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The Structure of Behavioral Variation Within a Genotype

Abstract

Variation is a broad feature of animal and human behavior. Phenotypic variability is com-

monly explained as the sum of genetic and environmental variance. However, in at least

some cases the amount of behavioral variability observed in clonal or isogenic animals

matches or exceeds that of animals with higher genetic diversity. Here, we focused on

characterizing the structure and dimensionality of individual behavior within a single in-

bred genotype of the fruit fly Drosophila melanogaster and compared it to that of outbred

flies with high genetic diversity.

In the first part of this thesis, we developed MARGO, a software package for tracking

and implementing closed-loop stimulus paradigms for hundreds of animals simultane-

ously. In the second part of the thesis, we conducted a high-throughput screen of individ-

ual behavior with both inbred and outbred flies. Using MARGO to implement a battery of

behavioral experiments, we found that sparse correlations between pairs of behaviors was

common but that individual behavior was largely high dimensional. We also characterized

individual RNA expression and found that models could predict a subset of the individual

behaviors when trained on individual gene expression data. We further used previously

published datasets to conduct a broad analysis of behavioral dimensionality and found

that it was lower following neuronal manipulation. Collectively, this work constitutes a

substantial contribution to understanding the structure of behavioral variability.
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1 Introduction



1.1 What is Behavioral Covariation?

Individuals display idiosyncratic differences in behavior that often persist through time and

are robust to situational context [1]. Take human personality as an example. Sociability

in humans is commonly described as lying on a continuum between introversion and ex-

troversion. Although these terms encompass many different behaviors such as talkative-

ness and assertiveness, introversion and extroversion are useful descriptors of personal-

ity because the behaviors that they describe are frequently correlated. Although the total

space of human social behaviors is very high dimensional, extroversion-introversion is

thought to constitute a fundamental axis in human social behavior, thereby reducing the

effective dimensionality of the space of social behaviors. Similarly, behavioral symptoms

also frequently correlate when neuronal function is perturbed in human mental disorders.

Severity of stereotyped motor behaviors and language impairments correlate in autism

spectrum disorder, and sleep correlates with repetitive behaviors in bipolar disorder.

Similar axes of behavior, termed behavioral syndromes, have been observed in di-

verse animal species. The so called boldness-shyness axis of behavior, a correlation

between aggression and exploratory behaviors, has been the focus of many studies on

behavioral syndromes and has been observed in insects [2], arachnids [3], fish [4], and

birds [5]. However, behavioral covariation in animals is poorly characterized outside of

this context. The effective dimensionality of behavior in a holistic context (e.g. is it high

or low dimensional) is unknown. Furthermore, the role and relative contribution of genes,

environment, and individual neural circuit variation to the correlational structure is not
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understood.

1.2 Drosophila as a Model of Individual Behavioral Variation

Assaying individual behavioral variability poses many practical challenges. Capturing the

effective dimensionality of individual variation requires profiling individual behaviors very

broadly. Organisms such as insects with significantly less complex brains than humans

(approximately 6 orders of magnitude fewer neurons [6]) display a diverse array of behav-

iors that vary by genotype and environment. Fruit flies are an attractive model for studying

behavioral variation, offering both complexity of behavior and relative simplicity. In addi-

tion to the ease of maintaining many thousands of individuals and wealth of genetic tools

available in fruit flies, they respond to a variety of visual, olfactory, thermal and mechani-

cal cues. Moreover, fruit flies show considerable behavioral variation across mutant and

wild-type genotypes.

Measuring behavioral covariation broadly comes at the cost of increased number of

comparisons as the number of pairwise combinations of measures grows exponentially.

Couplings between correlated behaviors may also be weak and difficult to distinguish from

any variety of other factors that contribute to behavioral variability. Even with a relatively

small number of behavioral measurements (e.g. tens of measures), high statistical power

is required to deal with problems of multiple comparisons. Small body size, short gen-

eration time, and high fecundity make flies well-suited to assaying individual behaviors

at high throughput. Thus Drosophila has emerged as a model for individual behavioral

variation.
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An example of a behavior that takes advantage of the high-throughput offered by fruit

flies is locomotor handedness. Fruit flies display individual variability in locomotor hand-

edness that persists well into adulthood. Fly handedness can be measured by scoring

their trajectories through a Y-shaped arena as right or left-handed as they pass through

the center, choosing either the right or left arm. Hundreds of flies can be assayed si-

multaneously this way making hundreds of choices each, providing robust measurements

of individual with high statistical confidence. When assayed this way, individuals display

significant individual variation (e.g. some flies display extreme right turn probabilities of

0.9 and 0.1, [7]). Similarly high-throughput assays have been used to measure individual

variation in phototactic and thermotactic preferences [8, 9]. In all behaviors measured, in-

dividual flies showed variability well beyond what would be expected if individual choices

were drawn randomly from a shared distribution (i.e. if all individuals make choices with

the same probability). These findings demonstrate the feasibility of Drosophila as a model

system for assaying individual behavioral variability and show that flies display individual

variability in behaviors with and without apparent ethological consequence.

Isogenic D. melanogaster raised in the same environment show idiosyncratic varia-

tions in many behaviors across sensory modalities that are stable throughout an indi-

vidual’s life [8, 9, 10]. Interestingly, inbred flies show individual behavioral variability in

locomotor handedness. Counter-intuitively, variability in this context increases as genetic

diversity decreases [7]. Crossing flies from the distribution tails of locomotor handed-

ness together (i.e. extreme ”righties” crossed to each other and extreme ”lefties” crossed

to each other). Collectively these results suggest a role for non-genetic, non-heritable

sources of individual behavioral variability.
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1.3 Neural Circuit Bottlenecks as a Potential Source of Behavioral

Covariation

While there are well-characterized and understood examples of genetic and developmen-

tal constraints on trait covariation, evidence of behavioral covariation while genes and

environment are held constant suggests that neural architecture is a likely developmental

source of behavioral constraint [11, 12]. Flies show individual variation in object orien-

tation linked to stochastic developmental wiring left-right asymmetries between the eyes

[13]. Behavioral circuits that depend on overlapping sets of neurons may vary together

in ways that reflect variations in those neurons. For example, flies with a higher or lower

ratio of inhibitory to excitatory synapses in the descending motor neurons of their rear

legs could plausibly show correlations in many posterior limb behaviors such as wing and

abdomen grooming. If such circuit bottlenecks induce behavioral covariation, principal be-

havioral dimensions may be mappable to locations in the nervous system. Motor neurons

are an obvious site of convergence in behavioral circuits, but more elusive sites of con-

vergence may exist in the web of connections that underlie sensorimotor transformations

such as the central brain.

Neural circuit constraints are one interesting possible source of behavioral covariation

and one that may help explain how variation arises in the absence of genetic diversity but

remain a largely unexplored source of constraint on behavior due to practical considera-

tions associated with measuring it independently of genetic and environmental sources.

Isogenic and environmentally matched fruit flies offer a system to study individual differ-

ences in neural circuitry as a source of behavioral variation. In particular, large behavioral
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screens that can systematically profile behavior may help identify clusters of behaviors

that correlation across individuals. When combined with sparse genetic driver lines [14],

thermogenetic [15, 16] and optogenetic [17] tools for neural activation and silencing pro-

vide a method to systematically perturb small components of neural circuits. Combining

behavioral screens with neural circuit manipulations offers two possible benefits: 1) the

potential to independently validate clustered behaviors by inducing correlated shifts in be-

havior through circuit manipulation and 2) localization of behavioral correlations to specific

neurons or brain regions. Probing neural circuit constraints on behavior is a necessary

step in elucidating the interplay between genes and the underlying neural structure in both

evolution and disease, and may suggest a mechanism for pleiotropic effects on behaviors.

1.4 Do Behaviors Evolve Independently or as Sets of Behaviors?

The introduction of covariation in behavior lowers the effective dimensionality of behav-

iors that animals can exhibit. This raises the possibility that covariation may constrain

the space of evolutionary space that behaviors can explore, causing some behaviors to

evolve as sets of behaviors. This possibility is analogous to the phenomenon of pleiotropy

where a single gene influences more than one phenotype [18], which has been hypothe-

sized to have a stabilizing effect on evolution [19]. Evolutionary geneticists typically think

of correlated traits as being coupled by mutual dependence on common genes, develop-

mental origins, or environmental factors. Regardless of the source, the quantitative study

of covariation of traits and their effect of evolutionary trajectories has been formalized in

the G-matrix (i.e. the matrix of additive genetic variance and covariances) [20, 21]. One

5



overarching goal of this thesis is to contribute an analogous matrix of the behavioral vari-

ance and covariances, and in doing so, characterize how behavioral variability (heritable

or non-heritable) may shape of evolutionary trajectories.

1.5 Systematic Behavioral Profiling

The above example of phototaxis and thermotaxis are behaviors one might expect to cor-

relate because sources of light such as the sun are also sources of heat. Although it

seems probable that many clusters of correlated behaviors may belong to groups behav-

iors of shared ethological and physical relevance, correlated behaviors need not have any

intuitive relationship. Known correlated groups of behaviors such as boldness-shyness

were discovered because specific hypotheses about related behaviors led to studies that

were designed to specifically assay those behaviors, but one compelling reason to profile

behavioral as systematically as possible is to reveal surprising behavioral clusters that

may point to interesting features of the behaviors themselves or an expected and shared

biological underpinning. Probing the structure of behavioral variability more generally

requires measuring as many behaviors as possible to capture the totality of behavioral

variation as completely as possible.

Profiling individual as deeply as possible across a broad range of contexts has become

a recent goal of behavioral ethologists [22, 23, 24]. Unsurprisingly, animal behaviors are

very diverse and capturing their entire behavioral repertoire presents substantial chal-

lenges such as: how to define behaviors, how to feasibly measure multiple behaviors in

the same animal, how to measure behaviors that are broadly representative of an animal’s
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total behavior, and how to achieve high enough sampling.

Historically, behavioral measurements have been scored by hand [25]. The limited

throughput of manual scoring forced a trade off between depth of and breadth of mea-

surements, resulting in two generically broad approaches to profiling behaviors. The first

approach typically focuses on small numbers of individuals where their behaviors are

scored on a trial by trial basis for each individual separately and are therefore typically

low throughput [26]. The ability to focus on single trials sequentially allows for com-

plex behavioral tasks with potential for minute discrimination between responses which

may be composed of multiple features (though the approach also accommodates simple

paradigms as well). Examples of this approach include psycho-physical measurements

in humans and animals or manual scoring of social interaction between individuals. The

second approach, focuses on collective measurement of the responses of groups and

is therefore potentially high-throughput [27]. The need to score behavior in groups de-

stroys information about individual responses and also commonly requires thresholding

or binning responses. Examples of this approach include classic assays of phototaxis and

geotaxis in fruit flies where population responses are measured as the fraction of animals

falling inside a number vertically marked zones after being tapped to the bottom of a tube.

More recently, omics based approaches to behavioral measurement have been ap-

plied to the study of behavior with success. The Drosophila Genomics Reference Panel

(DGRP) is one example of such an approach [28]. The DGRP is a collection of approx-

imately 200 Drosophila melanogaster lines of inbred from the wild population of flies in

Raleigh, North Carolina. The DGRP serves as a snapshot of the genetic diversity present

in a wild population of flies and a common reference point between studies. This com-
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mon reference point has enabled the construction of a database of behavioral phenotypes

measured on the DGRP across more than a dozen studies. Behaviors assayed on the

DGRP are largely measured at the population-level and do not contain information about

individual behaviors. Nonetheless, the DGRP phenotype collection offers a unique oppor-

tunity to study the structure of behavior across natural genotypic variation and includes

measures of behaviors such as phototaxis, geotaxis, olfaction, and sleep.

Machine learning can be applied to automated measurements of behavior for repre-

sentations of behavior that are both nuanced and broad in scope. The Janelia Automated

Animal Behavior Annotator (JAABA) uses supervised machine learning to classify animal

behaviors from video data [23]. Tracking data extracted from videos such as the position

and orientation of animals and their body parts is used to engineer a variety of features

that contain information about their behavior changes over time. Users then define a set

of behaviors to classify and provide examples of each. Classifiers are trained examples

and then used to detect new instances of the behaviors in videos that the classifiers have

never seen. The rich set of features fed into the algorithm contains detailed information

about the posture and movement of the animals that enables the classifiers to detect

minute details of behavior that might be difficult for a human to detect.

JAABA is of particular interest because it has been used extensively to classify behav-

ior of individual fruit flies. Robie and colleagues [29] used JAABA to screen the effects of

neural circuit manipulation across a diverse set of neural driver lines. In total, they pro-

filed the behavior of 2,205 Gal4 lines driving expression a temperature-sensitive cation

channel, dTrpA1. JAABA was used to classify 14 behaviors on short videos captured of

groups of flies at the restrictive temperature. Although measurements were performed
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on individuals, the individual component of variability cannot be decoupled from inter-

individual internal state variation the short duration of the videos and lack of repeated

measurements of the individuals. The study represents a wealth of behavioral variability

in response to neural circuit perturbation.

Unlike supervised learning methods which require behaviors to be defined before clas-

sification, unsupervised classification of behavior can be used to assign labels to be-

haviors without any a priori definition. Unsupervised classification has recently used to

characterize fruit fly behavior via the motion-mapper pipeline [24]. The motion-mapper

pipeline relies on the assumption that animal behaviors consist of stereotyped, spatio-

temporal postural sequences to generate distinct behavioral labels. The pipeline assays

spontaneous exploratory behavior via videos of single flies recorded at high spatial and

temporal resolution. Pixels from images are decomposed into high-dimensional repre-

sentation of the animal’s postural dynamics. Ultimately, frames in the high-dimensional

representation are clustered in a low-dimensional representation via the t-SNE algorithm

[30] and assigned a classification based on those clusters. Unsupervised classification

is particularly promising for systematic profiling of individual behavioral because 1) it at-

tempts represent the total observed behavioral space by assigning a label to all frames

and 2) it requires few assumptions about the number of distinct classifications.

The motion-mapper pipeline has been applied to natural behavioral variation and the

effects of neural circuit perturbations on behavior. Male and female behavioral embed-

dings showed sexually dimorphic structure in D. melanogaster, with increased occupancy

of locomotor behaviors and decreased occupancy of resting and slow moving behaviors in

female flies. Flies showed significantly less intra-individual than inter-individual variation
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within a wild-type genotype, consistent with persistent individual behavioral differences.

Cande and colleagues [31] used motion-mapper to characterize the effects of descending

activation through optogenetic manipulation. Activation of single descending neuron types

frequently produced stereotyped changes in behavior, in many cases resulting in changes

primarily to a single region of the behavioral map (e.g. posterior limb movements).

The challenge of profiling the space of individual behavior is daunting, but implemen-

tation of methods like the ones outlined above at scale offer the potential to sample di-

verse behaviors at great depth. Using and building upon these methods, we designed a

high-throughput screen for behavior composed of many stimulus driven (phototaxis, op-

tomotor response, and olfactory chemotaxis), locomotor (handedness, activity level, and

movement bout dynamics), and postural behaviors (e.g. head grooming, wing extension).

Using these tools, we can characterize the structure of behavioral covariation and develop

hypotheses for how genes and neural circuits impart this structure.
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Chapter 2



2 MARGO: a Platform for High-Throughput Individual Ethol-

ogy

2.1 Overview

To profile the space of individual behavior, we sought to merge automation with the struc-

tured behavioral assays to allow us to characterize complex behaviors (such as binary

choice phototaxis and optomotor response) at high throughput. Fast object tracking in

real time allows convenient tracking of very large numbers of animals and closed-loop

experiments that control stimuli for multiple animals in parallel. We developed MARGO,

a real-time animal tracking suite for custom behavioral experiments. We demonstrated

that MARGO can rapidly and accurately track large numbers of animals in parallel over

very long timescales. We incorporated control of peripheral hardware, and implemented

a flexible software architecture for defining new experimental routines. These features

enable closed-loop delivery of stimuli to many individuals simultaneously. We highlight

MARGO’s ability to coordinate tracking and hardware control with two custom behavioral

assays (measuring phototaxis and optomotor response) and one optogenetic operant

conditioning assay. There are currently several open source animal trackers. MARGO’s

strengths are 1) robustness, 2) high throughput, 3) flexible control of hardware and 4) real-

time closed-loop control of sensory and optogenetic stimuli, all of which are optimized for

large-scale experimentation.
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2.2 Existing Animal Trackers

The recent introduction of automated methods for measuring behaviors offers a level of

throughput that has gradually reduced the need to trade between depth and breadth of

behavioral measurements. Cheap electronic components such as infrared beam break

detectors enabled course detection of animal position. The TriKinetics Drosophila Activ-

ity Monitor (DAM) estimates animal activity level by counting the number crosses over

a beam break sensor. A similar strategy has also been used to measure phototactic

behavior in a T-maze by positioning sensors in arms on either side of the choice point.

More recently, the availability of inexpensive, high-resolution cameras has enabled the

widespread use of video data in animal behavioral measurement. Automated tracking

of animal centroids and body segments have revolutionized the study of behavior by en-

abling precise measurement of the location and posture of animals. When coupled with

other animals or automated stimulus delivery, animal tracking provides detailed descrip-

tions of behavioral dynamics in response to social and stimulus driven contexts.

Automated animal tracking methods have become commonplace in the study of be-

havior. They enable large sample sizes, high statistical power, and more rapid inference

of mechanisms giving rise to behavior. Existing animal trackers vary in computational

complexity and are often specialized for particular imaging configurations or behavioral

measurements. Trackers can assist in a wide range of experimental tasks such as mon-

itoring activity, measuring response to stimuli [32, 33], and locating body parts over time

[34, 35]. Some trackers are designed to track and maintain identities of multiple individu-

als occupying the same arena [36, 37, 38, 39] while others measure the collective activity
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of groups without maintaining identities or rely on physical segregation of animals to en-

sure trajectories never collide [40, 41, 42, 43]. But few of these trackers are designed as

platforms for high throughput, hardware control, and flexible experimental reconfiguration.

Improvements in machine learning and template matching approaches to object local-

ization and classification have made it possible to efficiently train models that accurately

track and classify a variety of animal species and visually distinguish identities of individ-

uals across time [37, 36, 44, 39]. Tracking individual identity in groups requires resolving

identities through collisions where bodies are overlapping. FlyTracker and idTracker.ai

train classifiers to assign identities to individuals in each frame and also extract postural

information such head and limb position. In optimized experiments, these trackers can

maintain distinct identities over extended periods with minimal human intervention. Other

trackers, such as Ctrax ToxTrac, and Tracktor [45, 38, 46], track animals by segmenting

them from the image background and assign identities by stitching traces together across

frames based on changes in position. Although the classification accuracy can be quite

high under optimal conditions, these methods generally require human intervention to

prevent assignment error from propagating over longer timescales even at low error rates

(or they are used for analyses where individual identity is not needed).

Both approaches to identity tracking can be used to study complex social and indi-

vidual behaviors, but the computational cost of collision resolution means that tracking is

generally performed offline on recorded video data [47]. Furthermore, the need to record

high-quality, high-resolution video data can make it challenging to track animals over long

experiments. Some methods of postural segmentation require manual addition of limb

markers [48], splines fit in post-processing [49], or computationally heavy machine vision
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in post-processing [34, 35, 39]. In all cases, the need to separate tracking and record-

ing can be rate-limiting for experiments. Real-time tracking offers the benefits of allowing

closed-loop stimulus delivery and a small data footprint due to video data not being re-

tained. In general, real-time tracking methods are less capable of tracking individuals

through collisions because they cannot use future information to help resolve ambiguities

[42]. For that reason, real-time multiple animal trackers can fall back on spatial seg-

regation of animals to distinguish identities or dispense with identity tracking altogether

[47, 43]. Some existing real-time trackers can track multiple animals (without maintain-

ing their identity through collisions) in parallel and support a variety of features such as

modular arena design, and closed-loop stimulus delivery [50, 51, 52, 53].

The tracking algorithms, software interface, hardware configurations, and experimental

goals of available trackers vary greatly. Some packages such as Tracktor and FlyWorld

use a simple application programming interface (API) and implement tracking through

background segmentation and match identities with Hungarian-like Algorithms that min-

imize frame-to-frame changes in position [54, 38, 47]. Ethoscopes are an integrated

hardware and software solution that takes advantage of the small size and low cost of

microcomputers such as the Raspberry Pi. They support modular arenas and periph-

eral hardware for stimulus delivery [50] and can be networked and operated through a

web-based interface to conduct experiments remotely and at scale. Ethoscopes provide

a hardware template and API for integrating peripheral components into behavioral exper-

iments, but the Ethoscope tracker is not currently designed to operate independent of the

hardware module. BioTracker offers a graphical user-interface (GUI) that allows the user

to select from different tracking algorithms with easily customized tracking parameters or
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import and use a custom algorithm [55].

2.3 Design Goals

We wanted a platform that integrated many of the positive features of these trackers into a

single software package, while supporting genome-scale screening experiments in a flex-

ible way that would support the needs of labs that study diverse behaviors. We prioritized

1) fast and accurate individual tracking that could be scaled to very large numbers of indi-

viduals or experimental groups over very long timescales, 2) flexibility in the user interface

that would permit a diversity of organisms, tracking modes, experimental paradigms, and

behavioral arenas, 3) integration of peripheral hardware to enable closed-loop sensory

and optogenetic stimuli, and 4) a user-friendly interface and data output format.

We developed MARGO, a MATLAB based tracking suite, with these goals in mind.

MARGO can reliably track up to thousands of individuals simultaneously in real-time for

days or longer (with limits only set by logistical challenges such as keeping animals fed).

MARGO has two tracking modes that allow it to distinguish either individuals or groups

of individuals that are spatially segregated. We show that traces acquired in MARGO

are comparably accurate to those of other trackers and are robust to noisy images and

changing imaging conditions. We also demonstrate that tracking works reliably with non-

specialist equipment (like smartphone cameras). MARGO provides visual feedback on

tracking performance that streamlines parameter configuration, making it easy to setup

new experiments.

Additionally, MARGO can control peripheral hardware, enabling closed-loop individual
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stimulus delivery in high-throughput paradigms. Using adult fruit flies, we demonstrate

three closed-loop [56] applications in MARGO for delivering individualized stimuli to multi-

ple animals in parallel. First we measured individual phototactic bias in Y-shaped arenas.

Second we quantified individual optomotor response in circular arenas. In the third assay,

we configured MARGO to deliver optogenetic stimulation in real-time. Though MARGO

was developed and tested with adult fruit flies, we show that it can be used to track many

organisms such as fruit fly larvae, nematodes, larval zebrafish and bumblebees. We

packaged MARGO with an easy-to-use graphical user interface (GUI) and comprehen-

sive documentation to improve the accessibility of the software and offer it as a resource

to the ethology community. Though it does not perform visual identity recognition or pos-

tural limb tracking, we believe that MARGO can meet the needs of many large behavioral

screens, experiments requiring real-time stimulus delivery, and users looking to run rapid

pilot experiments with little setup.

2.4 Tracking Workflow

The core experimental workflow of a MARGO experiment (figure 2.1a) can be briefly

summarized as follows: 1) define spatial regions of interest (ROIs) in which flies will be

tracked, 2) construct a background image used to separate foreground and background,

3) compute statistics on the distribution of the foreground pixels under clean tracking

conditions to facilitate detection and correction of noisy imaging, 4) perform tracking. We

found that constraining the space in which an animal might be located significantly relaxed

the computational requirements of multi-animal tracking. Because MARGO is designed
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Figure 2.1 MARGO workflow, tracking algorithm, and sample behavioral box – A) Diagram of the user work-
flow to set up a new tracking experiment. Arrow color indicates whether the setup step is required. Before
tracking, users define an input source, define ROIs to track, initialize a background image used to sepa-
rate foreground and background, and sample the image statistics on a reference of clean tracking. Tracking
parameters can be customized at multiple points (blue arrows). B) Flowchart depicting the MARGO’s frame-
to-frame tracking routine. Each frame consists of image processing (green) to segment foreground from the
background, noise estimation (magenta) to assess the quality of foreground segmentation and determine
if the current frame can be tracked, and tracking (cyan) of foreground binary blobs. MARGO’s tracking al-
gorithm skips noisy frames and re-acquires the background image if many consecutive frames are deemed
too noisy to track. C) Schematic of a typical behavioral box used for tracking. Behavioral arenas are backlit
with an LED illuminator and imaged with an overhead camera. The tracking camera is fitted with an infrared
filter to allow light visible to the animals to be controlled independently of the tracking illumination. A diffuser
panel between the LED backlight and the behavioral arenas makes the illumination even. The camera and
illuminator are both connected to a computer for real-time tracking and control via MARGO.

for high-throughput experiments, it needs to be convenient to define up to thousands of

ROIs. MARGO has two modes for defining ROIs. The first is automated detection that

detects and segments regular patterns of high-contrast regions in the image, such as

back-lit arenas. The second prompts the user to manually place grids of ROIs of arbitrary

size. In practice, we find that ROI definition typically takes a few seconds but can take as

long a few minutes.
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Following ROI definition, a background image is constructed for each ROI separately.

Each background image is computed as the mean or median (as configured by the user)

image from a rolling stack of background sample images. Tracking is performed by seg-

menting binary blobs from a thresholded difference image computed by subtracting each

frame from an estimate of the background (figure 2.1b). Background subtraction com-

monly suffers from two issues with opposing solutions. The first is that subtle changes

in the background over time introduce error in the difference image, requiring continu-

ous averaging or reacquisition of the background image. The second is that continuous

averaging or reacquisition of the background can make inactive animals appear as part

of the background rather than foreground, making them undetectable in the thresholded

difference image. Constructing the reference for each ROI separately mitigates these

concerns by allowing the reference to be constructed in a piece-meal fashion by adding

a background sample image only when the animals have moved from the positions they

occupied in previous images of the background stack. The time needed to establish a

background image depends on the activity level of the animals and the number of images

in the reference stack. We typically find that 3-30 seconds are needed to initialize the

background image. Once a background image is established, tracking can begin. In each

frame, candidate blobs are identified as the blobs that are both 1) between minimum and

maximum size threshold and 2) located within the bounds of an ROI. Candidate blobs

are subsequently assigned to ROIs by spatial location. Within each ROI, candidate blobs

are matched to centroid traces by minimizing the total frame-to-frame changes in position

within each ROI.If the number of candidates exceeds the number of traces in a given ROI,

only the candidates closest to the last centroid positions of the traces are assigned. If the
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number of traces exceeds the number of candidates, the candidates are assigned to the

closest traces and any remaining traces are assigned no position (i.e. NaN) for that frame.

Degradation of difference image quality over time (due to changes in the background,

noisy imaging, and physical perturbation of the imaging setup) constitutes a significant

barrier to long term tracking [46]. To address this problem, MARGO continuously monitors

the quality of the difference image and updates or reacquires the background image when

imaging becomes noisy. We refer to this collective process as noise correction. Prior to

tracking, MARGO samples the distribution of the total number of above-threshold pixels

under clean imaging conditions to serve as a baseline for comparison. During tracking, the

software then continuously calculates that distribution on a rolling basis and reacquires

a background image when the rolling sample substantially deviates from the baseline

distribution.

2.5 Accuracy and Noise Robustness

We performed a number of experiments and analyses to assess MARGO’s robustness to

tracking errors and comparability with other trackers. In these experiments, we tracked

individual flies, each alone in a circular arena, so that individual identity was assured by

spatial segregation.

We assessed the ability of MARGO to handle degradation of the difference image

by repeatedly shifting the background image by a small amount in a random direction

(2px, 2% of the arena diameter, and 0.16% of the width of the image) to mimic situations

where an accidental nudge or vibration shifts the arena. MARGO was used to simultane-
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ously record a movie of individual flies walking in circular arenas and track their centroids.

These tracks were the ground truth for this misalignment experiment, and background

shifting was implemented digitally on the recorded movie. MARGO reliably detects the

changes in difference image statistics associated with each of these events and recovers

clean tracking by reacquiring the background, typically within 1 second (figure 2.2). Forc-

ing reacquisition of the background image has the disadvantage of resetting the reference

with a single image, meaning that a normal background image built by median-filtering

multiple frames spaced in time cannot be computed immediately (background images

made this way have two benefits: lower pixel noise and fewer tracking dead spots because

they do not include moving animals). This typically caused a reduction in tracking accu-

racy that is brief (<2s) and had little effect on the overall correlation of the tracking data

to the ground truth (r=0.9998). Indeed, we found a small effect on tracking error (mean

3.07+/- 2.5 pixels, which corresponds to 20% of a fly’s body length at our typical imaging

resolution) even when shifting the background every 2 seconds. In our experimental set-

ups, noise-induced background reacquisition was relatively rare, typically occurring fewer

than 10 times over the duration of a two hour experiment.

We tested MARGO’s sensitivity to video compression by compressing and tracking

a video previously captured during a real-time tracking session. The centroid position

error of traces acquired from compressed videos were calculated by comparing them to

the ground-truth traces acquired on uncompressed images in real time. MARGO showed

sub-pixel median tracking error up to 3000-fold compression (figure 2.3a). We further

tested the robustness of MARGO to noisy imaging by digitally injecting pixel noise (by

randomly setting each pixel to True with a fixed probability) into the thresholded difference
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Figure 2.2 – A) Diagram of the background image shifting scheme used to simulate the kind of background
inaccuracy that can happen in long experiments. B) Trial-triggered median tracking error centered on refer-
ence shifting.

image of each frame of a video previously acquired and tracked under clean conditions.

Noise was added downstream of noise correction and upstream of tracking to simulate

tracking under conditions where noise correction is poorly calibrated. We observed sub-

pixel median tracking error up to 20%pixel noise (figure 2.3b). In practice, we find it easy

to create imaging conditions with noise levels ¡1% pixel noise without the use of expensive

hardware.

To compare the tracking accuracy of MARGO to a widely used animal tracker, we fed

uncompressed video captured during a live tracking session in MARGO into Ctrax [45]

and measured the discrepancy between the two sets of tracks. Overall we found a high

degree of agreement between traces acquired in MARGO and Ctrax (figure 2.4). We

attribute the majority of discrepancies to minor variations in blob size and shape aris-

ing from differences in background segmentation. It is worth noting that although Ctrax
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flagged many frames for manual inspection and resolution, for comparability we opted not

to resolve these frames and instead restricted our analysis to the automatically acquired

traces. (Ctrax primarily uses these flags to draw user attention to tracking ambiguities

through collisions, which did not happen in our experiment because flies were spatially

segregated.) Manual inspection of tracked frames with error larger than 1 pixel revealed

that most major discrepancies occurred in one of two ways: 1) short periods between the

death and birth of two traces on the same animal in Ctrax, or 2) identity swaps in Ctrax

between animals in neighboring arenas. These errors may be attributable to our inartful

use of Ctrax.
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2.6 Application for High-throughput Behavioral Screens

We designed MARGO with high-throughput behavioral screens in mind, with hundreds

of experimental groups, each potentially containing hundreds or thousands of animals.

Many features in MARGO’s GUI have been included to reduce the time needed to estab-

lish successful tracking, including automated ROI detection and visualizations of object

statistics and the effects of parameters. Configuring tracking for experiments with hun-

dreds of individuals typically took between 2-5 minutes. Additionally, we added the ability

to save and load parameter and experimental configurations.

The speed of the tracking algorithm permits the tracking of very large numbers of ani-

mals simultaneously in a single field of view (facilitating certain experimental designs, like

testing multiple experimental groups simultaneously). To demonstrate MARGO’s through-

put, we continuously tracked 960 flies at 8Hz for more than 6 days (supplemental video 1).

Flies were singly housed in bottomless 96-well plates (figure 2.5a) placed on top of food

and were imaged by a single overhead camera. The appearance of the arenas changed
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substantially over 6 days due to evaporation of water from the fly food media, condensa-

tion on the well plate lids, and egg laying. Despite these changes, the quality of centroid

traces and acquisition rates appeared stable throughout the experiment (figure 2.5b). The

overall activity level of flies decreased over the duration of the experiment (figure 2.6). The

flies’ log-speed distributions generally exhibited two distinct modes: a low mode consis-

tent with frame-to-frame tracking noise and a higher mode consistent with movement of

the flies (figure 2.7a) [24, 57]. Individual flies varied in the relative abundance of these

two modes. We defined a movement threshold as the local minimum between these two

modes and parsed individual speed trajectories into movement bouts by identifying peri-

ods of continuous movement above the threshold. Sorting flies by the average length of

their movement bouts revealed a trend of increasing mean and magnitude of the higher

”movement” mode (figure 2.7a), i.e., flies that walked longer tended to walk faster.
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Figure 2.5 – A) Image of 10 single-fly housing plates from the overhead tracking camera. B) Sample tracks
from the same fly on days 1 and 6.
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To measure MARGO’s performance as a function of the number of ROIs, we recorded

the mean real-time tracking rate while varying the number of tracked ROIs from a high-

resolution (7.4MP) video composed of the same single-arena video repeated 2400 times

in a grid. We found that the frame-to-frame latency scaled linearly as a function of the

number of ROIs tracked (figure 2.7b). On modern computer hardware (intel i7 4.0GHz

CPU), we measured tracking rates of 160Hz for a single ROI down to 5Hz for 2400 ROIs.
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MARGO could plausibly track up to 5000 animals at lower rates ( 1 Hz), potentially fast

enough for experiments monitoring changes in activity level changes over long timescales,

like circadian experiments.

Large behavioral screens can potentially generate hundreds of hours of data on thou-

sands of animals and massive data files even without recording videos. We found that

experiments tracking many hundreds of animals over multiple days made raw data files

too large to hold in memory on typical computers. We designed a custom data container

and an API to easily work with data stored in large binary files. MARGO’s raw data API

includes methods to batch-process multiple tracking experiments or single datasets too

large to hold in memory (see user documentation).
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2.7 Platform Customization and Versatility

To demonstrate MARGO’s ability to prototype experiments without the need for special-

ized hardware, we ran a minimal tracking experiment using only commonly available ma-

terials. Individual fruit flies were placed into the wells of a standard 48 well culture plate.

The plate was put in a cardboard box (to reduce reflections) on a sheet of white paper

as a high contrast background. Movies were recorded on a 1.3MP smartphone camera

using natural room light as illumination and imported into MARGO for tracking (supple-

mental video 2). Tracks and movement bouts acquired under these conditions showed no

apparent differences to those acquired under our normal experimental conditions (cus-

tom arenas over diffused LED illuminators in light-sealed imaging boxes). However, we

did find that the lower contrast illumination of this setup increased imaging noise and nar-

rowed the range of parameters that worked for segmentation, but had no apparent effect

on the accuracy of traces once calibrated.

MARGO was developed for high-throughput ethology in fruit flies, but many small or-

ganisms used for high-throughput behavior are more translucent than adult flies. To as-

sess MARGO’s tracking robustness on such organisms, we used MARGO to track videos

of larval Danio rerio, Caenorhabditis elegans, larval Drosophila (supplemental videos 3-

5), and also bumblebees (Bombus impatiens) (supplemental videos 6). As expected, the

translucency of these organisms narrowed the functional range of some tracking param-

eters, but MARGO’s real-time tracking feedback made it easy to dial in these parameters.

Sample traces acquired from other organisms were qualitatively similar to those acquired

with adult flies, suggesting that MARGO works with a variety of organisms.
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We gave MARGO a graphical user interface (GUI) to make it accessible to users un-

familiar with MATLAB or programming in general (figure 2.8). We generally find that new

users easily learn to use both the core work-flow and parameter customization. The

typical setup time of a tracking experiment for trained users ranged between a few sec-

onds (with saved parameter profiles) to a few minutes (under novel imaging conditions).

The utility of the GUI extends to customization of analysis, visualization, and input/output

sources such as videos, cameras, displays, and COM devices. Descriptions and instruc-

tions for these use cases, including defining custom experiments via the API, are available

in MARGO’s documentation.

D) Representative views of MARGO’s GUI. Blue inset shows the controls for setting

tracking parameters, pink inset the menu options for configuring experiments.

Integrating hardware for closed-loop experiments

Real-time tracking allows the delivery of closed-loop stimuli that depend on the behavior

of animals. MARGO offers native support for the hardware needed for closed-loop exper-

iments including: cameras for real-time image acquisition, projectors/displays for visual

stimuli, and serial COM devices for digital control of other peripheral electronics. COM

devices include programmable microcontrollers (like Arduinos) that make it relatively sim-

ple to control a wide variety of devices. MARGO was designed to detect and communicate

with such COM devices devices to integrate real-time feedback from sensors and coordi-

nate closed-loop control of peripheral hardware.

We ran experiments with a custom circuit board to measure individual phototactic
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Figure 2.8 Representative views of MARGO’s GUI. Blue inset shows the controls for setting tracking pa-
rameters, pink inset the menu options for configuring experiments.

preference (the ”LED Y-maze”). In this assay, individual flies explored symmetrical Y-

shaped arenas with LEDs at the end of each arm (figure 2.9a-b, supplemental video 7).

For all arenas in parallel, real-time tracking detected which arm the fly was in at each

frame. At the start of each trial, an LED was randomly turned on in one of the unoccupied

arms. Once the fly walked into one of these two new arms, MARGO turned off all the LEDs

in that arena. Immediately after these choice events, a new trial was initiated by randomly

turning on an LED in one of the now unoccupied arms. This process repeated for each fly

independently over two hours, and MARGO recorded which turns were toward a lit LED

(positive phototaxis) and which were away (negative phototaxis) (figure 2.9c). Tiling many

such mazes on a single board yielded the experimental throughput for which MARGO is
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photonegative turns).

well-suited. Overall, we recorded choices from over 3,600 individuals, representing more

than 830,000 choices in total.

To assess MARGO’s capacity to reveal behavioral differences between genotypes, we

tested a variety of wild type strains in the LED Y-maze. All strains exhibited a significant

average positive phototactic bias (mean phototactic indices ranging from 0.55 to 0.80, p-

values<<10−6 by t-test). In contrast, blind flies (Norp-A mutants) and flies under identical

circumstances but with unpowered LEDs, showed mean ”preferences” indistinguishable
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from 0.5, consistent with random choices (figure 2.10a). The wild type lines tested showed

significant variation in population mean (one-way ANOVA; F(6,1943)=118.2, p<<10−6)

and population variability (one-way ANOVA on Levene-transformed data; F(6,1943)=19.29,

p<<10−6).

We collected LED Y-maze data from a single cohort of wild-type (Berlin-K, n=144) flies

over the first 8 days post-eclosion to profile phototaxis throughout development (figure

2.10b). Flies displayed a significant average negative light bias (0.417, p<<10−6) on the

day of eclosion but transitioned to a positive light bias of 0.663 (p<<10−6) by 7 days post-

eclosion. This assay has structural similarities to an assay we previously used to measure

locomotor handedness [7], the tendency of individuals to turn left or right when going

through the center of the arena. In the LED Y-maze assay, locomotor left-right decisions

were made in superposition with light-dark choices. Flies typically make hundreds of

choices over the course of an experiment, giving us enough data to examine the turn

bias of individuals in all four left-right/light-dark combinations. We divided trials into two

groups based on whether the lit LED appeared to the right or left of the choice point.

We found that the mean turn bias but not the mean phototactic bias differed between

these two conditions (figure 2.10c) [58]. Categorizing trials this way revealed that the

rank order of both turn bias and phototactic bias are anti-correlated (r=-0.38 and r=-0.63

respectively) between the two conditions, suggesting that both individual phototactic bias

and locomotor handedness bias affect each choice.

We adapted an optomotor paradigm [59] to a high-throughput configuration to test

MARGO’s ability to deliver a precise closed-loop stimulus with low latency. In this paradigm,

an optomotor stimulus consisting of a high-contrast, rotating pinwheel, centered on a fly,
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is projected on the floor of the arena in which it is walking freely. On average, such op-

tomotor stimuli evoke a turn in the direction of the rotation to stabilize the visual motion

[60]. The center of the pinwheel follows the position of the fly as it moves around the

arena so that the only apparent motion of the stimulus is around the fly. Thus, this stimu-

lus is closed-loop with respect to each animal’s position and open-loop with respect to its

rotation velocity.

To implement this paradigm, we constructed a behavioral platform with a camera and
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an overhead mounted projector targeting an array of flat circular arenas (figure 2.11a-b).

To target a stimulus to a fly based on its coordinates in the tracking camera, MARGO had

to learn the mapping of camera coordinates to projector coordinates. We added a feature

to locate small dots displayed by the projector with the camera. From the position of these

dots in camera coordinates, we constructed a registration mapping from the camera FOV

to the projector display field. Using this mapping, we programmed MARGO to use the

real-time positions of flies to project pinwheel stimuli independently to 48 freely moving

individuals simultaneously (fig. 5B, supplemental video 8). To ensure faithful coordination

between the tracking and stimulus, the tracking rate was matched to the refresh rate of

the display at 60Hz (which is below the flies’ flicker-fusion rate, meaning this stimulus

produces beta movement apparent motion [61]; see Discussion).

While optimizing this assay, we observed that optomotor responses could be reliably

elicited, provided individuals were already moving when the pinwheel was initiated. This

is consistent with previous observations of optomotor responses depending on arousal

state [62, 63]. We therefore configured MARGO to stimulate with the pinwheel each fly

when: 1) it was moving 2), a minimum inter-trial interval had passed, and 3) it was a

minimum distance away from the edge of the arena. The inter-trial interval helped pre-

vent behavioral responses from adapting, and provided a baseline measurement period

where no stimulus was present. Minimum distance to the edge ensured that the stimulus

occupied a significant portion of the animal’s field of view.

We characterized the optomotor behavior of wild type flies in a two hour experiment

with two second pinwheel stimuli and a minimum inter-trial interval of 2s (figure 2.11c). In

total, over 300,000 trials were recorded from more than 1,800 flies, assayed in groups of
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direction (red arrow) of the stimulus is randomized. As the animal moves, the pinwheel position is updated
to stay centered on the fly. Trials end when the stimulus is removed after 2 s. C) Four sample raw individual
angular velocity time series. Flies typically respond to optomotor stimuli by turning in the direction of the
rotation of the stimulus. Shaded rectangles indicate the direction of pinwheel rotation, line color angular
acceleration. Hundreds of individual trials are recorded on average over a two hour period.

up to 48 flies simultaneously. For each fly, we calculated an optomotor index [64] as the

fraction (normalized to [-1,1]) of body angle change that occurred in the same direction as

the stimulus rotation over the duration of the stimulus. On average, flies displayed reliable

optomotor responses (mean index = 0.358, p<<10−6) when stimulated with high-contrast
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Figure 2.12 – A) Trial-triggered average optomotor response across all individuals. Change in body an-
gle (left) is scored as positive or negative relative to the rotational direction of the stimulus. All trials were
aligned to have change in body angle of zero at the onset of the stimulus. Average distance to the arena
center (right) drops immediately preceding stimulus onset due to the requirement that flies must be off the
arena edge to start a trial. B) Comparison of the observed distribution of individual average optomotor
indices (n=1,860) to the distribution expected under a null model in which all flies turn with identical statis-
tics, generated by bootstrap resampling. C) Population average optomotor index as a function of stimulus
contrast (0-1). Pinwheel contrast was randomly varied on a trial-by-trial basis. D) Average optomotor index
as a function of stimulus spatial frequency and stimulus angular velocity.

pinwheels (figure 2.12a). We observed significant individual variation in optomotor index

(figure 2.12b) as well as the number of trials each fly experienced, reflecting individual

variation in the fraction of time walking.

To characterize the psychometric properties of this behavior, we randomly varied pin-

wheel contrast, angular velocity, and spatial frequency simultaneously on a trial-by-trial

basis. Mean optomotor indices increased with pinwheel contrast, plateauing over much
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of the dynamic range of the projector, starting around 25% contrast (figure 2.12c). Simi-

larly, optomotor indices increased with both stimulus spatial frequency and angular speed,

peaking at 0.18 cycles/degree and 360 degrees/s respectively (figure 2.12d). The popu-

lation mean optomotor index reversed at high combined values of spatial frequency and

angular speed due to the apparent reversal of the stimulus at frequencies higher than the

refresh rate of the projector.

High-throughput optogenetic experiments

To test the versatility of MARGO, we used its API to implement high-throughput closed-

loop optogenetic experiments using a digital projector to target individual flies expressing

CsChrimson [65, 66] with flashing red light contingent on their behavior (fig. 6). We used

a commercial Optoma S310e DLP projector which, when displaying red light ([255 0 0]

RGB code), had a spectral range of 570 nm to 720 nm with a peak at 595 nm. Light

stimulation frequency was set to the projector refresh rate (60Hz) and its intensity to the

maximum, if not otherwise specified.

As a first experiment, we tracked the flies in a Y-Maze shaped like that in fig. 4A, but

with no LEDs. Whenever a fly entered a designated arm, MARGO projected red light on

it. Flies expressed CsChrimson in bitter-taste receptor neurons using the driver Gr66a-

GAL4. MARGO recorded the fractional time spent in the lit arm (occupancy) and the num-

ber of entries into the lit arm (entries). We observed a modest increase in the aversive

effects of optogenetic stimulation (reduced occupancy and entries) with light intensity (fig-

ure 2.13a), whereas increasing stimulation frequency did not elicit any obvious change in
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Figure 2.13 – A) Top: Fraction of time spent in the arm of a Y-maze which was triggered to optogenetically
stimulate flies expressing CsChrimson in bitter taste receptor neurons. Bottom: Portion of arm entries
into the reinforced arm. Light green boxes are control flies not fed ATR; dark green experimental flies are
fed ATR. Red line indicates chance rates. Individual points are flies. Even at the lowest intensity (50%),
flies show a robust avoidance of the reinforced arm in a Y-Maze. Increasing light intensity (x-axis) further
decreases (slightly) the lit arm occupancy time and the lit arm entries even further. Here and elsewhere
*:p¡0.05, **:p¡0.01, ***:p¡0.001. *:p¡0.05, **:p¡0.01, ***:p¡0.001. B) As in A.1, but varying the frequency of
the optogenetic stimulation. Frequency had little effect on the occupancy or rate of entry into the reinforced
arm. C) Blind norpAP24;Gr28bd+TrpA1¿Chrimson flies, expressing Chrimson in heat-sensitive neurons,
also show decreased occupancy in the lit arm, whereas the fraction of entries into the lit arm appears
unchanged compared to control flies not fed ATR.

aversion (figure 2.13b). To test the robustness of the experiment to changes in the fictive

conditioning stimulus, and to exclude the effects of visual cues, we expressed CsChrim-

son in heat sensitive neurons targeted by Gr28bd+TrpA1-GAL4 in norpAP24 blind flies.

This experiment is conceptually analogous to spatial learning in the heat-box, where flies

are trained to avoid one side of a dark, heatable chamber [67, 68, 69, 70, 71, 72, 73, 74].

While blindness only marginally affected the time spent in the lit arm (the blind flies with

Chrimson driven in heat-sensitive neurons still avoided occupying the lit arm at similar
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rates to seeing flies with Chrimson in bitter-sensitive neurons), the reduction in entries

into the lit arm, observed in the seeing flies, was abolished (figure 2.13c). These results

suggest that vision is a key sensory modality informing the decision to enter an arm, but

not for the decision of how much time to spend in an arm, once entered.

Analogous to a different heat-box experiment [75], optogenetic stimulation was made

contingent on locomotor speed rather than position. In the same circular arenas as the

optomotor experiments above (figure 2.14a), the red light was switched on under two

distinct conditions enforced in separate experimental blocks: 1) whenever the walking

speed of the flies exceeded a threshold of 6.8 mm/s and 2) whenever the walking speed

fell below that same threshold. The overall 64 minute experimental protocol consisted of

8 periods of 8 minutes each. The periods alternated between a baseline period, where

the light was permanently switched off, and the two reinforcement periods where the light

was contingent on either fast walking or slow walking/resting, respectively (figure 2.14b-

c). As in the heat-box experiments, flies increased their walking speed when punished for

walking too slowly. However, punishing fast walking failed to significantly decrease walking

speed. Reminiscent of the induction of ’learned helplessness’ in yoked control animals in

the heat-box [75], flies trained with these conflicting schedules of punishment, significantly

reduced their walking speed in the baseline periods without optogenetic stimulation, in

comparison to control animals which did not express any CsChrimson (figure 2.14c).

39



0

2

4

6

8

10

12

14

16

baseline               lit when run            lit when stop
period

t1              t4
baseline period

sp
ee

d 
(p

ix
el

s/
s)

norpAP24+UAS-Chrimson

0

5

10

15

20

25
sp

ee
d 

(p
ix

el
s/

s)

time (min)
0 8 16 24 32 40 48 56 64

norpAP24+Gr28bd+TrpA1>Chrimson

time (min)
0 8 16 24 32 40 48 56 64

t1                                                            t4t1                                                            t4

norpAP24+UAS-Chrimson

norpAP24+Gr28bd+TrpA1>Chrimson

baseline

lit when stop
lit when run

CB

A

**

Figure 2.14 – A) Example walking speed traces of an individual fly in circular arenas stimulated upon
when above or below (depending on trial period) a speed threshold 4 px/s. Line color indicates which
reinforcement paradigm was used in each period. Initial (t1) and final (t4) baseline periods are high-
lighted (see B.3). Green line indicates the speed threshold. B) Walking speeds for all periods and all flies.
norpAP24;Gr28bd+TrpA1¿Chrimson flies increase their walking speed specifically during periods when stim-
ulation is contingent on slow walking or resting (lit when stop), compared to lit when running periods and
controls without the optogenetic effector norpAP24;UAS-Chrimson. C) Walking speed during the initial base-
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2.8 Utility of MARGO for the Scientific Community

We developed MARGO as a platform for a wide variety of behavioral paradigms and or-

ganisms, all at high throughput for large-scale experiments (like genetic screens, measur-

ing individuality and characterizing psychometric response curves). MARGO’s tracking

algorithm, interface, and data footprint are lightweight, making it perform well in applica-
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tions like real-time centroid tracking. Conversely, it is not made for harder computational

tasks like maintaining the identity of multiple animals in the same compartment. But the

ability to rapidly define ROIs, and track individuals in them, enables MARGO to easily

coordinate low-latency, closed-loop stimulation for psychometric and optogenetic exper-

iments. Furthermore, by packaging MARGO in a GUI and thoroughly documenting its

usage and API, we hope to make it accessible both to new users with little programming

experience and advanced users developing custom experimental paradigms.

When ROI boundaries are drawn along physical barriers, individual identities can be

maintained indefinitely through ROI identity, thus removing the requirement for human

supervision and intervention. We found that insisting on spatial segregation ultimately

relaxes the computational requirements enough that thousands of individuals can be

tracked in real time. In the future, real-time tracking that maintains individual identity

without physical barriers may be possible, perhaps as an extension of current methodolo-

gies that exploit neural networks to track individuals offline [39, 44]. MARGO’s interface

assists in the automated definition of up to thousands of ROIs. An ROI-based architec-

ture can also be used to distinguish groups rather than individual identities by separating

groups into distinct arenas. This configuration therefore allows multiple groups, as well as

individuals, to be tested in parallel.

Long-term automated behavioral measurement has great potential in the fields of

sleep, circadian rhythms, pharmacology, and aging, among others. MARGO offers many

features useful for activity measurement over long timescales, including rapid experimen-

tal setup, small data footprint, and built-in utilities for handling large datasets. For ex-

ample, over a week we tracked the behavior of 960 flies simultaneously as they walked
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in the wells of custom 96-well plates (figure 2.6). Such throughput can be applied to

comparisons among individuals, genotypes, or treatment groups.

With built-in hardware support for cameras, displays, and peripheral electronics, MARGO

enables open- and closed-loop stimulus-evoked ethology on a large scale. Built-in fea-

tures supporting projector displays, like camera-projector registration, facilitate a wide

variety of visual and optogenetic experiments (figs. 5, 6). Native detection and communi-

cation with serial COM devices further extends these capabilities by providing a generic

interface for a wide variety of peripheral devices, such as the LED controllers we used

for the LED Y-maze (figure 2.9). Taken together, MARGO is a multi-purpose platform for

coordinating hardware inputs and outputs for high-throughput ethology.

Between our two closed-loop visual stimulation experiments (LED Y-maze and opto-

motor assay), we screened nearly 5,000 animals over hundreds of thousands of trials, al-

lowing the precise characterization of both individual- and population-level behavior. With

the experiments themselves representing less than a week of testing, these platforms

could be used for large behavioral screens of hundreds of strains. In the LED Y-maze,

we showed that individuals displayed idiosyncratic biases in both phototactic preference

and locomotor handedness simultaneously, as observed previously in separate assays

[8, 7]. The wild-type fly lines we screened displayed population level differences in both

mean preference and variability in phototactic bias [58]. Furthermore, the mean of one

strain (Berlin-K) shifted from negative to positive over the first week post-eclosion, as was

reported previously [76]. Interestingly, we observed that flies with a high right-turn proba-

bility were more likely to turn toward the light when it was to the right of the choice point

and that the opposite was true of flies with a high left-turn probability. We observed a
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similar but stronger effect of phototactic bias on locomotor handedness (e.g., flies with

a high phototactic bias were more likely to turn toward the right when the light was on

the right). Together these results demonstrate measurable effects of phototactic bias and

handedness in a task that probes both simultaneously. Thus, we found that both individ-

ual light and handedness biases influence light/turn behavior on a choice-by-choice basis.

As responses to light are ethologically relevant [9], the interplay of individual behavioral

biases may have fitness consequences for wild flies.

In the optomotor experiment, we demonstrated that, using closed-loop stimuli deliv-

ered from a projector, MARGO can quantify individual optomotor responses of dozens

of flies simultaneously. Consistent with previous findings [62, 63], we saw that stationary

flies did not exhibit strong optomotor responses, consistent with the idea that this reflexive

behavior may be state-dependent [77, 78, 79, 80, 81]. While all animals tested exhibited

the optomotor response to some degree, we observed a broad distribution of individual

optomotor indices, suggesting that individuals respond idiosyncratically to the same stim-

ulus, as has been found previously in other spontaneous and stimulus-evoked behaviors

[8, 48, 9, 7, 82]. We suspect that the success of this assay may be partially due to tightly

centering the pinwheel centered on the animal as it moves, which is possible because of

MARGO’s low latency.

Our optogenetic experiments provide a proof of principle that high-throughput closed-

loop manipulation of neural activity is feasible. Using different driver lines to activate

neurons under both spatial (figure 2.13) and locomotor (figure 2.14) contingencies, opto-

genetic stimulation reliably altered fly behavior in the expected directions. These experi-

ments also revealed that flies use visual elements of the projector rig to orient when the
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stimulus was nominally off, and that optogenetic punishment can induce learning effects

outlasting the stimulation itself. These results also remind us about a general limitation

of studying freely moving animals: the large number of degrees of freedom that such be-

havior enables can make it difficult to causally relate biological manipulations to specific

mechanisms. For instance, without prior knowledge of the function of the optogenetically

targeted neurons, it would not have been immediately clear if our manipulation affected

reinforcing neurons or neurons involved in motor control, which could also lead to altered

occupancy of the lit arm in the Y-Maze. Likewise, a screen for neurons that are required

for non-random entry into optogenetically-reinforced arms of the Y-maze would yield blind

flies, as the flies in our assay apparently use visual cues to identify which arms are rein-

forced before entering them.

Behavioral experiments are frequently more complex than tracking objects in a dish.

Such experiments could require complex arena geometries, data streams from external

sensors, control of peripheral hardware, and access to measurements of behavior in real

time. MARGO can manage these features, making it well-suited to implementing new

behavioral paradigms. Specifically, MARGO can automatically generate templates for

new experiments with custom inputs and outputs within the GUI. We have also included

a tutorial for defining custom experiments in MARGO’s documentation. In practice, we

find that new experiments can typically be defined in one or two custom functions, given

familiarity with the API.

Animal tracking platforms are evolving to meet the diverse needs of the ethology, neu-

roscience and behavioral genetics communities. See Table 2.1 for a comparison of the

features of several contemporary tracking programs. Trackers can be broadly described
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MARGO Ethoscopes flyGrAM BioTracker ToxTrac flyTracker Ctrax idTracker Tracktor

Real-time real-time
or offline real-time real-time real-time

or offline offline offline offline offline offline

Peripheral harware 
integration yes yes yes camera only no no no no no

Supports 
experimental 

modules
yes yes one no no no no no no

Custom hardware 
required none ethoscope flyGrAM

apparatus none none none none none none

Track multiple 
animals per ROI yes yes group

locomotion only yes yes yes yes yes yes

Resolves identity 
through collisions no no no no yes yes yes yes no

Limb, head, 
midline, wing 

tracking
no no no no no yes yes yes no

GUI yes yes yes yes yes yes yes yes no

ROI definition
automatic, 

grid-based, or 
manual

dependent 
on hardware

manual 
drawing

automatic
or manual

automatic, 
grid-based, or 

manual

single
ROI

manual
drawing

manual 
definition

Notes
fast tracking 

with support for 
hardware 

control

low-cost, easily-
scalable

hardware 
module

could extend 
software and 
hardware to 

other 
applications

allows user 
defined
tracking 

algorithms

simple 
installation and 
user-interface 
(MS Windows 

only)

uses feature 
detectors to 

track individual 
postural 
elements

widely used, has 
companion 
behavioral 

analysis toolbox 

uses deep 
networks and 

fingerprinting to 
identify 

individuals

well-suited to 
applications with 

non-static 
background

Table 2.1 – Comparison of open-source animal tracking packages – Trackers as falling into two rough
categories: 1) real-time trackers capable of very high throughput and potential hardware integration, and
2) offline trackers capable of tracking body parts and/or maintaining individual identities without spatial
segregation.

as falling into one of two categories: 1) real-time trackers [32, 51, 53, 50, 55, 43] with po-

tential for high throughput and hardware control and 2) offline trackers [45, 36, 37, 38, 46,

39] with the potential to maintain individual identities (without using spatial segregation)

and/or track body parts. Hardware integration is a natural extension of real-time trackers

since many stimulus paradigms are contingent on behavior. While trackers in the second

category are currently unsuitable for real-time applications, they offer the notable benefits

of being able to study fine-scale postural and social behaviors. The ability to record video

in parallel with tracking and peripheral hardware control means MARGO can be used

upstream of offline trackers, making it possible to analyze social dynamics or postural

features in response to closed-loop stimuli. Among this array of options, MARGO is opti-
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mized for the throughput characteristic of Drosophila and other genetic model organisms

like C. elegans. MARGO has the flexibility to accommodate the experimental diversity of

techniques in neuroethology. Thus, we envision MARGO’s niche as a versatile platform

for experiments operating at high throughput to measure individual behavior and deliver

closed-loop sensory and optogenetic stimuli.
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Chapter 3



3 Decathlon Screen of Individual Behavioral Variation

3.1 Background

Individuals display idiosyncratic differences in behavior that often persist through time and

are robust to situational context. Some persistent individual behavioral traits commonly

occur in correlated groups and can therefore be said to covary. Behavioral ethologists

have long understood that ”types” of human and animal personalities often fall on mul-

tivariate axes of variation. . A five dimensional model [83] of known as The Big Five

personality traits are frequently used by psychologists to describe the range of human

personality and a similar model has been used to describe personality in fish [84]. For

example, human propensity for behaviors such assertiveness, talkativeness, and impul-

siveness are collectively described as extroversion and are thought to be anticorrelated

with behaviors such as passivity, shyness, and deliberateness, all behaviors associated

with introversion [85].

In animal species, correlated suites of behaviors are described as behavioral syn-

dromes. Aggressive behaviors such fighting over mates or food are frequently correlated

with exploratory behaviors such as foraging and social interaction have been observed in

insects [2], arachnids [3], fish [4], and birds [5]. The prevalence of behavioral correlation

suggests that covariation is likely a ubiquitous feature of behavior. Although correlated

individual differences in behavior are commonly observed, the structure and mechanisms

of behavioral covariation are not well understood. Typically, where an individual lands on
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these behavioral axes is thought to be determined by their individual genetic make-up.

But there is increasing evidence that substantial individual behavioral variation is rooted

in intragenotypic variation [86]. The extent to which intragenotypic behavioral variation is

organized into syndromes or axes is essentially wholly uncharacterized.

3.2 Project Goals

The particular question that motivates this study is what is the correlation structure of

behavioral variation when genetic and environmental variation are minimized. Substan-

tial variation in specific behavioral measures, even in inbred lines raised in standardized

conditions has been observed in several clonal animals, including: geckoes [87], amazo-

nian mollies [88], aphids and nematodes [89, 90]. Genetic model systems hold particular

promise for the mechanistic dissection of this variation, and intragenotypic variability (IGV)

in behavior has been characterized in mice [91], zebrafish [92] and Drosophila. In flies,

IGV of many behaviors has been studied, including: phototaxis [8], locomotor handed-

ness and wing-folding [7], spontaneous microbehaviors [48, 82], thermal preference [9]

and object-fixated locomotion [13]. Mechanistic studies of these behavioral phenomena

have addressed two major questions: 1) what biological mechanisms underlie the mag-

nitude of behavioral variability (e.g., genetic variation [58], or neural state variation [8, 7],

and what specific differences within individual nervous systems predict individual behav-

ioral biases [13]. None of these studies has focused on characterizing the large-scale

variance-covariance structure of IGV in behavior.

There is a well-developed theoretical framework for understanding the multivariate
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correlation structure of phenotypes. In quantitative genetics, G-matrices characterize the

variance and covariance structure of phenotypes (be they behavioral, physiological, mor-

phological) across genetically different individuals or strains [20]. These representations

allow the quantitative prediction of responses to selection and constrain the combinations

of phenotypes individuals can exhibit. Just as the phenotypic variance can be parsed

into genetic variance, environmental variance,GxE interaction variance etc., covariance

can be similarly dissected [93, 21]. For example, phenotypic variance-covariance can be

parsed as the sum of a G-matrix and an Environmental-matrix. The latter is further broken

down into Temporary Environmental covariances and Permanent Environmental covari-

ances that endure for the duration of observations. Permanent Environmental effects are

those that do not arise in heritable differences, play out idiosyncratically across individu-

als, and are persistent. In flies, we have the potential to directly measure this component

of phenotypic variance-covariance by rearing isogenic animals in standardized lab envi-

ronments, profiling their individual biases over a wide range of behavioral measures, and

directly measuring the variance and covariance of behavioral bias.

3.3 Screen Results

The first step in revealing the structure of behavioral variation within a genotype is to de-

vise an experimental pipeline that produces a dataset of many (200+) individual flies, with

many behavioral measurements each. We first developed a number of behavioral assays,

measuring both spontaneous and stimulus-evoked responses of individual flies, which

could be implemented in a common experimental platform (Figure 3.1a; [10]). Using a
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common platform, along with choices like storing flies between experiments in 96-well

plates, were important for logistical reasons, as they made maintaining the errorless iden-

tity of flies over the whole 13 day experiment substantially easier. This behavioral platform

features an imaging plane, within which flies moved in arenas of various geometries. Fly

position was tracked with digital cameras using diffused infrared infrared illumination in-

visible to the flies. Visual stimuli were presented to the animals using DLP projectors or

LEDs embedded in the arena walls. We implemented six assays in this style, assessing

1) spontaneous walking in circular arenas, 2) preference to rest in higher or lower light

levels (in an environment of spatially structured light), 3) preference to rest in higher or

lower light levels (in a fictive, temporally-modulated light environment), 4) optomotor re-

sponses to rotating visual stripes, 5) spontaneous left-right decision making in Y-mazes,

and 6) phototaxis in Y-mazes, where flies are given a choice of walking toward or away

from a lit LED (Figure 3.1b).

To these assays, we added three more, assessing 7) odor sensitivity in linear cham-

bers [94] in which half of the compartment is filled with an aversive odorant, 8) sponta-

neous behavior, acquired via high-resolution 100 Hz video and suitable for pixel-based

unsupervised classification [24], and 9) circadian activity and spontaneous locomotion in

96-well plates with access to food. Each of these assays produced multiple behavioral

metrics for each individual fly. For example, flies behaving in the phototactic “LED Y-

maze” (assay 6) are performing phototaxis and exploratory locomotion, but yield several

different behavioral measures, including: the number of choices made by passing through

the choice-point of the Y-maze (a measure of total activity), the fraction of turns that are to

the right, the fraction of turns that are toward the lit LED, the number of pauses in which
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the animal did not move, the average duration of pauses, etc. Thus, the total collection

of behavioral measures across all assays per fly was quite large (up to 121), constituting

a diverse, inclusive characterization of individual behavior. Each assay has a particular

measure that captures the behavior it is primarily designed to assess (e.g., the fraction

of turns toward the lit LED in the LED Y-maze), and in control experiments, we confirmed

that these primary measures are consistent across days within an individual (Figure S1),

i.e., they reflect persistent idiosyncrasies [8, 7, 9].

In order to obtain all of the behavior measures from each experimental animal, we put

the assays together in a serial experimental pipeline lasting 13 consecutive days (Figure

3.1c), generally with one unique assay per day and continuous circadian imaging (assay

9) between assays. This pipeline begins with 3 day-old flies being loaded into the 96-well
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circadian imaging plates. The flies acclimatized to these chambers over two days. Starting

on day 3, daily assays began, and on each day, flies were lightly anesthetized on a ice-

chilled plate and aspirated, maintaining their identity, into the assay arrays. After the assay

was completed (typically after 2h of recording) flies were again lightly anesthetized and

returned to 96-well plates for renewed circadian imaging. On the first such day, flies were

loaded into an array of circular arenas and imaged for total activity (in a version of assay

1). At this point, the most active 192 flies were retained for further testing. In preliminary

experiments, we found that flies that were inactive at the beginning of the pipeline were

very unlikely to produce substantial amounts of data over the rest of the pipeline. With the

addition of this activity-screening assay, the total number of experiments was 10, and as

each fly “competes” in all 10 events, we refer to the entire pipeline as a Decathlon.

It is possible that the assay order has some effect on the recorded behavior measures.

So we randomized the assay order between Decathlon implementations as much as pos-

sible (Figure 3.1d), subject to two restrictions: activity-screening was always the first as-

say, and high-resolution imaging for unsupervised analysis (assay 8) was always the last

assay. (This assay has lower throughput, and three days were required to complete all

168 remaining flies. If this assay were performed earlier in the pipeline, it might introduce

heterogeneity across subsequent assays.) When each fly completed its run through all

Decathlon assays (i.e., over the three days of assay 8 imaging), it was flash-frozen in

liquid nitrogen for RNA sequencing.

To collect data that would reveal the structure of behavioral variation within a genotype,

we conducted two Decathlons using highly inbred, nearly isogenic flies derived from the

wild type strain Berlin-K (BSC8522, [95]). We confirmed that this strain was, indeed,
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highly isogenic with genomic sequencing of individual animals, finding 75 SNPs in the

population across the entire genome (figure S2). 115 flies completed the first Decathlon,

and 176 the second. While we aimed to collect 121 measures per fly, a portion of values

were missing, typically because flies did not meet assay-specific activity cutoffs. For

subsequent analyses (See figure S3 for a schematic of all analysis pipelines), it was

sometimes necessary to have a complete data matrix. So we infilled missing values

using the alternating least squares method, which, as judged by analyses of toy ground-

truthed data, performed better than mean-infilling (figure S4). We wanted, for the sake

of maximal statistical power, to merge the datasets from the two Berlin-Kiso Decathlons.

The correlation matrices of these two datasets were not identical, but were substantially

more similar than expected by chance (figure S5), implying that while there were inter-

Decathlon effects, much of the same structure was present in each, and merging them

justified. To do this, we z-score normalized the data points from each arena array/batch

(within each Decathlon) across flies, thus eliminating any arena, assay, and Decathlon

effects and enriching the data for contrasts between individuals. A grand data matrix was

made by concatenating these batches (382 individuals x 121 behavior measures).

The full correlation matrix of this Berlin-Kiso dataset is shown in figure 3.2a. It contains

a substantial amount of structure, indicating that large groups of behavioral measures

covary. But the covariance of many pairs of measures in the matrix is not surprising. For

example, almost all our assays generate some measure of locomotor activity (meanSpeed

in circular arenas, number of turns in Y-mazes, meanSpeed in the olfactory tunnels, etc.),

and one might expect that especially active flies in one assay will be especially active in

another assay. Additional unsurprising structure in this matrix comes identical measures
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recorded in each of the 11-13 circadian assays each fly completed. But, even in this first

analysis, surprising correlations were evident. For example, flies with higher variation in

the inter-turn interval in the olfactory assay (olfactoryTurnClumpiness) exhibited higher

mean speed in the circadian assays, and flies with higher variation in inter-turn intervals

in the Y-maze (ymazeTurnClumpiness) exhibited lower mutual information in the direction

of subsequent turns in the Y-maze (ymazeHandSwitchiness) (figure 3.2b). See Buchanan

et al., 2015, and Akhund-Zade et al., 2019 for more about these measures.

To produce an exhaustive list of such “interesting” correlations, we distilled the grand

correlation matrix to a smaller matrix (the “distilled matrix”; figure 3.2c) in which two kinds

of interesting relationships were revealed: 1) uncorrrelated dimensions among measures

for which we had a prior expectation of correlation (e.g., if meanSpeed in circular arenas is

found to be uncorrelated with meanSpeed in olfactory tunnels), and 2) correlated dimen-

sions among measures for which we had no prior expectation of correlation. Relationships

of the former class were identified by enumerating, before we ran any correlation analy-

ses, groups of measures we expected to be correlated (“a priori groups”; figure 3.2a,h).

We looked for surprising independence within such groups by computing the principal

components of data submatrices defined by the grouping (e.g. for the “activity” a priori

group, by running PCA on the dataset consisting of 382 individual flies, and 57 nominal

measures of activity). We then replaced each a priori group submatrix with its projection

onto its statistically significant PCs, as determined by a reshuffling analysis (see Methods,

figure S7). Some a priori groups largely matched our expectations, with relatively few in-

dependent dimensions among many measures (e.g., the gravitaxis group which had 10

measures and only 2 significant PCs), while others exhibited relatively many independent
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Figure 1: Figure 3.2 — Decathlon behavioral variation. A) Full correlation matrix of all raw behavioral
measures taken in the Decathlon. Colored blocks indicate blocks of measures we thought a priori might be
correlated (outer blocks, text labels). Inner blocks indicate assay. B) Example scatter plots associated with
measure correlations. Points are individual flies. Line is the best fit (PC1 of these points), grey region is the
95% confidence interval of the fit, as determined by bootstrap resampling. C) Distilled correlation matrix in
which all correlated metrics represent unexpected relationships. D) Example scatter plot from the distilled
correlations. Plot elements as in B. E) Scree plot of the ranked, normalized eigenvalues, i.e., the % variance
explained by each PC, of the distilled behavior matrix, versus PC . F) Effective dimensionality spectrum (See
text and Figure S9) for the distilled matrix. Height of bars indicates organization at that dimensionality. G)
Points corresponding to individual flies non-linearly embedded using t-sne from the 121-dimensional raw
measure space to two dimensions. H) Points corresponding to behavioral measures non-linearly embedded
using t-sne from the 384-dimensional space of flies to two dimensions. Colors indicate groups of measures
we expected a priori to be related.

dimensions (e.g., the clumpiness group which had 5 measures and 5 significant PCs; see

figure S7 for all a priori group PCA analyses).

With a priori group submatrices represented in their respective significant PCs, the

grand data matrix now contained 38 behavioral metrics. Every significant correlation be-

tween behavioral metrics at this point represents an unexpected element of structure of

behavioral variation (figure 3.2c). The first impression of this correlation matrix is that it
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is sparse. Most behavioral metrics are uncorrelated or weakly correlated, meaning there

are many independent dimensions of behavioral variation. However, 176 pairs of behav-

iors were significantly correlated at a false discovery rate of 38.1%, and the distribution of

p-values for the entries in this matrix exhibits a clear enrichment of low values (figure S7)

indicating an enrichment of significant correlations. As an example, flies with high values

in the third PC of the switchiness a priori group tend to have high values in the second PC

of the clumpiness a priori group (figure 3.2d; a relationship that is built, in part, on the pos-

itive correlation between the ymazeTurnClumpiness and ymazeHandSwitchiness, figure

3.2d). Interpreting the loadings (figure S7) of these PCs indicates that this is a correla-

tion between olfactory tunnel turn direction switchiness and olfactory tunnel turn timing

clumpiness. We detected a substantial number of correlations between different dimen-

sions of switchiness and clumpiness (figure S8), suggesting there are multiple couplings

between these suites of traits.

Stepping back from specific pairwise correlations, we examined the overall geometry

of behavioral variation. The full matrix contained 22 significant PCs, with PCs1-3 ex-

plaining 9.30, 6.94 and 5.77 % of the variance, respectively (figure 3.2e). But amount

of variance explained across PCs does not indicate how many independent dimensions

of variation are present in a dataset. Moreover, a correlation matrix can be organized at

different scales/hierarchically, so there need not be a single number that characterizes

effective dimensionality. We developed an “effective dimensionality spectral analysis” that

assessed the continuous degree of organization of a dataset across the continuous range

of dimensionalities from 1 to d, the dimensionality of the data. Briefly, we thresholded the

correlation matrix, across a wide range of thresholds, at each identifying the number of
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connected components in the matrix and recorded how often n connected components

were observed. See Methods and figure S9. The effective dimension spectrum (figure

3.2f) of the distilled Decathlon dataset had peaks at 1 and d (37). There was also evidence

for structure over the full range of intermediate dimensionalities. Overall, the organization

appears to be predominantly independent behaviors, with some sparse sets of genes

correlated with varying strengths.

To assess how individual flies are distributed in behavior space, we embedded them

from the 384 dimensional space into two dimensions using t-sne [30]. There appear to

be no discrete clusters corresponding to “types” of flies, instead, variation among flies

appears continuously distributed around a single mode (figure 3.2g). We also embedded

behavioral metrics as points from the 121 dimensional space of flies into two dimensions

(figure 3.2h). This confirmed that while our intuition for which sets of metrics would be

similar (the a priori groups) was right in many cases, metrics we thought would be similar

were often dissimilar across flies, and sometimes metrics we did not anticipate being

similar were (e.g., phototaxis and activity level).

With data from the second Decathlon, we characterized the structure of variation in a

set of behaviors that was potentially exhaustive for one behavioral condition (free walk-

ing/motion in a 2d arena; figure 3.3a). High-speed, high-resolution video was acquired

for four flies simultaneously in each of two rigs. Over three days, we acquired 13.5 GB of

200x200 px 100Hz videos centered on each fly as they behaved spontaneously over the

course of 60 minutes. These frames were fed into an unsupervised analysis pipeline [24]

that computed high-dimensional representations of these data in the time-frequency do-

main before embedding them in two dimensions and demarcating boundaries between 70
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discrete modes of behavior (figure 3.3b). The behavior of each fly was thus represented

as one of 70 values at each frame. Flies exhibited a broadly similar probability distribu-

tion of performing each of these behaviors (figure 3.3c), though there were conspicuous

differences among individual patterns of behavior (figure 3.3d).

The correlation matrix of behavioral modes identified in the unsupervised analysis was

highly structured (figure 3.3e; like the correlation matrix of the rest of the decathlon met-

rics, figure 3.1e), appearing to have approximately 6 independent dimensions of variation

(figure 3.3f). For this analysis, there was no equivalent of a priori groups of behavioral

measures, as metrics were not defined prior to the analysis. But, in examining sample

movies of flies executing each of the 70 unsupervised behavioral modes, it was clear

that highly correlated behavioral modes tended to reflect variations on the same type of

behavior (e.g., walking) or behaviors performed on the same region of the body (e.g.,

anterior movements including eye and foreleg grooming; figure 3.3g). In other words,

individual flies that perform more eye grooming tend to perform more of other anterior

behaviors. There were some correlations between seemingly disparate behaviors. For

example, flies that spent more time performing anterior grooming also spent more time

performing slow leg movements (figure 3.3g). The overall similarity of covarying behaviors

was confirmed by defining groups of covarying behaviors and observing that they were

associated with contiguous regions of the embedded behavioral map (figure 3.3i). That

is, behaviors whose prevalence covaries across individuals have similar time-frequency

patterns across the body. Moreover, these clusters of covarying, contiguously embedded

behaviors exhibited similar temporal transitions; behaviors that covary across individuals

tend to precede specific sets of subsequent behaviors (figure 3.3j). Thus, there appear
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Figure 3.3 — Correlation structure of unsupervised behavioral classifications. A) Schematic of the four
camera imaging rig used to acquire single fly videos. B) Overview of the data processing pipeline from single
fly videos to behavioral probability maps. C) Behavioral classification probability density function (PDF)
matrix. Columns correspond to behavioral PDFs for individual flies. D) Sample individual PDFs mapped
to locations in tSNE space. Discrete regions correspond to watersheds of the tSNE embedded probability
densities. E) Correlation matrix (top) for individual PDFs with rows and columns hierarchical clustered.
Colored blocks indicate supervised labels applied to classifications post-hoc. Example scatter plots (bottom)
of individual behavioral probabilities. Points correspond to probabilities for individual flies. Line is the best
fit (PC1 of these points), grey region is the 95% confidence interval of the fit, as determined by bootstrap
resampling. F) Effective dimensionality of the unsupervised behavioral classifications as calculated by the
scree plot intersection of the observed and shuffled PDF matrices (see methods). H) Discrete behavioral
map with individuals zones colored by supervised labels as in E. I) Transition probability matrix for behavioral
classifications. Entries in the ith row and jth column correspond to the probability of transitioning from state
i to state j. Blocks on the diagonal indicate clusters of supervised labels is in E.
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to be couplings between the dimensions of behavioral variation across individuals, the

domains of the body implementing behavior, and the temporal patterning of behaviors.

Response of Clumpiness and Switchiness to Thermogenetic Manipulation

To confirm that the Decathlon experiments revealed biologically meaningful couplings

between behaviors, we treated correlations in the Decathlon matrices as hypotheses to

test in a thermogenetic neural circuit perturbation screen. Specifically, we focused on

the many correlations between measures of turn timing clumpiness and turn direction

switchiness (figures 3.1e, S8). Before the Decathlon experiment, we had no reason to

think these measures would be correlated as one describes higher order structure in the

timing of locomotor turns (clumpiness) and one describes higher order structure in the

direction of sequential turns (switchiness). Our Decathlon-derived prediction was that if

perturbing a circuit element caused a change in clumpiness, it would tend to also cause

a change in switchiness, in a consistent direction. We looked for such correlated changes

when we inactivated or activated neurons in the Central Complex, a cluster of neuropils

involved in locomotor behaviors [7, 96, 97] and heading estimation [98, 99, 100]. We used

a set of Gal4 lines [101], each of which targets a single cell type and that tile the entire

Protocerebral Bridge (a Central Complex neuropil) (See Table 1), to express Shiberi-ts

[15] or dTRPA1 [16], thermogenetic reagents that block vesicular release and depolarize

cells respectively. As controls, we used flies heterozygous for the Gal4 lines, and lacking

the effector transgenes.

Flies with these genotypes were loaded into Y-mazes for behavior imaging before,

during and after a temperature ramp from 23°C to 29°C (figure 3.4a). At the permissive

temperature, we observed no correlation in the average line clumpiness and switchiness
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(figure 3.4b,d). This suggests that the mechanisms which couple variation in switchiness

and clumpiness within a genotype may not be at play across genotypes. In contrast, at the

restrictive temperature, we saw significant correlations between clumpiness and switch-

iness in all three experimental treatments: control, Shiberi-ts and dTRPA1 lines (figure

3 .2c,d). That this correlation appeared in controls suggests that temperature alone can

selectively alter the function of circuit elements regulating both clumpiness and switchi-

ness. The strongest correlation at the restrictive temperature was seen in the dTRPA1

lines, indicating that activating specific circuit elements can produce correlated effects on

clumpiness and switchiness. While clumpiness and switchiness changed dramatically in

some lines (table 3.2), the pattern of stronger correlations between these measures at the

restrictive temperature, especially in lines expressing dTRPA1 in neural circuit elements,

was consistent in the lines where changes were more modest (figure 3.4c, bottom).

3.4 Transcriptomic Profiling of Decathlon Individuals

That thermogenetic manipulation can cause correlated changes in behavioral measures,

suggests that stochastic intragenotypic variation in neural physiology might account for

correlated variation in measures in wild type flies. Such physiological variation could arise

in stochastic variation in gene expression [102] in circuit elements. To test this hypothesis,

we performed RNA sequencing on the heads of the flies at the end of the first Decathlon

experiment (figure 3.5a). We used Tm3’seq [103] to make 3’-biased libraries for each

individual animal. We quantified the expression of 17,470 genes in 48 flies. The expres-

sion profiles were strongly correlated across individuals (figure 3.5b), but there was some
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Figure 3.4 — Effect of thermogenetic neural perturbation on clumpiness and switchiness. A) Schematic
overview of the screen genetic crosses (left) and behavioral paradigm (right). Plot depicts the schema used
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switchiness measures at the restrictive temperature. Lines indicate the line of best fit and shaded regions
indicate the 95% confidence of the fit as determined by bootstrap resampling. D) Correlation coefficients
for each effector type at the permissive and restrictive temperatures for all lines (top) and a subset of lines
(bottom) as in C. Error bars indicate the 95% confidence intervals as determined by bootstrap resampling.

evident variation across individuals (figure 3.5c). To assess whether this variation was

meaningful with respect to behavioral variation, we trained two kinds of models to predict

individual behavioral biases from individual patterns of gene expression. The first of these

examined whether an individual’s position on the major axes of transcriptomic variation

predicted its behavioral biases. Specifically, we fit linear models to predict flies’ values on

the principal components of the distilled behavioral matrix from their values on the first

4 principal components of transcriptomic variation. Cross-validated models were signifi-

cantly predictive for 3 different behavioral components (figure 3.5d), including locomotor

speed and phototactic preference. The second model assessed whether specific genes

or small sets of genes predicted behavioral biases. We specifically used lasso regression

[104, 105] to identify sparse gene predictors of individual bias on the PCs of the distilled
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Figure 3.5 — Gene expression profiling of decathlon flies. A) Schematic overview of the pipeline from
decathlon assays to individual RNA sequencing. B) Heat map of log-normalized individual reads from all
17,470 genes sequenced. Rows correspond to individual flies. Columns correspond to individual genes.
C) Scree plot depicting the variance explained by the ranked PCs from PCA on individual genes. Lines
indicate variance explained for PCs fit to the observed (red) and bootstrap shuffled (black dashed) data.
Shaded region depicts the 95% confidence interval calculated by bootstrap resampling. D) Negative log p-
values of linear models trained to predict principal components of the distilled behavior matrix from the top
14 principal components of gene expression. E) Negative log p-values of lasso regression models trained
to predict principal components of the distilled behavior matrix from all gene expression data. Text labels
above bars indicate the number of genes with non-zero positive (green) and negative (orange) coefficients.

matrix. As in the other analysis, cross-validated models were significantly predictive for

some behavioral biases (figure 3.5e). Of the behavioral metrics that could be predicted

from the transcriptomic data, most were only predictable using one of these approaches.

If transcriptomic differences predict individual behavioral differences within a genotype,

then the structure of behavioral variability might be very different in outbred populations,

where transcriptomic differences are (presumably) much more substantial. We tested this

by conducting a Decathlon experiment on outbred flies from a synthetic genetic mapping

population [106]. These animals were from a high ( 100)-generation intercross population

(“NEX”; seeded in the first generation by eight kinds of F1 heterozygotes produced by
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round-robin cross from eight inbred wild strains). A distilled correlation matrix of behav-

ior metrics (figure 3.6a) was produced by the same method as above. At first glance, it

appears qualitatively similar to the distilled correlation matrix from isogenic animals (fig-

ure 3.1e). This impression was confirmed in more formal comparisons of the structure

of behavior in inbred and outbred populations. In isogenic and outbred populations: 1)

individuals do not fall into discrete clusters, as determined by t-sne embedding of indi-

viduals as points (figure 3.6b, left). Moreover inbred and outbred flies appear to lie on

the same manifold in behavior metric space; 2) behavioral measures cluster according

to their membership in a priori groups similarly in outbred (figure 3.6b, right) and inbred

(figure 3.1k) populations; 3) the distribution of the percent variance explained by principal

component was similar (figure 3.6c, left); and 4) there is a similar spectrum of covariance

structure, with most metrics independent, and a sparse network of correlations of varying

strength (figure 3.6c, right).

After determining that the overall structure of behavioral variation in isogenic and out-

bred populations is similar, we asked whether it was also similar in specific correlations.

There appears to be some similarity at this level (figure 3.6d); the correlation coefficient

between the isogenic and outbred populations in the pairwise correlations between behav-

ior metrics is statistically significant (p = 0.001), but low in magnitude (r = 0.12). Examining

specific pairs of behavior metric scatter plots, the range of consistency and inconsistency

in the correlation relationships between the isogenic and outbred experiments is clear (fig-

ure 3.6e). A caveat in interpreting apparent differences between the isogenic and outbred

matrices is that two qualities are different between the animals used in the respective ex-

periments: the degree of genetic diversity, but also (necessarily) the genetic background
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Figure 3.6 — Structure of behavioral variation in outbred flies. A) Distilled correlation matrix for outbred NEX
flies. Colored blocks indicate a priori groups as described in figure 1. B) Points corresponding to individual
flies non-linearly embedded using t-sne from the 121-dimensional raw measure space to two dimensions.
Color indicates whether the genotype is isogenic (blue) or outbred (orange). C) Points corresponding to
behavioral measures non-linearly embedded using t-sne from the 192-dimensional space of flies to two
dimensions. Colors correspond to a priori group. D) Scree plot of the ranked, normalized eigenvalues, i.e.,
the % variance explained by each PC, of the distilled covariance matrix, versus PC . E) Log histogram of the
effective dimensionality of the distilled matrix, as calculated by the number of connected components in the
thresholded graph covariance matrix over 5,000 linearly spaced covariance thresholds (see methods). F)
Scatter plot of the distilled matrix correlation coefficients for isogenic and outbred flies. Points correspond
to distilled matrix metric pairs. G) Example scatter plots of distilled matrix metric pairs for inbred (left) and
outbred (right) flies. The rows of plots highlight a pair of metrics with qualitatively different (top) and similar
(bottom) correlations in inbred and outbred flies.

of the flies.

3.5 Meta-analysis of Fruit Fly Behavioral Covariation

Lastly, we examined how the correlation structure of behavior compared between sets of

flies with variation coming from different sources. Specifically, we looked at four datasets:

1) the BABAM dataset [29] in which measures were acquired from groups of flies behaving

in open arenas, and variation came from the thermogenetic activation of 2,381 different

sets of neurons (the first generation FlyLight Gal4 lines [14]); 2) a Drosophila Genome

Reference Panel (DGRP; [28]) behavioral dataset, in which measures were acquired in

behavioral assays similar to the Decathlon experiments (sometimes manually, sometimes

automatically) and variation came from the natural genetic variation between lines in the
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DGRP collection; 3) a DGRP physiological dataset, in which measures are physiological

or metabolic (e.g., tibia length and glucose level) and variation came from the natural

genetic variation between lines in the DGRP collection; and 4) the split-Gal4 Descending

Neuron (DN) dataset [31] in which measures came from the same unsupervised cluster

approach as figure 3.3, and variation comes from the optogenetic activation of specific

sets of descending neurons projecting from the brain to the ventral nerve cord [17]. We

analyzed these datasets with the same tools we used to characterize the structure of

behavioral variation in the Decathlon experiments.

All of these datasets show substantial structure in their correlation matrices (figure

3.7a, S10). The BABAM and especially the DN correlation matrices contain numerous

high correlation values, indicative of strong couplings between behaviors under these

neuronal manipulations. The DGRP correlation matrices, especially the DGRP behavioral

matrix, look more qualitatively similar to the Decathlon matrix, with lower, sparser corre-

lations. This suggests that behavioral variation has coarsely similar structure whether

variation arises intragenotypically (e.g., through stochastic variation in transcription [fig-

ure 3.5b]; figure 3.1g), intergenotypically among outbred individuals (figure 3.6a), or in-

tergenotypically among inbred lines derived from wild populations (figure 3.7a). A caveat

of this conclusion is that sparse correlation matrices can arise either from true, biological

independence of behavior measures or from measurement error. The effective dimen-

sionality spectra of these matrices largely recapitulate the similarity of the DGRP behavior

and Decathlon structures (figure 3.7b). The BABAM and DN spectra peak at 1, suggest-

ing that most measures are in a single network of couplings to other measures. This is

especially true in the BABAM data, and more true in the optogenetic experimental animals
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Figure 3.7 — Meta analysis of Drosophila covariation. A) Correlation matrices of previously published
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than controls in the DN data. The DGRP physiology data exhibits peaks at dimensionality

1 and d, but also a broad peak between 20 and 40, suggesting that intergenotypic varia-

tion in physiology may have an intrinsic dimensionality in that range. The spectrum of the

DGRP behavior data looks similar to that of the Decathlons, with peaks and 1 and d, and

evidence for structure over the full range of intermediate dimensionalities. The distribution

of individual lines in the space of DGRP behavior (and physiology) measures appears to

be distributed single mode (figure 3.7c), like individual flies in the Decathlon (figure 3.1j).

In contrast, there is some organization of individual lines in the BABAM and DN datasets,

likely reflecting neuronal perturbations affecting multiple circuit elements mediating the

same behavior(s), e.g., multiple lines targeting the same neuropil. Measures fall into clus-

ters in all of these datasets except the DGRP behavior measures (figure 3.7d), which

appear distributed around a single mode, perhaps reflecting the high dimensionality of

behavior itself.
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Chapter 4



4 Conclusions and Future Directions

4.1 Structure of Behavioral Correlation in the Decathlon

Individuals exhibit different behaviors, even when they have the same genotype and have

been reared in the same environment. These differences might co-vary, or lie on a man-

ifold of specific geometry in behavior variation-space, but the structure of intragenotypic

behavioral variation is uncharacterized. We designed a pipeline of ten behavioral assays

(figure 3.1) which collectively yielded up to 121 behavioral measures per individual an-

imal. We also used unsupervised clustering to identify an additional 70 measures per

individual based on a time-frequency analysis of high resolution video of the flies behav-

ing spontaneously (figure 3.3). These measures were the fly-specific rates of exhibiting

each of the 70 unsupervised behavioral modes. All in all, across three 15 day Decathlon

experiments, we collected 191 behavior measures from 576 flies. This allowed us to pro-

duce a full correlation matrix for all the behavioral measures for the variation present in

isogenic animals grown in the lab (figure 3.1e).

This is significant for quantitative geneticists because this matrix (with a little alge-

braic manipulation) is a direct measurement of the Permanent Environment variance-

covariance matrix, one of the major components of the phenotypic variance-covariance

matrix along with the famous G-matrix [93]. Meta-analysis of behavioral traits that have

been assessed for their genetic variance-covariance indicates that across behaviors,

23% of variance can be attributed to heritable factors [107]. This means that “environmen-
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tal” factors, which include intragenotypic individual behaviors like the ones we measured

here, explain 77% of behavioral variance. So characterizing the structure of Permanent

Environment variance-covariance will contribute to closing a significant gap in our under-

standing of the basis of behavioral diversity.

For ethologists and behavioral neuroscientists, this result represents the most com-

plete characterization of the geometry of behavioral variation, which can be thought of as

emergent product of developmental biological processes and the dynamic interaction of

neural activity and animals’ environment. From the full behavioral matrix we made a so-

called “distilled” matrix in which any significant correlation indicates a surprising new rela-

tion between behaviors (figure 3.1g and S8). This form of the data minimizes duplicated

measures of the same behavior, allow us to cleanly analyze the geometry of behavioral

variation. We found that behavioral measures were largely independent of each other,

so that the main effective dimensionality of the behavioral space matched the number of

behaviors measured. But a single number cannot fully characterize the dimensional orga-

nization of a correlation matrix, so we developed a spectral approach that examined the

degree of organization across all possible dimensionalities in the data (figure 3.1j, 3.3e,

3.6b, S10). This revealed a degree of organization at intermediate dimensionality corre-

sponding to sparse correlations between specific pairs of behaviors (figure 3.1g,h, S9).

We found no evidence of discrete types of flies. Embedding data points corresponding to

individual flies from the high dimensional space of individual biases into two dimensions

produced a broad distribution around a single mode (figure 3.1j).

One of the specific, surprising correlations we discovered was between “clumpiness”

and “switchiness” (figures 3.1f,h, 3.3, S8). These are slightly abstract, higher-order behav-
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ior measures, corresponding respectively to the burstiness of turn/action/decision timing

and the degree of independence between consecutive binary choices. We had no a priori

reason to expect these measures would be correlated, since one pertains to the structure

of actions in time, and one pertains to the persistence of trial-to-trial biases. The corre-

lation between these two behaviors (or other pairs we discovered) could be established

during development. Individual wiring [13, 108] or physiological variations in neurons that

mediate more than one behavior could impart coupled changes to all such behaviors.

If such an explanation accounts for the correlation of clumpiness and switchiness,

there may be shared neural circuit elements in the circuits controlling decision-timing and

decision-bias. We tested this idea in a thermogenetic screen of circuit elements in the cen-

tral complex, a brain region where heading-direction is represented [98] in a ring-attractor

circuit [100]. We found that when a thermogenetic manipulation affected clumpiness,

it tended to also affect switchiness (figure 3.4), consistent with the prediction of shared

circuit elements. Interestingly, we also found that the effector-inducing temperature ma-

nipulation alone concomitantly changed clumpiness and switchiness in some lines. This

suggests that potentially subtle alterations of circuit physiology (e.g., temperature shifts

[109] well within physiological limits) can affect the function of circuit elements governing

multiple behaviors.

We included behavioral assays in the Decathlon pipeline under a number of con-

straints. They assays had to be high throughput, both in the number of flies that could be

assayed and in measures being automatically acquired. Flies had to survive at high rates,

and the measures had to be stable over multiple days (figure S1), because the whole ex-

periment lasted 15 days. Because not all behavior measures showed robust stability for
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this duration (all showed at least some day-to-day stability), the distilled Decathlon ma-

trices likely represent an underestimate of the behavioral couplings exhibited over short

periods (and perhaps an overestimate of life-long couplings, as flies can live more than a

month; [110]). In the end, we employed a number of spontaneous locomotion assays and

simple stimulus-evoked assays like odor-avoidance and phototaxis.

Light responses were measured in a number of assays (Table S1), specifically: the

LED Y-maze [10] (in which flies turned toward or away from lit LEDs in a rapid trial-by-

trial format), the Spatial Shade-Light assay (in which flies chose to stand in lit or shaded

regions of an arena that only changed every 4 minutes), and Temporal Shade-Light (in

which the same luminance levels were used as the previous assay, but a fly experienced

them by traveling into virtual zones which triggered the illumination of the whole arena

at a particular luminance (figure 3.1b). These assays were potentially redundant, and

we included this cluster of phototaxis assays in part as a positive control. However, the

three phototactic measures we thought would be correlated a priori were, in fact, inde-

pendent of each other, each being represented in the distilled correlation matrix (figure

3.1g). This may reflect flies using different behavioral algorithms [111], implemented by

non-overlapping circuits, to implement these behaviors. Indeed, independence between

behavior measure was the typical observation. This also suggests that we have not come

close to sampling the full dimensionality of intragenotypic behavioral variation; if we were

able to add more measurements to the experiment, they too would likely be independent.

To address potential biases in our sampling of assay and measure space, we per-

formed an unsupervised analysis [24, 31], of flies walking spontaneously in arenas. This

approach has the potential to identify all the modes of behavior exhibited in that con-
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text. Moreover, because the unsupervised algorithm is fundamentally a clustering algo-

rithm, it does not necessarily return a definitive number of clusters/behavioral modes (with

more data, it can find increasingly more clusters). Because we can also extract second-

order behavioral measures from this approach, such as Markov-transition rates between

modes, this approach has the potential to yield a huge number of measures. In the end

we were conservative in the number of measurements we chose to work with, matching

it to the same order of magnitude as the number of flies we tested. The correlation matrix

for the unsupervised behavior measures featured stronger correlations than the distilled

Decathlon matrices (figure 3.3e). Yet it had a similar effective dimensionality spectrum,

indicating many independent dimensions of variation and that not all behavior modes had

been sampled (figure 3.3f).

Interestingly, the blocks of structure in the correlation matrix aligned, to some extent,

with the blocks of structure in the Markov transition matrix of these behavioral measures.

This suggests that behaviors mediated by non-overlapping circuits (those that vary inde-

pendently across individuals) more rarely transition to each other over time. Conversely,

behaviors mediated by overlapping circuitry are likely to follow each other sequentially.

This may reflect the influence internal states [112], with an internal state jointly determin-

ing what subset of overlapping neurons drives behaviors that are appropriate to string

together in succession [113]. We did not assess the day-to-day persistence of behav-

ioral modes identified in the unsupervised analysis, so the observed variation across flies

could reflect moods rather than permanent personalities. However, previous supervised

[48] and unsupervised [82] analyses of spontaneous microbehaviors similar to those iden-

tified by unsupervised approaches have found such behaviors to persist across days.
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We investigated whether individual variation in transcript abundance would predict in-

dividual biases on the axes of intragenotypic variation. At the end of the Decathlon, flies

were flash frozen and their heads were RNA sequenced. We fit two kinds of model with

this data (figure 3.5). First, a linear model was used to predict behavioral biases on the

axes of the distilled dataset using principal components of transcript variation as inde-

pendent variables. Second, lasso-regularized regression was used to predict the same

behaviors scores using individual gene abundances. Both of these modeling approaches

succeeded in predicting some behavior scores. Linear models successfully predicted

changes in mean speed over the circadian imaging sessions, photopreference and mean

speed across assays. Lasso models successfully predicted photopreference, switchiness,

olfactory tunnel turning switchiness, and clumpiness. Observing that both switchiness

and clumpiness were predictable may reflect the coupling between those behaviors. No-

tably, most behavior scores were not predictable by either of these modeling approaches.

Variation on those axes may not have its basis in transcriptional variation, or the genes

whose transcriptional variation does determine these behaviors may be off in adults, or

expressed at low levels or in a small number of specific cells and therefore undetectable

in bulk head tissue. Variation in gene expression therefore appears to correlate with a

minority of behavioral axes within a genotype.

Increasing transcriptional variation by adding genetic variation had the potential to

change the correlation structure of behavioral metrics. To our surprise, the distilled cor-

relation matrix of outbred flies was qualitative similar to that of our original isogenic De-

cathlon (figure 3.6). Both outbred and isogenic matrices were dominated by independent

axes of variation and sparse correlations between axes, with rough agreement in the spe-
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cific pairwise correlations between these two datasets. These two datasets may have

differed in their absolute variances (while appearing qualitatively similar in their covari-

ances), but the normalization steps we took to resolve inter-Decathlon and assay batch

effects precluded easy assessment of this possibility. That outbred and isogenic variation

had qualitatively similar structures raises the possibility that the same kinds of biological

fluctuations underlie behavioral variation in populations of each of these kinds.

We finally examined the structure of behavioral variation in collections of flies where

variation came from three additional sources: thermogenetic activation of 2,205 sets of

neurons across the brain [29], optogenetic activation of 176 sparse populations of de-

scending neurons connecting the brain to the motor centers of the ventral nerve cord [31],

and variation in genotype across 200 inbred strains derived from wild flies [28]. The

structure of behavioral variation in the neural activation datasets was qualitatively differ-

ent from that of isogenic and outbred flies, with a dimensionality smaller than that of the

number of measures, and substantially more organization in lower effective dimensional-

ities (figure 3.7a,b). These datasets also showed clustering of individual flies in behavior

space (figure 3.7c). Behavioral variation across the inbred strains derived from wild flies

was organized qualitatively similarly to the variation across individual flies in isogenic and

outbred populations, again suggesting that the biological fluctuations across genotypes

mirror those within a genotype as respects the coordination of behavior. This work repre-

sents the most complete characterization, to date, of the structure of behavioral variation

within a genotype. We found that there are not discrete types of flies, and there are many

independent dimensions of behavioral variation. Moreover, the similar organization of

biological variation within and among genotypes suggests that fluctuations in the same
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biological processes underpin behavioral variation at both of these levels.

4.2 Remarks on Switchiness and Clumpiness

Among our correlated behaviors, we highlighted two behaviors, which we term clumpi-

ness and switchiness, which were significantly correlated in many different behavioral

contexts but with no consistent relationship.In our behavioral metrics, clumpiness mea-

sures the regularity of either turn or choice (in many cases they are one and the same)

timing while switchiness measures the frequency of switching from one choice (e.g. a

right turn followed by a left turn or vice versa) to another. To our knowledge, there is no

trivial or obvious coupling between these behaviors. Furthermore, we did not observe a

consistent relationship (e.g. positive or negative) between the behaviors. Clumpiness was

positively correlated to switchiness in some contexts and negatively correlated to switch-

iness in others, but it is plausible that small changes to circuits could invert the sign of

this relationship. It is tempting to speculate that movement dynamics may interact with

short term various internal states that affect choice switchiness differently depending on

the assay. However, this interpretation is further complicated by the fact that individual

clumpiness scores were not consistently correlated to one another across assays and

days of testing.

Interestingly, in contrast to sparse correlations between choice clumpiness measures,

we observed strong correlations between clumpiness of movement bouts across contexts.

One might reasonably assume that individual variation in choice timing (particularly when

choices are scored as moving toward or away from some landmark as in many of our
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assays) is a proxy measure of individual variability in movement dynamics. This turns

out to be true over short timescales in our datasets, as movement bout timing is strongly

correlated to choice timing on the same day of testing, but measurements of movement

bout timing are significantly less correlated to choice timing when separated by one more

days than movement bout timing is to itself across subsequent days.

4.3 Systematic Behavioral Profiling and Individuality

Profiling behavior at high-throughput on an individual scale is critical to answering impor-

tant questions about the structure and sources of behavioral variability. In this thesis, I

have detailed and implemented a method for profiling a diverse set of animal behaviors

in individual D. melanogaster. In total, the decathlon assay resulted in 191 behavioral

measures of for 576 individual flies. These behaviors included measurements of high-

level stimulus-driven behaviors such as optomotor response, olfactory chemotaxis, and

measures phototactic behavior in three distinct contexts. We also measured low-level

behaviors such as locomotor gait and grooming via an unsupervised behavioral classifi-

cation pipeline.

One interesting consideration is how the choice of behavioral profiling method might

affect estimates of behavioral dimensionality. We observed low-dimensional behavior in

three of the six datasets we analyzed. In all cases, behavioral data that had low effec-

tive dimensionality originated from automated behavioral classification pipelines and were

the result of experimental recordings lasting from 15-60 minutes. The Olympiad dataset

consisted of supervised behavioral classifications (871 in total) extracted from 16 minute
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videos of groups of 15-20 flies. The data from both the descending neuron screen and the

decathlon unsupervised behavior were extracted via an unsupervised learning classifier

from 60 minute videos. In the present analysis, it is difficult to distinguish these factors

from other confounding differences between the decathlon and other datasets such as

various forms of neuronal perturbation and individual vs population-level measurements.

Even so, there are conspicuous differences between the decathlon assays and the auto-

mated behavioral measurements in both the temporal scale of the behaviors measured

and the duration of the recordings. Two interesting possible explanations for the consid-

erable difference in behavioral dimensionality come to mind.

The first possibility is that behaviors may be much more correlated over short time

scales. The shortest decathlon assay (odor sensitivity at 15min duration) showed sub-

stantially higher correlations between many of the metrics within that assay recorded in-

cluding speed, clumpiness, switchiness, and movement bout dynamics than the same

metrics within other longer assays (such LED Y-maze at 2hr duration). Autocorrelation

measurements of individual speed in the decathlon assays show structure at three char-

acteristic lags. The first lag is approximately 1s where the autocorrelation decreases from

1 to 0.4 and may be indicative of the average duration of movement bouts. The sec-

ond lag is at approximately 20min (r=0.4 to 0.2) and may be indicative the timescale of

internal states of arousability and activity level. The final lag is a baseline correlation

(r≈0.2) present at all time scales and may correspond to persistent individual differences

in activity. One possible explanation is that the correlational structure is at least partially

dependent on internal states that change over short timescales. In the decathlon persis-

tence experiments testing individuals on the same assay over multiple days, we observed
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a decrease in the correlation of nearly all measures as a function of days between mea-

surements, consistent long timescale internal states. Short term internal states may be

an as of yet unaccounted for source of noise in the decathlon data.

Another interesting possible explanation for the apparent lower dimensionality in the

automated behavioral classifications we analyzed is that low-level behaviors such as short

timescale motor programs may show higher structure than macro level behaviors. The

behavioral classification pipeline used to score behaviors in the fly Olympiad (JAABA)

scores behaviors on a per-frame basis (i.e. behaviors can be as short as 30ms), and the

motionmapper pipeline enforces a minimum duration of 2 frames (approximately 5ms).

These classifications are on the order of the timescale of neural activity. Furthermore,

both methods use information about the animals’ posture to score behaviors. Collectively,

short timescale and postural make these methods well-suited to capturing behaviors that

may correspond to basic motor programs. That the correlational structure is higher in

behavioral measurements of this type may represent a fundamental difference between

how behaviors are organized at the level of motor programs and higher level behaviors

such as light or shade seeking.

Another interesting question is how the particular architecture of the decathlon behav-

ioral screen might have influenced the correlational structure. We found significantly less

structure in the correlation matrices of the decathlon than correlation matrices from our

persistence experiments where we repeatedly test flies on the same assay over 10 days,

raising the possibility that architecture of the decathlon experiments (i.e. novel assays

every day) adds noise to individual behavior. Most metrics we measured in the persis-

tence experiments were strongly correlated over subsequent days of testing (figure S1).
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However, the same measures were less correlated across duplicate measurements in the

decathlon. For example, Y-Maze locomotor bias was strongly correlated across days of

persistence testing (mean r=0.60±0.11) even when measurements were separated by 5

days (mean r=0.58±0.09) as in the decathlon experiment. By contrast, Y-Maze locomotor

bias was only weakly correlated across two measurements in decathlon (r=0.13). Many

measurements showed similarly lower correlations across subsequent measurements in

decathlon or as the same metric measured in two different assays. Altogether, this result

raises the possibility individual behaviors are sensitive to novel experiences, possibly due

to stress.

The apparent decrease in behavioral persistence in the decathlon assays also raises

the possibility that the order of assays in the screen additionally affects the correlation

structure. We saw noticeable batch effects across our two decathlon screens of isogenic

flies. Although much of the covariance structure was shared between the two datasets,

the decathlon-1 and decathlon-2 matrices were still significantly more correlated to them-

selves across bootstrap replicates (r=0.82 and 0.83 respectively) than they were to each

other (r=0.50), indicating that much of the structure was not shared. We randomized the

order of assays in each decathlon experiment to lessen the effect of order dependent cor-

relations. The difference between the correlation structure across batches may be due,

in part, to such effects. The contribution of idiosyncratic differences in life history trajecto-

ries to individual behavioral variation has been the focus of many studies. These results

suggest that behavioral covariation may also be sensitive to life history.
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4.4 Future Directions

The substantial difference between the dimensionality decathlon behavioral measure-

ments and the automated behavioral classifications included in our meta analysis sug-

gests limitations for both general class of methods in behavioral profiling. Automated

classifications sample behavior more minutely but at the expense of breadth of behav-

ioral context while our assays lack crucial information about animal posture. Our analysis

highlights the possibility that the structure behavioral variability is sensitive to many differ-

ent effects including: genetic background, genetic diversity, life history, and environment.

Future studies may benefit from systematically controlling for and profiling behavioral vari-

ation as a function of each of these elements.

Although the effective dimensionality spectra of our decathlon measurements suggest

that the decathlon behavioral measures show structure at multiple different levels, our

analyses confirmed that most of our behavioral measurements were largely independent.

Therefore our measure of effective dimensionality are almost certainly underestimated.

At the level of stimulus driven behaviors (i.e. phototaxis, olfactory chemotaxis, optomotor

response) we found no evidence of covariation. Even across three measures of pho-

totactic behavior with different stimulus paradigms, stimulus driven behaviors were not

significantly correlated. Furthermore, with the exception of phototaxis and activity level,

our stimulus driven behaviors were largely uncorrelated to our other metrics in the distilled

matrix. Future studies will likely need methods of systematic behavioral profiling which are

both broader in scope and narrower in detail.

Lastly, our experiments identified candidate pairs of correlated behavior such as switchiness-
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clumpiness and phototaxis-activity. Future experiments may profile the relationship be-

tween these behaviors more closely, with an emphasis on underlying genetic or neural

mechanisms that may couple them. In particular, we identified candidate central brain

neurons from a thermogenetic screen (some of which have a known role in establishing

navigational heading direction) that induced strong correlations between clumpiness and

switchiness when activated or silenced. However, we also noticed the temperature alone

was sufficient to induce a significant correlation between clumpiness and switchiness. Al-

ternative experimental manipulations of these candidate neurons may help validate their

role in the correlation clumpiness and switchiness. If these results can be validated, it

could offer a system to study the behavioral covariation at the mechanistic level.
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5 Methods

5.1 Experimental Model and Subject Details

5.1.1 Fly Strains

MARGO Experiment Flies

Unless otherwise specified, the genotype of all MARGO assay testing was performed

with a strain of Berlin-K that we inbred for 13 generations prior to these experiments.

Gr66a-G4 (from the G. Turner lab), norpAP24 (from the M. Heisenberg lab), TrpA1-G4

(FlyBase ID: 27593), Gr28bd-G4 (FlyBase ID: 57620), UAS-20xCsChrimson (FlyBase

ID: 55135) were the lines used in the optogenetic experiments. Tracking experiments

were performed with mixed sex flies 3-5 days post-eclosion unless otherwise noted. Flies

were raised on standard conrmeal/dextrose formula media (Harvard Fly Core Facility)

under 12 h/12 h light and dark cycle in an incubator at 25°C and 40% humidity. Animals

were imaged and singly-housed on food in modified 96 well plates (Fly Plates, FlySorter

LLC) for all multi-day tracking experiments. C.Elegans were housed in a custom platform

on agarose media and were composed of multiple strains as described in the WorMotel

publication [114]. Drosophila larvae CantonS on 2% agarose media mixed with fructose

in a gradient (0-300mM) along one axis. Larval zebrafish were HC:GCaMP6s.

Decathlon Experiment Flies

All decathlon experiments were performed on virgin female fruit flies derived from

inbred wild type Berlin-K (BSC 8522) isogenic flies or a custom outbred flies (NEX)
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(REFEF). Prior to decathlon testing, a lineage of Berlin-K isogenic flies (BK-iso) were

selected for robustness from pool of inbred lineages as the result of a short screen de-

signed to mimic the stresses of the decathlon assay battery. All inbred lineages tested

were derived from three wild type strains: Berlin-K (BK), Canton-S (CS), and Oregon-R

(OR). For each wild type strain, six virgin females were dispensed into separate vials and

paired with a single male fly to establish separate lineages. Parental flies were removed

from their vials after 2 days to separate them their progeny. For all successive genera-

tions after the first generation, the six virgin females were picked from the three vials (2

from each) with the highest number of progeny to select for fecundity and overall ease of

maintenance. Virgins were then dispensed into separate vials with full sibling males for

inbreeding. After 13 generations of inbreeding this way the resulting lineages (6 total for

each strain) were screened for overall activity level via behavioral testing on the Y-maze

assay in cohorts of 120 flies from each lineage. For each strain, the lineage with the high-

est number of choices (turns) in the Y-maze from was kept for further testing to improve

overall sampling in behavioral experiments, resulting in a single lineage from each strain:

BK-iso, CS-iso, and OR-iso.

To screen robustness to the stresses of multiple days of behavioral testing such as

periodic food deprivation and repeated cold anesthetization, cohorts of 96 flies from the

resulting inbred lines were singly housed and repeatedly tested on the Y-maze assay over

a 3 day period. BK-iso and CS-iso were selected as the lines with the lowest and second

lowest (respectively) mortality after 3 days of testing. To introduce hybrid vigor and reduce

the deleterious effects of inbreeding, four F1 hybrid isogenic strains were generated by

crossing each combination of parental sex and isogenic strain (e.g. [U+2642] BK-iso x
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[U+2640] CS-iso, [U+2640] BK-iso x [U+2642] CS-iso etc) and screened for mortality

in the 3 day experiment described above. Contrary to our expectation that increased

heterozygosity in the F1 hybrid lines would result in more robust flies and lower mortality,

F1 flies displayed intermediate mortality and activity level (choice number) between BK-

iso and CS-iso parentals. Thus BK-iso flies were ultimately selected for the decathlon

screen.

5.1.2 Fly Handling

Parental flies and decathlon flies (prior to individual housing) were raised on CalTech

formula cornmeal media under 12 hr/12 hr light and dark cycle in an incubator at 25 ˚ C

and 70% humidity. A single cohort of virgin decathlon flies were collected over an 8hr

period (10AM-6PM) and stored in group housing up to a maximum of 288 flies. On the

following day, flies were anesthetized using carbon dioxide (CO2) and were aspirated into

custom multiwell plates for individual housing (flySorter) on cornmeal media. Individually

housed flies were stored in a custom imaging box for circadian activity measurements

(circadian chamber) on a 12 hr light and dark cycle (10AM-10PM) which was housed

inside of an environmentally controlled room at 23 ˚ C and 40% humidity. Food media

was replaced and individual housing trays were cleaned every 2 days while flies were in

behavioral testing to keep food moisturized and prevent microbial buildup.

Following the start of decathlon (3 days post-eclosion), flies were removed from the

circadian chamber each day for behavioral testing between 11AM and 2PM. Prior to all

behavioral experiments (excluding olfaction) flies were cold anesthetized by transferring

individual housing plates and food trays to an ice-chilled aluminum block in a 4 ˚ C for
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10 minutes. This time was minimum time required to reliably induce chill coma in most

flies given the mass and low thermal conductivity of the cornmeal media separating the

flies and the chill block. Once anesthetized, flies were individually transferred via aspi-

ration to room-temperature custom behavioral arenas (without food) where they quickly

awoke (typically 1-10 sec) after transfer. After all flies were transferred, they were given

an additional 20 minutes to recover prior to behavioral testing. Flies were then tested in

custom behavioral platforms, lasting as little as 15 min (olfaction only) and as much as 2

hrs (typical). Following testing, flies were returned to individual housing via aspiration ei-

ther directly (olfaction only) or after re-anesthetizing by transferring the custom behavioral

arenas to an ice-chilled aluminum block for 10 minutes. Once all flies were returned, the

individual housing plates were returned to the circadian chamber between 2-5PM.

5.2 Custom Behavioral Experiments

5.2.1 Assay design and fabrication

Unless otherwise specified, all tracking was conducted in custom imaging boxes con-

structed with laser-cut acrylic and aluminum rails. Schematics of custom behavioral are-

nas and behavioral boxes were designed in AutoCAD. Arena parts were laser-cut from

black and clear acrylic and were formed as stacked layers joined with Plastruct plastic

weld. Arena floors were made from sandblasted clear acrylic and arena lids were made

from custom-cut clear eighth inch acrylic. Schematics for behavioral boxes and behav-

ioral arenas can be found on the de Bivort Lab schematics repository. Illumination was

provided by dual-channel white and infrared LED array panels mounted at the base (Part
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BK3301, Knema LLC, Shreveport, LA). Adjacent pairs of white and infrared LEDs were

arrayed in a 14×14 grid spaced 2.2cm apart. White and infrared LEDs were wired for

independent control by MOSFET transistors and a Teensy 3.2 microcontroller. Two sand-

blasted clear acrylic diffusers were placed in between the illuminator and the behavioral

arena for smooth backlighting.

For circadian experiments, flies were housed and imaged in individual fly storage units

(FlyPlates) from FlySorter LLC. Circadian imaging boxes consisted of a small (6”x6”x18”)

enclosed behavioral box with a dual-channel LED illuminator on a 12:12hr light and dark

cycle programmatically controlled via MARGO behavioral tracking software. A heat-sink

was affixed to the underside of the illuminator panel (outside of the box) and fan were

used to ensure the interior of the boxes remained consistent with the temperature of the

environmental room.

The olfactory sensitivity assay was performed in a previously described custom be-

havioral chamber [94]. The apparatus consisted of 15 parallel tunnels constructed from

Accura 60 plastic using stereolithography (In’Tech Industries) fabrication. Stainless steel

hypo tubing (Small Parts) was used to connect the apparatus with (ID: 0.7mm). Odorized

or clean air was delivered via teflon odor tubes to inlet ports at each end of the tunnel and

streams vented to the room through exhaust ports in the center forming a sharp choice

zone. An active vacuum was not applied to the exhaust ports, and the tunnels operated

close to atmospheric pressure throughout the experiment. A clear acrylic lid was clamped

in place above the apparatus to ensure an air-tight seal during odor presentation. Air di-

lutions could be made independently for each side of the apparatus. A custom 15-way

PEEK manifold was used on each side to split the odorized flow equally between 15 tunnel
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inlets. A final valve (SH360T041; NResearch) was used immediately upstream of each

manifold to quickly switch between pure dehumidified air and the odorized stream.

Phototactic stimuli were delivered with a custom 12”x12” PCB designed in Express

PCB CAD software and manufactured by ExpressPCB. Briefly, the PCB was designed

to power and independently control 216 white light LEDs (11.34mW±4.3µW at 20ma)

geometrically arranged to match the maze arm ends of an array of Y-shaped behavioral

arenas. LED intensity control was provided over USB via board interface with a teensy 3.2

microcontroller and constant current driver boards (Adafruit 24-Channel TLC5947 LED

Driver). Holes in the footprint shape of each individual arena were custom cut into the

PCB with water jet cutter to provide infrared backlighting.

Visual stimuli in the spatial shade-light, temporal shade-light, and optomotor assays

were delivered in a behavior box modified to accommodate stimulus delivery with an over-

head projector (Optoma S310e DLP). The DLP color wheel was removed reduce appar-

ent flicker to the flies caused by low sensitivity to red light in flies. Stimuli were accurately

targeted to individual flies by creating a registration mapping between the projector and

the tracking camera using previously described method using MARGO tracking software.

Briefly, a 2D polynomial registration model of a projector targeting coordinates of a small

(10px) was fitted to coordinates obtained by tracking the dot as it was rastered over the

projector display field. All visual stimuli were crafted and displayed with PsychToolbox.

Single fly videos used in the motionmapper unsupervised classification pipeline were

acquired in behavioral boxes as described above. We replaced the dual channel LED illu-

minator with an LCD screen backlight to reduce apparent non-uniformities in the videos.

Behavioral arenas consisted of custom thermoformed clear PTEG lid with sloping sides
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to prevent wall walking. Lids were coated with sigmacote (Sigma-Aldrich SL2-100ML) to

prevent flies from walking on the ceiling and were clamped in place to a 0.25” tempered

glass base via custom acrylic 2x2 array of arenas.

5.3 Behavioral Tracking

Flies were imaged with overhead tracking cameras at varying resolutions and frame rates.

Unless otherwise specified, images for behavior tracking were acquired at 10Hz with a

1280 x 1024 pixel BlackFly GigE camera (PointGrey BFLY-U3-13S2M-CS) fitted with a

Fujinon YV2.8×2.8SA-2, 2.8mm-8mm, 1/3”, CS mount lens. Circadian and optomotor

experiments were conducted with 3Hz and 60Hz imaging respectively. Tracking images

for the odor sensitivity assay were acquired at 1328 x 1048 pixels at 23Hz (PointGrey

FMVU-13S2C). Cameras used in real-time experiments were fitted with a long-pass 87

Kodak Wratten infrared filter with a cutoff frequency of 750nm and illuminated with infrared

LEDs. Single fly videos for unsupervised classification were acquired with a 1280x1024

Chameleon 3 camera (PointGrey) at 100hz. Except for unsupervised classification videos,

flies were imaged at spatial resolutions ranging between 1-4 pixels per mm and we gen-

erally found tracking to be stable at 10 pixels per animal and above. Offline video tracking

was performed on 1000x compressed AVI video files unless otherwise specified. Tracking

and imaging was conducted in Windows 10 on computers with CPUs ranging from intel i3

3.1GHz to intel i7 4.0GHz.

Fly tracking and stimulus control for all experiments (excluding unsupervised single

fly imaging) were programmed in MATLAB and implemented with MARGO [10]. The
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MARGO tracking algorithm has been previously described in detail. Briefly, binary fore-

ground blobs were segmented from a thresholded difference image computed by subtract-

ing each frame from an estimate of the background. A rolling model of the background

was computed as the median image of rolling stack of background sample images. Ev-

ery 2min, a new sample image of the background was acquired and replaced the oldest

image in the stack. Regions of interest (ROIs) were defined to encompass only a sin-

gle behavioral arena (i.e. one fly), and the tracking algorithm proceeded independently

for each ROI. The tracking threshold used to segment binary foreground blobs from the

background was manually set prior to tracking and was independent for each experiment.

Blobs below a minimum or maximum area (also defined manually for each experiment)

were excluded from tracking in each frame. After filtering, the centroid trace of each ROI

was updated with the position of the blob with shortest distance to the last known (non

NaN) position of each trace. The centroid trace of any ROI with no detected blobs in any

given frame received no position (i.e. NaN). Output measurements of speed and area

were converted from pixels/sec and pixels2 to mm/sec and mm2, respectively, by mea-

suring the length a known landmark size (e.g. arena diameter) prior to tracking. Fisheye

distortion of camera lenses were modeled and corrected via MATLAB’s camera calibrator

app.

For the acquisition of single fly videos used in the motionmapper unsupervised clas-

sification pipeline, flies were tracked in real-time to reduce video file size by extracting a

200x200 pixel region around the fly centroid. Tracking performed by computing the cen-

troid of the entire difference image acquired calculated via the method described above.

Tracking was coordinated simultaneously for four 1280x1024 pixel resolution cameras
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(PointGrey CM3-U3-13Y3M-CS) at 100Hz with a custom LabView script obtained from

the J. Shaevitz lab (personal communication) which was lightly modified to add back-

ground subtraction to the tracking.

5.4 Decathlon Experimental Design

Flies were underwent behavioral testing from 3 days post-eclosion up to a maximum of 14

days post-eclosion depending on when unsupervised classification was performed. For

each decathlon experiment, behavioral testing began with activity screen of 288 flies in the

Y-maze assay. Flies were then sorted by number turns made during the activity screen.

The top 192 flies with the highest activity level were selected for testing in the remainder

of the decathlon and were transferred to individual housing on day 3 post eclosion for

overnight circadian behavior profiling. On subsequent days, all flies were anesthetized as

described above and transferred from individual housing into a behavioral assay each day

(from days 3-11 post-eclosion) and were returned individual housing for overnight circa-

dian behavioral measurement. Flies were tested in cohorts dependent on the throughput

capacity (described for each assay below) of the assay run on any given day. Although

the range of testing times for all animals on some days was relatively broad (11AM-5PM

at most), no behavioral experiment lasted more than 2hrs in duration, meaning that indi-

vidual cohorts typically spent more than 3hrs (2hr experiment + 2x anesthetization and

transferring) off of food media. The order of individual assays (shown in figure 3.1) was

randomized at the start of each decathlon with the exception of activity screening and un-

supervised imaging which occurred at the beginning and end of each decathlon (respec-
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tively) for logistical feasibility. Descriptions and implementation details of the decathlon

behavioral assays are provided below and are summarized in supplemental table 1.

After day 11 post-eclosion, remaining living flies were split into three roughly equal-

sized cohorts (approximately 56 flies each) for unsupervised behavioral imaging which

were imaged in groups of 4 flies between 10AM-6PM on subsequent days. Cohorts of

flies were flash-frozen on liquid nitrogen immediately following unsupervised behavioral

imaging and prepped for RNA-seq as described above.

Arena Circling and Circadian Assays

Both the arena circling and circadian assays consisted of exploration of a circular

arena. Although a near identical list of measures of locomotor handedness, speed, and

movement bout dynamics were recorded in each assay (circadian includes gravitaxis

also), the assays are distinguished by their background light level, duration, behavioral

arena, and access to food. The arena circling assay was conducted over 2 hrs with con-

stant light in a wide (28mm diameter) and shallow (1.6mm depth) arena without food. The

circadian assay was conducted overnight (20-21hrs) on a 12:12 hr light and dark cycle

(10AM:10PM) with each fly in a narrow (6.8 mm) and deep (10.6mm) well of a 96 multiwell

plate. The depth of the arena in addition to the difference in arena ceiling (sigmacoted

acrylic in arena circling and uncoated plastic mesh circadian) add a vertical and body ori-

entation dimension to the circadian assay not present in arena circling. This feature not

only adds a measure of floor vs. ceiling preference (i.e. gravitaxis) to the circadian assay

but also potentially confounds measures of circling directionality due to the fact that flies

can circle the arena right-side up on the floor, upside-down on the ceiling, or sideways on
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the walls.

LED Y-Maze Assay

Individual flies explored symmetrical Y-shaped arenas with LEDs at the end of each

arm. For all arenas in parallel, real-time tracking detected which arm the fly was in at

each frame. At the start of each trial, an LED was randomly turned on in one of the

unoccupied arms. Once flies walked into one of these two new arms, all the LEDs in the

arena were turned off and a new trial was initiated by randomly turning on an LED in one

of the newly unoccupied arms. This process repeated for each fly independently over 2

hrs. Turns were scored as positively (toward a lit LED) or negatively (toward an unlit LED)

phototactic. LEDs were either fully off (OFF) or were driven at maximum intensity (ON).

No intermediate LED intensity values were tested. In addition to the phototactic bias,

measures of locomotor handedness peed, choice timing, and choice sequence were also

recorded.

Odor Sensitivity Assay

In the odor sensitivity assay, flies explored linear tunnels where half of the tunnel was

contained an odor (typically noxious) and the other contained no odor. Odor ports posi-

tioned at either end of the tunnels delivered either odor or odorless air. Vents positioned

at the midpoint of each tunnel form a sharp boundary between the two air streams. Flies

were presented with a 3min baseline period with no odor on either side followed by a

12min experimental period with half odor and half no odor. Sensitivity to the odor was

estimated by measuring the fraction of occupancy time spent in the odor half of the tun-
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nel. Surprisingly, flies showed an average aversion to the designated odor side during

baseline measurement, prior to the presentation of odor (0.43 mean preodor occupancy).

Flies typically showed strong average avoidance of the odor filled half of the tunnel (0.22

first half mean occupancy) which diminished over the duration of testing (0.34 second half

mean occupancy). In addition to odor occupancy, locomotor handedness was scored as

the average direction of heading direction reversals on the long axis of the tunnels. In

addition to the above measures, of speed, turn timing, and turn direction sequence were

also recorded.

Optomotor Assay

In this assay, optomotor stimuli were centered on the bodies of flies by projecting them

onto the floor of their arenas in which they are walking freely. These stimuli consisted

of a maximally-contrasting (black=0, white=1) rotating pinwheel (spatial frequency = 0.18

cycles/deg, rotational speed=320 deg/sec) and typically evoked a turn in the direction of

the rotation to stabilize the visual motion. The pinwheel center followed the position of the

fly as it moved so that the only apparent motion of the stimulus is rotational motion around

the body. Therefor, the stimulus was closed-loop with respect to position and open-loop

with respect to rotation velocity. We observed that optomotor responses could be reliably

elicited, provided individuals were already moving when the pinwheel was initiated. We

therefore only presented the pinwheel when: 1) flies were moving 2), a minimum inter-

trial interval (2s) had passed to prevent behavioral responses from adapting, and 3) flies

exceeded a minimum distance from the edge of the arena to ensure that the stimulus oc-

cupied a significant portion of the animal’s FoV. Over 2hrs of testing, an optomotor index
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was calculated for each fly as the fraction (normalized to [-1,1]) of body angle change that

occurred in the same direction as the stimulus rotation over the duration of the stimulus.

On average, flies displayed reliable optomotor responses (mean index = 0.55) when stim-

ulated. In addition to optomotor index measures of fly activity, movement bout dynamics,

and locomotor handedness were also recorded.

Spatial Light-Shade Assay

Ambient light preference is estimated in this assay by projecting a circular stimulus

with one side fully bright (intensity=1) and the other side fully dark (intensity=0), with

the two regions separated by a small (10% of the arena diameter) boundary zone of

intermediate brightness (intensity=0.5). A light occupancy measure was calculated for

each fly as the fraction of time spent in the lit region divided by the total time spent in both

the lit and unlit regions. Time spent in the intermediate boundary zone was scored as

no preference and was excluded from the calculation. Each 2 hr experiment was divided

into 15 stimulus cycles with each cycle consisting of an alternating 4min baseline block

where each arena was unlit and a 4min experimental block where shade-light stimuli were

targeted to each arena. At the start of each block, each stimulus was rotated to center

the intermediate zones (or virtual intermediate zone in the baseline block) over the flies

bodies. In effect, this required flies to move from intermediate zone during the block to

express any preference. In addition to light occupancy measures of fly activity, movement

bout dynamics, and locomotor handedness were also recorded.

Temporal Light-Shade assay

97



Ambient light preference is estimated in this assay by projecting a fully bright (inten-

sity=1) or fully dark (intensity=0) stimulus to the entire arena when flies crossed an invisi-

ble virtual boundary in the center. Therefore, this stimulus paradigm was distinct from the

spatial light-shade assay in that flies could not express a preference by navigating with

respect to an apparent spatial pattern of light. A light occupancy measure was calculated

for each fly as the fraction of time flies received the lit stimulus divided by the total duration

of the experiment (2hrs). The invisible boundary zone was always positioned in the center

of the arena such that a randomly exploring fly would receive both stimuli in roughly equal

amounts. The angular orientation of the boundary zone was randomly initialized for each

arena independently at the start of the experiment. To avoid rapid switching or flickering

of the stimulus for flies sitting directly on the boundary, flies were required to cross a small

buffer zone (5% of the arena diameter) beyond the arena center into the other zone before

switching the stimulus.

Y-Maze Assay

In the Y-Maze assay, locomotor handedness was estimated as flies explored symmet-

rical Y-shaped arenas. Each time flies changed position from one arm of the maze to

another turns were scored as left-handed or right-handed depending on whether the cho-

sen arm was to the left of right on the choice point (i.e. the arena center). To avoid scoring

centroid estimation errors around the choice point or small forays into new arms as turns,

the flies were required to traverse a minimum distance (60% of the length of the arm)

into any arm before a turn was scored. In addition to locomotor handedness, measures

of speed, movement bout dynamics, turn choice timing, and turn choice sequence were
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also recorded.

5.5 Central Complex Thermogenetic Screen

We extracted measure of turn timing clumpiness (choiceClumpiness) and turn direction

switchiness (handSwitchiness) from a previously conducted thermogenetic screen for

light dependent modulation of locomotor handedness. Gal4 driver and neuronal effec-

tor parental lines were crossed to generate F1 progeny with sparse neuronal expression

of effectors that could be thermogenetically activated (dTrpA1) or silenced (Shiberi-ts).

For all screen experiments, fly locomotor handedness was assayed for 4 hrs in the Y-

Maze with the following temperature program: 1hr at 23°C (permissive temperature), 1hr

temperature ramp up from 23°C-29°C, 1hr at 29°C (restrictive temperature), and 1hr tem-

perature ramp down from 29°C-23°C. Although activity level varied over the duration of

the experiment, flies made many turns throughout all temperature blocks: completing

an average of 194±118 and 759±310 turns at the permissive and restrictive phases re-

spectively. The background light was repeatedly switched on and off in time blocks, in a

random order shared between all screen experiments. Because we were interested only

temperature dependent modulation of turn dynamics, we computed individual clumpiness

and switchiness scores for all turns within each temperature condition (permissive and

restrictive) regardless of the light condition.
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5.6 RNAseq and Transcriptomic Analyses

Single fly RNAseq preparation and sequencing was performed using TM3’seq, a high-

throughput low-cost RNA protocol previously described in [103]. An overview of the

method is provided below, but more detailed descriptions are available in an online proto-

col and in the original publication.

Fly Tissue Preparation

Following decathlon behavioral testing, flies were briefly anesthetized on CO2 and

transferred to a 96-well plate via aspiration. Immediately following, flies were flash frozen

on liquid nitrogen and were decapitated to separate heads and bodies. Well plates were

then transferred to a dry ice and ethanol cold bath to keep the samples frozen while

heads were individually transferred to a separate 96-well plate with a cold probe needle.

Samples were then stored at -80°C. After storage, tissue was ground in 100µl of lysis

buffer with a 2.8mm stainless steel grinding bead steel grinding bead for 10 minutes at

maximum speed with a homogenizer. CyBio® FeliX liquid handling robot (Analitik Jena)

was used to perform mRNA extraction from the resulting lysate using a Dynabeads™

mRNA DIRECT™ Purification Kit (ThermoFisher, 61012) and a custom protocol optimized

for low cost.

cDNA Library Preparation

RNA (10µl of 1ng/µl mRNA) was added to 1µl of 0.83uM oligo (Tn5ME-B-30T) for a 3

minute incubation at 65°C immediately prior to reverse transcription. The first strand of

cDNA was synthesized by reverse transcription of the mRNA via a 1hr incubation at 42°C
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by adding the following to the reaction mixture above: 1µl SMARTScribe™ RT (Takara,

639538), 1µl dNTPs 10mM (NEB, N0447S), 2µl DTT 0.1M (Takara, 639538), 4µl 5× First-

Strand buffer (Takara, 639538), and 1µl B-tag-sw oligo. Following synthesis, the reverse

transcriptase was inactivated via a 15 minute incubation 70°C. A cDNA amplification mix-

ture was prepared by adding 5µl of the resulting first strand cDNA with 7.5µl of OneTaq

HS Quick-load 2× (NEB, M0486L) and 2.5µl water. The cDNA was then amplified in

a thermocycler via the following program: 68°C 3min, 95°C 30sec, [95°C 10sec, 55°C

30sec, 68°C 3min] *3 cycles, 68°C 5min.

Tn5 tagmentation was used create universal adaptors for library amplification. The

adapter-B was previously added during synthesis of the first cDNA strand. To create

a Tn5 adaptor-A, an adapter annealing mixture was prepared by adding 10µl (100µM)

of a forward oligo (adapter-A) and 10µl (100µM) reverse adapter-A oligo (Tn5MErev) to

80µl re-association buffer (10mM Tris pH 8.0, 50mM NaCl, 1mM EDTA). Oligos were

annealed in a thermocycler with the following cycle program: 95°C for 10 minutes, 90°C

for 1 minute followed by 60 cycles reducing temperature by 1°C/cycle, hold at 4°C. 5µl

of 1µM annealed adapter was then anneal to 5µl of Tn5 in a thermal cycler for 30min at

37°C. 5µl of cDNA was mixed with 1µl of pre-charged Tn5. The adapter-A loaded Tn5

was diluted 7× in re-association buffer: Glycerol (1:1)., 4µl of TAPS buffer 5× pH 8.5;

50mM TAPS, 25mM MgCl2, 50% v/v DMF), and 5µl of water. The mixture was then and

incubated for 7min at 55°C followed by an additional 7 minute incubation with 3.5µl of

SDS 0.2% (Promega, V6551) to ensure that Tn5 was dissociated from the cDNA. The

resulting cDNA libraries were then amplified. Briefly, 10µl of OneTaq HS Quick-Load 2x

(NEB, M0486L), 1µl i5 primer 1uM, 1µl i7 primer 1µM, and 7µl of water were used to
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amplify 1µl of the tagmentation reaction following the program: 68°C 3min, 95°C 30sec,

[95°C 10sec, 55°C 30sec, 68°C 30sec] *12 cycles, 68°C 5min.

Sequencing and Expression Quantification

Samples were sequenced on an Illumina HiSeq 2500 in separate runs, using dual

indexes and single-end 67bp sequencing. Low quality bases and adapter sequences

were removed from reads using Trimmomatic 0.32 (SE ILLUMINACLIP:1:30:7 LEAD-

ING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:20). Downstream analysis was only

performed on reads at least 20 nucleotides after trimming. Reads were then mapped to

the r6.14 Drosophila melanogaster genome assembly. Read counts were further filtered

to include only reads assigned to protein coding genes with a minimum of 500k reads.

5.7 Quantification and Statistical Analysis

5.7.1 Merging Decathlon Data

Inspection of raw metric distributions separated by batch (i.e. a single cohort of flies

tested in a single behavioral box at the same time) showed batch effects on the sample

means and dispersion even within the same decathlon experiment. Therefore, data was

z-scored separately by batch and metric type to control for sample differences in mean

and variance. Data of the same assay, metric, and day of testing (i.e. the unique mea-

sures from a single day of decathlon behavior) were then combined, resulting in an initial

NxD data matrix for a single decathlon experiment where N is the number of individu-

als and D is the number of metrics. The matrix contained substantial fraction of miss-

102



ingness (mean=0.23±0.22) within metrics after initial construction. We used alternating

least squares [115] (ALS) to estimate a complete matrix the preserved, as accurately as

possible, the covariance structure of the underlying data. To reduce run to run variation

in ALS, we generated 200 complete data matrices with ALS and computed a final com-

plete median matrix of all repetitions. Simulations with ground truth data with covariance

structure similar to that of the decathlon datasets showed that this process resulted in

both lower error in the resulting matrices and lower run to run variation in the final matrix.

This process resulted in three complete matrices: two NxD matrices for the two BK-iso

decathlon experiments and one NxD matrix for the NEX decathlon experiment.

To combine the decathlon-1 and decathlon-2 matrices for BK-iso, we z-scored by be-

havioral metric within each matrix to adjust for decathlon experiment batch effects on

mean and variance. Data from the two matrices were then combined by matching unique

assay and metric combination. Because the order of assays was randomized for each de-

cathlon experiment, day of testing was ignored when combining behavioral metrics from

all non-circadian assays (e.g. olfaction odorOccupancy from day 7 of decathlon-1 was

combined with olfaction odorOccupancy from day 8 of decathlon-2). Circadian metrics

were matched by day of testing due to circadian measurements being collected on all

days of testing (e.g. circadian meanSpeed from day 1 of decathlon-1 was combined with

circadian meanSpeed from day 1 of decathlon-2). Placeholder NaN values were inserted

in cases where no matching metric existed in the other matrix (e.g. temporal phototaxis

for decathlon-1). The resulting full data matrix was then z-scored by metric and any resid-

ual missing values (due to lack of an existing metric match) were then infilled via the ALS

method described above.
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5.7.2 Distilled Matrix Generation

We created a distilled matrix to condense any covarying features for which we had a prior

expectation that the metrics might be correlated for obvious or uninteresting reasons. We

defined such groups of measures (a priori groups) which primarily consisted of either

duplicate measures (e.g. all 10 days of circadian gravitaxis) or measures that are likely

to be linked by the same underlying phenomenon (e.g. choiceNumber and meanSpeed

across multiple assays). Details of the metrics in each a priori group are detailed in

supplemental table 2. We performed PCA on each a priori group separately in an attempt

to capture group variance with fewer dimensions. We defined an adaptive cutoff for the

number of principal components (PCs) retained from each group as the highest principal

component above or within the 95% confidence interval of the variance explained by PCs

computed on a shuffled version of the same matrix. We reasoned that PCs above or

within the variance explained for PCs fit on the shuffled matrix (a matrix with approximately

independent features) represented components fit to meaningful covariance of metrics or

components primarily aligned single independent metric.

5.7.3 Multidimensional analyses

We estimated effective dimensionality of the decathlon metrics as the number of con-

nected components in a thresholded covariance matrix represented as a directionless

graph. We swept 200 threshold values uniformly spaced between the minimum and max-

imum covariance. A distribution of the effective dimensionality was formed by iteratively

counting number of connected components in the graph at each threshold value. To es-
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timate a lower limit on the dimensionality and to assess the degree to which the number

of connected components was dependent on specific groups of metrics, we repeated the

steps above on matrices after randomly selecting of metrics to drop from the matrix, itera-

tively increasing the number of metrics dropped from 1 to D-1 (i.e. one feature remaining).

Unless otherwise specified, t-SNE embeddings of all datasets was performed on the

euclidean pairwise distances of z-scored values with perplexity = 20. All embeddings

were optimized by minimizing the KL-divergence between the original and embedded

data. t-SNE performed on decathlon metrics was run with perplexity = 8 where we had

an expectation that clusters would be relatively small (e.g. 3-8 data points) due to the

low number of measures in our a priori groups (median=5) and low number of unique

measures from each assay (median=8) and day of testing.

5.7.4 Unsupervised Behavioral Classification

As previously described [24], single fly videos were decomposed into behavioral classifi-

cation time series with the motion mapper pipeline. Briefly, 200x200px frames centered

on the flies were translationally and rotationally aligned with subpixel accuracy to a tem-

plate fly body to restrict frame to frame variation to postural changes by the flies. The data

dimensionality was reduced by restricting further analysis to the 6,700px with the highest

variance. The data for all individuals was further compressed with PCA into 50 eigenmode

postural time series. Principal component time series were then spectrally decomposed

into 25 uniformly spaced frequency channels via Morlet wavelet transformation resulting

in a high-dimensional (1,250) representation of each frame at various timescales. A rep-

resentative sub-sampled training set of frames was constructed for each individual by
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embedding their data into two dimensions with t-SNE [30] and selecting frames according

to proportionally to their local probability density in the embedded space. A joint two-

dimensional embedding for all individuals data was then constructed by embedding the

combined training set via t-SNE. Individual embeddings were generated by projecting all

remaining data points into the joint embedding. As previously described, the distribu-

tion of log-speed trajectories within the embedded space was well-described by a two-

component gaussian mixture model with the majority of frames falling into a low speed

mode. We used the standard deviation of the low speed gmm component to define a small

gaussian kernel (σ=1.37) that was convolved with the embedded points the compute a

continuous density. The embedded space was then segmented into discrete regions by

computing watersheds [116] of the negative density. Behavioral classifications were then

assigned to frames by the watershed region occupied. Frames were filtered by defining

an embedded speed threshold (2.78) as the intersection of gmm components where the

log-speed distribution was maximally separable. All frames above speed threshold re-

ceived no classification. Individual occupancy within each classification was then used to

compute a discrete probability density function for each individual.

Human readable labels were applied to each classification by generating 8x8 tiled

movies of frames corresponding to individual pauses within each classification above a

minimum duration of 10ms. Labels were created by scoring which behaviors appeared

to be frequently represented after repeated viewing. The labels were composed with the

following format: body part (e.g. wing, forelimb, abdomen), the behaviors displayed (e.g.

walking, grooming, movement), and a qualitative descriptor of the speed of movement

(e.g. idle, slow, fast).

106



5.8 Statistics

Unless otherwise stated, all reported correlations were computed as the Spearman rank

correlation. P-values reported for correlation coefficients were calculated via two-tailed

t-test of the null hypothesis that the regression coefficient was not significantly different

from zero.

To generate bootstrapped distributions of correlation the correlation matrices, decathlon

matrices (either the full or distilled matrices) were sorted to match metrics across de-

cathlon datasets as described above. A pair of bootstrapped matrices were created by

bootstrapping individuals from either the same (e.g. resampling BK-iso matrix twice) or

different decathlon matrices up to the size of the original matrix. The correlation matrix

was computed for each bootstrapped matrix and the unique, off-diagonal r-values of each

matrix were stored. A single correlation of correlations was then calculated on the two

sets of r-values. The above steps were then repeated over 100 repetitions for all unique

combinations of decathlon datasets.

Unless noted, all reported error bars are 95% confidence intervals computed by boot-

strap resampling. Data processing and calculation of behavioral metrics was conducted

automatically by MARGO either in real time, or after experiments. 1000 bootstrap repli-

cates were averaged to estimate null distributions and confidence intervals. Reported p-

values for phototaxis, optogenetic closed-loop experiments and optomotor behavior were

unadjusted for multiple comparisons and were calculated via two-tailed t-tests. Critical

values were adjusted for multiple comparisons via Bonferroni correction.

False Discovery Rate Calculation
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We computed the false discovery rate (FDR) for significance of metric correlations as

a function of -value for each combination of decathlon dataset (BK-iso or NEX) and ma-

trix type (full or distilled). Each data matrix was bootstrap resampled (100 repetitions)

up to the size of the original matrix. Correlation matrices were computed for each matrix

and p-values were calculated correlation coefficient (see statistics). We then calculated

a mean kernel density estimates for all p-values of unique metric combinations across

bootstrap replicates. The above steps were then repeated for bootstrap shuffled data ma-

trices to create a null distribution of p-values for correlation coefficients. We defined false

discovery rate as the shuffled p-value density divided by the observed p-value density.

For determining significance of correlation, we set =0.05, corresponding to the following

FDR: BK-iso full = 0.30, NEX full = 0.30, BK-iso distilled = 0.37, NEX distilled = 0.42.

5.9 Repositories

MARGO’s code is available in the https://github.com/de-Bivort-Lab/margoMARGO reposi-

tory on github. All behavioral data is available on https://zenodo.org/record/2596143.XI2maRNKiRcZenodo.

Instrument schematics are available on github at: https://github.com/de-Bivort-Lab/dblab-

schematicsde Bivort Lab schematics repository.

5.10 Software

The MARGO GUI, tracking algorithm, and all analysis software were written in MAT-

LAB (The Mathworks, Inc, Natick, MA). Detailed descriptions of the functions and use

of the MARGO GUI, ROI detection, background referencing, tracking implementation,
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noise correction, and data output are available in MARGO’s https://github.com/de-Bivort-

Lab/margo/wikidocumentation. Optomotor stimuli were crafted and displayed using the

Psychtoolbox-3 for MATLAB. Software for control of all custom electronic hardware was

written in C using Arduino libraries.
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6 Supplementary Information

6.1 Supplementary Figures
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Figure S1 — Persistence of primary behavioral metrics across assays. A) Example correlation matrix for
10 retests of the same individuals on a single assay (phototactic Y-Maze) across subsequent days. Rows
and columns were sorted to cluster the same measures across days. B1-5) Plots of average correlation
coefficient (r-value) as a function of the days between measurements. Colors indicate the metric within
each plot separately (see legends). Dashed black line denotes no correlation (r=0). Metrics in all assays
showed persistent individual variation that diminished over time.
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Figure S2 — Genomic sequencing to confirm isogeny of BKiso. Fraction of BerlinKiso flies (n=192) that
were heterozygous at any given position in the genome. Less than 10% of flies were heterozygous at most
sites. Flies showed evidence of residual heterozygosity at approximately 75 sites throughout the genome.
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Figure S3 — Schematic of the decathlon analysis pipeline. A) Decathlon behavioral data preprocessing
pipeline. Metrics are z-scored by imaging session to adjust for batch effects. Missing data is infilled with
an ALS imputed matrix calculated as the average of 200 ALS imputations. B) Data acquisition and analysis
for the unsupervised behavioral classification pipeline. High resolution, high frame rate single fly videos are
aligned to a template fly and compressed into principal component time series (i.e. eigenflies). PC time
series are then decomposed into 25 frequency spectral time series via Morlet wavelet transformation. The
resulting high dimensional data is then embedded into two dimensions with t-SNE and then clustered into
discrete behavioral modes via watershed transformation. C) Diagram of decathlon behavioral data analysis.
Data from the decathlon assays and unsupervised behavioral classifications are combined into master
behavioral data matrices for inbred (left) and outbred (right) flies separately. The covariance structure and
effective dimensionality of the resulting matrices are then analyzed independently or are compressed into a
“distilled” matrix with fewer dimensions. Distilled matrices are generated by retaining significant PCs within
each a priori metric group above or within the variance explained by a model of n-independent dimensions
(see methods). D). Individual flies undergo gene expression profiling via RNAseq. Gene expression and
behavioral data are then analyzed with canonical correlation analysis to identify principal axes of gene
expression that are correlated to principal axes of behavior.
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Figure S4 — Toy data comparison of matrix-infilling methods. A) Covariance matrix of a toy dataset gen-
erated from a multivariate normal distribution with covariance = 0.5 for features in correlated clusters (red
block) and covariance = 0 for independent features. B) Scatter plots of data from a ground truth vs the
same data infilled with average ALS imputation (200 repetitions) after randomly deleting either 10% (left)
and 50% (right) of the entries. Color indicates whether the data belonged to a correlated cluster as in A.
C) Comparison of mean squared error (MSE) for mean infilled and ALS average infilled data. D) Log scree
plots of the variance explained for ranked principal components resulting from PCA on the ground truth,
mean infilled, average ALS infilled, and shuffled matrix.
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Figure S5 — Correlation of correlation matrix values between D1 vs D2 and shuffled matrices. A) Distri-
butions of correlation of full matrix correlation matrices across bootstrap replicates. Correlation coefficients
were calculated by bootstrap resampling data matrices (decathlon-1 or decathlon-2) and computing the
correlation matrix. Correlation was then computed between two matrices (i.e. either the same or different
matrices across resamplings). B) Distributions of correlation of distilled matrix correlation matrices across
bootstrap replicates as in A.
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Figure S7 — Distribution of correlation coefficients and p-values in the full and distilled correlation matrix.
A) Kernel density estimates of the unique (i.e. lower matrix triangle) correlation coefficients in the full (top)
and distilled (bottom) correlation matrices. Distributions exclude duplicates pairwise and self correlations.
B) Kernel density of the the unique p-values for the correlation coefficients in A. In all plots, dashed lines in-
dicate distributions for column-wise (i.e. within each feature) shuffled matrices. Shaded regions correspond
to 95% confidence interval calculated by bootstrap resampling.
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Figure S8 — Significant correlations among the principal components of switchiness and clumpiness. A)
Subset of the distilled correlation matrix corresponding to the significant PCs of switchiness and clumpiness.
B) P-value matrix for the correlation coefficients in A. C) Scatter plots of significant correlations between
switchiness and clumpiness. Points correspond to individual flies. Line indicates the line of best fit and the
shaded region indicates the 95% confidence interval of the fit as calculated by bootstrap resampling. D)
Metric loadings for the PCs in C
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Figure S9 — Effective dimensionality simulations with toy data. A) Parameters used to generate a 200x30
ground truth matrix from a multivariate normal distribution as in figure S4. Cluster covariance refers to the
covariance between features belonging to the same correlated cluster. Correlated clusters corresponds
to the total number of such clusters. Ground truth dimensionality is the sum of the number of correlated
clusters and the total number of independent features. B) Covariance matrices of toy datasets with corre-
lated clusters along the diagonal. One cluster in each dataset has covariance equal to half of the remaining
clusters. C) Effective dimensions heatmap as a function of the number of features retained in the toy data
after dropping N random features. Rows correspond to histograms of the number of connected components
in the covariance matrices. D) Connected components histogram for the full covariance matrix (i.e. the top
row of C).
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[2] Raphaël Jeanson and Anja Weidenmüller. Interindividual variability in social in-
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[111] JW Krakauer, AA Ghazanfar, and Gomez-Marin - A Neuron. Neuroscience needs
behavior: correcting a reductionist bias. Neuron, 2017.

[112] AJ Calhoun, JW Pillow, and bioRxiv, Murthy M. Unsupervised identification of the
internal states that shape natural behavior. bioRxiv, 2019.

[113] AM Seeds, P Ravbar, P Chung, and Hampel S Elife. A suppression hierarchy
among competing motor programs drives sequential grooming in drosophila. Elife,
2014.

[114] Matthew A Churgin, Sang-Kyu Jung, Chih-Chieh Yu, Xiangmei Chen, David M
Raizen, and Fang-Yen, Christopher. Longitudinal imaging of caenorhabditis ele-
gans in a microfabricated device reveals variation in behavioral decline during ag-
ing. Elife, 6:e26652, 2017.

[115] R Bell, Y Koren, and of the SIGKDD, Volinsky C. Modeling relationships at multiple
scales to improve accuracy of large recommender systems. Proceedings of the
13th ACM SIGKDD . . . , 2007.

[116] L Najman and Schmitt M Processing. Watershed of a continuous function. Signal
Processing, 1994.

129


