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ABSTRACT

Star formation in our Galaxy occurs in molecular clouds that are self-gravitating, highly turbulent, and mag-
netized. We study the conditions under which cloud cores inherit large-scale magnetic field morphologies
and how the field is governed by cloud turbulence. We present four moving-mesh simulations of supersonic,
turbulent, isothermal, self-gravitating gas with a range of magnetic mean-field strengths characterized by the
Alfvénic Mach number MA,0, resolving pre-stellar core formation from parsec to a few AU scales. In our
simulations with the turbulent kinetic energy density dominating over magnetic pressure (MA,0 > 1), we find

that the collapse is approximately isotropic with B ∝ ρ2/3, core properties are similar regardless of initial
mean-field strength, and the field direction on 100 AU scales is uncorrelated with the mean field. However, in

the case of a dominant large-scale magnetic field (MA,0 = 0.35), the collapse is anisotropic with B ∝ ρ1/2.
This transition at MA,0 ∼ 1 is not expected to be sharp, but clearly signifies two different paths for magnetic
field evolution in star formation. Based on observations of different star forming regions, we conclude that star
formation in the interstellar medium may occur in both regimes. Magnetic field correlation with the mean-field
extends to smaller scales as MA,0 decreases, making future ALMA observations useful for constraining MA,0

of the interstellar medium.
Subject headings: ISM: clouds — ISM: magnetic fields — magnetohydrodynamics (MHD) — polarization —

stars: formation — turbulence

1. INTRODUCTION

Magnetic fields and turbulence are known to play key roles
in star formation (Larson 1981; Shu et al. 1987; McKee et al.
1993; Crutcher et al. 2010; Crutcher 2012), and both com-
pete against the self-gravity of the gas and strongly affect the
dynamics of collapse. The relative importance of one over
the other may have significant consequences for how pre-
stellar cores collapse, including whether the collapse: (1) is
isotropic, (2) is self-similar, and (3) has magnetic field lines
that shape filamentary structure or turbulence that shape the
field lines.

Turbulent motions in the interstellar medium are known to
be highly supersonic (Larson 1981; Burkhart et al. 2015), with
giant molecular clouds (GMCs) having sonic Mach numbers
Ms ∼ 10, meaning that turbulent pressure greatly exceeds
thermal pressure. The magnetic field is also known to be
important. Often a coherent mean-field can be measured on
large (parsec) scales and density structures in the ISM are fil-
amentary, and diffuse clouds are thought to be assembled by
flows along magnetic field lines (Crutcher et al. 2010). The
relative importance between the turbulent kinetic energy den-
sity Ek,turb and the magnetic pressure PB can be character-

ized by the Alfvénic Mach number MA = (Ek,turb/PB)
1/2,

where super-Alfvénic (MA > 1) signifies turbulence domi-
nance and sub-Alfvénic (MA < 1) signifies magnetic pres-
sure dominance.

pmocz@cfa.harvard.edu

How gravitational collapse occurs in molecular clouds in
our Galaxy is debated both observationally and theoretically.
Observationally, Zeeman measurements of interstellar mag-
netic field strengths give the mass-averaged line-of-sight field,
〈Bz〉M , in the telescope beam. Crutcher et al. (2010) col-
lected Zeeman observations of both atomic and molecular gas
and used Bayesian analysis to infer that the mass-weighted
total field satisfied 〈B〉M ∝ 〈ρ〉0.65, where 〈ρ〉 is the mean
density of the gas in the observed region, in gas denser than
nH = 300 cm−3, almost all of which is molecular. Li et al.
(2015b) confirmed this result by showing that the Crutcher
et al. (2010) data on molecular gas implies 〈B〉M ∝ 〈ρ〉α

with α = 0.64 ± 0.13. A non-turbulent pre-stellar core un-
dergoing homologous contraction with a frozen-in field has

B ∝ ρ2/3 (Mestel 1965; the core must be pre-stellar since
non-ideal MHD effects become important in the vicinity of
a protostar). The observations are also consistent with the
model of fast turbulent reconnection diffusion of the magnetic
field relative to the free fall time of collapse (Lazarian et al.
2012). In their ideal MHD simulations of a turbulent, self-
gravitating gas, Li et al. (2015b) compute the scaling relation
taking density-averaged magnetic fields, as observers would
from Zeeman measurements, and apply observational effects
such as convolution with the beam, for the 100 most mas-
sive clumps in their simulation: they found a result for 〈B〉M
consistent with the observations of Crutcher et al. (2010).
They considered Alfvénic (MA,0 = 1) and super-Alfvénic
(MA,0 = 10) turbulence only, where MA,0 is based on the

http://arxiv.org/abs/1702.06133v1
mailto:pmocz@cfa.harvard.edu
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mean magnetic field.
Alternatively, Tritsis et al. (2015) suggest that the Crutcher

et al. (2010) observations better support a B ∝ ρ1/2 scaling
based on re-estimating observational uncertainties in the de-
termination of cloud and core densities, signaling anisotropic
collapse with dynamically important magnetic fields. Previ-
ous theoretical work (Mestel 1966; Mouschovias 1976b,a) on
the problem of the equilibrium of self-gravitating, isothermal,
strongly magnetized clouds in the ISM finds that the ratio of
magnetic and gas pressure should remain close to unity near

the center of the cloud, Bc ∝ ρ1/2. Axisymmetric calcula-
tions of gravitational collapse in a strong magnetic field un-
der the influence of ambipolar diffusion give Bc ∝ ρκc with
κ < 1/2 (Ciolek & Mouschovias 1994). It should be borne
in mind, however, that κ in the relation between Bc and ρc
may be independent of the power-law index in the observed
〈B〉M (〈ρ〉) relation. Ideal MHD simulations of star form-
ing cores in turbulent environments with weak mean-field
(MA,0 ≫ 1) by Collins et al. (2011, 2012) find a scaling close

to Bc ∝ ρ0.4−0.5
c when examining the distribution magnetic

fields and densities of the gas cells in their simulation. The
scaling relation, simply deduced from a cell-by-cell determi-

nation, is different to the B ∝ ρ2/3 scaling of Li et al. (2015b)
using density-averaged line-of-sight fields. Recent observa-
tions of the massive star forming region NGC 6334 (Li et al.
2015a) on 100–0.01 pc scales shows self-similar hourglass-
like magnetic field structure with B ∝ ρ0.41. We note, how-
ever, that the magnetic field values in Li et al. (2015a) are
inferred using various approximate methods, as opposed to
being directly measured by Zeeman splitting as in Crutcher
et al. (2010), so the errors associated with the slope of the
relation are much larger. Hourglass morphologies, suggesting
dynamically important magnetic fields, have been observed in
a number of other cores as well (Girart et al. 2006; Stephens
et al. 2013; Rao et al. 2009; Tang et al. 2009; Qiu et al. 2014);
however, such morphologies also occur in the simulations of
Li et al. (2015b), which have MA,0 = 1.

These observations and theoretical predictions have impor-
tant implications for the influence and transport of the mag-
netic field during collapse. However, only in recent years
have numerical simulations advanced to the point where the-
oretical predictions can be tested and observational parame-
ters/physics reproduced. This is, in part, due to the extreme
numerical expense of simulating many orders of magnitude
in spatial scale and density range to study the collapse of a
parsec scale cloud down to the AU scale disk where a star is
born.

In this paper, we present novel moving mesh AREPO simu-
lations of the collapse of pre-stellar cores in supersonic, turbu-
lent, isothermal, magnetized environments, exploring the ef-
fect of the mean magnetic field-strength (an invariant of ideal
MHD). These numerical simulations self-consistently resolve
star formation in a large-scale turbulent environment (5pc)
down to a few AU scale and are well-situated to help improve
our theoretical understanding of the star formation process,
interpret observations, and constrain the regimes in which
star formation occurs. The moving mesh numerical frame-
work allows us to efficiently explore a range of initial field
strengths and resolve the core collapse down to AU scales,
relevant for upcoming sub-arcsecond spatial resolution ob-
servations by the Atacama Large Millimeter Array (ALMA;
ALMA Partnership et al. 2015). We are able to resolve the
cores by a factor of > 8 improvement in spatial resolution

compared to similar studies that use adaptive mesh refinement
(AMR) (Collins et al. 2011, 2012; Li et al. 2015b), until the
approximate isothermal condition breaks down and the core
is expected to continue adiabatic collapse on smaller scales.
These simulations are particularly relevant to understanding
the morphologies of Class 0 protostars.

The paper is organized as follows. In § 2 we describe our
numerical methods and simulation setup. We present pro-
jected morphologies in § 3. We investigate the density depen-
dence of the magnetic field in the pre-stellar cores in § 4 and
compute their radially averaged profiles in § 5. We discuss
our findings in § 6 and our main conclusions in § 7.

2. SIMULATIONS

We simulate the collapse of star forming cores under self-
gravity in a turbulently-driven interstellar medium environ-
ment. Our simulations are performed using the moving-mesh
quasi-Lagrangian AREPO code (Springel 2010). The mov-
ing mesh automatically adapts to the geometry of the phys-
ical system, and keeps the mass-resolution of each cell ap-
proximately constant. The code solves the ideal MHD equa-
tions, for which we have recently implemented (Mocz et al.
2016) an unstructured vector potential constrained transport
(Yee 1966; Evans & Hawley 1988) solver to maintain the
divergence-free property of the magnetic field. We accurately
capture shocks via an HLLD (Miyoshi & Kusano 2005) Rie-
mann solver. Self-gravity is calculated using a Tree-Particle-
Mesh scheme (Xu 1995). Turbulence is driven solenoidally in
Fourier space on the largest spatial scales using an Ornstein-
Uhlenbeck process (Federrath et al. 2010; Bauer & Springel
2012; Federrath 2015).

We run four isothermal simulations, representing part of a
GMC, with different initial mean-field strengths, B0. Tur-
bulence is characterized by the sonic Mach number Ms =
vrms/cs = 10. The cloud has Virial parameter: αvir =
5v2rms(L/2)/(3GM0) = 1/2. The physical parameters of the
simulations (assuming a mass per hydrogen of 1.4 amu) can
be scaled as:

L0 = 5.2
(

cs
0.2 km s−1

) (

nH

1000 cm−3

)−1/2 (Ms

10

)

pc

B0 = 1.2, 12, 36, 120
(

cs
0.2 km s−1

) (

nH

1000 cm−3

)1/2
µG

M = 4860
(

cs
0.2 km s−1

)3 ( nH

1000 cm−3

)−1/2 (Ms

10

)3
M⊙

(1)
where L0 is the size of the periodic box with total mass of M .
We scale the simulations to physical units using sound speed

cs = 0.2 km s−1 and hydrogen density nH = 1000 cm−3.1

The simulation initial conditions, ranging from very weak
seed fields to strong fields that surpass the turbulent kinetic
energy density, are summarized in Table 1. The plasma beta
parameter (β = Pgas/PB = 8πPgas/B

2) describes whether
gas pressure (β > 1) or magnetic pressure (β < 1) dominates.
Similarly, the Alfvénic Mach number MA describes whether
the turbulent kinetic energy density (MA > 1) or magnetic
pressure (MA < 1) dominates. Note β = 2M2

A/M
2
s . Each

simulation uses 2563 cells, corresponding to a mass resolution
of 8 · 10−5 M⊙.

In the simulations, we first drive turbulence until quasi-

1 We note our choice of physical scaling makes the cloud fall on the ob-
served line width-size scaling relation for molecular clouds in our Galaxy:

σnt = σpcR
1/2
pc , with σpc ≃ 0.72 km s−1 (McKee & Ostriker 2007).

Here Rpc = (L0/2)/(1 pc) and σnt = Mscs/
√
3 (as in McKee et al.

2010).
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TABLE 1
SIMULATION INITIAL CONDITIONS AND FINAL CONFIGURATIONS.

sim. β0 MA,0 Ms µΦ,0 comment
first core

tcollapse (tff )
α (B ∝ ρα) µΦ

mean-field

aligned within 30◦

106 AU to (·) AU

fraction of gas

at 104 AU scale

with field aligned

within 30◦

1 25 35 10 80 very weak field 0.12 0.64± 0.02 12.7 102.0 0.00

2 0.25 3.5 10 8 weak field 0.16 0.66± .02 16.5 103.7 0.23

3 0.028 1.2 10 2.7 moderate field 0.17 0.67± .01 12.1 104.0 0.35

4 0.0025 0.35 10 0.8 strong field 0.37 0.55± .02 5.8 105.5 0.86

MA,0 = 35 MA,0 = 3.5

400 AU 400 AU  

 

lo
g 1

0
(〈
ρ
〉)

[g
cm

−
3
]

−18

−17.5

−17

−16.5

−16

−15.5

−15

MA,0 = 1.2 MA,0 = 0.35

400 AU 400 AU  

 

lo
g 1

0
(〈
ρ
〉)

[g
cm

−
3
]

−18

−17.5

−17

−16.5

−16

−15.5

−15

FIG. 1.— Density-averaged line-of-sight magnetic field and projected gas densities zoomed in on a core in each of the simulations. The arrow in the top left
represents the initial magnetic field.
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MA,0 = 35 MA,0 = 3.5

 

 

lo
g 1

0
(〈
ρ
〉)

[g
cm

−
3
]

−21

−20.5

−20

−19.5

MA,0 = 1.2 MA,0 = 0.35

 

 

lo
g 1

0
(〈
ρ
〉)

[g
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−
3
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−21

−20.5

−20

−19.5

FIG. 2.— Density-averaged line-of-sight magnetic field and projected gas densities of the entire simulation domain (5.2 pc) for the 4 simulations. Each box is
centered on the corresponding pre-stellar cores shown in Fig. 1.
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FIG. 3.— (Top) Deviation of the mean-magnetic field averaged over some
length-scale around the core from the large (pc) scale field. (Bottom) Fraction
of gas inside a sphere of radius the length scale with the magnetic field aligned
within 30 degrees of the large-scale mean-field value.

steady state is established after a couple of eddy-turnover
times. Then, we turn on self-gravity (continuing to drive tur-
bulence) which eventuates in the collapse of cores on the order
of the free-fall time. We follow the collapse for a fraction of
the free-fall time, until we form cores that are resolved at the
level of a few AU at their centers. We stop the simulations
at this point because the time-stepping becomes prohibitively
expensive and we lack mass-resolution to further resolve the
collapse. Furthermore the isothermal assumption is expected
to break down beyond these scales, because opacity increases
and is able to trap heat and hence the collapse continues adia-
batically. Our simulation strategy is to accurately resolve the
first core that forms to small (AU) scales. The core centers
are identified by determining local minima in the gravitational
potentials. Table 1 lists the times at which these pre-stellar
cores form which we analyze. A discussion on the other (less-
collapsed) cores that result from turbulent fragmentation are
discussed in Appendix A.

The mass-to-flux ratio is parametrized in dimensionless
form as µΦ,0 ≡ M0/MΦ (MΦ is the magnetic critical mass
that can undergo gravitational collapse) assesses the relative
strength of the magnetic field and gravity. For the box in
its initial uniform, static state, it can be defined as µΦ,0 ∼
√

5π/3MA,0 (Equation 27 of McKee et al. 2010). Thus
our four simulation initial conditions are characterized by
µΦ,0 = 80, 8, 2.7, 0.8. The strong-field box is estimated to
be slightly sub-critical, but we find collapse if turbulence is
switched on (the core in this case forms later, at ∼ 0.4tff , as
opposed to ∼ 0.2tff in the weaker-field simulations). Being
able to form a core in the sub-critical case is consistent with
the picture of reconnection diffusion, which acts to reduce the
mass-to-flux ratio in the core (Lazarian et al. 2012).

Our simulations are similar to the setup of Collins et al.
(2011, 2012) and Li et al. (2015b). However, Collins et al.
(2011, 2012) assume a very weak magnetic field. Li et al.
(2015b) has one weak-field and one moderate (MA,0 = 1)
setup. Furthermore, these previous AMR simulations do not
resolve the collapse down to a few AU scales: the effective
resolutions of Collins et al. (2012) and Li et al. (2015b) are
120 AU and 500 AU respectively. Our smallest cells have an

effective diameter of d = 2 (3V/(4π))
1/3

≃ 4 AU (where V
is the volume of the cell), corresponding to adding ≥ 3 extra
refinement levels to these AMR simulations.

AREPO uses a refinement/derefinement strategy to ensure
all cells maintain their initial mass to within a factor of 2. Ad-
ditionally, further refinement is used to ensure the Truelove
criterion is met to accurately resolve the local Jeans length

λJ =
(

c2sπ/(Gρ)
)1/2

(Truelove et al. 1997) and prevent ar-
tificial fragmentation, whose implementation is described in
Becerra et al. (2015).

3. PROJECTIONS

Fig. 1 shows density-averaged line-of-sight magnetic field
and column densities, zooming in on a 3000 AU × 3000 AU
region of the densest collapsed core in each simulation
(projections for the entire simulation domain are shown in
Fig. 2). The mean-field points in the horizontal (x) direc-
tion. The strong-field case (MA,0 = 0.35) shows highly-
elongated structure (perpendicular to the mean-field direction)
and a classical hourglass magnetic field morphology aligned
with the mean-field direction. The weak-field simulations
(MA,0 > 1) show more chaotic magnetic field morphology
dictated by turbulence, with pinches and clumps. Fig. 3 shows
the deviation in the mean magnetic field (〈∆θmean-field〉) from
its large (pc) scale direction as a function of scale: alignment
becomes poorer with weaker mean-field strengths. The de-
gree of alignment can remain tight to the smallest scales in the
strong mean-field regime. Fig. 3 also shows a related quantity:
the (volume) fraction of gas within a sphere of radius r (the
length scale) that has a magnetic field aligned within 30 de-
grees of the large-scale mean-field value (f∆θmean-field<30◦ ).

4. DENSITY-SCALING OF THE MAGNETIC FIELD

The relationship between density and magnetic field is im-

portant for theoretical models and observations. B ∝ ρ2/3

is predicted for collapsing clouds with weak magnetic fields
(i.e., gravitational energy dominating magnetic energy). The
same scaling is also predicted for flux-frozen, isotropic col-
lapse in general. Lazarian et al. (2012) interpreted the ob-

served B ∝ ρ2/3 from Zeeman measurements as a signature
of reconnection diffusion being most efficient at lower den-
sities (i.e. before collapse proceeds) in the weak field limit.
In contrast, theoretical predictions for anisotropic contrac-
tion models, often expected in the strong field limit, predict

a weaker scaling: B ∝ ρ1/2 (Tritsis et al. 2015).
We test the density magnetic field scaling relationship us-

ing our high dynamic range AREPO simulations. We plot
the occupation of the gas in the density/magnetic field phase
diagram for our simulations in Fig. 4. The collapse occurs
where the gas is compressed by turbulence above the criti-
cal density ρcrit = 〈ρ〉M2

s/3 which is defined as the density
at which the background level of turbulent pressure is sub-
dominant to the gas pressure (Krumholz & McKee 2005; Li
et al. 2015b). That is, the critical pressure is obtained by

equating Pturb = 1
3
〈ρ〉v2rms with Pgas = ρc2s . Note this is
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FIG. 4.— Magnetic field/density phase diagram for the four simulations. The yellow line shows the average field for each logarithmic density bin. The color-

scale shows the mass of gas in each bin of the phase diagram. The red dashed line shows a ρ1/2 scaling (with normalization such that β = 1) while the red

solid line shows a ρ2/3 scaling of isotropic collapse. The white ‘x’ marks the value of the initial magnetic field strength and density in the box. Also marked is
the critical density threshold ρcrit where the gas pressure equals the background turbulent pressure. Finally, an approximate conversion from density to a length

scale is shown in the collapsed region, based on a ρ(r) = c2sG
−1r−2 profile. The inset shows the PDF of the collapsed gas density.

not a strict condition for collapse, but is a necessary require-
ment. Fig. 4 shows a moving-average of the B-ρ correlation
(yellow). The best-fit slope with 95 per cent confidence inter-
vals to relation at ρ > 500ρcrit are listed in Table 1. We find
that when the mean-field is subdominant (MA,0 > 1), the
collapse follows an approximately isotropic collapse, which

is characterized by B ∝ ρ2/3. But in the strong-field case

(MA,0 = 0.35) the collapse is anisotropic with B ∝ ρ1/2

and β ≈ 1.
In Fig. 4 we also show inset-plots of the probability distri-

bution function (PDF) of the gas density, which exhibits a log-
normal distribution (indicative of turbulence, see Vazquez-
Semadeni et al. 1997; Burkhart et al. 2009; Federrath et al.
2008) and a ρ−3/2 powerlaw tail (indicative of gravitational
collapse see, Kritsuk et al. (2007); Collins et al. (2012)). We
find the critical density corresponds to the transition point be-

tween lognormal (diffuse turbulent gas) and power-law (self-
gravitating) PDFs in these AREPO simulations, as observed
also in Li et al. (2015b). Krumholz & McKee (2005) showed
that the critical density was the condition for a clump to be
self-gravitating. Recently Burkhart et al. (2016) worked out
an analytic theory for the transition point between lognormal
to powerlaw (which is termed the ‘post-shock density’ in that
work).

5. COLLAPSE PROFILES

Fig. 5 shows the volume-weighted core profiles from our
simulations. The gas pressure, and hence density (since
P = ρc2s , cs a constant), follow a r−2 power-law, as pre-
dicted by the simple analytic theory of isothermal spherical
collapse which does not consider turbulence or the magnetic
field (Larson 1969; Shu 1977). This scaling is seen even in
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FIG. 5.— Radial profiles of the gas pressure, magnetic pressure, kinetic energy density (also its non-radial component), and gravitational potential energy
density for the four simulations. These profiles have been calculated using volume-weighted averages of gas cells contributing to radial bins. Also shown is the

ρ(r) = c2sG
−1r−2 scaling, and the critical pressure Pcrit = ρcritc

2
s .

our strong magnetic field simulation. This allows us to de-
fine a relation between the density in the core and physical
scale as: ρ(r) = c2sG

−1r−2. Note that the normalization
(multiplicative prefactor) of this relation in our simulations is
very close to unity, which is different from the non-magnetic,
non-turbulent singular isothermal sphere, which has normal-
ization 1/(2π) ≃ 0.16. Fits to the normalizations for our
four (strong→weak) simulations are: 0.46, 0.60, 0.83, 0.58
(95 per cent errors to the fits are ±0.1). The normalization is
somewhat close to the similarity solutions of spherically sym-
metric collapse solved numerically by Penston (1969); Larson
(1969), which have normalization 8.86/(4π) ≃ 0.71. The
core profiles extend all the way out to the critical pressure
value Pcrit = ρcritc

2
s (beyond this the large-scale turbulent

pressure exceeds the gas pressure; i.e., the size of a thermally
supported core is about the sonic length). In all cases, we find
the outer part (∼ 104 AU) of the profile has a plasma-beta of
β ∼ 1 (note the ratio of blue and green lines in the Figure

gives β). This is to be expected for MA,0 > 1 since the local
Alfvén Mach number in the turbulence is of order unity, so
PB ∼ ρσ2

nt ∼ ρc2s at the sonic length. For MA,0 = 0.35, the
turbulence does not significantly affect the field, so B remains
nearly constant until the gas pressure grows to the point that
it is comparable to the field pressure; thereafter, the collapse

proceeds anisotropically with B ∝ ρ1/2, thus β remains close
to unity all the way to the center of the core. However, if the
mean magnetic field is subdominant to the kinetic energy den-
sity (MA,0 > 1) then the magnetic field grows faster towards

the center (since B ∝ ρ2/3). We also plot the kinetic energy
density profile (and its non-radial component), which domi-
nates over the gas pressure. Our cores have not formed any
disks on these scales (there is no evidence of a Keplerian ro-
tation profile); the non-radial component of the kinetic energy
density originates from the large-scale turbulent motions. In
weak mean-field cases (MA,0 > 1), the magnetic field, grow-
ing faster than the other quantities towards the center, is in
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near equipartition with the kinetic energy density at the cen-
ter. The collapse is in approximate Virial equilibrium, which
is an assumption used in the turbulent core model (McLaugh-
lin & Pudritz 1997; McKee & Tan 2003) and in the turbu-
lent collapse model of Murray & Chang (2015). It should
be noted these latter authors considered cores that are domi-
nated by turbulent pressure rather than thermal pressure. For

such cores, McKee & Tan (2003) found an r−3/2 profile from
observations of star-forming regions, and Murray & Chang
(2015) inferred such a profile in the vicinity of a protostar
from theory.

The normalized mass-to-flux ratios in our cores have
evolved from the initial value of the box to: µΦ,0 : 80 → 12.7,

8 → 16.5, 2.7 → 12.1, 0.8 → 5.8 at a core-size of 104 AU.
This is consistent with reconnection diffusion in our simu-
lations. The mass-to-flux ratio cannot increase under flux-
frozen, ideal-MHD conditions. Our strong-field simulation is
originally subcritical µΦ,0 = 0.8, and the simulation should
not allow collapse unless reconnection diffusion is present,
which leads to a mass-to-flux ratio above unity. In the cal-
culation of the mass-to-flux ratio, the volume-averaged mag-
netic field in a spherical region of diameter 104 AU is used.
We note that the transition from sub-critical ISM clouds to
super-critical cores is observed via 21-cm, OH and CN Zee-
man observations and that no sub-critical cores are observed
in the sample of Crutcher et al. (2010).

Reconnection in our numerical simulations is enabled by
numerical resistivity, but in this fast turbulent reconnection
diffusion regime the simulation mimics the actual physical
process because the reconnection rate is independent of the
strength of the resistivity (Kowal et al. 2009). Previous stud-
ies have found mass-to-flux ratios numerically converged with
resolution (Li et al. 2015b), supporting the idea that a simula-
tion with resolution such as ours captures the physical process
accurately.

6. DISCUSSION

We have presented basic scaling relationships of density
and magnetic field, and radial profiles, obtained from novel
high-resolution simulations, important for both theoretical
models and observations of star formation. In a sense, the
simulations advance the simple spherical, self-similar isother-
mal analytic collapse model (Larson 1969; Shu 1977), with
the inclusion of full 3D effects of magneto-turbulence. The
classic r−2 radially-averaged pressure profile scaling is still
recovered in all cases, with similar normalization across sim-
ulations. The same r−2 scaling is seen in simulations of
turbulence-dominated, nearly isothermal atomic cooling halos
in Becerra et al. (2015). Our simulations do not show inside-

out collapse, which would lead to a r−3/2 profile (Shu 1977).
We point out that we stop the simulations before we would
expect stars to form, meaning, our cores are pre-stellar. Thus

we do not yet see a r−3/2 scaling in the vicinity of the star
(inside the sphere of influence, after the star forms), as pre-
dicted by turbulent models for star formation in compact mas-
sive clouds from non-hydrostatic initial conditions of Murray
& Chang (2015), and as observed in the simulation setup of
Murray et al. (2015).

Collapse in the turbulent medium occurs where the gas
pressure exceeds the background turbulent pressure; i.e.,
above the critical density ρcrit. At these outer-scales of col-
lapse, we find the plasma beta is always near unity regardless
of mean-field strength, indicating equipartition between the

magnetic and gas pressures in the turbulent environment. A
plasma beta near unity occurs in the MA,0 > 1 simulations
because in the turbulent (uncollapsed) environment the mag-
netic field and density are not well correlated, instead the lo-
cal Alfvén Mach number in the turbulence is of order unity,
so at the sonic length PB ∼ ρσ2

nt ∼ ρc2s . In the strong-field
regime, the field strength is not affected much by turbulence,
so B remains nearly constant until the gas pressure grows to
the point that it is comparable to the field pressure (which hap-
pens at the tail of the log-normal distribution of density which
develops from turbulence).

Anisotropic collapse with B ∝ ρ1/2 is exhibited in the
sub-Alfvénic simulation, and we form cores with a classic
hourglass-like magnetic field morphology, similar to NGC
6334 (Li et al. 2015a). But when the mean-field is weak

(MA,0 > 1), the collapse is spherical and hence B ∝ ρ2/3,
which means that the plasma beta decreases toward the cen-

ter. Interestingly, due to the B ∝ ρ2/3 scaling, the weak-field
case actually allows for a stronger magnetic field in the core
than in the strong-field (MA,0 = 0.35) case, where the mag-
netic field does not rise as fast with density. Constant plasma
beta self-similarity in the collapse is broken in the weak-field
case. There are two clear regimes of magnetic field evolution
we observe, but we do not mean to conclude or imply that the
transition is very sharp, occurring exactly at MA,0 = 1.

Even if the initial large-scale mean-field is weak, turbu-
lence amplifies it considerably prior to collapse. We attribute
the decrease in plasma beta in the super-Alfvénic simula-
tions as a result of the small-scale turbulent dynamo pro-
cess. Our simulations show the initial plasma beta evolves
as: 〈β〉 : 0.0025 → 0.0025, 0.028 → 0.025, 0.25 → 0.064,
25 → 3.2; i.e., the initial plasma beta shrinks in the super-
Alfvénic cases. The average plasma beta is not increased sig-
nificantly in the strong mean magnetic field run by turbulence.
We note all simulations are driven with the same amplitude,
with sonic Mach number 10. The small-scale turbulent dy-
namo is very efficient in amplifying the magnetic field and
may in fact be more efficient in the super-Alfvénic limit (Cho
et al. 2009).

As the turbulent simulations evolve and collapse, magnetic
field is generated by the stretching and twisting of magnetic
field lines and through flux conservation. However, turbu-
lence also acts to remove field lines from collapsing regions
via reconnection diffusion and the magnetic field changes its
topology in just an eddy turn over time (Lazarian & Vish-
niac 1999; Vishniac et al. 2003; Lazarian et al. 2004). Once
rapid collapse begins, reconnection diffusion, which depends
only on the properties of turbulence/turbulence amplitude, re-
moves magnetic field from the contracting clouds in compe-
tition with the amplification the field experiences due to con-
traction and dynamo processes. Future studies will determine
how fast reconnection diffusion is compared to the dynamo
process in such simulations in order to quantify the competi-
tion between flux removal and field amplification. Our simu-
lations do show evidence for reconnection diffusion through
the increase of the mass-to-flux ratios in the cores (§ 5).

We note that our results should be as applicable to obser-
vations as they are to theoretical predictions. In all the sim-
ulations, we transformed micro-Gauss level large-scale fields
into milli-Gauss level core-scale fields, in agreement with var-
ious observational estimates of field-strengths (Crutcher et al.
2010; Girart et al. 2006, 2009; Stephens et al. 2013; Houde
et al. 2016). Despite different scaling relationships and core
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morphologies between the sub- and super-Alfvénic simula-
tions, all our simulations reproduce similar magnetic field
strengths on core scales. The star formation process is im-
printed with the self-similar nature of turbulence and gravita-
tional collapse despite different initial environmental condi-
tions. What sets formation with different mean-field strengths
apart is the orientation of the mean-field on various length
scales relative to the large-scale value (Fig. 3). The orienta-
tion remains well-preserved to 100 AU scales (ALMA reso-
lution) only in our strong-field simulation (MA,0 = 0.35). If
the magnetic field is moderately strong (MA,0 & 1) then the
mean-field only remains aligned to scales of 10000 AU (res-
olution of the Combined Array for Research in Millimeter-
wave Astronomy; CARMA). More precisely, the field re-
mains aligned to less than 30 degrees from its large-scale
value down to scales of 102.0 AU, 103.7 AU, 104.0 AU,
105.5 AU for our four (strong→weak) simulations, as listed
in Table 1.

Fig. 3 shows the angle of magnetic field alignment averaged
over the core as a function of scale, as well as the fraction
of gas in a given radius that is aligned within 30 degrees of
the large-scale mean-field. Table 1 also lists the fraction of
gas aligned within 30 degrees of the large-scale mean-field on
a scale of 10000 AU. The field is strongly correlated in the
large-scale strong-field case and virtually uncorrelated if the
large-scale mean-field is very weak. The correlation is in be-
tween for the intermediate mean-field cases. (Note the curves
for MA,0 = 1.2 and MA,0 = 3.5 cross each other: there is a
certain amount of variance to be expected in the correlation as
function of MA,0 for a large population of cores, which we
do not have the statistics to probe in our current simulation
because we focus on resolving single cores.) Observationally,
Li et al. (2009) found a strong correlation between orientation
on the 10000 AU scales and large scales, whereas Hull et al.
(2014) did not for smaller scales. However, there is some
ambiguity on the latter since it could be confused by toroidal
wrapping in a disk, and CARMA also only provides a few in-
dependent polarization vectors, not enough to determine the
mean-field direction with robust statistics. This makes ALMA
paramount for the study of the importance of magnetic fields
on scales less than 10000 AU.

We note that the magnetic field, which is found to be al-
ways strong in the core regardless of the large-scale value (lo-
cal Alfvénic Mach number is order unity in the core), has a
significant effect on the angular momentum of the accreting
gas and thus on the properties of circumstellar, including pro-
toplanetary, disks, that are to form. Future studies resolving
the core collapse beyond the isothermal collapse stage will
help explain the ultimate fate of the protostar. The present
study serves as providing useful initial conditions to this prob-
lem. An interest of study is the ‘magnetic braking catastro-
phe’, where magnetic fields can in theory prevent the for-
mation of circumstellar discs around young stars (e.g., see
Wurster et al. (2016) and references therein). Our chaotic
magnetic field morphologies in the weak mean-field simula-
tions perhaps could be one way around the magnetic braking
catastrophe, through the effects of flux loss via reconnection
diffusion. The influence of turbulence in reducing magnetic
torques has been examined in a number of papers (Seifried
et al. 2012; Joos et al. 2013).

Our B ∝ ρ2/3 scaling relation for the weak-field simula-
tions is in agreement with the Zeeman observations of dif-
fuse and molecular clouds of Crutcher et al. (2010), which

see 〈B〉M ∝ 〈ρ〉0.65. We note, however, that the relation-
ship between B and ρ in our simulations, as indicated by the
moving-average fits (yellow lines) in Fig. 4, shows the slope
of the correlation transitioning from a flatter-than-2/3 value in
the turbulent medium to the 2/3 slope in the collapsed cores.

The tight scaling of B ∝ ρ2/3 is seen on scales of r = 103-
10 AU (i.e., ρ > 500ρcrit). The slope is actually closer to
B ∝ ρ0.5 in the collapsed-regions with ρcrit < ρ < 500ρcrit,
similar to the simulations of Collins et al. (2012). That is, we
find that the slope is actually shallower than 2/3 on scales of

r = 103-104 AU due to the transitioning between the turbu-
lent medium and cores. These scales are more relevant for
the clump sizes observed in Crutcher et al. (2010) for deduc-
ing the observational scaling relation. Li et al. (2015b) car-
ried out a more thorough analysis of reproducing the Crutcher
et al. (2010) relation adding in all of the observational effects,
including convolution with a beam size of ∼ 5000 AU. Tak-
ing density-averaged (as measured by Zeeman observations)
as opposed to volume-averaged magnetic field strengths, Li
et al. (2015b) found a value of α consistent with 0.65 for
a moderately strong initial magnetic field (MA,0 = 1) but
only marginally so for a weak initial field (MA,0 = 10). In
contrast, the B–ρ relation measured on a cell by cell basis
on these scales has a flatter power. This demonstrates the
importance of adding observational effects to simulation re-
sults when interpreting data. Similarly, Li et al. (2015b) show
that in the calculation of the mass-to-flux ratio of clumps, the
average area-weighted (i.e., flux/area) field is somewhat less
than the observed mass-averaged field, so that the actual mass
to flux ratio is about 0.7 times the value inferred from line-
of-sight values, rather than (0.25-0.5) times the line-of-sight
value, as is often used. Again this signifies the importance of
putting simulation data through an observational pipeline.

Our simulations also demonstrate the importance of hav-
ing a high-dynamic range calculation. The theoretically ex-

pected scaling of B ∝ ρ2/3 in magnetic field density phase-
space is accurately resolved by being able to simulate scales
of r = 103-10 AU; i.e., convergence of the slope of the re-
lation is achieved on the smallest scales; on larger scales the
slope is flatter as it transitions to the uncollapsed background
turbulent environment. In contrast, previous AMR simula-
tions of this type have resolved down to scales of 120 AU
Collins et al. (2012) and 500 AU Li et al. (2015b). Our sim-
ulations are expected to have less numerical magnetic recon-
nection (which can remove magnetic flux and affect the scal-
ing relation) as well as significantly reduced advection errors
(which can be quite significant in supersonic flows) due to the
quasi-Lagrangian nature of the moving-mesh formulation.

Comparing with the results of various observation of the
ISM (e.g. Crutcher et al. 2010 and Li et al. 2015a), our sim-
ulations suggest that MA,0 ∼ 1 may be typical in many ISM
regions (where ‘∼’ means the coefficient of the relation is un-
constrained by an order of magnitude). The magnetic field is
often observed to be coherent on large-scales and the density
structure is filamentary (thus we do not expect MA,0 ≫ 1).
Our simulations suggest that the existing observations for star
formation provide evidence that the collapse occurs in both
the regimes MA,0 & 1 and MA,0 . 1. The former is sup-

ported by 〈B〉M ∝ 〈ρ〉0.65 Zeeman splitting observations of
dense molecular cloud clumps (Crutcher et al. 2010) while
the latter is supported by multiple observations of NGC 6334,
which show self-similar, aligned magnetic field structure from
100 pc to 0.01 pc scales with B ∝ ρ0.41 (Li et al. 2015a). This
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is assuming that the determination of the slope of the magnetic
field density relation in Li et al. (2015a) is robust to the indi-
rect methods used. Note, we do not claim that the transition
between regimes occurs as a sharp transition at MA,0 = 1,
just that two different regimes of magnetic field evolution (un-
der the ideal MHD assumptions) exist.

Regions in the ISM with stronger magnetic fields may have
suppressed star formation. This is seen in the strong-field box,
which takes longer to collapse and form the first core because
it is initially slightly sub-critical and requires turbulent recon-
nection to reach criticality to collapse under self-gravity. Even
in the other simulations, the time of the collapse of the first
core correlates weakly with magnetic field strength, because
the magnetic field provides extra pressure support against col-
lapse. This effect may have relevance for the star formation
in the galactic center, where star formation is observed to be
suppressed and the magnetic field is strong: 500 µG–5mG
(Pillai et al. 2016; Kauffmann 2016).

We discuss the caveat that turbulent collapsing simulations
such as ours generate hundreds of cores over a single free-fall
timescale. However, our simulation strategy was to resolve
features on < 100 AU scales (relevant for ALMA observa-
tions) and therefore we did not impose any minimum spatial
resolution or sink particles. This comes with a trade-off, how-
ever: the timestep of the simulation decreases exponentially
as the first core forms, thus we are only able to resolve (at
< 100 AU) the first-prestellar core that collapses, which hap-
pens early on, at < 0.4tff . We are not able to say much about a
large statistical sample of collapsed cores in the present work,
because most cores have not yet collapsed to such spatial
scales. Importantly, however, the collapsed cores we inves-
tigate are not outliers from a powerlaw distribution of masses,
as they all have similar masses. (Their core masses are also
not extreme compared to the masses of the other turbulently
fragmented cores in the box which are at an earlier stage of
collapse; see Appendix A.). It is plausible that certain geome-
tries (e.g. relative orientation between the magnetic field and
angular momentum vector) would collapse first in a turbulent
medium, so there could be other types of bias present in the
types of cores that collapse first. We defer analysis of a statis-
tical sample of cores to upcoming future work, in which we
will modify our simulation strategy and trade-off resolution
and the capture of the exact collapse process with the use of
sink particles.

7. CONCLUSIONS

We have simulated the formation of pre-stellar cores in a su-
personic, turbulent, magnetic interstellar medium under self-
gravity, resolving the initial isothermal collapse phase down
to a few AU, relevant for future ALMA polarization obser-
vations of Class 0 protostars. We studied the effects of the
mean-field strength, and have arrived at the following main
conclusions:

• If the turbulent kinetic energy density of the ISM
dominates over the mean-field magnetic pressure, then
collapse occurs approximately isotropically on small

scales (r < 104 AU), with B ∝ ρ2/3. But in the
case of strong large-scale magnetic field, the collapse

is anisotropic with B ∝ ρ1/2.

• On the larger scales of collapsed cores (r > 104 AU),
the scaling of magnetic field with gas density (looking
at it on a simulation cell-by-cell basis) is flatter, close

to B ∝ ρ1/2 in all cases, as the gas transitions to the
turbulent background medium. The results of Li et al.
(2015b) show that if one instead looks at the scaling
of the density-averaged magnetic field (convolved with
the telescope beam) 〈B〉M with 〈ρ〉, the slope of the
correlation is steeper, closer to 0.64. Crutcher et al.
(2010) observe cores have 〈B〉M ∝ 〈ρ〉0.65 via Zeeman

splitting measurements on scales of r > 104 AU. This
highlights the importance of modeling observational bi-
ases when interpreting physical results and comparing
observations with simulations.

• Our simulations of collapsing pre-stellar cores all fol-
low similar radially-averaged r−2 profiles (as predicted
by analytic spherical isothermal collapse model), re-
gardless of mean-field strength. In the weak-field case,

even though the collapse is isotropic, the B ∝ ρ2/3

scaling means the collapse is not self-similar in the
sense that β ≡ Pgas/PB decreases towards the cen-
ter and the Alfvénic Mach number also drops with ra-
dius. These quantities are approximately constant in
the case of strong-field collapse. Collapse occurs in ap-
proximate Virial equilibrium.

• Regardless of cloud scale mean-field strength, the outer
regions (∼ 104 AU) of the cores have β ∼ 1 and the
magnetic field reaches equipartition with the thermal
energy, which in turn is comparable to the average ki-
netic energy density in the simulation box.

• The magnetic field in the center of the cores is actually
slightly stronger (by about a factor 3 on 100 AU scales)
if the large-scale mean-field is weaker than the turbulent

kinetic energy density because of the B ∝ ρ2/3 scaling

as opposed to B ∝ ρ1/2.

• The mass-to-flux ratios in our cores increase by a fac-
tor of a few from the large-scale value, indicating fast
reconnection diffusion.

• If the large (pc) scale mean-field is subdominant to
the turbulent kinetic energy density (MA,0 > 1), then
the magnetic field on 100 AU core scales has uncorre-
lated direction with the mean-field (although may still
be correlated on larger core scales ∼ 0.1 pc). If the
field is strong, the field direction remains correlated
on all scales, and has a classic hourglass-like morphol-
ogy. Correlation on intermediate scales (10000 AU) is
a function of MA,0, ranging from strongly correlated
(MA,0 = 0.35) to virtually no correlation (MA,0 =
35) as shown in Fig. 3. The fact that correlation ex-
tends to smaller scales as MA,0 decreases makes future
ALMA observations very useful for constrainingMA,0

of the ISM.

• In terms of upcoming directions/opportunities in this
subfield, observationally quantifying the scale at which
the orientation correlation drops in a statistically sig-
nificant sample of molecular cloud cores will be very
useful in improving our knowledge of the ISM.

P.M. is supported by the NASA Earth and Space Science
Fellowship. B.B. is supported by the NASA Einstein post-
doctoral fellowship. The research of C.F.M. is supported in



11

part by NSF grant AST-1211729 and NASA TCAN grant
NNX-14AB52G. The authors thank Chat Hull, Alex Lazarian
and Pak-Shing Li for valuable discussions and reading of the
manuscript. Computations were run on the Odyssey cluster
supported by the FAS Division of Science, Research Comput-

ing Group at Harvard University.

REFERENCES

REFERENCES
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APPENDIX

TURBULENT FRAGMENTATION IN SIMULATIONS

Turbulent fragmentation leads to the collapse of hundreds of cores inside our simulation volume, as has been seen previously
(Collins et al. 2011, 2012; Li et al. 2015b). In this paper, we have focused our simulation efforts on capturing the collapse of
the first core that forms. Here we compare some of the properties of these cores to the larger samples of pre-stellar cores in our
boxes, which are at an earlier stage of collapse (typically the core has only collapsed to scales of 103 AU). Cores are identified
by selecting local maxima of the density field within a radius of 1500 AU.

The analysis allows us to learn about how wide spread is the existence of hourglass figures. Fig. 6 shows the field morphologies
for the 9 most-collapsed cores in each of the simulations. We see that in the case of a strong magnetic field (MA = 0.35) the field
lines align well with the mean-field direction. The morphologies are mostly linear on this scale, with some amount of pinching
towards the core, and are likely to form hourglass shapes as the cores continue to collapse. But in the case of the simulations
where the turbulent kinetic energy dominates the magnetic field, the morphologies can be quite chaotic on scales of 1000 AU,
even in some of the less-collapsed cores. Therefore, the hourglass shape may be uncommon in such environments. The possibility
of hourglass shapes is not excluded, however: a few cores show fairly linear morphologies with small amount of pinching towards
the core center, which may end up evolving into an hourglass shape.

We also look at how the first-collapsed cores in each simulation compare to a larger sample of turbulent fragmentation cores.
Fig. 7 shows the radial density profiles of the 30 most-collapsed cores in each of the simulations. We see that there is variation
among the normalization of the core profiles (as expected, since the turbulent fragmentation process is known to yield a powerlaw
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MA,0 = 35 MA,0 = 3.5

MA,0 = 1.2 MA,0 = 0.35

FIG. 6.— Magnetic field and density projections of the 9 most-collapsed cores in each of the simulations. Similar to Fig. 1. When the field is strong
(MA = 0.35) the magnetic field aligns well with the mean-field and shows simple structure. In the other cases, there is evidence for chaotic field morphology
even in some of the less-collapsed cores.

distribution of masses). The first-collapsed cores are not outliers in terms of their total mass. From Fig. 7 we see that some of
the less-collapsed cores have a density profile shallower than ρ ∝ r−2 towards their centers; but reach ρ ∝ r−2 as they collapse
further. This is true regardless of the mean-field strength.
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FIG. 7.— Radial profiles of the density (plotted as gas pressure Pgas = ρc2s ) for the 30 most-collapsed cores in each of the simulations. Similar to Fig. 5. The
most collapsed core in each simulation, which we analyzed in this work, is plotted in blue.


