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ABSTRACT

There is considerable interest in determining whether recent changes in the temperature distribution

extend beyond simple shifts in the mean. The authors present a framework based on quantile regression,

wherein trends are estimated across percentiles. Pointwise trends from surface station observations are

mapped into continuous spatial fields using thin-plate spline regression. This procedure allows for resolving

spatial dependence of distributional trends, providing uncertainty estimates that account for spatial co-

variance and varying station density. The method is applied to seasonal near-surface temperatures between

1979 and 2014 to unambiguously assess distributional changes in the densely sampled North American

region. Strong seasonal differences are found, with summer trends exhibiting significant warming

throughout the domain with little distributional dependence, while the spatial distribution of spring and fall

trends show a dipole structure. In contrast, the spread between the 95th and 5th percentile in winter has

decreased, with trends of 20.718 and 20.858C decade21, respectively, for daily maximum and minimum

temperature, a contraction that is statistically significant over 84% of the domain. This decrease in vari-

ability is dominated by warming of the coldest days, which has outpaced the median trend by

approximately a factor of 4. Identical analyses using ERA-Interim and NCEP-2 yield consistent estimates

for winter (though not for other seasons), suggesting that reanalyses can be reliably used for relating winter

trends to circulation anomalies. These results are consistent with Arctic-amplified warming being strongest

in winter and with the influence of synoptic-scale advection on winter temperatures. Maps for all per-

centiles, seasons, and datasets are provided via an online tool.

1. Introduction

Trends of increasing large-scale mean temperature are

unequivocally contributing to an increasing frequency of

warm temperature extremes and decreasing frequency of

cold temperature extremes in many regions (Meehl et al.

2009; Rahmstorf and Coumou 2011), and would do so

even in the absence of distributional changes. However,

other changes in temperature distributions and their
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contribution to the observed changes in extremes are

less well understood (Alexander and Perkins 2013).

Indeed, changes in the variance and higher-order

moments can be of leading-order importance (Katz

and Brown 1992; Ruff and Neelin 2012).

Previous studies have examined changes in temperature

extremes and variability using a variety of data, models,

and metrics. In observation-based studies, limitations of

data availability lead to analyses being performed pri-

marily on spatially aggregated (Hansen et al. 2012), zon-

ally averaged (Huntingford et al. 2013; Screen 2014), or

reanalysis-derived samples (Screen 2014). Hansen et al.

(2012) used regional standardization to aggregate monthly

data and found a large increase in temperature variability

during winter and summer. Rhines and Huybers (2013)

noted that there is no statistically significant change in

these aggregated monthly observations when several bia-

ses are accounted for, and Huntingford et al. (2013) used

some of these corrections to show that zonally averaged

temperature variability has generally remained unchanged

on monthly time scales, albeit with regional differences.

Further studies have identified decreases in variability in

both models and observations (Screen 2014; Schneider

et al. 2015). Determining whether these disagreements

arise from data or model limitations, methodological dis-

tinctions, or qualitative differences in interpretation is

important for assessing the role of distributional changes

relative to that of simple shifts in the mean.

Discrepancies between observational results stem in

part from differences in methodology (Alexander and

Perkins 2013). Many previous studies have employed

averaging or aggregation methods that are prone to

biases and have low resolving power for detecting dis-

tributional changes (Tingley 2012; Rhines and Huybers

2013). For example, variance-based metrics in common

use (Hansen et al. 2012; Huntingford et al. 2013) are best

suited to detecting changes in normally distributed

temperatures and have limited interpretability in view of

the nonnormal characteristics of daily temperature dis-

tributions (Cavanaugh and Shen 2014). Further distor-

tions of the distribution arise from statistical procedures

used to interpolate or aggregate samples across space

and time. For example, it is well known (Haylock et al.

2008; Zhang et al. 2011; Kennedy et al. 2011; Rhines and

Huybers 2013; Director and Bornn 2015; Cavanaugh

and Shen 2015) that interpolating or taking spatial av-

erages alters the variance and higher-order moments

relative to point estimates. Similarly, monthly averages

(as employed by, e.g., Hansen et al. 2012; Huntingford

et al. 2013) mask nonnormality that dominates the tails

of daily temperature distributions (Sardeshmukh and

Sura 2009), as do filters designed to isolate specific time

scales (Proistosescu et al. 2016). Finally, the analysis of

temporal blocks of anomalies defined relative to a fixed

subset of the full time period (Caesar et al. 2006; Brown

et al. 2008; Simolo et al. 2011, 2012; Hansen et al. 2012;

Cavanaugh and Shen 2014) artificially influences trends

and variability (Tingley 2012; Hawkins and Sutton

2016). Little signal remains once appropriate correc-

tions are performed to account for these estimation

biases (Rhines andHuybers 2013), pointing to the utility

in employing different methods that minimize the use of

parametric assumptions.

We argue that many of these issues can be obviated

through several specific methodological choices. First,

we suggest that in situ observations are necessary at least

as a complement to reanalyses. Second, the use of daily

surface station observations wherever possible in the

initial analysis will reduce the tendency to limit distri-

butional resolution through spatial or temporal aver-

aging. Third, existing regression techniques designed

specifically to assess distributional change should be

employed, as opposed to the more ad hoc combination

of methods such as ordinary least squares and empirical

quantiles. Finally, the full spatial field of distributional

trends should be estimated using a spatial model to ac-

count for spatial variations in observation density, and

to retain uncertainty information from the pointwise

regression. This order of operations permits the pooling

of information across space when needed, for example,

when an area average of trends is desired, while also

distinguishing temporal changes from spatial variability.

Here we combine a set of methods satisfying these

criteria to estimate distributional trends in the densely

sampled 258–558N region of North America. Focusing

on this region serves the dual purpose of demonstrating

that there is important distributional dependence to the

observed climate changes in the region, while also per-

mitting for an unambiguous comparison between sur-

face observations and reanalysis-based estimates.

We use quantile regression (QR; Koenker andHallock

2001) to estimate local distributional trends in tempera-

tures from 3220 weather stations in the Global Historical

ClimatologyNetwork–Daily database (GHCN-D;Menne

et al. 2012). Quantile regression has been successfully

applied to other climate data; however, the present

analysis entails two orders of magnitude more observa-

tions than previous quantile regression analyses of sta-

tion data from South Korea (Lee et al. 2013) and Europe

(Barbosa et al. 2011; Matiu et al. 2016) and has not been

previously possible using raw daily observations because

of a recently resolved issue with quantization of the data

(Rhines et al. 2015). Unlike approaches employed else-

where (Brown et al. 2008; Simolo et al. 2012;Mannshardt

et al. 2013), QR does not require assumptions regarding

the parametric form of the underlying probability
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distribution. As a result, the method does not yield bi-

ased estimates of distributional spread when data are

nonnormal (see the appendix and Fig. A3).

We estimate the full spatial field of distributional

trends and their uncertainties using thin-plate spline

regression (Furrer et al. 2006). This mapping allows for

quantification of the combined uncertainty due to varia-

tions in station density, spatial covariance of the climate

field, and uncertainties in the individual pointwise trend

estimates. We also map the GHCN-D-based observa-

tional estimate to the uniform grids employed by both the

European Centre for Medium-Range Weather Forecasts

interim reanalysis (ERA-Interim; Dee et al. 2011) and

National Centers for Environmental Prediction’s Re-

analysis-2 (NCEP-2; Kanamitsu et al. 2002), inter-

comparing them to evaluate their consistency.

2. Data and methods

a. Station data

The GHCN-D station data are screened by location and

temporal coverage and for quality control indicators. All

observations with negative quality control flags are re-

moved, and only stations in North America between 258
and 558N are retained. We then screen for stations that are

80% complete for a given season over the duration of the

1979–2014 interval. Each pentad (5yr) is then examined,

and stations are excluded if they have fewer than 75%

completeness inmore than three years per pentad, ensuring

that the maximum of 20% missing data are not overly

concentrated in a particular span of time. The screening

leaves 3220 total stations and an average of approximately

3000 stations reporting on a given day within the region.

Daily minimum Tn and maximum Tx temperatures are

examined separately without subtracting a climatology, in

contrast to some previous studies that estimate daily mean

temperature anomalies using averaging and smoothing

(Caesar et al. 2006; Alexander et al. 2006; Cavanaugh and

Shen 2014), as the two extrema are often governed by

different physical processes—for example, by longwave

radiative cooling in stable, clear, dry nighttime conditions

for Tn, and by boundary layer mixing with the free tro-

posphere during the day forTx (Misra et al. 2012;McNider

et al. 2012). Even if higher-order moments of extrema

were to cancel in averaging, this need not lead to unbiased

estimates of the true daily mean (Wang 2014).

The seasons used here areDJF,MAM, JJA, and SON,

though we note that we obtained similar results when

using shorter 2-month seasons. Seasonal subsets are

used instead of the full annual time series to avoid ali-

asing of the entire annual cycle into the modeled dis-

tribution, and to permit for each season having trends

that are divergent as a result of their being controlled by

different processes. Spring and fall generally contain

most of the distributional structure related to seasonal

transitions, a factor that bears consideration in inter-

preting our results for those seasons.

b. Quantile regression

Characterization of the distribution of a random var-

iable X can be couched in terms of its cumulative dis-

tribution function,

F(x)5 P(X# x) , (1)

or equivalently in terms of the quantile function,

Q
X
(t)5F21(t) , (2)

where 0 , t , 1 so that t is the probability of X ex-

ceeding QX(t). For independent, identically distributed

(IID) temperature observations, T 5 fT1, T2, . . . , Tng,
the quantile function QT(t) can be estimated by opti-

mization (Koenker and Bassett 1978),

arg min
j2R

�
n

j51

r
t
(T

i
2 j) , (3)

where j is the quantile, and the piecewise-linear function,

r
t
(x)5

�
tx , if x$ 0

(t2 1)x , otherwise,
(4)

yields a tilted absolute value loss function whose angle

depends on the chosen value of t. For values of t above

the median (t . 1/2) the tilt in the loss function results in

positive residuals contributing more to the loss function

than negative residuals, and vice versa for values below

the median (t . 1/2). In contrast, ordinary least squares

(OLS) regression is based on minimizing a symmetric,

quadratic loss function. QR extends this approach to de-

pendent random variables by performing a similar mini-

mization but with j replaced by basis functions in the

independent variable (in our case time), t5 ft1, t2, . . . , tng,
to estimate the conditional quantile function QT(t j t).
Because the 1979–2014 interval exhibits climatic trends

that have been relatively constant, we use a linear model

with intercept a and temporal slope b. Thus the problem

becomes one of minimization (Koenker and Bassett 1978;

Koenker and Hallock 2001; Cade and Noon 2003):

arg min
b,a

�
n

j51

r
t
fT

i
2 [a(t)1b(t)t

i
]g . (5)

The QR minimization problem is solved via a linear pro-

gramming algorithm (Koenker and Bassett 1978), and we

use a MATLAB implementation (Koenker 2014).
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Quantile regression shares a first-order equivalence

with least squares regression on empirical quantiles

calculated from blocks of data segmented by the pre-

dictor variable (Bassett et al. 2002). Indeed, past studies

have taken the latter approach (Caesar et al. 2006;

Robeson et al. 2014; Huybers et al. 2014), but improving

the resolution of distributional tails with the empirical

quantile method requires pooling of data across two or

more years to increase the number of observations

available in each block. As our interest is in trends in the

tails of seasonal temperature distributions at annual and

greater time scales, QR has distinct advantages in terms

of being more efficient and less susceptible to biases

introduced by gaps in observations. QR also yields a

clearer representation of uncertainties in that the esti-

mated trends are asymptotically normal (Koenker and

Bassett 1978), with deviations appearing only for ex-

tremal quantiles that are sparsely represented in the

data (Chernozhukov 2005), whereas to our knowledge

no comparable properties have been identified for OLS

performed on running blocks of either empirical quan-

tiles (Caesar et al. 2006) or moments (Cavanaugh and

Shen 2014). We provide several pedagogical examples

of QR applications in the appendix.

Standard analytical treatments of QR uncertainties

assume continuity of the conditional density function.

Continuity facilitates asymptotic approaches to esti-

mating functional forms for standard errors and normal

approximations to the QR estimator (Koenker and

Bassett 1978; Simpson et al. 1987; Knight 1998). The

rounded nature of the GHCN-D data and the expecta-

tion that daily temperature observations are auto-

correlated renders standard approaches impractical, and

we instead quantify uncertainty using a block residual

bootstrap procedure (Barbosa et al. 2011; Lee et al.

2013). Residuals about the fits for each percentile are

resampled with replacement in blocks of entire years

and then added back to the estimated trend. Quantile

regression is then repeated for 1000 different resampled

time series for the percentile in question, forming a

bootstrap estimate of the slope and intercept terms. For

trend differences (e.g., the 95th 2 5th percentile), the

same bootstrap samples are used simultaneously for

both percentiles. Slopes and differences for which the

corresponding 95% central confidence intervals exclude

zero are considered significant. We note that, because

the data are from 3-month seasons, annual blocks yield

the same results as any block size choice between sea-

sonal and annual time scales.

c. Precision decoding

Quantile regression relies on the assumption that data

are continuously distributed rather than having finite

precision, leading to significant—but correctable—bia-

ses in estimating temperature trends from discrete ob-

servations (Koenker and Hallock 2001; Rhines et al.

2015). Specifically, nonsmooth distributions lead to

nondifferentiable objective functions and, consequently,

biased estimates of conditional quantiles (Machado and

Silva 2005). In practice all data are discrete to some

numerical precision, but the bias becomes especially

severe with the coarse sampling present in theGHCN-D

data. If the rounding methods used to record the ob-

servations are known it is possible to correct for this bias

(Reich and Smith 2013; Machado and Silva 2005). Ac-

cordingly, jitter drawn from a uniform distribution is

added to all GHCN-D observations, with amplitude that

is inferred using precision decoding (Rhines et al. 2015).

Inferring precision is nontrivial because the majority of

observations have been rounded in Fahrenheit, con-

verted to Celsius, and rerounded. Further, observations

are generally without metadata to indicate the original

precision but can be inferred to have followed a variety

of reporting conventions that differ both temporally and

spatially.We also correct for small offsets that occur as a

result of Fahrenheit observations having been converted

to 0.18C precision in the GHCN-D database, though the

effect of these double-rounding errors on the results is

small. However, absent the procedure of jittering the

data, the majority of QR trend estimates would be er-

roneously reported as being close to machine-precision

zero (see the appendix and Fig. A1 for an instructive

example).

To assess the additional uncertainty due to finite

precision of the observations and the jitter-based cor-

rection procedure, we calculate the variances of the

slope estimates under 1000 independent realizations of

the jittering procedure. The overall uncertainty is

formed from the sum of the jitter and annual block

bootstrap variances, and is strongly dominated by the

bootstrap uncertainty. Bootstrap variance contributed

by jittering is typically an order of magnitude smaller

than the total, and jittering is important for avoiding

what would otherwise be large biases.

d. Reanalyses

Reanalyses that blend multiple data sources with dy-

namical models in a formal data assimilation procedure

are an alternative to purely observational datasets.

Their advantages include spatial and temporal com-

pleteness, and the fact that long-term statistics at a given

point are determined only by the physical model, rather

than by the density of observations. Indeed, a number of

studies (e.g., Huntingford et al. 2013; Screen 2014;

Schneider et al. 2015) have used reanalyses to examine

variability trends. However, evidence that purely
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observational datasets more reliably capture surface

temperatures (Bengtsson et al. 2004; Hanson et al. 2007;

Hofstra et al. 2010; Donat et al. 2014), as well as known

issues with data homogeneity due to changing observa-

tional networks and bias corrections (e.g., Dee et al.

2011; Bracegirdle and Marshall 2012), suggests that a

careful comparison is warranted. Such caveats naturally

also apply to analyses of individual or ensemble climate

model integrations when observationally based bias

corrections are used.

Near-surface temperature estimates from ERA-

Interim and NCEP-2, both available from 1979 to the

present, are used for comparison with station data over

the same 1979–2014 interval. For ERA-Interim, the

6-hourly cumulative 2-m minimum and maximum tem-

perature fields are used to derive Tn and Tx at each grid

point using the 3-h forecast output. This forecast period

was used as it has been found to produce slightly better

estimates of near-surface temperature relative to the

12-h forecast within Europe (Cornes and Jones 2013).

We provide results for three resolutions for ERA-Interim:

2.58 3 2.58, 1.58 3 1.58, and 0.758 3 0.758 (close to the

effective resolution of the models dynamical core). The

regridded samples are averaged using area-conservative

remapping of the high-resolution grid, which is in prin-

ciple necessary as the default regridded datasets provided

by ECMWFaremore representative of higher-resolution

output than gridcell averages. The highest resolution

(0.758 3 0.758) is considered most representative of point

observations (Cornes and Jones 2013), though the use of

subgrid-scale parameterizations renders the distinction

between point and area-averaged processes less distinct

at the native resolution. Regridding is performed prior to

extracting the daily extrema. The NCEP-2 6-hourly 2-m

temperature field is used without altering the standard

2.58 3 2.58 grid, using each day’s samples to select the

maximum and minimum temperature. The 6-hourly data

underestimate the true variability of Tn and Tx but are a

useful proxy given that NCEP-2 does not archive daily

extrema directly.

e. Spatial smoothing and uncertainty quantification

To assess overall uncertainty and to facilitate spatial

averaging and intercomparison with other datasets, we

estimate a smooth spatial field from the station-level

results using thin-plate spline regression and map them

onto the different regular latitude–longitude grids from

the NCEP-2 and ERA-Interim reanalyses (Fig. 1). Thin-

plate spline regression is performed using fastTPS

within the R (Ihaka andGentleman 1996) package fields

(Furrer et al. 2013). The fastTPS method differs from

standard kriging in that it uses the compactly supported,

isotropic, and stationary Wendland covariance functions,

permitting smoothing to be performed efficiently for large

datasets. We use a range of u 5 400 miles (great circle

distance) so that the estimated value at each location is

affected by all values within that radius, though they are

naturally dominated by nearby stations; results are similar

for larger (1000 miles) and smaller (200 miles) values of u.

A maximum likelihood estimate of the smoothing pa-

rameter l that determines the partitioning of variance

between the smooth interpolating surface and the spread

of the observations around the smooth surface is used by

fastTPS. The uncertainty in the estimate of the smoothed

field at each location is determined by the data availability

in the surrounding area, the QR bootstrap uncertainties,

and also by the overall partitioning of variance controlled

by l.

The standard errors of the estimated smoothed sur-

face are used to quantify spatial dependence of the un-

certainty, and we consider as significant those grid boxes

with values that are more than 1.96 standard errors from

zero (equivalent in the context of the spatial model to

the central 95% uncertainty estimate used for the

FIG. 1. Example of spatial smoothing via thin-plate spline re-

gression. (a) Trends (1979–2014) in the 5th percentile of summerTx

using only pointwise GHCN-D time series. (b) As in (a), smoothed

to the 0.758 3 0.758 ERA-Interim grid. In (a), crosses indicate

a trend that is significant with respect to the 95%central confidence

interval of the combined block bootstrap and jitter variances, while

circles are insignificant but nevertheless used in the smoothing. In

(b), insignificant trends (hatching) are identified by comparing the

trend with the standard errors inferred from the thin-plate spline

regression. When the trend differs from zero by at least 1.96 stan-

dard errors it is deemed significant.
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stationwise trends). These uncertainties represent the

combination of sampling limitations and small-scale

spatial variability that is independent of sampling and

estimation issues. This approach to uncertainty quanti-

fication displays robustness to the presence of inhomo-

geneities known to exist (Menne et al. 2012) in some of

the original station-level time series. Step function in-

homogeneities, such as those arising from changes in

instrument location, type, time of observation, or other

observation protocol, will generally increase the vari-

ance of the original series (Figs. 4 and 5 of Menne and

Williams 2009) and will therefore increase variance

about any climatic trends. Inasmuch as these changes

have been introduced at different times for different

stations, these differences will then also influence spatial

variance. Though the GHCN-D archival process does

not involve any homogenization, examination of the

distribution of residuals from the thin-plate spline re-

gression suggests that artificial inhomogeneities related

to sampling do not significantly influence our conclu-

sions. Furthermore, examination of hourly observations

in tandem with daily extrema from nearby stations

suggests that the systematic biases induced by time of

observation changes are on the order of 0.018Cdecade21

(McKinnon et al. 2016), which is small compared with

the signals on the order of 0.18–1.08Cdecade21 that we

resolve. Furthermore, we note that a subset of the analyses

performed using only stations from the higher-qualityU.S.

Historical Climatology Network yields similar results.

The uncertainty of spatially averaged fields is esti-

mated using a parametric bootstrap procedure, wherein

1000 realizations of the field estimated by thin-plate

spline regression are generated on the same uniform

grid. Each sample is spatially averaged to produce a

bootstrap distribution that is analogous to the spatially

dependent standard error estimates, but which accounts

for the effect of spatial covariance upon the estimate of

the mean.

A second procedure was also considered wherein we

reversed the order of operations, using thin-plate splines

to estimate the temperature field as a function of time

and then estimating regression quantiles as the final

step. We tested the sensitivity of our results to this

methodological choice on the GHCN-D data and found

only minor differences relative to the primary method

(see the online visualization tool at http://qrmaps.

earthto.me, where we also provide results with no spa-

tial smoothing). Though the spatial patterns are very

similar when using the alternative approach, applying

the spatial model as the final step is advantageous in that

it incorporates spatial covariance in its estimates of

significance. Furthermore, there is empirical evidence

that distributional properties independent of the mean

vary more smoothly in space than the raw temperature

field (Cavanaugh and Shen 2014), and prematurely im-

posing smoothness may lead to biases in regions with

large small-scale variability such as those dominated by

topographic gradients.

3. Results

Here we provide estimates of distributional trends for

each season and percentile for bothTx and Tn. Summary

plots illustrating the spatially averaged trends, the spa-

tial deviation about those averages, and their corre-

sponding uncertainties are shown for all cases in section

3a. Spatial maps for all percentiles, seasons, and datasets

are also provided via an online visualization tool (http://

qrmaps.earthto.me).

a. Spatial averages of trends

Although our analysis specifically aims to retain spa-

tial information about distributional trends, the spatial

average of distributional changes is a question of broad

interest (Alexander and Perkins 2013). By analyzing the

variability changes locally prior to spatial aggregation

we avoid many issues that artificially affect the inferred

average distributional change (Rhines and Huybers

2013). We compare the spatially averaged trends, the

spatial variability about that average, and the un-

certainty estimates by season, variable, and percentile in

Fig. 2 (also see Table S1 in the supplemental material).

The spatial standard deviation of the trends,

s
sp
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N2 1
�
N

j51

w
j
(b

j
2b)2

s
, (6)

where wj are area weights proportional to the size of the

corresponding grid box and are normalized such that the

sum equals unity, and N is the number of grid cells,

summarizes the level of spatial variability relative to the

spatial-mean trend b. The mapping of the quantile

trends shown in Fig. 2 onto moments such as variance

and skewness depends on the base distribution; how-

ever, interpreting the changes in variability from quan-

tile trends is arguably more straightforward than

moments when distributions are nonnormal (Koenker

and Hallock 2001; McKinnon et al. 2016). Negative

slopes of the quantile trends (e.g., Figs. 2a,c,e) indicate

contraction of the entire distribution, whereas positive

slopes (the lower half of the distribution in Fig. 2b) in-

dicate expansion of that part of the distribution. Trends

that have little dependence on t (e.g., Fig. 2d) suggest a

uniform shift in the distribution, consistent with a simple

trend in the mean.
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In interpreting the spatial-average results (Fig. 2) we

highlight that trends in the median, upper tail, and lower

tail of the distribution can all differ substantially from

each other and from the OLS trend in the mean. Fur-

thermore, in each season and for each percentile, the

combined signal from the spatial mean trend and the

spatial standard deviation ssp is substantially larger than

the mean standard error, indicating a large signal-to-

noise ratio.

The spatial variability of the trends is usually at least as

large in magnitude as the spatial mean trend, with the

exception of summer where trends are broadly consistent

with a simple increase in the mean, and low percentiles in

winter. This underscores that spatial averages often pro-

vide an incomplete description of distributional changes.

We find that, with the exception of spring, the distribu-

tions of both Tx and Tn are decreasing in variability, as

measured by the difference between the 95th and 5th

percentile trends (green box-and-whisker markers in

Fig. 2, and Table S1 in the supplemental material). This

trend toward a reduction in variability is dominated by

winter, with trends of 20.718 and 20.858Cdecade21 for

Tx and Tn, respectively, and is not sensitive to the par-

ticular choice of 95th and 5th percentiles as opposed to,

for example, the 90th and 10th. These findings provide

purely observational evidence against the claim that

temperature variability is increasing substantially over

Northern Hemisphere land (Hansen et al. 2012), at least

in the densely sampled North American region.

b. Spatial patterns of distributional trends

Winter temperatures show strong warming, with a

spatial pattern of polar amplification in the lower half of

the distribution for both Tx and Tn (Figs. 3 and 2a,e). In

the upper half of the distribution, warming gives way to a

dipole pattern with cooling in the mountain west and

warming in the southeast. By the 95th percentile the

warming signal is mostly absent, while the cooling is

strong and spatially widespread. In eastern Canada,

warming is still present in Tn as high as the 80th per-

centile, while that signal dissipates in Tx near the me-

dian, contributing to the wider spatial distribution

(dashed lines, Figs. 2a,e). The competing sign of trends

at the low and high tails of the distribution leads to a

significant contraction in daily temperature variability

overmost of the domain, with distributional dependence

that is easily distinguishable from a shift in themean.We

discuss potential mechanisms for the winter results in

detail in section 5.

For the spring season we find generally stronger spa-

tial signals in Tx than in Tn (Fig. 4), with isolated

warming in the southwest at low percentiles giving way

to broader warming south of the Canadian border by the

median. A strengthened north–south dipole emerges

toward higher percentiles in the center of the domain,

with magnitudes becoming pronounced by the 95th

percentile (reflected as increased spatial variability by

dashed lines in Fig. 2f). Averaged over the domain, the

FIG. 2. Daily (a)–(d) Tn and (e)–(h) Tx trends (1979–2014) by percentile for each season for the GHCN-D station data. The domain-

averaged of the temporal trend b is plotted in black with bootstrap 95% confidence intervals indicated by the gray band. The domain-

averageOLS trend in themean its 95% bootstrap confidence interval is shown in red. For reference, the spatial variability about the mean

is illustrated by the6ssp dashed lines about the mean. The 95% confidence interval for trend differences of the 95th2 5th, 95th2 50th,

and 50th 2 5th are shown at the right in each panel. Note the different vertical scales.
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effect on the spread of the distribution is insignificant for

Tx, and a weak expansion of the distribution for Tn—in

contrast to most other seasons, in which on average the

distribution has contracted.

Summer months have a generally increasing trend in

Tn across all percentiles that is strongest in the lower tail

of the distribution (Fig. 2c, and Table S1 in the supple-

mental material). Specifically, while Tn shows broad

patterns of warming across all percentiles (Figs. 2c and

5a,c), the pattern of 95th minus 5th percentile trends is

uniformly negative (Fig. 5e). Despite the reduction of

distributional spread, the general warming of summer

Tn is also of particular importance because of the impact

of nighttime temperature minima on heat stress (Luber

and McGeehin 2008). The pattern for Tx differs in two

key respects. First, larger trends relative to the median

are evident in the upper tail (Fig. 5d—similar but weaker

trend pattern for the median not shown). Second, the

pattern at the lower tail of the distribution is weaker and

less similar to the median in its spatial pattern, leading

to a 95th minus 5th pattern with less large-scale spatial

structure.

During fall we obtain distinct patterns for Tn and Tx

(Fig. 6) that are not evident in the spatially averaged case

(Figs. 2d,h). Trends in Tn have a similar pattern across all

percentiles with warming in the west and throughout

Canada, leading to little large-scale structure in the 95th

minus 5th percentile trends. Meanwhile, Tx trends are

nearly spatially orthogonal between the 95th (having

warming isolated to Canada) and the 5th (having warm-

ing concentrated throughmost of the western and central

United States). The result is a widespread contraction of

the distribution in the Southwest and Great Plains, and

weaker expansion of the distribution in isolated parts of

southern Canada and the eastern United States.

4. Comparison of trends from surface observations
and reanalyses

a. Pattern correlations

We compare the estimated quantile trends from

each of the datasets—the smoothed GHCN-D surface

observations, and the ERA-Interim and NCEP-2

FIG. 3. Trends (1979–2014) in winter (left) Tn and (right) Tx (a),(b) 5th, (c),(d) 95th, and (e),(f) 95th 2 5th

percentile for the GHCN-D station data. Broad warming is seen in the lower half of the distribution, particularly at

high latitudes. The pattern changes gradually with increasing percentile to one of cooling in the central and

mountain United States. Stippling indicates locations where the trends exceed the color scale.
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reanalyses—by computing area-weighted pattern cor-

relations (i.e., centered anomaly correlations where the

spatial mean is removed prior to analysis; Von Storch

and Zwiers 1999) and root-mean-squared errors

(RMSE) for each pair having the same spatial resolu-

tion. These results are summarized in Figs. 7 and 8 and

Tables S2–S4 in the supplemental material.

The reanalysis fields are in some cases broadly similar

to the GHCN-D results, while in others there are sub-

stantial discrepancies. Notably, the reanalysis patterns

are in all cases detectably different from those of the

GHCN-D results (Fig. 7). Even when pattern correla-

tions are high, differing magnitudes or pattern means

also often lead to large absolute differences that are not

always captured by pattern correlations alone (Fig. 8).

In winter, Tx (Fig. 7e) trend patterns are relatively

similar across percentiles in the different datasets.

Meanwhile, winter Tn has distributional tails that are

not as accurately represented; discrepancies here are

particularly evident with NCEP-2, for which the 95th

percentile has patches of warming on the order of

18Cdecade21 centered on Colorado, New Mexico, and

east of Hudson Bay that are not present in the station

data. The relative skill in Tx may stem from its

dependence on midtropospheric temperatures that are

diurnally mixed into the boundary layer (Misra et al.

2012; McNider et al. 2012). In contrast, Tn may be

dominated by nocturnal cooling that is sensitive to

stability very close to the surface and thus may not be

resolved in the reanalyses. ERA-Interim and NCEP-2

also perform poorly during summer, again perhaps due

to unresolved small-scale processes involving the in-

terface between the land surface and atmosphere

(Alapaty et al. 2001). The limited agreement between

observations and reanalyses during summer is in

agreement with Cornes and Jones (2013), who found

that within Europe the largest discrepancies between

ERA-Interim and station time series were for trends in

summer 90th percentile temperatures.

We also provide a tabulation comparing spatial-mean

trends of the GHCN-D-derived fields, ERA-Interim,

and NCEP-2 for several quantiles and quantile differ-

ences (Tables S2 and S3 in the supplemental material).

b. Limitations of reanalysis surface fields

Near-surface observations can provide a powerful

constraint on the planetary boundary layer of data as-

similation systems (Alapaty et al. 2001; Hacker and

FIG. 4. As in Fig. 3, but for spring. The color scale, hatching, and stippling are as in Figs. 1–3.
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Snyder 2005); however, surface temperature observa-

tions are typically not directly assimilated because they

can render variational assimilation systems unstable,

particularly in regions of variable topography or when

small-scale convection is important (e.g., Stauffer and

Seaman 1990). In contrast, surface pressure observa-

tions integrate over the atmospheric column and can

produce a reliable estimate of the atmospheric state

even when no other data sources are used (Compo et al.

2011). That NCEP-2 does not assimilate surface tem-

perature observations is known to have adversely af-

fected its representation of interannual variability and

trends of monthly average near-surface temperatures

relative to observations (Kalnay and Cai 2003). ERA-

Interim uses an optimal interpolation procedure, also

implemented in ERA-40 (Simmons et al. 2004), to bias

correct the near-surface temperature and relative hu-

midity by examining surface observations within 300m

of the model’s surface elevation. These fields are also

used to drive an offline land surface model, but

ultimately have no impact on the state estimate of the

atmosphere. The optimal interpolation procedure ex-

cludes any surface observations that differ from the

model state at nearby grid points by more than a fixed

threshold, leading to only;40% of surface observations

being used during a given time step (ECMWF 2007).

This tendency to exclude not only outliers but fully

;60% of observations suggests that extremes may be

represented particularly poorly, especially when they

are influenced by small-scale land surface or boundary

layer processes.

In comparisons between ERA-Interim and GHCN-D

results we find evidence of biases resulting from these

postprocessing procedures. For example, a sharp dis-

continuity along the Colorado–Utah border appears in

many season–percentile pairs. Examination of 2-m

temperature time series from the region shows a large

shift in ERA-Interim around 1992 that is not identifi-

able in nearby GHCN-D station observations, sug-

gesting that the variational bias corrections applied to

FIG. 5. As in Fig. 3, but for summer. ForTn, broad warming is seen at all percentiles but is dominated by the lower

tail of the distribution as a consequence of increasing skew. For Tx, the pattern visible near the median strengthens

toward the upper tail of the distribution, showing enhanced high extremes in a large swath of the west and

southwest, while central Canada, the Corn Belt, and the southeast have all seen cooling of the hottest days. Color

scale and hatching are as in Fig. 1.
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the satellite and radiosonde data may have led to some

important surface observations being newly included

or excluded beginning at that time. The presence of

discontinuities in ERA-Interim around 1992 has been

previously noted in precipitation fields and may result

from changes in the SSM/I constellation (Dee et al.

2011). Though not as persistent across seasons and

percentiles, similar features appear elsewhere and may

point to further assimilation, bias correction, or post-

processing issues. Interestingly, these sharp features

are generally less prominent in difference plots (e.g.,

95th 2 5th), suggesting that such breakpoints may af-

fect the mean without substantially altering the shape

or spread of the distribution.

That the same sharp features are not seen as often in

the NCEP-2 maps is not entirely surprising: when ERA-

Interim is regridded to the lower 2.58 3 2.58 resolution of
NCEP-2, the discontinuities are less visually obvious.

Additionally, the lack of a separate postprocessing step

in NCEP may reduce the tendency for spurious sharp

spatial gradients in trends to occur, except where on-

going issues in assimilated satellite snow-cover obser-

vations have directly impacted surface conditions

(Kanamitsu et al. 2002).

5. Discussion

Previous analyses of variability changes have come to

conflicting conclusions (Alexander and Perkins 2013),

and the results presented in the foregoing section are

intended to unambiguously assess changes in the spread

of the temperature distribution in the densely sampled

North American region. We found small contractions in

the temperature distribution during summer and fall, a

small increase during spring, and a large, spatially ex-

tensive decrease in variability during winter. With re-

spect to annual extremes, summer trends consistent with

an increase in the mean imply that hot summer events in

midlatitudes may not be as sensitive as cold winter

events to feedbacks on mean warming.

We assess that the spatial mean of the trend toward

decreasing winter variability is statistically significant in

the GHCN-D data and both reanalysis datasets, with

consistent spatial patterns and magnitudes between all

three datasets. Pointwise variability trends are signifi-

cantly negative over 84% of the domain for the station

data. These changes are at least partly consistent with

the physical argument that the coldest winter days

should warm faster than the warmest days as a result of

FIG. 6. As in Fig. 3, but for fall. The color scale, hatching, and stippling are as in Figs. 1–3.
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Arctic amplification (Screen 2014; Schneider et al. 2015;

Holmes et al. 2016).

A widespread, statistically significant signal of re-

duced winter variability associated with warming of the

coldest days has not been previously identified in ob-

servations for this region. However, its magnitude is con-

sistent with results using the variance of ERA-Interim

temperatures, averaged zonally in decadal bins over

land as in Screen (2014). Examining DJF ERA-Interim

Tn over the North American land region from 428 to
558N (covering the peak of the cooling pattern in

Fig. 3), we do find a spatial mean variance reduction of

9.88C2 for 1997–2014 relative to 1979–96, similar to the

zonally averaged values of Screen (2014) at those

FIG. 8. As in Fig. 7, but for the RMSE of trend maps between different datasets. Here, the gray parametric bootstrap line indicates the

baseline uncertainty of the observations.

FIG. 7. Daily (a)–(d) Tn and (e)–(h) Tx pattern correlations of quantile trend maps for several combinations of reanalysis and station

observations at different resolutions, all for the 1979–2014 interval. Comparisons are performed for one season in each panel, with lines

indicating the area-weighted pattern correlation between the two fields. A surrogate measure of uncertainty is indicated in gray, where

pattern correlations are computed for the smoothed GHCN-D-based estimate against the same 1000 parametric bootstrap realizations

used to estimate the uncertainty in the spatial mean (Fig. 2), and where the dashed lines indicate the central 95% bootstrap confidence

interval. That the gray line significantly exceeds the colored lines in all cases indicates that the reanalysis patterns still generally contain

significant differences when accounting for sampling uncertainties of the station data.
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latitudes and equivalent to a 9.7%, or a 0.78C reduction

in standard deviation. That we find a statistically sig-

nificant signal can be attributed to the limited extent of

our domain, the separate spatial model, and the use of

quantile regression rather than ordinary least squares

applied to binned sample variances. Significance in this

context is not a statement of anthropogenic attribution,

but rather that there is low-frequency structure in-

consistent with annual samples that are independent of

one another. Though the 1979–2014 interval is long

compared with the time scales of established modes of

interannual variability, we cannot exclude that it plays

some role.

Although polar amplification in the absence of mean

warming should lead to both northerly and southerly

winds being important for reducing variability, Screen

(2014) has noted that reduced cold-air advection by

northerly winds would lead to an asymmetry in the

trends for the upper and lower tails of the distribution.

The fact that changing cold-air advection dominates the

overall changes in variability can be inferred more di-

rectly using QR, where we see strong warming in the 5th

percentile giving way to weak trends at the 95th per-

centile (Figs. 2a,e). Because mixing length scales are on

the order of 1000km in midlatitude (Schneider et al.

2015)—and perhaps longer over continental regions

where equilibration with the surface is generally slower

than over the ocean (Swanson and Pierrehumbert

1997)—trends in these distant source regions can influ-

ence changes in variability. Yet other processes may be

necessary to fully explain the magnitude and spatial

pattern of the trends; the strongest amplification of

warming is in the eastern sector of Canada, while the

western part of the domain has experienced the greatest

declines in variability. Given that cold events in the west

are often associated with northerly or northwesterly ad-

vection, and rarely with northeasterly advection, it appears

unlikely that these specific patterns can be explained by

advection of the basic state alone. Furthermore, the rate of

warming of median ERA-Interim 850-mb temperatures is

between;0.28 and 0.78Cdecade21 inmost of theCanadian

Arctic, smaller than the peak or even the mean rate of 5th

percentile warming in the 258–558N domain (28 and

0.88Cdecade21, respectively).

Interestingly, the future emergence of a significant

midlatitude signal in the future was anticipated by

Screen (2014) in a complementary analysis of the

CMIP5 model ensemble, with a spatial structure similar

to our results appearing by the 2070–99 interval using

the representative concentration pathway 8.5 (RCP8.5)

forcing scenario (their Fig. S8d). Despite methodologi-

cal differences leading to contrasts in significance as-

sessment, the similarity suggests the pattern may be a

robust response to anthropogenic forcing. Inasmuch as

moist or radiative processes are necessary to explain the

full signal of distributional contraction in the historical

period, it will be important to determine whether global

climate models adequately resolve these effects (e.g.,

Pithan et al. 2014) when considering their applicability

to extremes in multidecadal projections.

6. Conclusions

We present a framework for assessing observed

changes in the distribution and variability of near-

surface temperatures and apply it in an analysis of

daily Tn and Tx for the 258–558N region of North

America, resolving significant seasonal distributional

trends during the 1979–2014 period. By using a spatial

model that employs thin-plate spline regression we also

provide amapping of station-level results fromGHCN-D

onto latitude–longitude grids to facilitate analysis and

intercomparison with other data sources, while retaining

meaningful uncertainty estimates that represent the

combined errors in station-level trends and those due to

their variable spatial coverage. Changes in the distri-

bution are found to depend strongly on season and can

differ between Tn and Tx, indicating that it is useful to

resolve spatial, seasonal, and diurnal dependence sepa-

rately. The spatial signals we identify are generally

substantially larger than the uncertainties in their esti-

mation; however, we also show that collapsing the spa-

tial information by averaging over the domain—or,

similarly, the distributional information by assessing

only changes in the mean—can lead to the perception of

insignificant trends purely as a result of cancellations.

Examples of this sensitivity to averaging include the

shoulder seasons of spring and fall, for which small

spatially averaged trends contrast with large-amplitude

meridional dipoles that reflect strong regional trends.

Summer has seen large-scale warming, particularly in

the lower tail of the distribution for Tn, while changes in

variability are also predominantly regional and appear

to occur on smaller spatial scales than those of spring

and fall.

The winter temperature distribution has contracted

significantly over most of the North American region.

We provide evidence that the physical mechanisms

driving the contraction are distributionally dependent,

with the reduction in variability dominated by warming

of cold days relative to other parts of the distribution.

This distributional dependence is consistent with cold

days relying on northerly advection from regions that

have experienced greater rates of warming (Screen

2014; Schneider et al. 2015). However, several factors

may lead to deviations from predictions of the advective
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model on local scales. Cold-air advection in the western

United States is predominantly continental, while

warm-air advection is sourced from more maritime re-

gions, implying that the orientation of the relevant di-

rectional temperature gradient will differ between warm

and cold conditions. Differences in the strength of cou-

pling at the lower boundary between maritime and

continental conditions (Swanson and Pierrehumbert

1997) would also lead to a difference in effective length

scales, and potentially to an asymmetric sensitivity to

moist feedbacks. Whether it is necessary to consider

higher-order moments of advection statistics or funda-

mentally different physical processes related to radia-

tion, clouds, or boundary layer dynamics will be

explored in future work.

We also compared all trends from the station data

with the NCEP-2 and ERA-Interim reanalyses, finding

strengths andweaknesses in each that depend on season,

percentile, and location. While the general pattern of

reduced variability during winter is found in both of the

reanalysis datasets, discrepancies at small spatial scales

suggest that time-varying biases in the ERA-Interim

data assimilation system may lead to abrupt changes in

the subset of surface observations blended with its out-

put during postprocessing. The seasonal differences in

ERA-Interim’s representation of surface trends also

mirrors Cornes and Jones (2013), who found that

extreme-based indices are least accurately reproduced

for hot days during summer. Nevertheless, the decou-

pling between ERA-Interim’s assimilation of upper-air

observations and its inclusion of surface observations

during postprocessing suggests that it may still be re-

liably used to examine tropospheric conditions associ-

ated with surface temperature extremes inferred from

the GHCN-D observations.

Our use of 3-month seasons is most appropriate for

summer and winter, for which seasonal curvature is

small and the observations are most closely exchange-

able. The large-scale trend dipoles evident during spring

and fall may be partly a consequence of long-term var-

iability or trends in circulation during the seasonal

transition.While it is possible to use shorter seasons, this

choice would further reduce sample sizes; extensions of

QR such as quantile periodograms (Li 2012) may lead

to a more robust assessment of the role of seasonality.

Further analysis will be necessary to determine the

extent to which the reduced winter variability results

from anthropogenic forcing. Decadal variability associ-

ated with, for example, the Pacific decadal oscillation

(Mantua and Hare 2002) or the Pacific–North America

pattern (Wallace and Gutzler 1981) cannot be ruled out

as playing a role in generating this pattern because of the

relatively short 1979–2014 interval; trends in tropically

forced teleconnections (Ding et al. 2014) are also po-

tentially important, given the low-frequency variability

associated with ENSO teleconnections during North

American winter. However, inasmuch as anthropogenic

forcing leads to Arctic amplification, it appears likely

that further warming will result in additional contraction

of winter temperature variability in midlatitudes. These

relative influences of internal versus externally forced

variability can be assessed by performing a similar

analysis using climate model ensembles. Other natural

extensions of this work include expanding the analysis to

regions with less dense observation networks, and the

use of a nonlinear basis for QR that would permit con-

tinuous resolution of distributional changes over longer

time periods for which linear trends are less applicable.
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APPENDIX

Quantile Regression: Synthetic Examples

Several key differences between QR and more tradi-

tional techniques such as ordinary least squares re-

gression on the mean can be elucidated using the

following synthetic examples.

Example 1: A synthetic realization is generated as

unitlessGaussian white noiseN (at,s2) with a weak

linear temporal trend a equaling 0.026 yr21 and

constant unitless variance of 102. The length of the

interval is 36 years, with 90 samples per year, ap-

proximating the sampling characteristics for each

GHCN-D station when analyzed for a specific

season. QR slopes are then estimated for the

original data; after rounding all observations to

the nearest integer; and after then adding indepen-

dent U(20.5, 0.5) draws of jitter to each rounded

observation (Fig. A1a). When this procedure is

repeated for 1000 realizations, a two-sample

Kolmogorov–Smirnov test comparing the distribu-

tion of slopes from the original and rounded data

clearly rejects the null hypothesis that the samples

follow the same distribution, with a p value less than

0.001. However, the use of jitter to restore the dis-

tribution produces a distribution of slopes that is
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indistinguishable from that of the original obser-

vations (Fig. A1b), with the Kolmogorov–Smirnov

test p value of 0.69 giving no indication that the

distributions of the inferred trends are different.

One might venture that the zero-inflation in trend

estimates of the rounded data would simply yield

some metric of significance; however, the expected

value of the rounded slope estimates is biased, in

this case equaling 0.019 yr21, in comparison with

0.025 yr21 for the unrounded or jittered cases using

either QR or OLS. In this case, OLS and QR are

essentially equivalent as all central moments are

fixed with only the mean of the distribution

changing.

Example 2: The same procedure as in example 1 is

repeated, but for a nonnormal time series having a

trend in the shape and width of the distribution.

Samples are generated from a generalized extreme

value distribution with shape parameter j, scale

parameter s, and location parameter m, varying

linearly in time such that the distribution shifts from

positive to slightly negative skew while shifting in

mean toward increasing values, such that the 95th

percentile is expected to remain approximately

FIG. A1. Example of quantile and OLS regression on normally distributed synthetic data with and without

discrete rounding. (a) Time series with 90 samples per year for 36 years are drawn from a normal distribution with

a linear trend in the mean, and QR estimates of the median, 5th, and 95th percentiles are shown alongside the OLS

estimate of the mean trend for one realization’s raw values. The same procedure is then repeated for 1000 re-

alizations, and the data are first rounded and then approximately restored through the addition of uniform jitter.

(b) Histograms of the QR trend estimates of the median are shown for the raw, rounded, and jitter-restored

realizations, illustrating how the severe bias present when data are rounded can be corrected through jittering.

(c) The initial and final distributions.
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constant with time. The spread in the distribution is

on average decreasing as the center of the distribu-

tion increases, with OLS failing to capture this

distributional dependence (Fig. A2).

In Fig. A3, we provide examples using a wider variety

of distributional changes and using alternative estima-

tors. Three different methods are used:

1) Differences of block variances (Fig. A3, left center),

similar to Hansen et al. (2012) but with the addition of

explicit trend estimates. The first and second half of the

time series are assumed to be two independent samples,

and trends in the samplemean and sample variance are

inferred directly from these using differences.

2) Maximum likelihood estimates of trends in the mean

and variance (Fig. A3, right center). This method

also implicitly assumes that the data are normally

distributed with mean and variance that can change

in time. This method is similar to estimates based on

trends in moving block variances (e.g., Screen 2014;

Huntingford et al. 2013). The maximum likelihood

parameter estimates have a small sample-size-

dependent bias for which we do not apply a correc-

tion here as it has only a minor influence on the

inference in these examples.

3) Quantile regression (Koenker and Hallock 2001)

(Fig. A3, right) with a linear slope and intercept

term being estimated for each percentile.

FIG. A2. Example of quantile and OLS regression on nonnormal data. (a) Time series with 90 samples per year

for 36 years are drawn from a generalized extreme value distribution with a linear trend in the location, shape, and

scale parameters, and QR estimates of the median, 5th, and 95th percentiles are shown alongside the OLS estimate

of the mean trend for one realization’s raw values. The same procedure is then repeated for 1000 realizations, and

(b) histograms of the trend estimates in each percentile and for the OLSmean illustrate how distributional changes

are not captured by OLS or any one percentile. (c) The initial and final distributions.
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Approximate 95% bootstrap confidence intervals are

estimated for maximum likelihood and quantile re-

gression, with the samples assumed to be conditionally

independent given time t. This differs from the treat-

ment used for temperature observations, where de-

pendence necessitates the use of a block bootstrap.

For each example, a single realization of 2000 obser-

vations is generated according to a prescribed para-

metric distribution with time-dependent parameters.

The first three distributional examples are normally

distributed with imposed linearly varying mean, vari-

ance, and both mean and variance, respectively. The

fourth example is a Gaussian mixture with two compo-

nents and parameters such that the variance is constant

in time. The fifth example is a t distribution, and the sixth

is a standardized t distribution such that the variance is

identically constant despite changes in higher-order

moments.

In each case quantile regression robustly recovers the

underlying distributional trends. While block variance

differences and maximum likelihood estimates assum-

ing normally distributed data perform relatively well

when the data are indeed normal, biases inherent to

maximum likelihood estimation are still evident when

using smaller sample sizes. Block variances also alias

temporal trends as variability, leading to sensitivities to

whether detrending is first applied to the full time series,

to individual blocks, or not at all (Rhines and Huybers

2013). Bias corrections and a model selection procedure

to distinguish would improve the robustness of the maxi-

mum likelihood procedure, albeit at the cost of added

model complexity. Furthermore, the two parametric

methods perform poorly when higher-order moments are

present (Fig. A3, rows 4–6), even in the relatively simple

case of a two-component Gaussian mixture (Fig. A3, row

4). Quantile regression trades a small amount of efficiency

in the normal case—evident in the wider confidence

intervals—for robustness to nonnormality.
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