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We investigate the properties of chiral operators in N = 2 superconformal theories. In 
particular, we study the spectral flow of such models under a one-parameter family of twists 
generated by the U(1) current, and use this to deduce various properties of the ring of chiral 
primary fields. We furthermore investigate under what conditions a given superconformal theory 
can be represented as the fixed point of an N = 2 Landau-Ginzburg theory and show how to 
determine the superpotential. We also investigate the coset models of Kazama and Suzuki and 
find a simple cohomological characterization for the elements of the chiral primary ring. Moreover 
we show how some of them can be represented as LG models. 

1. Introduction 

The conformal  models in two dimensions  possessing N = 2 world-sheet supersym- 

metry  form a special class of conformal  theories, that is, they comprise the only 

k n o w n  solut ions to string theory at the perturbat ive level. It has also recently 

become clear from the connect ion  between N = 2 theories, renormal izat ion group 

flows and  singulari ty (catastrophe) theory [1-3] that the N = 2 theories are, in a 

sense, the simplest  types of conformal  theories. 

We will first review and extend results of refs. [4-6] exhibit ing some general 

propert ies  that follow from the presence of the N = 2 superconformal  symmetry.  In  

sect. 3, we establish a deep connect ion  between cohomology rings and  the ring of 

chiral  p r imary  operators. We then use these results to discuss certain aspects of 

N = 2 L a n d a u - G i n z b u r g  models that are based on singularity theory. In  particular,  

we f ind the condi t ions  for an N = 2 superconformal  model to be representable as 

the fixed po in t  of a L a n d a u - G i n z b u r g  theory. We next discuss some aspects of the 
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coset models constructed by Kazama and Suzuki [7]. We relate the chiral primary 
states in these models to affine Lie algebra cohomology classes represented by 
harmonic forms and show that (at least) a subclass of the Kazama-Suzuki models 
can be represented by Landau-Ginzburg models. We show that in some cases the 
corresponding superpotentials have a relation to the cohomological properties of the 
coset manifold. In a subsequent paper we will elaborate on this connection [8]. In 
the appendix we prove a non-cancellation theorem needed in the study of chiral 
rings in coset models. 

2. Spectral flow in N = 2 superconformal theories 

The N = 2 superconformal algebra has a very rich structure [4-6]. Of particular 
importance is the anticommutation relation between the two supersymmetry genera- 
tors, 

{GT-,G +} = 2 L r + s - ( r - s ) J r + s + ( c / 3 ) ( r Z - 1 / 4 ) 6 r + s , O  . (2.1) 

Here, J denotes the U(1) current of the N -= 2 algebra. This formula is valid for 
both NS and R sectors, the difference between the two being only that in the NS 
sector r, s run over half-integral values and in the R sector over integral values. The 
other non-trivial commutation relations of the N = 2 algebra are 

[ Lm, L,,] -- ( m - n ) Lm+ . + ( c /12)m(  m 2 -  1)8m+,,0, 

[Ln, G, +] = ( n / 2 -  r ) G + , ,  [L, ,  Jm] = -mJm+n, 

[Jm, Jn]=(C/3)mSm+,,O, [J,,Gr ±] = +Gn±+r. (2.2) 

The unitarity constraints for the representations of the N = 2 algebra have been 
studied in great detail in ref. [4], and we will review some of this work below. 

In this paper, all the models will be assumed to have a type (2, 2) sypersymmetry, 
that is, there is an analog of (2.1) and (2.2) for both left- and right-movers. Some of 
our remarks will however apply equally well to type (2,0) models. We will in 
addition assume that the left- and right-moving U(1) charges of each state (qL, qR) 
satisfy 

qL -- qR ~ Z.  (2.3) 

This condition is not satisfied for all models with (2, 2) supersymmetry. A simple set 
of examples where this is not satisfied is provided by the non-kiihlerian models of 
ref. [7] (corresponding to coset models G / H  with rank G > rank H, for example 
G = SU(3), H trivial). 

Left-chiral states are states in the NS Hilbert space satisfying 

G+1/214,) = 0,  (2.4) 
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and  anti-chiral  states are defined similarly by replacing G + with G . Similarly, for 
r ight-chiral  states, we replace G with G. (Note  that  we are using the terms chiral 
and  anti-chiral  in the sense of  N = 2 supersymmetry . )  M a n y  of the arguments  in this 
p a p e r  are identical  for left- and right-movers,  and we will only concentra te  on the 
le f t -movers  (in particular,  we will denote  by  h only the lef t -moving conformal  
d imens ion  in the following). 

Primary chiral states satisfy, in addit ion to (2.4), the condit ion 

G,-+1/210 ) = G+l/2lqJ) = 0 for n >/0 .  (2.5) 

Us ing  (2.5) and  (2.4) and the N = 2 algebra we deduce that  for such states 

{ oi-/2, o_+1/2 }1 , )  = (2Lo  - Jo)l ) = 0.  (2.6) 

There fore  we conclude that  for a p r imary  chiral state the dimension h is one-half  its 
charge  q, i.e. h = q/2. Similarly, for an anti-chiral p r imary  state, we deduce that  
h = - q / 2 .  In  an unitary theory, (G~/2, G+l/2) (as well as the corresponding 
ant i -chiral  version) is a positive opera tor  (because G+l/2 = Gl?2) , and taking its 
expec ta t ion  value for any state in the Hilber t  space gives the inequali ty h >/ [q I /2 .  
This  inequal i ty  is saturated precisely for the p r imary  chiral and anti-chiral states. 

One  can also go in the opposi te  direction and show that  the states with h = q/2 are 
bo th  chiral and  primary.  To  see this, suppose [e0) satisfies h = q/2, which implies 
that  

(q,I { Gf/2, G++_t/2 }1'/,) = 0 = I a~/21,/,) I 2 + I G+t/21,/,) 12 . 

By posi t ivi ty  of  the inner product  in the Hilber t  space we thus have 

G + 1 / 2 [ ~ )  = G1/21~) = 0 .  (2.7) 

T o  show [ep) is p r imary  we will have to show (2.5) is also satisfied. First we observe 
that  any  ope ra to r  which lowers the L 0 eigenvalue, but  doe not  change the U(1) 
charge,  mus t  annihilate [~) to be  consistent with the bound  h >~ [q[ /2 .  In  part icu- 
lar, if Jm denotes  the modes of the U(1) current,  we must  have 

J~lq') = 0  for n > 0. (2.8) 

N o w  we use the N = 2 commuta t ion  relation 

[ J n , a r  +- ] = -~-Gn+-+r, 

which,  combined  with (2.7) and (2.8) gives (2.5), as was to be shown. 
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N o w  we will show that any NS state 10) with dimension and charge (h,  q) can be 
d e c o m p o s e d  as* 

10) = 100) + G+1/2101) + G1/2102), (2.9) 

where  100) is a p r imary  chiral state, i.e. it satisfies (2.7). To  show (2.9) we consider 
a rb i t ra ry  states I~l)  and 1~2), and vary them so as to minimize the norm 

1(10> -- o+1/2]~1> -- G1/21~2>)12" (2.10) 

Tha t  the m i n i m u m  exists is obvious, because we can restrict a t tent ion to 1+1) and 
Iq~2) in the subsector  with dimension and charge (h - 1 /2 ,  q - 1) and (h + 1 /2 ,  q + 
1) respectively,  which for a non-degenerate  conformal  theory is a finite subspace of 

the Hi lber t  space. Let 101) and 102> be the corresponding I~bl) and 1~2> which 
minimize  (2.10). Let 

100> = 10) - G+l/2101> -- G~/2102}. 

Then  the s ta tement  that (2.10) is minimized by 101) and 102) implies that the norm 
of 10o) does not  change to first order, under  arbi t rary infinitesimal deformat ions  

10o> ~ 10o) + G+-l /2 lq)  + G~/21%>, 

which implies that  100) satisfies (2.7) and is a chiral p r imary  state, which therefore 
establ ishes the decomposi t ion  (2.9). 

We  now show that  if 10) is chiral (not necessarily primary) ,  then one can take 

102) = 0. I f  we act on (2.9) by G+1/2, using the fact that  10) is chiral we find that  

G+l/2G1/2[02) = O. 

Tak ing  the inner  product  of this state with (021, one sees, by  the positivity of the 
norm,  that  G1/2102 ) is zero and thus does not contr ibute  to the r ight-hand side of  
(2.9). There fore  we may  take 102) to be zero, and 10) can be writ ten in the fo rm 

I~) = I~0) + G+l /21~ l ) ,  (2.11) 

where  10o) is p r imary  and chiral. We will use this result when we discuss L a n d a u -  
G inzburg  models  in sect. 4. 

* This is the analog of the Hodge decomposition for differential forms. See also the discussion in 
sect. 3. 



W. Lerche et al. / Chiral rings 431 

There are also other inequalities that follow from the NS operator algebra of 
N = 2 models. For instance, the dimension of a primary chiral field satisfies 

h <,% c /6 .  (2.12) 

To show this, use the N = 2 algebra relation (2.1) in the particular case 

( G3/2, G+3/2 } = 2L 0 - 3J 0 + 2c /3 .  

If we take the expectation value of this positive operator for any chiral primary 
state, and use the fact that h = q/2  for such states, we obtain (2.12). We will show 
below that there always exists a unique chiral primary state in the theory which 
saturates the bound (2.12). This bound has the following fundamental consequence: 
since the dimension of primary chiral fields is always less than or equal to c/6, it 
follows that in non-degenerate N = 2 conformal theories, for which the spectrum of 
L o is discrete, there is only a finite number of primary chiral operators. 

Now we consider the operator algebra of primary chiral fields. In a general 
conformal theory we have to worry about how we define the composite operators 
(i.e. how we subtract leading singularities). However, for chiral primary fields ~ and 
X, we can choose the naive product, namely 

(q~X)(Z) = l i m  eO(z')x(z). ( 2 . 1 3 )  
Z r ~ Z  

This definition is non-singular without any adjustments by factors of (z - z'). This 
is so because the U(1) charge of the fields is additive, and the conformal dimensions 
satisfy 

h*x >1 ½(q~" + qx) = h4, + hx" (2.14) 

Note that the product of two chiral fields is again chiral* though it need not be 
primary. If ~X is itself primary, this inequality becomes an equality and the 
singularity in (2.13) (proportional to (z-Z')h*x-h*-hx) is absent. If e~ X is not 
primary, then the definition (2.13) sets ~X to 0 as z -~ z' because of the inequality 
(2.14). Since there is only a finite number of primary chiral fields, (2.13) defines an 
interesting finite ring** ~ of primary chiral operators***. This is the same as the 
usual operator algebra of chiral fields, modulo setting to zero the descendant chiral 

* This can be seen by considering the contour integral of G+(z) about a pair of chiral fields, and 
noting that the definition of chiral state demands that the contour integral of G+(z) encircling a 
chiral field vanishes. 

**  The ring is commutative up to +_ signs, due to the fact that the ring is defined before the GSO 
projection. 

**'* This is not  to be confused with the commutative ring which appears for rational conformal field 
theories [9]. In particular the ring we obtain here is nilpotent, which is not the case for R C F T  
operator algebra. 
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fields. We have to be a little more precise: there are in fact four rings that one can 
obtain in this way, depending on whether the left- and tight-moving states are chiral 
or anti-chiral primary states. These four rings are pairwise conjugate (by charge 
conjugation). In the following, unless we state otherwise, we consider one of these 
four rings. For  type (2, 0) models we obtain only two tings which are conjugate to 
one another. 

We now consider some aspects of the Ramond sector. If we look at the 

ant icommutator  ( Go,  Go ~ ), we deduce that h >1 c/24 for any state in the R sector 
(this is true for the N = 1 algebra as well). Equality is achieved only for states which 
are annihilated by both Gff, G o.  These are precisely the states which contribute to 
Witten's  index T r ( - 1 )  F [10]. 

For  theories satisfying (2.3) the operator ( -  1) r where F = F c + F R and F c, F R 
are left- and right-moving fermion numbers, can be defined in terms of the U(1) 
current as 

( -  1 ) r  = exp [i~r ( J 0 -  "~)] .  (2.15) 

The condition (2.3) implies that this is _+ 1 acting on each state. Furthermore, ( -  ] ) r  
commutes  with all the bosonic operators in the N = 2 algebra, and anticommutes 
with G +. 

As is well-known [5], one can continuously connect the NS sector to the R sector 
by considering sectors in which the U(1) current is twisted. This means that for a 

twist parameter  0 we consider the Hilbert space ag  o of states which differ from ago 
only in that their U(1) charge is shifted by ( - e / 3 ) 0 .  The reason for this choice of 
normalization is that J ( z ) J ( z ' ) -  c / 3 / ( z -  z') 2. This mapping is usually called 

spectral flow. We will denote the corresponding flow operator by ag o 

% : ag0--,W0 

For  each operator  O acting on ago, there is an operator O 0 acting on Jr0: 

o 0  = % o a g o  1 . 

Under  the spectral flow the N = 2 algebra flows to an isomorphic algebra [5]: 

agoL.ago t = L .  + OJ n + ( c / 6 ) 0 2 8 . , o ,  

%Gr+ ago' = G,++o , 

agoJ.ago 1 = j .  + ( c / 3 )  08 . ,o ,  

agoGT q~o 1= GT_ o (2.16) 

and similarly for the right-movers. 
The important  feature of the spectral flow is that for O ~ Z + 1 /2  it interpolates 

between the NS and R sectors, and for 0 ~ Z it takes the NS to NS and R to R. One 
way to see this is to note that the spectral flow is modular transform of twisting the 
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(a )  _c-q 
3 
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c -'-q c 
-¢ - ' ~  ( c )  q 

NS - S e c t o r  R - -  S e c t o r  N S  - S e c t o r  

Fig. 1. In this figure it is shown that starting from the NS sector (a), the chiral primary states flow to the 
ground states of R sector (b) with flow parameter 0 = 1/2. Flow by an additional 0 = 1/2 will take the 
ground state of the Ramond sector to the anti-chiral primary states of the NS sector (c). The effect of the 

flow on charges of states is simply to shift them. 

time direction by 0, which for half-integral values corresponds to twisting boundary  

condi t ions  by  ( -  1) F (note we have identified left and right spin structures). These 

modu la r  properties have been considered in [11]. 
Consider  the effect of flow with 0 = 1 /2 .  If  we concentrate on the chiral states of  

the theory, we see that eq. (2.4) becomes 

~/1/2G-+1/2~1-1;1~'1/21~) = G0 ~ I~) = 0, (2.17) 

where I@ = ~'l/21q 5) is in the R a m o n d  sector. If Iq~) is also primary,  it follows that 
(2.5) flows to 

G2I@=G, ,++I Iq  ~ ) = 0  for n>~0 .  

Combined  with (2.17) one sees that I@ is annihilated by Go +. Therefore, under  the 

flow by 0 = 1 /2 ,  the chiral pr imary states flow to the ground states of the R a m o n d  

sector (see fig. 1). Restoring the right-movers we see, f rom simultaneous spectral 

flow in the left- and right-moving sectors (0 c = O R = 0), that there is a one-to-one 
cor respondence  between the ground states of  the R sector (for both left and right 

sectors) and those pr imary NS states which are simultaneously left- and right-chiral. 

(This gives an essentially equivalent reason why non-degenerate conformal  theories 
have only a finite number  of pr imary chiral states.) 

Fur thermore ,  we note that under this lef t - r ight  symmetric spectral flow, qL -- qR 
does not  change. As a consequence, the index 

T r ( - - 1 ) F =  T r [ ( - 1 )  J° JOqLo-c/24glZO-C/2~], (2.18) 

which receives non-vanishing contributions only from the ground state of the 
R a m o n d  sector, can be computed  in terms of  chiral pr imary states of the NS sector 
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Tr( - 1) F =  • exp(iTr (qL _ qR))" (2.19) 

(The  symbol  ~ ,  which denotes the chiral ring, is not to be confused with R which 
denotes  the R a m o n d  sector.) This result can be stated in a more  general form. 
Conjuga t ing  the operators  inside the trace in (2.18) by  °//0 one obtains:  

F jo ° jo  LO0 c /24_~0o_e/24  . T r ( - 1 )  = T r [ ( - 1 )  q q ] 
~0 

(Note  that  Jo ° - ~0 = Jo - ~ - )  In particular,  setting 0 = - 1 /2 ,  one maps  the R a m o n d  
sector  to the NS sector to yield* 

T r ( _ l ) r =  Tr [ (_ l ) J0-YOqLo ~J0~Z0-~J0] = y" exp(iTr(qL_qR)) " (2.20) 
NS 

In  fact one can do better: the only difference between the charges of the chiral 
p r i m a r y  fields and the charges of the ground state of the R a m o n d  sector is that  they 
are shifted by  c/6. Therefore,  one can relate the U(1) character  valued degeneracy 
of  the R a m o n d  ground states to the character  valued sum over the ring ~ in the NS 
sec to r**  

Yr [ t J ° t  ~)] G~=G-~=0 = ( t t )  c/6yrs[tJ°t$° ] = (tt) C/6p(t, 5). (2.21) 

Here ,  t and i can be regarded as independent  variables. The relation (2.20) follows 
as a special case of (2.21) by setting t = i -1 = exp( i~) .  Due  to charge conjugat ion 
invar iance  of the ground state of  the R a m o n d  sector, the relation (2.21) implies that 
P(t,  i) = Tr~tJ°i j° satisfies a certain duality property:  

P(t ,  i) = ( t i )c /3e(1/ t ,  1 / i ) .  (2.22) 

Fo r  reasons that  will become clear below we will call P(t, i) the Poincar~ 
po lynomia l  of  the conformal  theory. The proper ty  (2.22) implies in part icular  that  
there exists an unique pr imary  chiral field with the highest possible left and right 
charges  qL = qR = C/3 and dimensions h L = h R = c/6. This state is the "Poincar~  
dual"  of  the unique pr imary  chiral state with h L = h R = 0 (i.e. the vacuum).  Under  
spectral  flow to the R a m o n d  sector, these two states become  charge conjugates of 
each other  (see fig. 1). 

* For the behavior of Tr( 1) F under asymmetric spectral flow see ref. [12]. 
** These formulas generalize to relations between the full N = 2 characters for all levels [11,13]. 



W. Lerche et aL / Chiral rings 435 

It is clear that if we reversed the direction of the flow, we will get an isomorphism 
between the (anti-chiral, anti-chiral) primary states and the ground states of the 
Ramond sector. 

Consider now the flow from the NS sector to the NS sector with flow parameter 
0 = 1. Under this flow, (chiral, chiral) primary states map to the (anti-chiral, 
anti-chiral) primary states. In particular, the vacuum, which is primary and is chiral 
as well as anti-chiral (i.e. annihilated by G+l/2), flows to an anti-chiral state 
IP) = ~110), which by eq. (2.16) satisfies 

GZ+l/21ff) = G~--3/21P) = 0 for n >~ 0. (2.23) 

This implies, by setting r = - 3 / 2 ,  s = 3 /2  in eq. (2.1) that 

(2L o+  3J o+  2c/3)1~) = 0. 

Now since I P) is both anti-chiral and primary, we have h o = - q J 2  and we deduce 
that 

ho = c /6 .  (2.24) 

We see that the vacuum flows precisely to the conjugate of the above-mentioned 
chiral primary state with the highest charge (dimension) and thus (2.12) is saturated 
for this unique anti-chiral state. The structure of the flow is depicted in fig. 1. 

To make the spectral flow more transparent it is convenient to bosonize the U(1) 
current, by writing 

J ( z )  = i~/c/3 O~ (2.25) 

(and similarly for J) .  The normalization in eq. (2.25) is fixed by eqs. (2.1) and (2.2) 
which are, in turn, a consequence of the requirement that G + have _+ 1 unit of 
charge. A state in the theory with charge (qL, qR) can be represented by 

OqL,qR = exp[ i 3~-~ ( qLdPL -- qR(PR)] X ,  

where X is a neutral operator. The Hilbert space ~ is obtained by shifting the 
momentum of any state of ae" 0 by c ¢ ~  0. This means that if we have any state 
with charge (qL, qR), possibly tensored with other degrees of freedom, it flows to a 
state with charge ( q L -  C0/3, q R -  C0/3), with ~ momenta 3V/3~(qi~- c0/3, q R -  
c0/3), tensored with the same degrees of freedom. Therefore the spectral flow 
operator is 

= e x p ( -  - 
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In particular, we identify the state [O) as the spectral flow of the vacuum with 
0 = - 1  with the state of (left-right) momentum v/c-/3 and dimension c /6 .  It 
follows that it is a state purely in the U(1) sector and expressible in terms of free 
bosons: 

p = exp[ i c ~ / ~  (q~L -- ¢PR)] - (2.26) 

It is clear that the field 0 generates integral units of left-right symmetric spectral 
flow. 

So far we have been quite general in considering N = 2 superconformal models. 
For  string applications, we are interested in obtaining a space-time supersymmetric 
solution. The prime examples of conformal theories with N = 2 supersymmetry are 
o-models on Calab i -Yau  manifolds. Quite generally, whether or not the conformal 
theory comes from a o-model, it was shown in ref. [6] that the condition for the 
existence of space-time supersymmetry is the existence of an N = 2 superconformal 
algebra with integral left U(1) charges in the NS sector. This in particular implies 
that the central charge c must be a multiple of 3 [because [P) has charge 
( c / 3 ,  c/3)].  Set d = c /3 .  The integrality of the U(1) charges allows us to define the 
( - 1 )  FL and ( -  1) FR separately in terms of the currents as 

( - -1)FL=exp[i l rJo] ,  ( - -1 )F~=exp[ - - i~ r ]o ] .  (2.27) 

In such cases we can perform spectral flow for left- and right-movers independently. 
For  example, we can set O R = 0 and 0 L = 1/2.  This flows the (R, R) sector to 
(NS, R) sector. The corresponding operator can be represented after bosonizing the 
U(1) current by 

exp [ ( - i / 2 )  c~/-C~p L ] . (2.28) 

To make this a well-defined operator in the entire theory, (2.28) must be augmented 
by similar flow operators in the ghost and space-time sectors. This complete 
operator  is well-defined as a consequence of charge integrality and imposing the 
GSO projection to states with a definite sign of ( -  1) FL. As such an operator can be 
used to construct the supersymmetry charge, it was found necessary in ref. [6] to 
impose integrality of the U(1) charges to obtain space-time supersymmetry. 

For (0 L, OR) = ( -  1, 0), the vacuum flows to a (unique) state in the (chiral, chiral) 
ring with charge (d, 0) (note that c = 3d). Similarly, by flowing with (0, - 1 )  we see 
that there is one and only one (chiral, chiral) state with charge (0, d). These two 
states correspond to the local operators PL = e x p [ i ~ 3 d P L ]  and OR = 

e x p [ - i c ~  '~R] that generate independent, integral spectral flows in the left- and 

right-moving sectors*. Obviously, p = PL ® OR. 

* That these two states must be in the theory (before the GSO projection) should follow from modular 
invariance and the fact that 0L and Pl~ are local with respect to all fields in the theory. 
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As we had mentioned before, for a general N = 2 superconformal model there are 
four types of rings arising from the various combinations of chiral and anti-chiral, 
and left and right. We will denote these rings by (e, c), (a, a), (c, a), (a,  c). They 
are pairwise conjugate. In certain N = 2 models, such as Landau-Ginzburg models, 
one obtains only the (c, c) and its conjugate (a, a) ring. For such models, the (a,  c) 
and (c, a)  rings are trivial and consist only of the identity operator. However, for 
theories with integral U(1) charges, there is a non-trivial relationship between (c, c) 
and (a,  c). In particular, with spectral flow by (0 L, OR)= (1,0) starting from the 
(c, c) elements in the (NS, NS) sector, we flow to (a, c) elements again in the 
(NS, NS) sector. This implies, in particular, that if X ~ (c, c) then 

exp  [ - i c~/~ ePL ] X ~ ( a , c ) . 

We can define a Poincar~ polynomial for (a, c) fields as well, by 

P(a.c) = Trys [ t -J° i s°]  (~.c) 

(the sign of the exponent of t is chosen so that we have only positive powers of t 
and i). Because of the relation between (c, c) and (a, c), the Poincar6 polynomial of 
(a,  c) is determined in terms of that of (c, c). More precisely, if 

d 
P(c,c) = Z bp,q tp[q , (2.29) 

p,q=0 

where bp, q denotes the number of chiral primary fields with charge (p ,  q), we must 
have 

d 
P(a,c) = E bd-p,qtPiq.  (2.30) 

p,q=O 

In order to illustrate these somewhat abstract ideas we shall consider two simple 
examples. The simplest N = 2 superconformal model with c = 1 can be realized by a 
free boson ~ on a circle with specific radius [14]; this boson can be identified with 
that in eq. (2.25). The circle has a radius such that the allowed winding (momentum) 
modes are of the form 

exp[i(nLq~L -- n Rq~R)/V/~-] , 

with n L -  n R = 0 rood6 (before the GSO projection). The Ramond sector corre- 
sponds to odd n L, n R- The N = 2 algebra is realized by 

G += exp[_+N~-*L] , a ± =  exp[_+ h/3~,r] , 

J ( z ) = i v ~ / 3  cggp, J(Y.) = - i  1 ~  O~b. 
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It is easy to see that the only primary chiral states are the vacuum and the state with 
(nL, nR) = (2,2). This state has dimension h E = qL/2 = h R = qR/2 = 1/6.  We de- 
note the field corresponding to this state by x. It has to be identified with the 
highest dimension primary chiral field p discussed above, as it saturates the bound 
h = c /6  = 1/6.  The ring structure is very simple: 

2 =  {1, x ( s u b j e c t t o x . x = 0 ) } .  

The vanishing equation can be understood by noting that the dimension of the field 
x 2 [identifiable with the state (n L, n R ) =  (4,4)] is 2/3,  which is higher than twice 
the dimension of x; therefore the naive product of x with itself vanishes, as 
discussed before. The ground state of the Ramond sector with left-fight dimension 
(1/24,  1/24)  is doubly degenerate, and corresponds to (n c, n R)=  (_+ 1, _+ 1). 

The spectral flow is realized by (n e, nR) ~ (n L -- 20, n R -- 20). For 0 = 1/2,  the 
chiral primary states flow to the ground states of the R sector: 

( 0 , 0 ) ~ ( - 1 , - 1 ) ,  (2 ,2 ) - -* (1 ,1 ) .  

Under  a spectral flow by 0 = 1, the chiral primary states go to anti-chiral primary 
states: 

(0,0) ~ ( - 2 ,  - 2 ) ,  (2, 2) ~ (0,0).  

Thus, the vacuum flows to the primary anti-chiral state with the highest dimension. 
Finally we note that T r ( - 1 )  F= 2 as follows from (2.19), and the Poincar6 polyno- 
mial for this theory is easily seen to be 

P( t ,  t)  = 1 + ( t i )  1/3. 

The duality (2.22) of the Poincar6 polynomial is easily checked in this example. The 
(a,  c) ring is trivial and consists only of the identity operator. We shall return to this 
example when we discuss Landau-Ginzburg models in sect. 4. 

Our second example is the simplest type of superstring compactification, namely 
compactification on a two dimensional toms (i.e. one complex dimension). This 
theory has central charge c = 3, coming from one complex boson x (contributing 2) 
and one complex fermion + (contributing 1). The N = 2 superalgebra is realized by 

G + ( z ) = + * O x ,  G ( z ) = + O x * ,  J ( z )  = +*+ 

and similarly for the right-movers. It is easy to identify the (left) primary chiral 
states as: 

to), +'1/210), 

and similarly for the right chiral states and for anti-chiral primary states. Note that 
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the chiral state above has charge + 1 and dimension 1 /2  as required for a primary 
chiral state. The (chiral, chiral) primary states are 10), ~_'i/2[0), ~'1/210), 
~b'1/2~7"1/210>, and the corresponding (c, c) ring is 

{1, +*, ¢*, 

The Poincar~ polynomial is 

P ( t ,  i)  = 1 + t +  i +  t i=  (1 + t)(1 + i ) .  (2.31) 

The ring structure is obvious in this example. Also the duality (2.22) of the Poincar6 
polynomial is easily checked. The index T r ( - 1 )  r can be computed by setting 
t = i = - 1  which gives T r ( - 1 )  F =  0. Note that the dimension of the unique highest 
chiral field is (1/2 ,1/2) ,  as required by our general arguments; the fields with 
dimensions (1/2, 0) and (0,1/2) generate integral flows for the left and right Hilbert 
spaces independently. Finally, the (a, c) ring is: 

~ =  {1,+,  JT*,+JT*}. 

In this example the Poincard polynomial and the ring structure for the (c, c) and 
(a, c) primary fields are isomorphic. This is however not true in general. 

The ground states of the Ramond sector and its connection with the spectral flow 
are easy to work out for this example, and we leave it as an instructive exercise to 
the reader. 

3. Chiral rings and eohomology rings 

We now discuss some geometrical aspects of the chiral rings that we have defined. 
Quite generally we have defined a ring ~ of left-right chiral primary operators, and 
a natural question arises whether or not this ring has any geometrical significance*. 
The reader may have noticed that the Poincar6 polynomial for the torus model 
(2.31) is in fact identical with the complex Poincar6 polynomial for the torus. In 
general, the Poincar6 polynomial for a complex manifold M is defined by 

d 

? ( t ,  i )  = F_, 
p,q=O 

where d = dim c M is the complex dimension of M and 

bp,q = d imH p'q (M) 

* We have greatly benefitted from discussions with B. Greene in preparing this section. 
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and HP'q(M) are the Dolbeault cohomology groups. Moreover, the ring structure 
for the superconformal model on the torus is identical with the ring structure of the 
Dolbeault cohomology groups of the torus: the primary chiral fields are in one-to-one 
correspondence with 1,dz, d L d z  A d L  so that ~ corresponds to the cohomology 
ring {H °'°, H °,1, HI'°,HI 'I}.  The duality noted in (2.22) translates precisely to the 
Poincar~ duality of the cohomology groups: 

b p , q :  bd -p ,d -q .  

In fact, the statements that dim H d' d= dim H ° ' ° =  1 correspond to something that 
we know in the N = 2 theories, namely the uniqueness of the vacuum and of the 
field p with highest charge (c/3,  c /3)  = (d, d). Also for Calabi-Yau manifolds, the 
statement that d imH d'°= d imH° ,d=  1 has the analogue in terms of the unique 
chiral fields OL and OR defined in the previous section: these are precisely the 
constant (anti-)holomorphic d-form fields that exist on any K~ihler manifold with 
vanishing first Chern class. 

The relationship between cohomology and chiral rings is not an accident. If we 
are considering a supersymmetric non-linear o-model based on a manifold M, we 
know from the work of Witten [10] that there is a one-to-one correspondence 
between the cohomology classes of the manifold and the ground states of the 
Ramond sector. This was shown by relating the Ramond states to the differential 
forms on M, and the Ramond-Ramond operator to the deRham cohomology of M. 
Moreover, when M is a K~ihler manifold (and thus the o-model has N = 2 super- 
symmetry), the 8 operator corresponds to G~- and 8 corresponds to Go +. Since the 
left-r ight  U(1) currents are of the form ~*~ and ~b*k, respectively, and ~* and ~/* 
correspond to wedging with holomorphic and anti-holomorphic differential forms, it 
follows that the left-right U(1) charges count the holomorphic and anti-holomor- 
phic degrees of the differential forms respectively. So we see that in N = 2 
superconformal models, where the Ramond ground states are related to the chiral 
primary fields by spectral flow, there is a one-to-one correspondence between the 
harmonic forms that represent the Dolbeault cohomology of M and the elements of 
the ring ~ .  This isomorphism preserves the left-right grading. In particular, this 
means that the Poincar6 polynomial we defined for the conformal theory (2.21) is 
equal to the Poincar~ polynomial of Dolbeault cohomology. We can get this 
isomorphism more directly by identifying G+_l/2 and G+1/2 with O and 8, respec- 
tively. 

We now have a one-to-one relation between the elements of the chiral algebra and 
the cohomology classes. Now we recall that the cohomology groups also possess a 
ring structure which is compatible with the grading of the forms*. Given the fact 

* The ring structure for cohomology is defined by wedging representative forms for each class. 
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that we have two rings, with the same degeneracies, it is natural to suspect a relation 
between the two rings. Of course, the fact that the degeneracies are the same, i.e. 
that the two Poincar~ polynomials are the same, does not imply that the ring 
structure is the same, i.e. that the operator algebra of the primary chiral fields is 
isomorphic to the algebra of the cohomology groups. It is however natural to 
conjecture a relation between these two rings. (This is related to the question of 
whether the relations between the Yukawa couplings [15] one finds for the manifold 
M are unchanged in the conformal theory; see below.) 

If we ignore the higher modes of the string (i.e. ignore the oscillator excitations), 
the ground states of the Ramond sector (or the chiral primary fields of the NS 
sector) can be identified with the cohomology elements of the manifold, and the 
vertex operators of chiral primary fields corresponding to harmonic (p,  q) forms 
can be represented (in the - 1  picture) by [16] 

i ~gi ~ * i  1 " ~ i ~ , j l  - -  " bi ...... ,p,Jl. ,fie ( x '  x ) A " ' "  A +  *`p /~ A ' ' *  A ~  :~Jq , 

where the action of ~,i,  f , j  are represented on the Hilbert space of differential 
forms by wedging with dxi ,  d Y  j respectively, and b corresponds to the harmonic 
(p ,  q) form. So for large radii, where the semi-classical treatment is reliable, the two 
rings become isomorphic. 

This isomorphism is also manifested in the computation of Yukawa couplings. As 
was shown in ref. [15], these couplings, at large radii, can be computed from the 
cohomology algebra of M. On the other hand, when M is, for example, a three 
dimensional Calabi-Yau manifold, one can easily compute the Yukawa couplings 
from the structure of the rings of chiral fields [3,17,44]. For example, the genera- 
tions corresponding to (1, 1) forms correspond to the elements of the ring (c, c) with 
charges (1,1). This means that they have the correct dimension (½, ½) in the - 1  
picture. If p has charges (3, 3) (and thus is the unique element with that charge), the 
Yukawa couplings for three fields of charges (1, 1) x, y, z are proportional (up to 
normalization) to Cx, y,z, where x y z  = Cx, y,z O. This is similar for the anti-genera- 
tions, except that we must now take elements with charge ( - 1 , 1 ) .  

As we decrease the radii, the semi-classical treatment is no longer justifiable. 
Indeed, it was shown [18] that for some orbifold models (such as the Z orbifold), the 
Yukawa couplings do not follow the cohomology structure dictated by the manifold, 
and therefore the ring of primary chiral fields is not isomorphic to the cohomology 
ring of the manifold (even after smoothing out orbifold singularities). It was shown 
[19] that quite generally instanton corrections will affect some of the relations the 
Yukawa couplings satisfy; in the language discussed here, this means that these 
corrections invalidate the semi-classical isomorphisms of the two rings. So we see 
that non-linear sigma models on manifolds which give rise to N = 2 superconformal 
models can have a ring structure that is a deformation of the ring structure of the 
manifold. Nevertheless, we believe that there should be some relation between the 
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ring defined by the conformal theory, and some intrinsic geometrical properties of 
M. In fact, attempts to extend the semi-classical argument just mentioned to the 
general case, in which one cannot ignore the oscillator modes, naturally leads us to 
consider the cohomology ring of the loop space over M. In this setting one would be 
identifying primary chiral fields with the cohomology elements of the loop space, 
and the ring structure (that is, the operator product algebra) would correspond to 
wedging differential forms on loop space. It is an extremely interesting question to 
settle the exact relation of the ring structure of a conformal theory, with such a 
picture. 

As discussed in the previous section there are actually two (up to complex 
conjugation) inequivalent rings of interest: (c, c), (a, c). As was explained above, for 
superconformal models coming from compactification on Calabi-Yau manifolds, 
the (c, c) ring becomes isomorphic to the structure of the cohomology ring of the 
manifold in the large radius limit. Of course it should be clear in general that it is a 
matter of convention as to which ring we call (a, c) and which ring we call (c, c) 
because we can always flip the relative sign of the J and a v, and change our 
conventions*. So more precisely we should say that one of the two rings (c, c) or 
(a, c) is a deformation of the cohomology ring of the manifold. One of them gives 
the Poincar6 polynomial of the manifold (2.29) and the other gives a Poincar6 
polynomial of the form (2.30), which in general differs from the Poincar6 polyno- 
mial of the manifold. One would clearly like to have a geometric interpretation of 
the other Poincar6 polynomial. One possibility might be that this polynomial is the 
Poincar6 series for (a deformation of) the cohomology ring of another manifold. 
This is quite possible in light of the fact that string propagation on topologically 
distinct manifolds can be isomorphic. This happens, for example, for certain 
orbifolds. If so, there must be another manifold 1VI for which the betti numbers 
satisfy 

bpM, q = b M 
d p , q "  

One other interesting question that arises is that from the work of Dixon [20] we 
know that we can use charge (1,1) elements of (c, c) and ( - 1 , 1 )  elements of (a, c) 
to deform the conformal theory; these correspond to massless moduli of the 
conformal theoryl It would be of interest to know whether such deformations would 
change the ring structures that we have been discussing. Even though they obviously 
do not change the degeneracies of the ring elements, they do in general change the 
ring structure. However, it was shown in ref. [21] that if we use the moduli 
corresponding to charge (1,1) elements of (c, c), the Yukawa couplings of the (a, c) 
anti-generations do not change. This implies that at least some part of the ring 
structure of (a, c) is unchanged. In fact, one can easily generalize this result and 

* This remark and the following point have been raised in ref. [20]. 
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show that  the whole ring structure of (a ,  c) is unchanged.  This in part icular  means  
that  the semi-classical analysis at large radii should suffice to determine the full ring 
s t ructure  of  ( a ,  c). It would be interesting to investigate the geometrical  meaning  of 
this. Similarly one can show that  the deformat ions  of the moduli  corresponding to 
the charge ( - 1, 1) elements of (a ,  c) do not  change the (c, c) ring structure. 

4. N = 2 Landau-Ginzburg models and catastrophe theory 

One of the aims of the work [1] (see also [3]) was to initiate a classification of 
N = 2 superconformal  theories by proceeding as follows*: consider a number  of 
chiral superfields q)i, i = 1 . . . . .  n, with D + ~i = ~ + q)~ = 0, and take any superpoten-  
tial W ( ~ , )  which has an isolated quasi-homogeneous singularity at q)i = 0. Tha t  is, 
take a ho lomorph ic  function for which 

w(aw4,,) = (4.1) 

where  we take w, d to be integers with no c o m m o n  factors. The  not ion of an 
isolated singularity means that if we set O~W(Cb9) = 0 for all i, the only solution is at 
the origin. In other  words, we assume that W has no flat directions near  the origin. 
( I f  we al lowed for a line of critcality near  the origin, we would obtain a degenerate  
con fo rma l  theory, similar to string theory on non-compac t  spaces.) The  basic 
hypothes is  in ref. [1] is that  there exists a choice of D- te rm K(q)~, ~i)  for which the 
lagrangian  

f d2zdnO ( + ( f d2zd2OW( ,t +c.c.) (4.2) 

is confo rmal ly  invariant.  The idea is to use W to define a universali ty class of  
L a n d a u - G i n z b u r g  theories under  the renormalizat ion group flow, the fixed point  of  
which is a conformal  theory. Under  this flow, the D- te rm adjusts itself so that  at the 
fixed point  (4.2) is a conformal  theory. The simplification for N = 2 theories (as 
c o m p a r e d  to N = 0,1 theories) comes f rom the assumpt ion  that  the superpotent ia l  
does not  change during the flow and is thus an invariant  of the flow. This 
a s sumpt ion  has at best only been proven perturbatively.  However,  one also needs a 
non-pe r tu rba t ive  non-renormal izat ion theorem of N = 2 theories in two dimensions  
and  such a theorem has not  yet been established. Nevertheless the conclusions one 

* The renormalization group flows for Landau-Ginzburg  models and the importance of non-renormal- 
ization theorems in the context of minimal N =  2 models were first considered in ref. [22]. In 
addition in that reference there was a conjectured equivalence of the superpotential of the L a n d a u -  
Ginzburg models and the defining equation for certain models of [23]. This conjecture was extended 
and  checked for all models of ref. [23] by Greene et al. [2] and Martinec [3] and was established using 
the ideas of universality of renormalization group flows in ref. [2]. 
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reaches using the assumption that for every (isolated) quasi-homogeneous superpo- 
tential there exists an N =  2 conformal theory give further evidence for this 
hypothesis. 

Using the quasi-homogeneity property (4.1), we can read off from the action (4.2) 
the U(1) charge of the lowest component of ~i. Since the 0-integrals in the F-term 
have (left, right) charges ( - 1, - 1) and because one requires neutrality of the action, 
it follows that W has charge (1,1). As a result, ~i must have charge qi = wJd for 
both its left- and right-moving components. It is easy to see that for any state 
qL -- qR is always an integer in Landau-Ginzburg models. This is certainly clear for 
the field ~i, as it has equal left-right charges. Moreover, since the most general field 
is obtained by taking products of ~i with ~i, as well as products of their 
(super)derivatives, it follows that q L -  qR is always an integer (superderivatives 
change the charge in integral units). This means that the condition (2.3) is satisfied 
and our spectral flow arguments apply to Landau-Ginzburg models. 

The ring ~' of primary chiral operators is isomorphic to the local ring of W(q~): it 
is simply the space of all monomials of ~ modulo setting to zero 8jW(Cb~). (The 
polynomials OiW(Cb~) correspond, by the equations of motion, to descendent chiral 

fields D+D+cbj - 8/W(Cbi). ) Therefore we have 

~= [ OjW( ~i)] " (4.3) 

The number of elements of the ring is denoted by ~ = dim ~ and is called the 
multiplicity of W. 

Since the primary chiral objects have equal left-right charges, it follows that the 
Poincar6 polynomial is only a function of ti. For convenience we will replace tt by 
the variable t a, where d is defined in (4.1). The Poincar6 polynomial of the 
superconformal theory becomes then the Poincar6 polynomial of the corresponding 
singularity, and has a particularly simple form [24]: 

P ( t ) =  T~[ta:°] = f l  (1-ta-w') (4.4) 
i = 1  ( 1  - t w') 

One way to see how this formula comes about is to note that if we ignore the 
numerator of (4.4), it is the partition function of all the chiral fields with no 
restrictions. Each gradient OiW(~j) is a chiral field with charge ( d -  wi)/d. Setting 
to zero the products of a chiral field of this type with all the fields we had originally 
would subtract from the partition function the partition function of the same states 
but shifted by the charge ( d - w i ) / d .  The factors of (1 - t  a-w') in the numerator 
perform this necessary subtraction for each OiW. The condition that the singularity 
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is isolated guarantees that we do not subtract a state twice, i.e. that the gradients of 
W are independent functions near the origin. 

Given any set of numbers (d, w~), the condition that the fight-hand side of (4.4) 
be a finite polynomial with positive coefficients gives a necessary condition for 
having a Landau-Ginzburg theory with a quasi-homogeneous potential W ( ~ )  with 
q~i of charge %/d. This condition is however not sufficient as there are numbers 
(d,  %) for which (4.4) is a finite positive polynomial, but there exists no isolated 
quasi-homogeneous potential with those indices [24]. 

By l 'Hopital 's rule, we deduce, using (4.4) and (2.21), that 

(1) 
Tr ( - -1 )F=p( t=I )=Iz=  i=1 fl (d--Wi)wi i=lfl ~ - 1  . (4.5) 

The chiral primary state p with the highest charge can be easily identified using 
tra-2w, (4.4) by looking at the large t limit of P(t), which gives , . So the charge of p is 

given by Y'.(d- 2wi)/d, and its conformal dimension is 

hp= ~_. ( ½ - q i ) = - f l "  ( 4 . 6 )  
i = 1  

In the mathematical literature, fl is known as the singularity index of W. From 
(2.24) it now follows that 

c=6fl=6~(½-qi). (4.7) 
i = 1  

This formula was first proven in ref. [1] by a different method (it was also 
empirically noticed for the minimal N = 2 models and tensor products thereof [3]). 
Because of (4.6), one can always write 

k 
P(t) = E 

p = O  
k = 2dfl, 

where bp counts the number of chiral primary fields of charge p/d. Therefore the 
'bet t i '  number b a gives the number of continuous moduli of the conformal theory. 
These deformations are flat [20] and correspond to adding to the superpotential the 
corresponding chiral primary fields*. Note that given numbers d, w i for which there 
exists a superpotential of degree d with weights of fields w i, one knows the general 
form of the superpotential. Namely we take any superpotential with these indices, 

* I t  fol lows tha t  for c < 3, there cannot  be any moduli .  
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and add to it b a possible deformations due to massless moduli. Therefore the mere 
knowledge of the indices d, w~ defines the Landau-Ginzburg theory up to a 
deformation in its moduli. 

Note  that the number of moduli is different from what is called modality m in the 
mathematical literature; the latter is given by the number of chiral primary states 
with charge greater than or equal to one, i.e. 

m =  E b i .  
i>_d 

Poincar~ duality takes the usual form: 

bp = bk ?. 

This follows from (4.4) and is consistent with the general arguments of the first 
section (2.22). Finally note that in terms of the Landau-Ginzburg fields • i, the field 
with the highest degree 2fi can be written as 

. 

p =clet i - - - - - -  
J[ OOiO0 i ] 

The non-vanishing of the determinant is the condition for the singularity to be 
isolated. It is easy to check that p defined above has the right charge. 

The question arises as to which subset of all N = 2 models can be written in terms 
of Landau-Ginzburg  models. As we have discussed, the chiral primary fields in a 
Landau-Ginzburg  theory have all the same sense of chirality for left- and 
right-movers. Moreover qL = qR for all such states. Therefore, theories that have 
both non-trivial (c, c) and (a, c) primary states cannot be written in the canonical 
Landau-Ginzburg  form. Examples for non-Landau-Ginzburg theories are toroidal 
compactifications in even dimensions. These theories contain non-trivial primary 
fields of both chiralities. This is obvious for our c = 3 example described in sect. 2; 
not only does it have (c, c) and (a, c) fields, but also the Poincar6 polynomial of 
(c, c) (2.31) is not a function of (ti) only, as would be the case if qL = qR for all 
primary chiral fields. 

More generally, all theories that have integral left and right U(1) charges (for 
example, o-models on K~ihler manifolds with vanishing first Chern class), allow for 
left-right asymmetric spectral flow giving rise to chiral primary fields which have 
qL 4: qR" In particular, the operator PL discussed in sect. 2 is such an example. Thus, 
these theories cannot be represented as Landau-Ginzburg models. However, orb- 
ifolds of Landau-Ginzburg models may well contain both (c, c) and (a, c) states 
and thus describe such conformal theories; for instance, it is known that conformal 
theories on Calabi-Yau manifolds can be described as orbifolds of Landau 
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Ginzburg theories [2,3], and these do have both (c, c) and (a, c) states*. If we 
construct a Calabi-Yau compactification by orbifoldizing a Landau-Ginzburg 
model, we will get rid of some elements in the ring (c, c) by projecting the untwisted 
sector onto invariant states. However, in general, we also get new elements in the 
ring (c, c) coming from the twisted sectors. Prior to twisting there were no non-triv- 
ial elements in (a,c), but after orbifoldizing we get some non-trivial elements 
because, as shown in sect. 3, these correspond to K~ihler deformations that are 
always present**. Thus a subring of the (c, c) states of the Landau-Ginzburg 
theory forms a subring of (c, c) states of the Calabi-Yau theory, and this allows us 
to compute Yukawa couplings of some of the anti-generations by working entirely 
in the unorbifoldized Landau-Ginzburg theory. At any rate, all the relations 
between Yukawa couplings for three fields can be determined from the full ring 
structure of the orbifoldized Landau-Ginzburg theories, as discussed in sect. 3. 

We have seen that an N = 2 theory arising from a Landau-Ginzburg fixed point 
necessarily satisfies: 

(i) The theory contains only one conjugate pair ((c, c) and (a, a)) of finite 
dimensional chiral rings, and these rings contain only left-right symmetric fields 
with qe = qR" 
It is therefore tempting to conjecture that this is also a sufficient condition for an 
N = 2 theory to correspond to a Landau-Ginzburg theory (4.2). This turns out not 
to be true, as some models of ref. [7] satisfy this condition but are not LG (see sect. 
5). However, Landau-Ginzburg theories have some additional important features: 

(ii) All (left-right symmetric) chiral fields are generated by a finite set of chiral 
primary fields ~i (and similarly for the anti-chiral fields). 
(Note that chiral superderivatives of anti-chiral primary fields can be expressed, via 
the equations of motion, in terms of chiral fields.) 

(iii) All (left-right symmetric) fields in the theory can be obtained by taking 
arbitrary operator products of ~bi and ~i- 

We now show, by a plausible but not rigorous argument, that any N = 2 theory, 
for which (i), (ii) and (iii) are true, has a ring structure ~ isomorphic to that of a 
Landau Ginzburg model. In other words, we show that ~ is of the form (4.3). We 
do this by explicitly finding W. That this is enough to show the equivalence with a 
Landau-Ginzburg  theory is not obvious, but should presumably be a consequence 
of the hypothesis of ref. [1] which implies that the ring structure of primary chiral 
fields determines the theory completely. Otherwise we would have a collection of 
different fixed points for a given superpotential, as has been found in theories with 
fewer supersymmetries [27]. 

* Toroidal compactification [25] and orbifolds based on them [26] could also be viewed as orbifolds of 
Landau-Ginzburg models. 

** Our conventions in this section are opposite to that of sect. 3, where the (c, c) corresponded to 
Kghler deformations. 
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Consider an N = 2 model satisfying the conditions stated above. We concentrate 
on the left moving piece of the (c, c) primary fields. Let ~g denote the holomorphic 
parts of the independent generators of the primary chiral fields, and assume that it 
is normalized so that 

• - ( z - z , ) - 2 h , +  . . . .  (4.8) 

We give a naive argument that illustrates the main idea, and subsequently we fill in 
some (but not all) of the technical gaps. Consider G+(z). This is a chiral field, as 
follows by noting that G+(z)G+(z ') has no singular piece. The state corresponding 
to G ÷ is 

G+(O)tO) = G_+3/210). 

(This is, in fact, the left-moving part of one of the two dimensional gravitinos.) 
Note, however, that G ÷ is not a primary chiral field, because it does not satisfy 
(2.6). Rather, G ÷ has h = 3/2,  q = 1. The assumption that all the chiral fields must 
be representable as functions of q~ implies in particular that G ÷= W(~i) for some 
function W. Now, by assumption the ring structure ~ is of the form 

. ~ = C [ q ~ ] / J ,  

where J denotes the ideal generated by all polynomials of superfields that vanish as 
a consequence of (2.13). Take such a polynomial f ,  to which corresponds a chiral 
state I f )  (the state is chiral because the product of chiral fields is again chiral). We 
now use (2.11) to write 

If)  = G + 1/2 [fa)- (4.9) 

There can be no chiral primary component, If0), in (4.9) since this would mean that 
I f )  would not belong to J. Now we use the assumption that all fields are generated 
by products of ~i and ~j, and since D + ~i = 0, using (4.9) we see that the ideal J is 
generated by D+~i.  In other words, 

~ =  C[ dPl/[ D+ ~i] . 

Since O+-~i is the leading singularity in G+(z)~i(z ' ) ,  and we know that G+(z) = 
W(~) ,  using (4.8) we see that 

D+~i = O i W ( ~ ) ,  

which proves that ~ has the ring structure of a Landau-Ginzburg theory. Note that 
W constructed here has the correct charge to serve as the superpotential of a 
Landau-Ginzburg  theory. Note also that by the homogeneity property of W in a 
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L G  theory, it is easy to see that it should belong to the ideal J, as is the case for G + 

which is a descendant chiral state. 
We now fill in some of the technical gaps in the foregoing argument. There are 

two major weaknesses: one is that we have been somewhat cavalier in our treatment 
of operator  products. We will show how this might be remedied. The other weakness 
is that we should really be considering the left- and right-moving modes at the same 
time. We will comment on this at the end. 

The assumption that all the chiral fields are generated by ~i means that if we 
consider arbitrary non-local operators of the type 

and define 

Fi I . . . . .  in(Z 1 . . . . .  7 " )  = ~ i l ( Z 1 ) . . .  ~in (Z t l )  ' ( 4 . 1 0 )  

F ~ i . . . . . .  i. (Z1 . . . . .  Zn)  = Fi . . . . . .  i. (~kZ1 . . . . .  ~kZn) '  

then, in the limit as ~ ~ 0, after rescaling F x by appropriate negative powers of 
and dropping the singular terms, we obtain all chiral fields. The power of ?~ is 
always negative, as follows from our discussion following (2.14). Suppose we are 
trying to construct a chiral operator O q of charge q and dimension h. Let F x 
denote the appropriate linear combination of the F~I ..... ~,(?~z 1 . . . . .  ~ z , ) ,  such that 
the finite part  of F x in the limit 2~ ~ 0 yields oq: 

oq(0)  = lim ~k-(h-q/2)Fh. (4.11) 
2 ~ 0  

The power of ~ is determined by matching the conformal dimensions on both sides: 
since the component  fields on the fight-hand side are all chiral and primary, their 
total dimension is q / 2 ,  whereas the dimension of the field on the left-hand side is h. 
We have to be a little more precise with the definition (4.11); sometimes there are 
more singular terms on the right-hand side of (4.11). So what we mean by " l im" is 
the ?, independent piece of the right-hand side. The serious shortcoming in the 
definition (4.11) is that the normalization of oq(0) depends exactly on where we 
pick the points z I . . . . .  z , .  Presumably some kind of averaging is needed to get 
something independent of the precise locations. 

F rom here on, whenever we write an operator F (~ i )  as some polynomial in ~i, we 
mean that we first point-split all the operators (including operators raised to some 
powers) and consider the non-local operators of the type (4.10). Ultimately we are, 
of course, only interested in local operators which we get from F by the procedure 
indicated in (4.11). With this definition in mind we now proceed to construct the 
superpotential  W. 

Consider again G+(z) .  As discussed above, since this is a chiral field we can 
construct it in terms of q~i, and call the corresponding polynomial W ( ~ ) .  It  follows 
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from (4.11) (since the dimension of G + is 3 /2  and its charge 1), that 

G+(0) = lim X 1Wh(l~i). (4.12) 
X ~ 0  

We showed above that all the descendant chiral fields are generated by D+~i 
(which correspond to chiral non-primary states G + 1/2] ~i))- This can be represented 
by 

D+~i(O)=~G+(z)~i(O), 

or equivalently, by 

D+~i(0) = lim XG+(X)~i(0).  (4.13) 
X ~ 0  

Since D+-~i is a chiral field (because ( D + ) 2 = 0 ) ,  it must, by assumption, be 
representable as a function of q~i. Let us call that function H i. Noting that the 
dimension and charge of D+~i are h=hi+ 1/2 and q =  - q i +  1 = - 2 h i +  1, we 
must have (using (4.11)) 

D + ~ i =  lim X 2h,H~X. (4.14) 
X ~ 0  

Now using (4.13), (4.12) and (4.14) it follows that H i must be in the operator 
product of ~i and W(~b), and it must appear as the term proportional to X 2h,. 
Using the form (4.12) of G + and the normalization (4.8), we see that when we bring 
~i near* G +, the correct singularity structure arises when we take the leading 
contraction of ~, with ~b i, and this leaves us with OiW(Cb ) in the operator product. 
This implies that 

14, = a i w (  ~ ) , 

which completes the argument. 
The other weakness in the argument comes from dropping the right-moving piece. 

This could be remedied by trying to construct G+G + from the (c, c) fields, rather 
than dropping the right-moving pieces and repeat the above argument for that case. 
This however is in general not a left-right symmetric field, and in general cannot be 
made from the chiral primary fields. For example if we have tensor products of two 
LG models with chiral supersymmetry generators G;-, G+2, then we can construct 

_ _  + m +  

G~ G[ + G 2 G 2 

* We must assume that the fields which are used to form G + are much closer to each other than to ~ .  
This, however, does not affect our argument. 
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using chiral primary fields, but not G+Cff + which is 

But the argument we gave could be modified to defining W by 

[G+ (~+ ]L_R symmetric = W(~i )  • 

This fills in some of the technical gaps of our argument. It would be nice if the 

foregoing could be made completely rigorous. 
To illustrate the identity G + G  += W we return to the example considered in sect. 

2 with c = 1. Recall that in this model the (holomorphic) chiral fields are generated 

by 

x = e x p [ 2 i ( O L - - e ~ R ) / 1 ~ 1  

and in particular, 

G + - G ~ :  exp[6 i (  ~pL - (pR) /  lye2 ] . 

Note  that G+G -+= x 3, which implies that W =  x 3, in accordance with the Landau-  
Ginzburg superpotential found in [1, 3]. 

5. K~ihlerian coset models 

In this section we will discuss some of the results we have found in the study of 
chiral rings in the coset models of Kazama and Suzuki [7] and their relation with 
Landau -Ginzbu rg  models. We will first briefly review these models, and then 
identify the chiral primary fields. Subsequently we discuss a subclass of these 
models that can be represented as Landau-Ginzburg  theories. We also discuss the 
connection of the chiral primary ring in this class of models with the cohomology 
ring of coset manifolds. This study of coset models will be continued (and elabo- 
rated) in a subsequent paper [8]. 

Kazama  and Suzuki have studied under what conditions an N = 1 superconfor- 
mal coset model G / H  can have an extra sypersymmetry, to give rise to an N = 2 
superconformal model. Their conclusion is very simple: if rank G = rank H, then the 
condition needed for N -= 2 supersymmetry is that G / H  be a K~ihler manifold. This 
in turn is equivalent to the statement that H is the centralizer (the little group) of a 
toroidal subgroup of G. For example, if G = SU(m + n) and we take the toroidal 
subgroup to be a U(1) with rn entries equal to a given phase, and n equal to some 
other phase, we obtain H = SU(m) × SU(n) × U(1). If r a n k G  ~ rankH,  these 
models do not satisfy the condition q L -  qR E Z, unless they are twisted, and we 
will not consider such models here. The k~ihlerian G / H  models of ref. [7], where G 
and H have equal rank, contain only states that satisfy qL - qR ~ Z. 
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For  k~ihlerian spaces, the Lie algebra of G decomposes as 

g = h ~ t + ~ t  , 

with t+ and t forming closed Lie algebras: 

[ t + , t + l c t +  [t , t  ]ct_.  

Among the k~ihlerian models, there is a special class which consists of hermitian 
symmetric spaces (HSS). This class has the property that the G / H  theory has no 
extra U(1)"s other than the one implied by the presence of N = 2 superconformal 
symmetry [7]. For this class, the Lie algebras of t+ (and t )  are abelian. 

The G / H  superconformal model can be decomposed as a level k affine algebra 
of G, tensored with a level one affine algebra of SO(dim (G/H) ) ,  divided by a level 
k + gG -- gH representation of affine H, where g~ and gH denote the dual Coxeter 
numbers of G and H. For convenience we define d = i d i m ( G / H ) .  The affine 
algebra of SO(2d) at level one will be presented by d complex fermions ~p~, where a 
runs over all the roots of t+ (with ~p ~ = ~p*~); these fermions could be thought of 
as providing a basis for the complex tangent vectors to G / H .  

If  we denote the currents of t+ by J~(z), then the N = 2 chiral supersymmetry 
generator is given by 

G+(z) = ( 2 / ( k  + g))l/2 / E ~Pa(Z) J a(Z) 
L~Et+ 

+ ½ E f~B~P~(z)~PB(z)~P-V(z))], 
a,fl ,  y~ t+ I 

where f ~  denote the (suitably normalized) structure constants of t+; G -  is defined 
to be the complex conjugate of the foregoing expression. Here and in the following 
g will denote the dual coxeter number of G. If we let Hi(z) denote the Cartan 
currents of G, the N = 2 U(1) current is given by 

J(z)  = E ~p"(z)~p*"(z) - ( 1 / ( k  + g) )  

We wish to investigate the chiral rings in these models. In particular, this will 
allow us to identify some of them with Landau-Ginzburg  theories. From the 
structure of the coset models of ref. [7], one can see that all the (c, c) states satisfy 
qL = q~, and therefore these models have a chance of being represented by 
Landau-Ginzburg  theories. As discussed in sect. 2, by spectral flow, there is a 
correspondence between primary chiral states and the ground states of the Ramond 
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sector. As it turns out, it is more convenient to find the ground states of the 
Ramond  sector and we use this correspondence to simplify our computations. The 
ground states of the Ramond sector are defined by 

ao -+ I+) = o, 

where 

Go -+ = ( 2 / ( k  + g) ) l /2[  ~.,Tn n 1 f ~-a+B'~n ~ m  - ( m + n ) ]  " 
et~t+ n et,fl,yEt+ m,n 

(5.2) 

As discussed in sect. 2 and 3, we can think of G~- as analogous to 0 and G o to its 
adjoint, and in this setup the ground states of the Ramond sector can be thought of 
as the non-trivial cohomology elements (represented by "harmonic  forms"). In 
order to find the solutions to (5.2) in the coset models, we first have to act with G0 +- 
on the Hilbert space of the superconformal G model, and find inequivalent 
solutions to (5.2). Solutions are equivalent if they differ by a action of H currents. 
Note  that the Hilbert space of the G model in the Ramond sector consists of 
representations of the affine G algebra at a given level k, tensored with the two 

spinor representations of SO(2d) at level one. Finding solutions to (5.2) acting on 
this Hilbert  space is not a trivial problem. 

As it turns out, the ground states of the G / H  model do not necessarily come 
from the ground states of the affine G theory. However, we will first investigate 
which states among the ground states of the G / H  model do come from the ground 
states of the G theory. The ground state of the superconformal G model consists of 
a finite dimensional representation of G (which we denote by its highest weight 
vector A), tensored with the two fundamental spinors of SO(2d). This state is 
annihilated by the strictly positive modes of currents and fermions in (5.2). There- 
fore to solve (5.2) for these ground states we are left with the zero mode piece of 
Go -+ . This truncation is similar to the truncation which was used in ref. [10] to obtain 
the ground states of two dimensional models, and is similar to the semi-classical 
approximat ion we discussed in sect. 3. Truncating from two to one dimensions 
means deleting the z dependence from the operators. In particular we have then 

G + = ( 2 / ( k + g ) ) l / 2 {  ~_. ~ , j -o~+½ E f~B~e'~B* v ) ,  
aEt+ or,iS, y~t+ 

(5.3) 

r : \ ]  
J(z)= ~_+ +<~+*'~-(1/(k+g))~2 Y'+ B+e v*Bp], (5.4) 

~Et+ c~t+ [ \ /~Et+ ]"  ] 
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where we can add the subscript zero to the operators if we wished to emphasize their 
connection to the two dimensional model. It is convenient to think of the spinor 
representation as obtained by acting with the +~ on the ground state spinor (taken 
to be the state 1 ( - 1 / 2  . . . . .  - 1 / 2 ) ) ,  where the - 1 / 2 ' s  denote the SO(2d) spinor 
weights). We can then think of the ground states of the fermionic sector as to 
correspond to the exterior algebra of ~b ~, which we denote by 

A t+ .  

If we let V A denote the finite dimensional vector space that forms the representation 
A of G, then the finite dimensional Hilbert space corresponding to the ground states 
is 

At+® vA. 

For non-linear sigma models, the ground state Hilbert space is obtained from the 
space of differential forms. Here we can think of +" as a basis for holomorphic 
differential forms, and thus trying to find solutions to G ±= 0 is a cohomology 
problem. It turns out what we have just defined has been studied extensively by 
mathematicians [28], and is called the Lie algebra cohomology of t+ with coefficients 
in the representation A of G. The cohomology groups (which are in one-to-one 
correspondence with the solutions to G -+= 0) are denoted by 

H*( t +, VA). 

Of course, the cohomology elements form H representations, because both ~x and 
the t+ form representations of H, and to identify the states of the G / H  theory, we 
have to decompose H*(t+, Va) to representations of the group H and pick one state 
for each irreducible representation of H (the symbol H* denoting cohomology 
groups is not to be confused with H denoting the G subgroup). It turns out that the 
number of such irreducible representations of H is independent of which representa- 
tion ~ of G we choose, and is equal in number to the ratio of the dimension of the 
Weyl group of G to that of H: 

r =  IW(G)I/IW(H)I. (5.5) 

One can show that the number of irreducible H representations in H*(t+, Va) is 
greater than or equal to r by employing a simple index argument, which we will now 
discuss. On the spin representation of SO(2d) the character of exp(27ri~2~z~+5/, *~) 
is given by 
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where  { = + 1 for the (s)  spinor and e = - 1 for the (c)  spinor representat ions.  N o w  
recall that  in the embedding  of H into SO(2d)  the Car tan  currents, H i, of  H are 

given by  

H i =  E B/+t~ b*# 
,flGt+ 

and hence the character  of exp(27ri/~. H)  is given by (5.6) with z~ = a . /~ .  
F r o m  the Weyl character  formula,  the character  of G in the representat ion with 

highest  weight A is given by 

y~wc WGC( w ) e -  2CrW..fw(A +po) oo1 

I-I.  ~a+(G)(1 - e2~i. .-)  
(5.7) 

where  PG is half  of  the sum of the positive roots of G and A+(G)  denotes the set of 
posi t ive roots  of  G. To compute  the index of G o = Gff + G o on the Hi lber t  space 
one mult ipl ies  (5.7) by the difference of the H characters  of the (s)  and (c)  

representa t ions  of SO(2d) .  This difference of characters contains only factors of 
(e i ' ,"~ - e i,~,.~) and thus cancels all but  the H par t  of  the denomina to r  of (5.7), to 
leave one with the following expression for the index: 

{(w]e--2~vip'[w(A+PG) OH] / , ( # )  = ( _ l ) d Y 2 ~ w { ;  ' ] 

l - [ a e a ~ ( H ) ( 1  -- e27ri~'a) 
(5.8) 

where  we have used F l ~ t + e  i ~ ~  = e 2~i"¢po-pH). It is now trivial to write this as a 
sum over  i rreducible H characters since the denomina to r  has the correct form: 

IA(/~ ) = ( - 1 )  d ~'  { ( w ' ) X H ( A ' ( w ' ) )  , 
w' ~ W(G)/W(H) 

where  w' is a coset representative of W ( G ) / W ( H )  chosen in such a way that 

a ' ( w ' )  = w ' ( a  + po) - p .  (5.9) 

is a highest weight of an H representation.  Note  that  (5.9) gives one an explicit list 
of  H representa t ions  that contr ibute  to the index. For  our present  purposes  we only 
need to observe  that  there are r such irreducible characters in this expression. Since 
a zero m o d e  of G o is necessarily a s imultaneous zero mode  of Go ~ and G o ,  it follows 
that  the total  numbe r  of  such zero modes is at least r. The fact that  there are 
precisely r zero modes has been shown in ref. [29]. This means  that in the 
c o m p u t a t i o n  of the H-charac ter  valued Euler characteristic,  there are no pairs of H 
representa t ions  that contr ibute  with opposi te  signs as to cancel one another.  
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Moreover, each irreducible representation of H that contributes to the index, 
appears exactly once. 

We can actually do better, and try solving (5.2) without restricting the solutions to 
those that come from the ground state of the G theory. If we denote the Kac -Moody  
algebra of t+ by i'+, then the solutions to (5.2) are in one-to-one correspondence 
with the (semi-infinite) cohomology elements of 

H*(t'+, A ) .  

To find (at least some of) the non-trivial cohomology elements, we can compute the 
H-character valued Euler characteristic of this Hilbert space by doing an exactly 
analogous calculation in the complete Kac-Moody  algebra, and not merely in the 
zero mode sector, by using the Weyl-Kac character formula. The calculation is 
almost identical to the the one above, except that in the expression (5.5) one has to 
use the affine Weyl group, which is the semi-direct product of the finite dimensional 
Weyl group with the root lattice* [30]. This implies that the right-hand side of (5.5) 
gets an extra factor of ]Fr(G)/Fr(H)], where Fr(G) and / 'r(H) denote the root 
lattices** of G and H. This means that there are some contributions to the ground 
state of the G / H  theory that appear to come from the excited states of the G 
theory. This extra factor is, however, trivial in that it represents a multiple counting 
of the same physical states of the coset model. However, before showing this, we 
first count how many ground states we get for the G / H  theory, i.e. determine what 
is the dimension of the chiral ring (modulo state identifications to be discussed 
below). 

From the index computations above it is clear that a priori we get just a lower 
bound on the number of elements of the chiral ring. We will show in the appendix 
that this is not the case and the index computation gives the full set of ground states of 
the Ramond sector. This non-cancellation mirrors the case for the finite dimensional 
groups mentioned before (similar extensions do work for the Kac -Moody  case [36]). 

We have seen above that for each irreducible highest weight representation of 
affine G at level k, we get a contribution of 

]W(G)I Fr (G)  

pw(ntl 

states to the ground state of G / H  theory. Let N~ denote the total number of 
irreducible highest weight representations of affine G at level k. For example, if 
G = SU(n), then 

N~= (k  + n -  1 ) ! / ( k ! ( n -  1)!) .  

* For the non-simply laced groups it is actually the lattice generated by the long roots. 
** The root lattice of a U(1) factor is defined to be lattice of its quantized momenta. 
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Modulo taking into account the identification of states discussed below (reducing 
the number of inequivalent states by a factor 1 / IS  I), it follows that the dimension 
of the chiral ring ~ is given by 

IW(G)I F~(G) (5.10) 
/~=NGk" IW(H)~--~ r r ( H )  

In order to understand these identifications, we digress to review some general 
aspects of coset models (cf. ref. [31]). 

In many (but not all) cases the Hilbert space of the G / H  models are obtained 
from pairs of representations A of G and ?~ of H by decomposing the former into 
the latter: 

= • 

The conformal theory of G / H  is then obtained by taking the Hilbert space to be 

"~G/H = Eff/°A~, @°~AX , (5.11) 

where o,~ denotes the right-moving Hilbert space. This structure for the Hilbert 
space is motivated by the requirement of modular invariance: if bax(~- ) denotes the 
character of J~ax, then it is easy to see [32] that 

~lbAx[ 2 (5.12) 

is modular invariant. This description of G / H  theories is however incomplete as we 
will now discuss. 

In general, not all subsectors of the G / H  Hilbert space ~ a a  are inequivalent. In 
fact, the symmetries of the extended Dynkin diagrams of G and H will force certain 
identifications. At the heart of such identifications is the fact that if we have a 
representation A of (affine) G at level k, and if we let v to correspond to a weight 
vector of G, which means that exp(2~riv. H) is in the center of G, shifting the 
Cartan momenta by kv will give a new representation of affine G at level k which 
we denote by v(A). (This fact is well known to mathematicians [33], and is 
discussed in the physics literature [34].) This is easy to understand if we recall that 
twisting a Kac -Moody  algebra by exp(2~riv. H), where H denotes the Cartan 
currents, acts trivially on the roots, and therefore leaves the Kac -Moody  algebra 
unbroken. Therefore, the twisted sector which is obtained from the original repre- 
sentation by shifting the Cartan momenta by kv furnishes another representation of 
the affine G at the same level. This is in fact very similar to the spectral flow that we 
discussed for the N = 2 algebra, where we twisted the U(1) current. If we twist with 
a parameter 0 we twist the currents of the Kac -Moody  algebra and Virasoro 
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algebra according to 
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J :  -~ J L o v  o, 

H, I, ~ H~ + kOv'6,,o, 

2 L,, ~ L ,  + Or. 14, + k(Ov)  / 26 , ,0 ,  

where ja  denotes the currents coming from the roots, and H i denotes the Cartan 
currents. For 0 = 1, we see that the moding of the currents is again integral, and we 
obtain a new representation of affine G which is related to the one we started with 
by a symmetry of the extended Dynkin diagram. This in fact explains why the 
Dynkin diagram has the center of G as a symmetry. For example, for the SU(n) 
K a c - M o o d y  algebra this symmetry is simply the Z n rotation symmetry of the 
extended Dynkin diagram. This shift is familiar from the study of level one simply 
laced groups where the Hilbert space of different representations differ only by a 
shift of the lattice by a weight vector. 

Suppose we have a G / H  coset model and that G and H have a common center. 
We can use the foregoing spectral flow to probe some aspects of the G / H  models 
[35]. First we note that the existence of a common center implies selection rules on 
which pairs (A, ~) will appear, because A and )t should transform the same way 
under the common center (similar to the selection rules for decomposing representa- 
tions of ordinary Lie groups into representation of its subgroups). Secondly, by 
considering a spectral flow on G and H simultaneously generated by the common 
center, we see that decomposing a representation A of G and considering the 
multiplicities of ?t representation of H, is the same problem as decomposing the 
v (A)  representation of G and considering the multiplicities of v(X) representation 
of H. This implies, in particular, that 

JC'AX = Jf'v(A)v(X) - (5.13) 

The identification (5.13) implies in particular that (5.11) is not a good definition 
of the Hilbert space of a conformal theory, as for instance the vacuum appears with 
multiplicity more than one, due to (5.13). One could circumvent this by dividing the 
Hilbert space by an overall multiplicity to avoid repetitions. This would still be 
consistent with the requirement of modular invariance (5.12). However, if (5.13) has 
fixed points (i.e. (v(A),  v(?t)) = (A,)t)) ,  this would not be possible, because not all 
~'Faa will appear  with the same multiplicity. If we take one representative Hilbert 
space for each orbit of the action of the common center, we will in these cases 
destroy modular  invariance (5.12). In such cases the subsectors that are fixed under 
the action of the common center are not irreducible representations of the G / H  
theory [35]. Finding the irreducible characters that make up the character of the 
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fixed point Hilbert space is a question which has not been resolved yet, and is of 
fundamental importance for a better understanding of G / H  theories. In this paper 
we will concentrate on the case where there are no fixed points of the common 
spectral flow. We intend to study the fixed point cases in ref. [8]. 

After this long digression, we return to the consideration of the models of 
Kazama and Suzuki. First we should note that the G in the preceding discussion 
should be replaced by G × SO(2d). Secondly, it is important to recall that in the 
construction of ref. [7] the subgroup H is in fact embedded diagonally into 
G × SO(2d), and therefore if we wish to generate a pure H shift from a given weight 
v of G then v must always be paired with some weight vector ~7 of SO(2d) in such a 
way that a pair (v, ~) generates a flow that is orthogonal to the superconformal 
G / H  theory. Let A denote a weight of a level k representation of the Kac -Moody  
algebra of G, let A be some weight of a level one Kac -Moody  representation of 
SO(2d),  and let )~ be some H weight in the affine H decomposition of the product 
of the two foregoing representations, then v generates a flow of the form 

A ~ A + k O v ,  

)t ---~ )t + ( k + gG -- g H ) O V  , 

A~ --* A~ + 0(/3. w) ,  (5.14) 

where A~ are the components of ~{ in the Cartan subalgebra defined by ~-B~¢. In 
other words, ~¢ = (/3. w). In (5.14) we have adopted the convention that gn = 0 for 
the U(1) pieces of H. One should note that ~B is always an integer, and thus ~ is 
either a vector weight or a root of SO(2d). This means that the flow always sends 
the Ramond sector to the Ramond sector and the Neveu-Schwarz sector to the 
Neveu-Schwarz  sector, It will change the conjugacy classes when F~t~ e t+fl" w is odd. 

Let S denote the finite symmetry group of spectral flows which acts on the 
• ,,Wax. It is not too difficult to see that 

rw(G) 
m = - -  

r r ( H )  ' 

where FW(G) denotes the dual to the root lattice of G, which is the weight lattice of 
G for simply laced groups. This expression for S can be understood as follows: each 
element in FW(G) can be used to define a spectral flow which identifies states, and 
the spectral flow is trivial precisely if the element chosen happens to be on Fr(H) 
[which is therefore also in Fr(G)]. Let us assume that S has no fixed points when it 
acts on the labels of G / H  theory. Then the number of inequivalent chiral primary 
states that have identified so far is given by (5.10) divided by IsI, which is therefore 
equal to 

1 IW(G)I 

Iz( )l [N;] Jw(n)l ' 

where Z(G) denotes the center of G. 



460 W. Lerche et al. / Chiral rings 

There is another way to understand the counting (5.15). This is based on the 
semiclassical analysis: if we just restrict to states in the ground state of G which 
gives rise to ground states of G / H ,  each of the N~ representations of affine G 
contributes IW(G) I / IW(G)I ,  but the center of G causes identification on this space 
by a group Z(G), which reproduces the counting (5.15). Moreover, we can use this, 
together with the knowledge of which H representations appear (given explicitly by 
(5.9)) to compute the Poincar4 polynomial for all the models of ref. [7] (see ref. [8]). 

As an example consider the supersymmetric grassmannian models 

SU(m + n) 

SU(m)  × SU(n)  × U(1) ' 

where SU(m + n) has level k. Then one can show that the U(1) lattice has spacing* 

Aq = (k  + rn + n) (m + n)mn,  (5.16) 

where q is the U(1) charge defined with the normalization of ref. [7]. For this theory 
there are two basic weights that generate the common center: (i) a weight v 1 of the 
fundamental of SU(m + n) which, when projected onto H is a weight of the 
fundamental of SU(m) and a singlet of SU(n); and (ii) a fundamental weight v 2 of 
SU(m + n) which yields a singlet of SU(m) and the complex conjugate of a 
fundamental weight of SU(n). The weights v 1 and v 2 generate transformations that 
both cyclically permute, one step counterclockwise, the extended Dynkin labels 
attached to the extended Dynkin diagram of SU(m + n). The transformation vl 
fixes the SU(n) extended Dynkin labels, while cyclically permuting, again by one 
step counterclockwise, the extended SU(m) labels. The transformation v 2 fixes 
SU(m) and cycles SU(n). From the second equation of (5.14) one can also see that 
v a and v 2 change the U(1) charge by 

A l q = ( k + m + n ) n ,  

A2q = -- (k + m + n)m.  

In addition, v a (respectively, v2) flips the conjugacy classes of SO(2d) when n 
(respectively, m) is odd. It is elementary to see that o 1 has order (m + n)m and v 2 
has order (m + n)n**, and that they generate an abelian group of order (m + n)mn. 
It is straightforward to see that if k, m and n have no overall common factor then 

* If m and n have a common divisor (m, n) one can reduce Aq by (m,  n). This is optional, because we 
will ult imately rood out by all the symmetries in S so as to only count inequivalent states. This 
modding out  will automatically include any necessary reduction in Aq. 

**Aga in  note that if m, n have common factors, by reducing the periodicity of U(1) charge by (m,  n), 
the order of these elements will be reduced by (m, n). 
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none of the transformations v in this group have a fixed point when acting on the 
Hilbert  spaces as in (5.13). As a result, in these circumstances one could then define 
the G / H  theory to be the one whose Hilbert space consists of exactly one Jt~ax 
f rom each orbit  of the spectral flow group action. This theory has only one vacuum, 
and its partition function is certainly modular invariant as it is simply (5.12) divided 
by (rn + n)mn. 

As explained above, the common center yields selection rules for the labels of the 
characters of the superconformal G / H  models. In the foregoing example, the 
characters will be labelled by an SU(m + n) weight A, an SU(m) weight Xl, an 
SU(n)  weight ~k 2 and the U(1) charge q. Let nj, j =  1 . . . . .  (m + n - 1 )  be the 
Dynkin labels of A, and let pj, j = 1 . . . . .  (m - 1) and rj, j = 1 . . . . .  (n - 1) be the 
Dynkin labels of Xl and )t 2 respectively. Since the representation of SU(m + n) is 
level k, the labels nj must satisfy 52n} ~< k, while pj and rj satisfy F~pj ~< k + n and 
)2.rj ~< k + rn. In addition to the fact that q is identified modulo the lattice spacing 
(5.16), the selection rules also show that we must have 

r e + n - 1  m - 1  

q - - m  ~ ( jn i )+(m+n)  2 ( jp j )+c½rnn(m+n)modm(m+n) ,  
j = l  j = l  

r e + n - - 1  n 1 

q - n  ~ ( j n j ) - ( m + n )  ~ (jrj)+c~mn(m+n) moan(re+n),  
j = l  j = l  

where c = 1 in the Ramond sector of the fermions, and e = 0 in the Neveu-Schwarz 
sector. 

The dimension of the chiral ring ~ for the grassmannian example is easily 
computed from (5.15) to be 

r = (n + rn + k -  1)!/(n!m!k!) (5.17) 

(note that this is an integer because m, n, k have no common divisors). Similar 
formulas could be worked out using (5.15) for the other models of Kazama and 
Suzuki. 

Now we wish to connect some of the Kazama-Suzuki  models with Landau -  
Ginzburg models. Consider the simplest cases of Kazama-Suzuki  models, that is, 
the HSS cases. In particular, let us restrict our attention to the subset characterized 
by simply laced groups G. We begin by considering the simplest HSS models: those 
with level one. It is easily seen that the spectral flow has no fixed points for level 
k = 1 HSS simply laced models. The dimension of the chiral primary ring is easily 
obtained from (5.15), and is simply 

LW(G)I/IW(H)I. 
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To identify the chiral primary states it is easy to see, using spectral flow, that we can 
always choose the affine representation of G to be the basic one (corresponding to 
the trivial representation of G in the ground state). In the truncated theory, i.e. the 
"semi-classical" analysis, in the Ramond sector the Hilbert space will be simply 
At+ as discussed before. The operator G + vanishes identically on this Hilbert 
space (as ja = 0 and fffB = 0). Therefore all we have to do to find the elements in the 
G / H  ground state is to find the irreducible H representations of /x t+ for which we 
know there are ]W(G)/W(H)] in number. One way to describe the H irreducible 
reps, is to enlarge the Hilbert space by including the right-mover Hilbert space 
involving ~/-~. These fermions could be thought of as the anti-holomorphic tangent 
vectors to G / H .  Then the elements of the G / H  theory ground state would be in 
one-to-one correspondence with the H singlets of 

(A t+ A ;_) IH sin lo,, (5.18) 

because this counts exactly the number of H irreps of At+. However, for G / H  
being a symmetric space, the fight-hand side of (5.18) is identical to the cohomology 
of G / H  itself (this result is due to Cartan, and a proof of it is a simple extension of 
an argument for the cohomology of groups; see for example [37]). Moreover, the 
elements in (5.18) obviously inherit a ring structure from wedging the forms, and 
that is in fact identical to the ring structure of H*(G/H) .  In other words, the 
equality between H* and (5.18) respects the ring structures as well. The cohomology 
of K~ihler manifolds G / H  is concentrated in the diagonal of the Hodge diamond 
(i.e., bp, q = 0 unless p = q). Using the form of the current (5.4) we therefore see that 
for each element in the cohomology of G / H  of dimension (p,  p)  we get a chiral 
primary field of charge (p, p)(g + 1). However, as in sect. 3, it is not necessarily 
true that this ring, though isomorphic to the cohomology ring of G / H ,  is isomor- 
phic to the ring ~ of the full, untruncated two dimensional theory. From the 
foregoing discussion it is clear that ~ will be at least a deformation of the 
cohomology ring. We will return to the relation between ~ and the cohomology 
ring below. 

It is not too difficult to identify these theories (HSS simply laced level one) with 
Landau-Ginzburg  theories. We give the set of generators of primary fields and their 
weights in table 1. It is straighffoward to check that the relation (4.7) is indeed 
satisfied. To prove that a given coset model is indeed a Landau-Ginzburg model, 
one would have to obtain the superpotential W which determines the ring structure 
by (4.3). This might be possible by arguments along the lines indicated in the 
previous section, that is, by identifying W with G+G +. At any rate, W can in 
principle be found by studying the operator products of chiral primary fields in the 
G / H  model. 

We now return to the question of whether these rings are isomorphic to the G / H  
cohomology rings. If this is so, then the cohomology ring of G / H  must itself have 
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TABLE 1 
Charges of the Landau-Ginzburg fields for the simply laced HSS coset models at level k = 1. 

The charge unit is always the denominator appearing in the expression for c. 
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Coset theory c Degrees of generators 

SU(n + m) 3nm 
1,2 . . . .  min(n, m) 

SU(n)  ® SU(m) ® U(1) m + n + 1 

SO(n + 2) 3n 
SO(n) ® U ( 1 ) '  (n even) n + l  1, n/2 

SO(2n) 3,, ( , , -  1) 
4i - 2, 

SU(n) ® U(1) 2 ( 2 n -  2 + 1) 
E 6 48 

1,4 
SO(10) ® U(1) 13 

E v 81 
1,5,9 

E 6 ® U(1) 19 

i=  1 . . . . .  n/2 (n even) 
1 . . . . .  ( n -  1)/2 (n odd) 

the structure (4.3). As can be checked case by case, this is indeed true for the HSS 
simply laced manifolds! (We have however not yet checked the case where G = E 6 
or  E7; see ref. [8].) Even though the structure of the cohomology rings for the G / H  
manifolds is well-known to mathematicians [38], it had not been shown that for 
simply laced HSS the ring H * ( G / H )  can be expressed in the form (4.3). The 
cohomology rings of general k~ihlerian G / H  manifolds cannot always be expressed 
in this form. For example the cohomology ring of SU(3)/U(1) × U(1) is not of the 
form (4.3). 

The fact that for the HSS simply laced spaces the cohomology ring is of the form 
C [ x ; ] / d W ( x i )  does not prove that the superpotential W of a given Landau 
Ginzburg model is identical to the function W that generates the cohomology ring 
of G / H .  However, in some cases this can be shown to be true and we conjecture 
that it is generally true. For example, it is true for all the HSS manifolds whose 
g + 1 cohomology vanishes (that is, bg+ 1 = 0). These cases correspond to the 
conformal theories that have no massless moduli, and thus 5~ can readily be made 
identical to the cohomology ring of G / H  by a field redefinition. For example, the 
SU(n + 1 ) / U ( n )  = C P  n superconformal model has the chiral ring defined by 

~ =  {1, x, x2 , . . ,  subject to x "+1= 0}.  

This is exactly the definition of the cohomology ring of C P  n where x corresponds to 
the generator with degree (1,1). The ring is that of An+ ~ singularity with W = x n +2, 
and corresponds to a minimal N = 2 model. A further example where the isomor- 
phism of ~ with the cohomology ring of G / H  is obvious is SU(4)/SU(2) × SU(2) 



464 W. Lerche  et a L /  Chiral  rings 

x U(1). In this case W can be chosen to be 

w = - 5Xx X2 + 5z1  , 

where the charges of xl, x 2 are 1 / 5  and 2 /5 ,  respectively. Another  case is 
SO(n + 2 ) / S O ( n )  × SO(2) (with n even), for which the superpotential  is 

W = x ~  +1 -[- x 1  X 2  " 

This corresponds to minimal N = 2 models of  type D. + 2. 

One  of  the simplest cases where it is non-trivial to find the exact form of W is the 
model  S U ( 5 ) / S U ( 3 ) ×  S U ( 2 ) ×  U(1). In this case the function that generates the 
cohomology  ring is given by 

W = x 6 - 6 x 4 x 2  + 9 x Z x  2 - 2 x  3 , 

the degrees of  x 1, x 2 being 1 / 6  and 1 /3 ,  respectively. The superpotential for the 

cor responding  L a n d a u - G i n z b u r g  theory could differ f rom this by the addit ion of  a 
massless modulus:  

W ~  W +  ax32 . 

(That  there is only one massless modulus can be seen by considering the Poincar4 

polynomial :  b 6 = 1; put differently, though there are four monomials  of  degree one, 
three possible changes of variables corresponding to rescaling x 1 and x 2 and to 

x 2 --* x 2 + bx21 leave only one monomial  as modulus.) One way to find whether a is 
zero or  not  is to use the OPE in the coset model. This is not  a trivial computat ion.  
However ,  we use a different strategy in this case. The reason is that  this model  is 

exactly solvable for all values of a, and corresponds to a Z 6 orbifold of a two 
dimensional  torus [2, 3]. For  a = 0 one easily finds that the lef t -momenta of the 

torus is given by Pc  = (1/V~-)(nl  + n2c°), where ~o is a third root  of unity, and n 1 
and rt 2 are integers. The conformal  dimensions of the Z 6 orbifold of this model  can 

be easily computed  and is found to agree with the coset model  spectrum. This 

proves that a = 0 and in this non-trivial case the W which generates the cohomology 

ring of  the coset manifold is isomorphic to the superpotential for the conformal  

theory. 
As an aside, we note that (see ref. [8] for details) that the cohomology of 

S U ( m  + n ) / S U ( m )  × SU(n)  x U(1) can be generated by m elements x 1 . . . . .  xm, 
and W =  z ln+m+l _[_ . . .  _l_Zn-- n + m + a ,  where W is to be expressed in terms of x i using 

the relation that xi are elementary symmetric polynomials  of z t, i.e.* 

X i  = E ZIlZl  2 " " " Z1 i " 
1</1<12 < . . .  <l,<<.n 

* This  form for W was developed dur ing  conversa t ions  wi th  J. Bernstein and  simplif ies  an  earl ier  
desc r ip t ion  of W that  we had  obtained.  
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The superpotential W for the superconformal model on SU(m + n) /SU(m)× 
SU(n)  × U(1), if not exactly equal to the above function, will in general be a 
deformation of it by the addition of massless moduli. 

So far we have been concentrating on the simply laced HSS models at level one. 
Before leaving the level one case, it will be useful for us to make the following 
observation: for the HSS models, the Dynkin diagram of the group H can be 
obtained by deleting one of the nodes (with Dynkin number one) of the group G 
and replacing it by the U(1). Now, consider the representation .~ of G which 
corresponds to putting a one on this node, and zero elsewhere. This representation 
has the same dimension as the cohomology ring of G / H .  Moreover, if we choose Pc; 
to be half of the sum of positive roots of G, the grading of Z with respect to the 
U(1) charge pc;- H is isomorphic to the grading of the cohomology of G / H  (after an 
overall shift). This fact is known to mathematicians [39]. 

To see how this works recall that the Poincar6 polynomial of the cohomology ring 
is defined by 

P ( t )  = Y'~bkt z', 
k 

where b k=  bk, k are the Betti numbers. For any coset manifold G / H  with 
rank G = rank H = l (we need not assume that G / H  is a HSS), P(t) is given by [40] 

l ( 1 - - t d ,  (G)) 
e( t )  = I--I (1 tG(H)) ' 

j = l  

(5.19) 

where dj(G) and dj(H) are the degrees of the Casimirs of G and H respectively, 
with the convention that for a U(1) factor the corresponding dj is equal to 1. 

On the other hand consider the character of the group element h = t 0o.H= 
e 2=i,po.n evaluated in some representation of G with highest weight A. Using the 
Weyl character formula one obtains: 

x,,(ht- Wr[hl= 
F.w~we(w)e 2~ivoo'[w(A+oo) Oc,] 

l q ~  a+(c;)(1 - e  2~/~'0o) 

Y~w ~ IvC ( W ) e -  2~ri~[w( pG)-°GI'[ A + °G] 

F[~a+(c; ) (1  _ e2~i,~.o~) = t -A 'PG I - I  
a~A+(G) 

(1 - t ~(a+°G)) 

(1 - t ~'p~) 

For the representation discussed above, and for a HSS we have a • .~ = 0 when a ~ h 
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and a • .~ = _+ 1 when a ~ t +. Hence 

( 1  - -  t a ' 0 G + l )  

X (h) = t - - ' - '°°  H 
(1 - t,,.oc,) 

Consider the function 

(1 - t a'°~+l) 
Pc,( t ) = I-I 

( 1  - t 

and observe that x z ( h )  = t - Z ° ° P o ( t ) / P H ( t ) .  For a group G, let bj be the number 
of positive roots such that a • Po =j -  Recall that b 1 = l, the rank of G, and bg,_ 1 = 1 
and bj = 0 for j >/g* (where g* is the Coxeter number of G). It was shown [41] that 
bj - bj+ 1 = nj where nj is the number of Casimirs of degree j + 1. Using this one 
sees that 

g*-1  

P c ( t )  = E 
j= l  

(1-tJ 
( l - - t  j )  

1 / 

(1 - t )' j =l (1 

From this and (5.19) it now follows that 

P ( t )  = t z ' P ° x x ( h  ). 

Thus, in the simply laced HSS cases we can think of the chiral primary states 
(shifted to the Ramond sector) as to transform according to a G representation ---, 
with their N = 2 charges proportional to the U(1) charges Oz" H of that representa- 
tion. Indeed one might expect that these fields transform as a representation of G as 
is the case for solutions of the Dirac equation on homogeneous spaces. 

There is an alternative way to describe the representation .~ which suggests 
further generalizations: each representation of H gives rise to a vector bundle on 
G / H  of the same dimension [42]. Consider the one dimensional representation of H 
corresponding to the deleted dot (which is a representation of the U(1) piece of H). 
This gives rise to a line bundle £~' on G / H  whose holomorphic sections, by the 
Bore l -Wei l -Bot t  theorem, form precisely the G representation Z we discussed 
above. This line bundle has a first Chern class which is in fact the K~ihler class of 
G / H  (for the HSS, bt,1 = 1). This in fact has the smell of geometric quantization, 
and suggests that there may be a way to quantize the primary chiral fields in this 
theory, in such a way that the phase space is G / H  itself, and the Chern class under 
discussion is the symplectic form for the corresponding quantization. This is similar 
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tO what was observed [43] in quantizing the chiral (in the two-dimensional holomor- 
phic sense) modes of WZW on a Riemann surface in terms of the phase space which 
was the moduli of flat connections on the Riemann surface. Here we are not dealing 
with chirality only in the two-dimensional holomorphic sense, but also in the 
supersymmetric  sense (i.e. in the sense of complex structure of G / H ) .  Nevertheless 
the structure is so similar that one is tempted to conjecture that there is a geometric 
quantization for primary chiral fields of G / H  theory. 

From these observations, we can easily make a guess for what the primary chiral 
fields should be for arbitrary level k for HSS: simply put a k on the deleted node 
and zero elsewhere. This defines a G representation -'-~k), whose highest weight is 
given by k times the highest weight of Z. Our guess is therefore that the ground 
states in the Ramond sector of the G / H  model at level k are given by -'-~k), with 
U(1) charges proportional to Pc. That is, we expect that the Poincar~ polynomial is 
proport ional  to X.--,k~, and in particular that dim 9~ = dim -'-(k~- 

The motivation to put a k in front of the node comes from the observation that 
the representation -~k) corresponds to the holomorphic sections of 5 TM. This has a 
Chern class k times the k = 1 case. This is precisely the structure of quantization 
observed in ref. [43], where for finding the chiral fields for level k, one takes the 
k-fold tensor product of the line bundle which quantizes the k = 1 case and finds its 
holomorphic sections. 

Now we come to the tough question: is our guess correct? Before comparing these 
guessed Poincar6 polynomials with those that describe the spectra of the coset 
models, one can check that they do have the structure (4.4). More striking is the fact 
that for appropriate choices of generators, which follows from the Poincar6 polyno- 
mial, the relation (4.7) indeed reproduces the correct central charges. This is a very 
non-trivial check and at first sight suggests that the HSS theories, for all levels, are 
Landau -Ginzbu rg  models. The number of Landau-Ginzburg  fields (generators) 
suggested by this picture is equal to d, the complex dimension of G / H .  We have 
tabulated the Poincar6 polynomials in question in table 2. We included there also 
the non-simply laced cases, as the central charges come out correct also for these 
cases. 

Now we check whether these actually come from the superconformal models of 
ref. [7]. There is one series with higher k which is easily seen to agree with our 
guess: It corresponds to SU(n + 1 ) /SU(n)  × U(1) at level k (this model has been 
independently considered in [23])*. Using (4.17) we see that dim ~ is given by 

Iz = (n  + k ) ! / ( n ! k ! ) ,  

which is indeed the same as the dimension of the k-fold symmetric tensor product 

* These models are related by a duality noted in ref. [7] to SU(n + k)/SU(n) × SU(k) × U(1) at level 
one. which we discussed before. 
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TABLE 2 
Poincar6 polynomials obtained as U(1) characters from ---(k). They reproduce 
the correct central charges. Above, d denotes the denominator appearing in 

the corresponding expression for c. 

Coset theory c Poincar6 polynomial 

SU(n+m)/,  3knm f i  f i  (1 t d-(i+j :)) 
m + n + k  i=1 .j=l ( 1 - ~ )  

31,. (1 - t"-" / : )  "f~ (1 - t" ') 
n + k 0 7 t ~ )  i~l - ( 1 - - ~  

s u ( . )  ® SU(m) ® U(X) 

SO(n + 2)~ 
so( , , )  ® u o )  

SO(2n), 
SU(n) ® U(1) 

Sp(2n)k 
SU(n) ® U(1) 

( z . ) ,  
SO(lO) ® U(1) 

(ET)k 
E 6 ® U(1) 

3 k n ( n - 1 )  . - 1 , i l l  (1 t a 2(,+j ,~) 
FI h -  i=1 j=i 

l i f t  (a-, . . . . .  , , + , , )  2(k + n + 1) ,=is=,  ( 1 - t  ('+j~) 
48k f i  ( 1 - t  d-i) f i  ( 1 - t  a J) 

k+12 i=l 0 7 t ' ~  j= ,  (1--t~) 
8:k ( 1 -  t" 9) (a t " - ' )  ( 1 -  t" ,) 

i=1 j=5 

2(2n - 2 + k) 

3kn(n + 1) 

of  the fundamenta l  representation of SU(n + 1). Moreover,  one can check that the 
U(1) charges of  the N = 2 algebra are proport ional  to the action of  Oo" H on this 
representation.  

H o w  about  the other coset models? We first have to check whether the number  of 

chiral pr imary  states in a given theory is equal to dim S(k ). It turns out that the 

guessed dimension is in general bigger than (5.15) which was found to be the 

dimension of  chiral pr imary states in a coset model. For  example, if we consider 

SU(5 ) /SU(3 )  × SU(2) × U(1) at level 2, the index computa t ion  suggests 30 states, 

and the dimension that we guessed suggests 50 states [corresponding to (0200) 
representat ion of SU(5)]. Moreover,  by explicit computa t ion  one can show that 

there are only 30 chiral pr imary states and the Poincar6 polynomial  in this case is 

given by 

P ( t )  = 1 + 2t 2 + 2t 3 + 4t 4 + 3t 5 + 6t 6 + 3t 7 + 4t 8 + 2t 9 + 2t :° + t x2. 

It is easy to see that this does not  correspond to a L a n d a u - G i n z b u r g  theory (i.e. it 
cannot  be of  the form (4.4)). This gives an example of  a left-right symmetric N = 2 
model  which has pr imary chiral ring elements with qe = qR, and yet it is not  a 

L a n d a -  ,_qinzburg theory. 

It  is surprising that most Kazama-Suzuk i  models as they stand do not  correspond 

to L a n d a u - G i n z b u r g  models. However, in view of  the fact that our guessed 
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Poincar6 polynomials seem to describe consistent Landau-Ginzburg  models with 
central charges equal to those of the coset models, we are tempted to conjecture that 
there should exist modifications of the coset models (such as their orbifolds) which 
lead to agreement with our conjecture and which do not correspond to 
Landau -Ginzbu rg  models. We will discuss these issues further in ref. [8]. 

At any rate, it would be nice if one can give a theoretical interpretation to the ring 
structures that appear in coset models at arbitrary k, similar to the case k = 1 for 
simply laced HSS. It could be that for each k, there is a manifold Mk, whose 
cohomology ring has the same gradation as that of the conformal model, and that 
its ring structure is equal to, or a deformation of, that of the conformal model. The 
manifold M k is presumably some manifold embedded in the loop space of G / H ,  
and it should be an interesting question to unravel its geometry in relation to the 
coset conformal models. 

Also one might try to find a geometric quantization that counts the number  of 
chiral pr imary fields in the Kazama-Suzuki  models for all k. If such a picture 
exists, the computation of the dimension (5.15) of chiral rings suggests that the 
dimension of the corresponding symplectic manifold should be the rank of G. 

Admit tedly we have condensed a lot of information in this section. This is mainly 
because of the combination of the rich structure of kiihlerian coset spaces and N = 2 
superconformal  algebra. More discussion on some of the points discussed here, 
together with a discussion on some other aspects of KS models will appear else- 
where [8]. 

6. Conclusions 

We have studied some general properties of N = 2 superconformal models which 
follow entirely from the N = 2 superconformal algebra. In particular, we have 
discussed the existence of certain finite (nilpotent) rings which resemble cohomol- 
ogy rings of manifolds (and which, in some cases, are isomorphic to them). The U(1) 
spectral flow of N = 2 models was used as a powerful technique to deduce certain 
properties of these rings. 

Moreover,  we discussed N = 2 Landau-Ginzburg  models in view of these general 
results and gave another proof of the relation between central charge and the 
charges of the superfields found in ref. [1]. We also investigated under what 
conditions an N = 2  model has a ring structure isomorphic to that of a 
Landau -Ginzbu rg  model. We did this by identifying the superpotential with G + G+, 
the chiral two-dimensional gravitino field. 

We also studied some aspects of coset models with N = 2 supersymmetry. We 
find that they have a rich and beautiful structure and some of them are 
Landau -Ginzbu rg  models. This connection has given rise to a whole class of 
mathematical  questions, which we believe are quite interesting in their own right. 
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Appendix A 

It turns out that it is relatively easy to show that the index computation of sect. 5 
yields all the states in the chiral ring of the N = 2 superconformal Theory. That is, 
there are no cancellations in the index computation for any given G-label, A, and 
thus the total number of zero-modes of G o = Go + G O is equal to the index of G 0. 
Moreover, given any G-label, A, one can obtain an explicit formula for the labels ?~ 
of H that give rise to a Ramond ground state (with L 0= c/24) in the N =  2 
superconformal model. 

Suppose we have a highest weight state, A, of level k, affine G, and a spinor 
highest weight state, A, of level one, affine SO(dim(G/H)).  Suppose that the tensor 
product  of these two representations contains a highest weight representation of 
affine H with highest weight ?~, and level k + g o -  gH- Let n denote the grade at 
which X occurs in the tensor product of the affine G and affine SO(dim(G/H))  
representations. It follows from the work of ref. [7] that the conformal dimension of 
the corresponding state in the G / H  theory is 

1 
a = n +  2(k+g)[ IAI2+ 2°~A-(12~12+ 2PH2~)] + ~ld12' (A.1) 

where X is defined so that it contains the momenta of any U(1) factors in H. The 
central charge of the corresponding theory is given by [7] 

k ( k + g - g . )  
1 d - -  - -  d n ,  ( A . 2 )  o do 

k + g  

where d o and d u are the dimensions of G and H respectively. Let d = ( d  G - d H ) / 2  

denote the complex dimension of G / H .  Using the strange formulae for G and H 
one can rewrite (A.2) as 

12 
¢ = ¼d (k + g) (Ip°12 - I p " I ~ ) "  
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Finally, by observing that for the spinor highest weight of SO(dim(G/H)) one has 
½1AI 2= ~d one arrives at the following more succinct expression for the conformal 
weight of our state: 

c 1 
Z l -  ~ = n + (JA + O~l 2 -  IX + pHI2). (A.3) 

2(k g) + 

To find the zero-modes of Go +- we simply have to find all A, ?t and n for which 
(A.3) vanishes. 

We can make a further simplification by introducing the complete affine labels. 
Recall that an affine label, ?t, corresponding to a weight )t occurring at grade n in a 
representation of (Kac-Moody) central charge k, is written X= (X, k , - n ) .  The 
inner product of two such labels is defined by 

( ? t , k , n )  . ( ? C , k ' , n ' )  = )t. •' + kn '  + nk ' .  (A.4) 

Moreover, this inner product is invariant under the action of the affine Weyl group. 
As usual [30], introduce the affine vectors 

PG = (PG, g , 0 ) ,  PH = (OH, gH,0)  • 

The fact that A denotes the ground state of a level-k representation of affine G, 
whereas X defines a level k + g - g H  representation of affine H and appears at 
grade n means that the corresponding labels are 

A = ( A , k , 0 ) ,  X = ( ) t , k + g - g H , - n ) .  

Eq. (A.3) may now be rewritten 

c 1 
A 24 - 2(k + g) []~ + t3~]2 - ]~ + t3H]2] (A.5) 

where ] I is now the length defined via the inner product (A.4). The problem now is 
to consider the tensor product of the affine G representation A and the affine, 
level-one SO(2d) spinor representation A, and find the H-weights, X such that 
eq. (A.5) vanishes. We solve this by first recasting the N =  2 supersymmetric 
[G × SO(2d)] /H model as a quotient of two supersymmetric models. That is, 
one observes that the foregoing model is manifestly isomorphic to [G x SO(dim G)] /  
[H × SO(dimH)], where SO(dimH) has the obvious level-one embedding into 
SO(dim G). Consider now the level gH conformal embedding of H into SO(dim H). 
Observe that the diagonal embedding H ~ H × SO(dim G) induces a level k + g 
embedding of H into G x SO(dim G). Let A now denote a spinor highest weight of 
SO(dim G) and ~, denote a spinor highest weight of SO(dim H). Observe that under 
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the embedding H ~ SO(dimH), the spinor weight Yt (~, 1 = 7 . . . . .  7) corresponds to 
the H-weight, OH. Suppose we take the tensor product of the A representation of 
affine G and the level-one A representation of SO(dim G) and find all the level 
(k + g) affine H representations (induced via H ~  G x SO(dimG)) with highest 
weight labels X' = (X', k + g, - n )  satisfying 

IA + ~3GI 2 --IX'l 2 = 0 .  (A.6) 

Clearly, if X = (X, k + g - g H , - n )  is a weight that represents a solution to our 
original problem then when we tensor it with the spinor weight 7t and reduce the 
pair (X, X) to a weight of H at level (k + g), the result is )t' = (X + OH, k + g, - n )  
which satisfies (A.6). As a result the solutions of (A.6) contain all the solutions to 
the original problem. 

Now consider the level-g conformal embedding G--* SO(dimG). The fact that 
this is a conformal embedding means that all the characters of affine, level-one 
SO(dim G) are finitely reducible into characters of affine G at level g. In particular, 
it is an elementary exercise in the use of the Weyl-Kac character formula to show 
that the spinor representation (or the sum of the two spinor representations if dim G 
is even) of SO(dimG) decomposes into 2 t copies of the affine G-character with 
affine label t3~ = (Pc, g,0), where l is the rank of G. Thus we look for all H-weights 
X' satisfying eq. (A.6) in the tensor product of the two affine G representations with 
affine labels A and ~ .  This tensor product has (Kac-Moody)  central charge 
(k + g), and because it is the tensor product of two affine G representations it is 
invariant under the affine Weyl group W(G) of G. Suppose X' is weight satisfying 
eq. (A.6). Then there is an element w in ~ '(G) such that w(X') lies in the 
fundamental (affine) Weyl chamber. In other words, if ~i, i = 0,.1 . . . . .  l, are a set of 
simple roots for affine G, we can arrange that 

w(X') ,  c~ i >~ 0 (A.7) 

for all i. Moreover w(X') is a weight in the tensor product of affine G representa- 
tions described above, and so we must have 

/ 

(A + ¢3G) -- w(X') = Y'~ kiSi, (A.8) 
i = o  

where the k s are non-negative integers. (This is true because any other weight in this 
tensor product  must be a descendent of the product of the highest weight states 
and t3~.) Observe that because of eq. (A.7) and the fact that ft. + t3 C is a dominant 
weight, it follows that A + t3~ + w(X') must have non-negative inner products with 
all the ~i- Taking the inner product of A + ~3~ + w(X') with both sides of eq. (A.8) 
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one  f inds tha t  

IA + ~GI 2 - Iw(X' ) l  2 >/o 

with  equa l i ty  i f  and  only i f  all the k i in eq. (A.8) vanish.  Remember ing  that  the 

inner  p r o d u c t  (A.4), and  hence [ [2 are invar iant  under  the ac t ion of "qC(G) it follows 

tha t  we have  a solut ion to eq. (A.6) if and  only  if X' can be ob ta ined  f rom A + ~3 G 

via the ac t ion  of  the affine Weyl  group of  G. 

F i n a l l y  one  should recall  that,  in pr inciple ,  the set of solut ions to eq. (A.6) is 

la rger  than  the set of solut ions to our  original  p rob lem.  However ,  the index 

ca lcu la t ion  shows that  the states that  con t r ibu te  to the index of G o are precisely the 

"~V(G) orb i t s  of  A + 0G' Hence the two sets of solut ions are exact ly  the same - there 

is no  cance l l a t ion  in the index. 

I t  is also interes t ing to note  that  since "~TV(G)= W ( G ) t <  T, where W ( G )  is the 

f ini te  Weyl  group of  G,  and  T are the t rans la t ions  by  the long roots  of  G, it  follows 

tha t  every so lu t ion  is a combina t ion  of a finite Weyl  t r ans format ion  of  the weight 

( A  + PG) and  a spectral  flow by a root of G (and not  merely  a weight). Therefore ,  

wi th in  any  aff ine G representa t ion  A all zero modes  of G o are ob ta ined ,  up to 

spec t ra l  flow, b y  f in i te  Weyl ro ta t ions  of  A + PG. In other  words,  the comple te  set of 

so lu t ions  (modu lo  spectral  flow) is ob ta ined  pure ly  f rom the ground  states of  G,  and  

thus  it suffices to consider  only  the par t  of the supercurrent  that  is cons t ruc ted  f rom 

fe rmion  and  K a c - M o o d y  current  zero-modes,  as was descr ibed  in sect. 5. 
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