressure), the maximum damping value of 

a continuously-variable damping structure can be augmented in advance by increasing 

the number of layers in the jamming structure during fabrication (Figure S8E). Note 

that the maximum damping value can also be augmented by increasing the coefficient 

of friction of the layers. 

 

In other practical applications, damping may be desired over the full range of 

deformation of the jamming structure. However, as described earlier, damping of a 

many-layer jamming structure is zero during pre-slip, creating a dead zone for 

damping; thus, the deformation range over which pre-slip occurs should be minimized. 

As also described earlier, the pre-slip stiffness of a many-layer jamming structure 

scales with 𝑛3, whereas the load at which the structure begins to slip (i.e., the 

maximum load of pre-slip) scales with 𝑛 (SI: Finite Element Analysis: Functional 

Dependencies). In turn, the deformation at which the structure begins to slip (i.e., the 

maximum deformation of pre-slip) scales with 𝑛−2. Thus, the deformation range over 

which pre-slip occurs can be minimized in advance by again increasing the number of 

layers in the jamming structure during fabrication (Figure S8E). 

 

In conclusion, continuously-variable damping can be achieved by simply varying the 

vacuum pressure on a many-layer jamming structure. In practical applications that 

require high energy dissipation over a maximal range of displacements with a minimal 

dead zone, such a structure should be fabricated with as many layers as possible. 

 

Spring-Based Jamming 
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As an alternative to fluidic and electrostatic means for actuating jamming structures, a 

spring-based actuation method can be implemented (Figure S9). In this method, 

elastic elements (e.g., spring clips) are arranged along the length of a jamming 

structure that is enclosed in an airtight envelope. In its default state, the elastic 

elements cause the layers in the jamming structure to be cohesive, and the structure is 

stiff. However, when the airtight envelope is pressurized, the elastic elements are 

pushed apart, allowing the layers to slip freely; the jamming structure is compliant and 

can be reconfigured. 

 

A spring-based actuation method has two distinct advantages. First, the maximum 

frictional stress at the interfaces between layers can be set to arbitrarily high values by 

using clips with a higher (or adjustable) spring constant. As described earlier, the load 

at which a jamming structure begins to slip scales with the pressure gradient 𝑃 (SI: 

Finite Element Modeling: Functional Dependencies); thus, the structure can 

maintain its pre-slip stiffness over larger loads than a jamming structure that is 

actuated by vacuum pressure. Second, the structure only requires power to change its 

shape, not to preserve it. In applications where the time spent reshaping the jamming 

structure is much smaller than the time spent locked in a particular configuration, this 

actuation mechanism can expend negligible energy. 

 

 

Supplementary Figures 
 

 
Fig. S1: Diagrams used for analytical derivation of governing equations. A) The coordinate system and dimensions for the 

two-layer jamming structure are defined. B) To derive the first governing equation, the resultant moment over the cross-

section was computed. The resultant moment is defined as the integral of the moment of stress about the 𝑥-axis over the 

cross-sectional area. One possible stress distribution at a cross-section is shown. C) To derive the second governing 

equation, static force equilibrium of a thin section of the bottom beam was performed. Stresses were integrated over area to 

compute force. One possible stress distribution about a thin section is shown. D) To derive the third governing equation, 

static force equilibrium of a thin section of the top beam was performed. 
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Fig. S2: Finite element evaluation of analytical model. Analytical and finite element models were constructed of a two-layer 

jamming structure in cantilever bending subject to a uniform distributed load. The models had identical dimensions, material 

properties, boundary conditions, and loads. The analytical model predicted finite element results with high accuracy in all 

cases. A) Elastica are compared for six equal load increments from zero load to the maximum load. B) Load-versus-

deflection curves are compared. Recall that the effective stiffness 𝑘 is equal to the slope. C) Dissipated-energy-versus-

deflection curves are compared. Recall that the effective damping 𝑏 is equal to the slope. D) Curvatures are shown for the 

elastica of the two-layer analytical model. Note that the curvature crosses zero (i.e., reverses sign) for moderate loads and 

above. E) Curvatures are shown for the two-layer finite element model. The curvature profiles are predicted closely by the 

analytical model. F) Curvature reversal was also observed for finite element models (Top) and experimental samples 

(Bottom) of many-layer jamming structures in three-point bending. Sharp curvature reversal can be seen near the supports.

  

 

 
 

Fig. S3: Finite element mesh refinement study and slip visualization. A) A mesh refinement study was performed for a 

twenty-layer finite model in three-point bending. A uniform mesh of square elements was used, and the number of elements 

across the thickness of each layer was varied between two and four. The resulting force-versus-deflection curves were nearly 

indistinguishable; thus, two elements across the thickness was sufficiently accurate. B) The many-layer finite element models 

could illustrate slip between adjacent layers. Slip for a typical twenty-layer model in three-point bending is shown here. 

During the pre-slip regime, nodes along adjacent interfaces were coincident. C) During the full-slip regime, nodes that were 

initially coincident moved relative to each other. 
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Fig. S4: Fabrication process for real-world jamming structures. The fabrication process is illustrated for a typical sample 

of a many-layer jamming structure. A) A sheet of copy paper was placed on the bed of a laser cutter, and strips were cut 

along the machine direction. B) Acrylic was placed on the bed of the laser cutter, and a frame was cut. C) The frame was 

coated in PTFE tape and positioned on the bed of a vacuum former. A thin sheet of TPU was formed to the frame. D) The 

frame and TPU sheet were positioned on the bed of a heat press. The strips of paper and a segment of TPU tubing were 

placed inside, and the TPU sheet was folded to cover the contents. E) Aluminum blocks with a circular channel were 

arranged on the top and bottom of the end of the jamming structure, sandwiching the TPU tubing between the two sides of 

the TPU envelope. F) Fabrication of the sample was completed. 

 

 
 

Fig. S5: Testing setup and repeatability analysis for experimental characterization of jamming structures. A) The jamming 

structure was placed in a test fixture for three-point bending, which consisted of a loading anvil and two roller supports. The 

loading anvil was attached to a load cell, and the jamming structure was connected to a vacuum regulator via flexible tubing 

to mitigate parasitic loading of the tubing on the sample. B-F) Testing results for five twenty-layer jamming structures are 

shown in sequence. For each sample, a mean curve is plotted, along with a shaded error bar that spans ±1 standard 

deviation from the mean. The maximum standard deviation at any deflection is given. The structures were highly repeatable 

from trial to trial. G) The mean curves for all five samples were then aggregated. A mean curve of the mean curves is plotted, 

along with a shaded error bar. The structures were highly repeatable from sample to sample. 
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Fig. S6: Finite element predictions and experimental characterization of damping in many-layer jamming structures. 

Jamming structures were loaded in three-point bending and subsequently unloaded. Transverse force is plotted against 

maximum deflection; dashed lines indicate finite element predictions, and colored lines denote experimental results. Finite 

element models accurately predicted experimentally observed hysteresis. The area under the hysteresis curves is equal to the 

energy dissipated over the loading cycle, and the effective damping 𝑑 is equal to the energy dissipated per unit deflection. A) 

The number of layers in the jamming structures was varied. B) Vacuum pressure was varied. No finite element data is 

provided for the 0 𝑘𝑃𝑎 case, as the model was unstable. C) Coefficient of friction was varied. No experimental data is shown, 

as coefficients of friction could not be precisely varied experimentally. 

 

 

  
 

Fig. S7: Testing device for measuring the torsional stiffness of a variable kinematics system. A) Front view of the testing 

device. A variable kinematics structure is hung vertically. Its upper end is bolted in place, and its lower end is coupled to a 

cable that is connected to a force gauge. B) Zoom view of the lower end of the testing device. Two plastic pins are embedded 

in the variable kinematics structure and fastened to a pulley, and the cable is wound around the pulley. When the cable is 

pulled, the pulley spins around a bushing, and the variable kinematics structure is twisted about its longitudinal axis. C) 

Physical implementation of the testing device. The variable kinematics structure was originally oriented as shown in A and 

B; its lower end has now been twisted by approximately 80°. 
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Fig. S8: Conceptual examples of continuously-variable stiffness and damping structures. For simplicity, transition regimes 

between the pre-slip regime and the full-slip regime are not depicted. A) In one implementation of continuously-variable 

stiffness, four jamming structures are stacked and bonded. Each jamming structure has an independent vacuum input and 

contains three layers of compliant material. B) By applying or relieving vacuum from individual jamming structures, the pre-

slip bending stiffness of the composite structure may be selected from one of five possible values. C) For a continuously-

variable stiffness structure consisting of thirty total layers, three different ways are considered for distributing the layers 

across multiple jamming structures. Quantity 𝑘 is the bending stiffness of a single layer. A four-structure binary scheme is 

preferable over equitable and near-equitable schemes, as it has the best stiffness range, resolution, and dynamic range, and 

it is simple to physically implement. D) Conceptual load-versus-deflection curves are shown for a continuously-variable 

damping structure. (Because it may be desirable to use such a structure over multiple cycles, a full hysteresis loop is shown; 

the structure is loaded, unloaded, and then loaded and unloaded in the opposite direction to return to zero deflection.) 

Increasing the vacuum pressure augments the dissipated energy (i.e., the area enclosed by the hysteresis loop) and damping 

(i.e., the dissipated energy per unit deflection). E) Increasing the number of layers again augments damping. Furthermore, it 

minimizes the range of deformation over which the pre-slip regime occurs, maximizing the range over which damping is 

nonzero. 

 
Fig. S9: Conceptual example of a spring-based jamming structure. A many-layer jamming structure enclosed in an airtight 

envelope is connected to a compressed air source and has spring clips arranged along its length. When no air is supplied, the 

spring clips cause the layers to be cohesive, and the structure is stiff. When air is supplied, the clips are pushed open, and the 

layers can slip freely. The structure is then compliant and may be reconfigured. 

 

 

Supplementary Tables 
 
Table S1: Functional dependence of performance metrics on design inputs for many-layer jamming structures. 

Regression analysis was used to determine the functional dependence of stiffness and damping on the number of layers, 
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vacuum pressure, and coefficient of friction. The relationships between the parameters were well-described by best-fit 

polynomial functions of the specified order. Root-mean-square (RMS) error is provided for each polynomial relationship. 

 Pre-slip stiffness Full-slip stiffness Full-slip damping 

 Polynomial 
order 

RMS error 

[
𝑁

𝑚𝑚
] 

Polynomial 
order 

RMS 
error 

[
𝑁

𝑚𝑚
] 

Polynomial 
order 

RMS error [𝑁] 

Number of 
layers (n) 

3 0.0001 1 0.0006 1 0.0238 

Vacuum 
pressure (P) 

0 0.0065 1 0.0028 1 0.1326 

Coefficient of 
friction (μ) 

0 0.0072 2 0.0020 1 0.0788 

 

 

Supplementary Videos 
 

Video S1: Demonstration of real-world jamming structures. A twenty-layer jamming 

structure was fabricated, and 85 𝑘𝑃𝑎 of vacuum pressure was selectively applied. Three 

distinct functions are demonstrated: tunable stiffness, in which it can change its bending 

stiffness by several orders of magnitude; shape-locking, in which it can preserve an arbitrary 

shape; and structural plasticity, in which it can be plasticly formed to arbitrary objects in its 

vacuumed state due to energy dissipation during the full-slip regime. (Note that the shape-

locking function is intended to be used with an actuated soft structure, as in Figure 4E-F. 

Also note that in the structural plasticity demonstrations, strong curvature reversal is exhibited 

at the boundaries of the plastically deformed regions. See SI: Analytical Modeling: 

Curvature Reversal for more details.) 

 

Video S2: Finite element model of variable kinematics system. A finite element model of a 

variable kinematics system is subject to an increasing moment load with and without vacuum. 

With vacuum off, the system displays continuous deformation with nearly constant curvature. 

With vacuum on, the system exhibits discrete deformation with joints; rigid sections with low 

curvature are connected by compliant sections with much higher curvature, approximating the 

kinematics of a traditional articulated manipulator. The discreteness (i.e., the ratio of peak 

curvature to mean curvature) becomes increasingly pronounced at higher loads. 


