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Large-scale chemical-genetics yields new
Mycobacterium tuberculosis inhibitor classes
Eachan O. Johnson1,2,3, Emily LaVerriere1, Mary Stanley1, Emma Office1, Elisabeth Meyer1, Tomohiko Kawate1,2,3, James
Gomez1, Rebecca E. Audette4, Nirmalya Bandyopadhyay1, Natalia Betancourt5, Kayla Delano1, Israel Da Silva5, Joshua Davis1,
Christina Gallo1, Michelle Gardner6, Aaron Golas1, Kristine M. Guinn6, Rebecca Korn1, Jennifer A. McConnell5, Caitlin E. Moss6,
Kenan C. Murphy4, Ray Nietupski1, Kadamba G. Papavinasasundaram4, Jessica T. Pinkham6, Paula A. Pino5, Megan K.
Proulx4, Nadine Ruecker5, Naomi Song5, Matthew Thompson1, Carolina Trujillo5, Shoko Wakabayashi6, Joshua B. Wallach5,
Christopher Watson1, Thomas R. Ioerger7, Eric S. Lander1, Brian K. Hubbard1, Michael H. Serrano-Wu1, Sabine Ehrt5, Michael
Fitzgerald1, Eric J. Rubin6, Christopher M. Sassetti4, Dirk Schnappinger5, Deborah T. Hung1,2,3∗

New antibiotics are needed to combat rising resistance, with new Mycobacterium tuberculosis (Mtb) drugs of highest priority.
Conventional whole-cell and biochemical antibiotic screens have failed. We developed a novel strategy termed PROSPECT
(PRimary screening Of Strains to Prioritize Expanded Chemistry and Targets) in which we screen compounds against pools of
strains depleted for essential bacterial targets. We engineered strains targeting 474 Mtb essential genes and screened pools of
100-150 strains against activity-enriched and unbiased compounds libraries, measuring > 8.5-million chemical-genetic
interactions. Primary screens identified > 10-fold more hits than screening wild-type Mtb alone, with chemical-genetic
interactions providing immediate, direct target insight. We identified > 40 novel compounds targeting DNA gyrase, cell wall,
tryptophan, folate biosynthesis, and RNA polymerase, as well as inhibitors of a novel target EfpA. Chemical optimization
yielded EfpA inhibitors with potent wild-type activity, thus demonstrating PROSPECT’s ability to yield inhibitors against novel
targets which would have eluded conventional drug discovery.

The World Health Organization (1) has declared that an-
tibiotic resistance is one of the greatest threats to human

health with tuberculosis (TB) being the deadliest infectious
disease, causing more than 1.6 million deaths annually (2).
Despite the recent approval of two new drugs (bedaquiline
(3) and delamanid (4)),TB drug discovery and development
has failed to keep pace with increasing prevalence of multi-,
extensively and totally drug resistant TB (5). A fundamental
challenge in antibiotic discovery is finding new classes of com-
pounds that kill the causative pathogen, especially by inhibit-
ing novel essential targets. Primary chemical screening us-
ing biochemical, target-based assays have yielded compounds
lacking whole-cell activity, while conventional whole-cell as-
says using wild-type bacteria have yielded compounds gener-
ally refractory to mechanism of action (MOA) elucidation to
enable compound prioritization and progression. The all-too-
few successful cases for Mycobacterium tuberculosis (Mtb)),
the causative agent of TB, illustrate this challenge, with hit
compounds found to repeatedly target the same two proteins
(MmpL3 and DprE1), leaving the vast majority of Mtb’s∼625
essential proteins unexploited (6-8).

Our goal was to develop a new paradigm of antimicro-
bial discovery that simultaneously identifies whole cell active
compounds and predicts their MOA from primary screening
data, thereby incorporating putative target information, in-
stead of simply potency, into hit prioritization. This strategy

enables both the exploration of broader target space and dis-
covery of new chemical scaffolds that could not be identified
by conventional screening against wild-type bacteria. To en-
act this strategy, we performed primary chemical screening
of hundreds of mutant strains depleted in essential targets
(hypomorphs) to generate large-scale chemical-genetic inter-
action profiles as the output from the primary screen. Al-
though drug hypersensitivity conferred by target depletion
is well-established in yeast (9, 10), depleting essential tar-
gets in haploid bacteria is challenging. Consequently, chem-
ical screening of hypomorphs in bacteria have been limited
either to a single hypomorph of Staphylococcus aureus (11)
and Mtb (12, 13), or to MOA elucidation of only a sin-
gle compound against small collections of siRNA-mediated
S. aureus hypomorphs (14, 15); a genome-wide non-essential
gene deletion library in Escherichia coli has also be used to
study single compounds (16). In contrast, our strategy of
generating chemical-genetic interaction profiles by screening
large hypomorph pools (100-150 hypomorphs) against large
chemical libraries (50,000 compounds) – an approach we term
PROSPECT (PRimary screening Of Strains to Prioritize Ex-
panded Chemistry and Targets) – dramatically increases de-
tection of active compounds and allows immediate MOA pre-
diction to inform hit prioritization.

PROSPECT yielded ten-fold more hit compounds (>
4000, each associated with chemical-genetic interaction pro-
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files) than conventional whole-cell screening. Using the pri-
mary chemical-genetic interaction profiles, we rapidly iden-
tified and validated >40 new scaffolds against established
targets including DNA gyrase, cell wall biosynthesis, several
steps of the folate biosynthesis pathway, tryptophan biosyn-
thesis, and RNA polymerase (RNAP). We identified com-
pounds against novel targets with the discovery of an in-
hibitor for the uncharacterized, essential efflux pump EfpA.
Because hit compounds may have limited activity against
wild-type bacteria, we demonstrated the ability to optimize
the EfpA inhibitor to drug-like potency against wild-type
Mtb. PROSPECT can this lead to new molecules against
novel targets with potent activity against wild-type bacteria
that could not have been found by conventional screening.

Generating large-scale chemical-genetic
interaction profiles from primary screening

We constructed hypomorphs of 474 of the∼625 essential genes
defined in Mtb (17), with each gene target under conditional
proteolytic (18, 19) or transcriptional control (Table S1). For
proteolytic control, proteins were fused to a carboxy-terminal
DAS-tag, which targets the protein for degradation via SspB-
mediated shuttling (Fig. 1a). Because the different essential
gene products are naturally expressed at variable levels, each
tolerating different degrees of depletion, we constructed up
to five hypomorphs, with varying degrees of knockdown, for
each gene (Extended Data Fig. 1a-b). Each strain was also
engineered to carry a 20-nucleotide genetic barcode flanked by
common primer-binding sites for targeted gene identification
by multiplexed polymerase chain reaction (PCR) followed by
Illumina sequencing. Sequencing read counts of the barcode
served as a proxy for individual strain abundance within the
pool. In total, we created 2014 strains.

We established an optimized, multiplexed assay (Fig. 1b)
to measure the abundance of each strain in a pool through
barcode amplification and sequencing (Extended Data Fig.
1c) (20-23). By mixing strains at known abundances spanning
three orders of magnitude, we confirmed that barcode counts
were an accurate proxy for strain abundance (r = 0.93 for log-
transformed barcode count replicates; r = 0.95 for known cell
abundance and barcode counts) (Fig. 1c). We then used this
assay to determine the growth rate of each engineered strain
in a pool containing 100-150 strains, including bar-coded wild-
type in 384-well plates over two weeks. For inclusion in the
final screening pool used for all subsequent multiplexed ex-
periments, we selected a single mutant corresponding to each
essential gene with the most degradation while maintaining
growth similar to the wild-type strain (Extended Data Fig.
2a). Using rifampin (RIF) as a positive control, we found
excellent assay performance across the dynamic range for all
strains (Z′ factors > 0.5; Extended Data Fig. 2b).

Finally, we developed a barcode counting (ConCen-
susMap), and inference (ConCensusGLM) computational
pipeline, which provided a log2(fold-change) (LFC) of strain
abundance upon compound exposure compared to DMSO
control and associated p-value. The LFC vectors across all

strains for a compound is termed the chemical-genetic inter-
action profile.

Chemical-genetic interactions of Mtb-bioactive
compounds

We initially screened a library of 3226 small-molecules en-
riched for compounds with activity against wild-type Mtb
based on literature reports (Extended Data Fig. 2c; see Meth-
ods). To confirm the reported Mtb activity, we screened the
library against GFP-expressing wild-type Mtb and found that
1312 (45%) indeed had an MIC90 < 64 µM (Extended Data
Fig. 2d). We then screened this chemical library with a pool
of 100 Mtb hypomorph strains in duplicate (log-transformed
Pearson’s r = 0.93) at compound concentrations of 1.1, 3.3,
10, and 30 µM (chosen based on measured MIC90 values for
the entire library).

In total we measured 1,290,400 chemical-genetic interac-
tions (3226 compounds× 100 strains× 4 concentrations) with
the majority (927,025, 71%) being inhibitory (LFC < 0) (Ex-
tended Data Fig. 2e). Of these, 55,508 interactions (6%), rep-
resenting 940 compounds (29%), were strong (p < 10−10). In
a minority of cases, protein depletion conferred resistance to
inhibitors of wild-type Mtb; for example, depletion of the my-
cothiol biosynthesis pathway enzyme cysteine ligase (MshC)
resulted in resistance to TB drugs isoniazid (INH) and ethion-
amide (ETH), which are known to inhibit the enoyl-[acyl-
carrier-protein] reductase (InhA) (24).

Using an orthogonal growth assay, we retested 112 of the
identified hits with evidence of specificity for a subset of
strains (p < 10−10; specificity defined as activity against <
10 strains) to confirm their activities against their respec-
tive, predicted hypomorph interactor, wild-type Mtb, and
several other hypomorph strains as negative controls. Be-
cause growth rate measurements by these different assays can-
not be directly compared, we constructed a receiver operating
characteristic (ROC) curve to determine how well inhibitory
activity in the multiplexed assay predicted activity in the or-
thogonal growth assay. The ROC area under the curve (AUC)
was 0.73 (Fig. 1d), indicating a high true positive rate in the
primary assay with a well-controlled false positive rate. Given
the complexity of the primary screen, we were reassured that
1375 (52%) of the 2664 strong interactions were confirmed in
the secondary assay.

We readily identified interactions between well-
characterized inhibitors and hypomorphs corresponding to
known targets (Fig. 1e), including between the fluoro-
quinolones and the DNA gyrase α-subunit (GyrA), RIF
and the RNAP β-subunit of (RpoB), and BRD-4592 (25)
and the tryptophan synthase α-subunit (TrpA). Interest-
ingly, trimethoprim (TMP), a folate biosynthesis inhibitor
known to target dihydrofolate reductase (DHFR), demon-
strated a clear interaction with the folate pathway enzyme
glutamine amidotransferase (TrpG) rather than DHFR. The
ThyA hypomorph also showed resistance to trimethoprim; in
the setting of ThyA loss of function, DHFR is not essential
(26). Reducing the 400-dimensional interaction profiles (100
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Figure 1: Generating large-scale chemical-genetic interaction profiles from primary screening. a, Hypomorph strains were constructed by introducing
a DAS-tag at the 3’-end of the gene of interest, with concomitant introduction of a 20-nucleotide barcode and an episomally encoded, regulated SspB
gene to control the level of protein depletion. b, Barcoded hypomorph strains were pooled and distributed into 384-well plates containing the compound
library and incubated for 14 days. c, Defined mixtures of barcoded wild type Mtb strains were subjected to census enumeration by sequencing-based
barcode counting. The method is accurate across several orders of magnitude with Pearson’s r = 0.95 (left panel), and reproducible with Pearson’s
r = 0.93 between replicates (right panel). d, ROC curve showing that primary data was predictive of activity in a confirmatory secondary growth assay.
We retested more than 100 compounds predicted to have activity in the primary screen in an orthogonal resazurin-based colorimetric growth assay. Taking
50% inhibition in the secondary assay as ground truth, we demonstrated the primary assay as predictive of real activity that could be detected by more
conventional growth methods. The false positive rate is plotted against the true positive rate (blue line); an area under the curve (AUC) more than
0.5 (black line) indicates a predictor that performs better than chance. e, Chemical-genetic interaction profiles showed expected hypersensitivity for
compounds of known MOA. Profiles show the LFC (relative to DMSO negative controls) of each strain at each concentration tested (with wild-type
Mtb in dark grey and mutants of interest highlighted). Error bars of highlighted strains show 95% confidence interval of the mean. Examples shown
are the compound-hypomorph pairs of BRD-4592 with TrpA, rifampin with RpoB, trimethoprim with TrpG, DHFR, and ThyA, and the fluoroquinolone
nadifloxacin with GyrA and GyrB.

strains × 4 concentrations) for each compound to two dimen-
sions using a t-distributed stochastic neighbor embedding
(t-SNE) (27), we found that compounds known to have the
same MOA clustered together, independent of their chemical
structures (Fig. 2).

Discovering new inhibitor classes of
well-validated targets using reference data

We identified new compound scaffolds that inhibit well-
validated, clinical targets based solely on the primary screen-
ing data, relative to known reference compounds. Using a
core ground truth training set of 107 chemical-genetic inter-
action profiles for known antimicrobials (Table S4), we trained
Lasso classification models (28) – a supervised machine learn-
ing method – to identify 39 new inhibitors of DNA gyrase
(training set n = 14), mycolic acid synthesis (n = 6), folate
biosynthesis (n = 12), and tryptophan biosynthesis.

DNA gyrase inhibitors. We trained on 14 chemical-genetic
interaction profiles of fluoroquinolones, known DNA gyrase
inhibitors. Our model’s regression weights suggested that the
single most discriminatory feature for gyrase inhibition was
strongly decreased fitness of the GyrA hypomorph, which we
termed a sentinel strain for this pathway (Extended Data
Fig. 3a). The model predicted 55 non-quinolone DNA gy-
rase inhibitors (Fig. 3a), including novobiocin, a structurally-
distinct inhibitor of the DNA gyrase β-subunit (GyrB).

Using an Mtb DNA gyrase supercoiling and decatenation
in vitro assay, we confirmed 27 (52%) of 52 predicted new
DNA gyrase inhibitors (Fig. 3b). In contrast, 25 randomly-

selected compounds showed no activity, showing that the clas-
sifier significantly enriched for real inhibitors (p = 2 × 10−7,
Fisher’s exact test; ROC AUC = 0.89). Of the validated com-
pounds, ethacridine’s acridine scaffold (Fig. 3c) had been pre-
viously reported to inhibit Mtb DNA gyrase (29). The model
also predicted tryptanthrin, an anti-infective whose target has
eluded extensive antibacterial and antitrypanosomal research
(30, 31); we validated it to be a DNA gyrase inhibitor (Ex-
tended Data Fig. 4). All remaining scaffolds were novel.

Mycolic acid biosynthesis inhibitors. The active forms
of the cornerstone clinical antitubercular prodrugs INH and
ETH both inhibit InhA (32), a key enzyme in mycolic acid
biosynthesis. We sought new inhibitors of this pathway
by training on chemical-genetic interaction profiles of these
drugs. Although the strain pool did not include an InhA hy-
pomorph, our analysis nevertheless yielded an excellent pre-
dictive model (Fig. 3d) using increased relative fitness of the
MshC sentinel strain as the most discriminatory feature (Ex-
tended Data Fig. 3b). MshC catalyzes the incorporation of
cysteine into mycothiol, an antioxidant unrelated to mycolic
acid biosynthesis, whose depletion has been shown to confer
resistance to INH and ETH (33).

Further validating our approach, the model predicted six
hydrazone derivatives of INH. A clinical loss-of-function mu-
tant of catalase KatG, which activates the INH prodrug, was
resistant to the six INH-hydrazones, indicating that the INH-
hydrazones are activated in the same way as INH. Impor-
tantly, the model also predicted one completely novel scaf-
fold, the indenedione BRD-9942. Since these compounds had
measurable activity against wild-type Mtb, we found that,
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Figure 2: Chemical-genetic interactions of bioactive compounds with known MOA. Using t-SNE to visualize the 400-dimensional dataset reveals the
MOA-based clustering of compounds. Four exemplary MOAs are illustrated. Grey circles represent compounds, and colored circles represent a subset of
compounds with known MOA. Representative chemical-genetic interaction profiles are shown as in Fig. 1e for compounds representing each of the four
exemplary MOAs.

like INH and ETH, the INH-hydrazone scaffold and BRD-
9942 inhibited 14C-acetate incorporation into mycolic acids
(Fig. 3e-f).

Folate and tryptophan biosynthesis inhibitors. Because in-
hibiting folate biosynthesis is an effective antimicrobial strat-
egy against many bacteria, but not yet exploited against
Mtb, we sought new classes of inhibitors against this path-
way. Training on the chemical-genetic interaction profiles of
the sulfonamides, which are known dihydropteroate synthase
(DHPS) inhibitors, the most discriminatory feature was in-
hibition of the TrpG hypomorph (Extended Data Fig. 3c).
TrpG is involved in both folate and tryptophan biosynthe-
sis (Extended Data Fig. 5a), catalyzing formation of both
4-amino-4-deoxychorismate (a folate precursor) and 2-amino-
2-deoxyisochorismate (a tryptophan precursor).

We tested whether the inhibitory effects of 7 of the 43
predicted compounds (Fig. 3g), spanning several chemotypes
and with measurable inhibition of wild-type Mtb, could be
abolished by supplementation with tryptophan, folate, or the
folate pathway intermediate para-amino benzoic acid (PABA)
(Fig. 3h). The nitrothiophene amide or ester compounds,
BRD-2550, BRD-3387, BRD-5592, and BRD-9737 (Fig. 3i;
Extended Data Fig. 5e), as well as a derivative of para-
aminosalicylic acid (PAS), BRD-9819, behaved similarly to
methotrexate and PAS (known DHFR inhibitors; Extended
Data Fig. 4b), with their effects abolished by both PABA
and folate supplementation. In contrast, BRD-8884 had ef-
fects that could only be rescued by folate and not PABA (Fig.

3h-i), suggesting inhibition of a novel, late step in the folate
pathway. Thus, this strategy identified inhibitors targeting
different enzymatic steps in the folate biosynthetic pathway.

Finally, BRD-7721, a 3-indolepropionic acid (3-IPA) ester
predicted to be a folate biosynthesis inhibitor, was only res-
cued by tryptophan supplementation (Fig. 3i-h), indicating
that it inhibits tryptophan biosynthesis. 3-IPA was recently
identified as having antimycobacterial activity in a fragment-
based screen (34); the activity of this free acid was also abol-
ished by tryptophan supplementation.

Based on our empirical validation of new folate and tryp-
tophan inhibitors, we trained two new models: an updated fo-
late biosynthesis inhibitor predictor and a tryptophan biosyn-
thesis inhibitor predictor. The refined classifier weights the
behavior of the FolB hypomorph in conjunction with TrpG
in its discrimination of folate inhibitors (Extended Data Fig.
3d-e).

Screening a larger, unbiased compound library

We applied PROSPECT to a large unbiased library of
∼50,000 compounds at 50 µM and a 152-strain pool (includ-
ing 94 of the 100 strains used previously), to demonstrate
its scalability, to identify compounds whose potential activ-
ity against wild-type Mtb would be revealed by hypersen-
sitive hypomorphs, and to demonstrate the ability to iden-
tify inhibitors of novel targets with potent activity against
wild-type Mtb after medicinal chemical optimization. Of the
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Figure 3: New inhibitor classes of well-validated targets in M. tuberculosis. a, Scatter plot of Lasso predictor (strength of prediction) for DNA gyrase
inhibition against Tanimoto distance (chemical structure dissimilarity) to the fluoroquinolone family of known DNA gyrase inhibitors. Each point is a
compound in the screen. All compounds above the horizontal line were predicted to be DNA gyrase inhibitors. White points were known fluoroquinolone
DNA gyrase inhibitors in the training set, with compounds confirmed in an in vitro assay for DNA gyrase inhibitory activity are shown in green. Compounds
with no in vitro activity are shown in orange. b, Actual compound performance of predicted DNA gyrase inhibitors in an in vitro assay of DNA gyrase
supercoiling inhibition. We tested for inhibition of DNA gyrase supercoiling activity in an agarose gel-based assay. The ratio of imaged pixel intensities
for supercoiled and relaxed bands was indicative of inhibition activity, as shown by the ciprofloxacin positive control. Compounds that showed statistically
significant (p < 0.05, Wald test; n = 2) inhibition are shown. Error bars show standard errors of the GLM regression coefficients. c, Examples of new
DNA gyrase inhibitor chemotypes predicted by the Lasso classifier and confirmed in vitro. d, As (a), but for the mycolic acid biosynthesis classifier.
White points were known mycolic acid biosynthesis inhibitors in the training set, with green points indicating compounds confirmed to inhibit 14C-acetic
acid incorporation into mycolic acid; Mtb with a loss-of-function mutation in KatG (KatG−) or InhA expression (BAA-812) were resistant to compounds
shown in blue. e, Actual compound performance of predicted mycolic acid biosynthesis inhibitors in an in vitro assay of inhibition of 14C-acetic acid
incorporation into mycolic acid. The ratio of imaged pixel intensities for fatty acid methyl esters (FAMEs) and mycolic acid methyl esters (MAMEs) bands
was indicative of inhibition activity, as shown by the isoniazid and ethionamide positive controls. Error bars show the 95% confidence interval (n = 2)
of the GLM regression coefficients. f, New mycolic acid biosynthesis inhibitor chemotypes predicted by the Lasso classifier and confirmed in vitro. g,
As (a), but for the folate classifier. White points were known sulfonamide folate biosynthesis inhibitors in the training set, with green points indicating
compounds whose growth inhibitory activity was abolished by PABA or folic acid supplementation. Compounds whose growth inhibitory activity was not
abolished by PABA or folic acid supplementation are shown in orange. h, Actual compound performance of predicted folate biosynthesis inhibitors in a
metabolite rescue assay. Mtb was treated with predicted inhibitors in the presence or absence of tryptophan, folate, or PABA. The effect of BRD-7721,
a 3-indole propionic acid ester, is abolished by tryptophan supplementation, indicating it is a tryptophan biosynthesis inhibitor. In contrast, the effect of
BRD-2550 (a nitrothiophene) is abolished by folate and PABA, while that of BRD-8884 is abolished by folate alone, showing that they are inhibitors of
folate biosynthesis with distinct mechanisms. Individual replicates (n = 4) are shown as open circles, means are shown as filled circles, and error bars show
95% confidence intervals. i, Examples of new folate and tryptophan biosynthesis inhibitor chemotypes predicted by the Lasso classifier and confirmed by
metabolite supplementation.
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7,245,009 chemical-genetic interactions tested, 95,685 (1.3%)
were strongly inhibitory. Selecting 1331 compounds for retest-
ing, we confirmed 78% of the inhibitory chemical-genetic in-
teractions (LFC < 0), resulting in an ROC AUC of 0.74,
similar to that observed for the first, smaller screen. In an
orthogonal growth assay, the ROC AUC was 0.69 (Fig. 4a).

The hit rate against wild-type Mtb alone was 0.9% (436
compounds), typical for an unbiased whole-cell compound
screen; in contrast, 10-fold more compounds (4403; 9%) were
active against at least one of the 152 hypomorph strains (Ex-
tended Data Fig. 6a). Additionally, 92 of the 152 hypomorphs
had the most negative LFC for at least three compounds, sug-
gesting high MOA diversity in this unbiased library. Of the
4403 active compounds, 3967 had no activity against wild-
type Mtb. However, 73% were highly specific against the
hypomorphic strains (1-10 strains hit) and 11% were mod-
erately specific (11-50 strains hit); the remaining 16% were
relatively non-specific (>50 strains hit). This distribution
shows greater specificity than for the compounds in the first,
bioactive library (35%, 31%, and 34%), likely because smaller
library is enriched for compounds with wild-type Mtb activity
(Fig. 4b). The larger library also yields a greater diversity of
chemical-genetic interaction profiles, suggesting greater tar-
get diversity, as evidenced by hierarchical clustering of the
profiles (1864 distinct clusters in the unbiased library vs. 235
in the bioactive library) (35). That the profile clusters in the
unbiased library are meaningful is supported by the fact that
over one-third of them are enriched for structurally similar
compounds (Extended Data Fig. 6b-c).

We applied the folate biosynthesis inhibitor classifier de-
rived from training on the smaller, bioactive library to the
data from the unbiased library. Despite being trained on a
dataset generated from multiple concentrations of each com-
pound and a smaller hypomorph set, the folate model showed
excellent transferability, predicting 60 compounds from this
larger screen (Fig. 4c), including twelve sulfonamide ana-
logues, one derivative of PAS, and two nitrothiophene amides,
which we have shown to inhibit the folate pathway (Fig. 3i).
Three compounds (Fig. 4d) represent additional novel scaf-
folds that we validated as also acting in the folate pathway
based on suppression of their activity with the addition of
PABA or folate (Extended Data Fig. 6d). These results thus
demonstrate the scalability and generalizability of this strat-
egy, and the potential to leverage the much higher hit rate and
wider target space obtained by performing primary screening
with a hypomorph library to provide new chemical scaffolds
against novel targets.

Discovering inhibitors without reference data

In the examples above, we were able to rapidly identify new
chemotypes against established targets based on reference
data derived from compounds with known MOAs. How-
ever, discovering first-in-class molecules with completely novel
MOAs and targets requires identifying inhibitors without
available reference data. We therefore developed an approach
to identifying inhibitors of a target protein of interest based on

specific inhibition of the corresponding hypomorphic strain.
As an initial test, we applied it to the discovery of new

inhibitors of RNA polymerase (RNAP) — a high priority
target of the rifamycins, which anchors antitubercular regi-
mens but for which there is rising resistance. While RNAP
inhibitors exist, our screen provided no information about
their chemical-genetic profiles because the concentrations of
rifamycin in our screen inhibited growth of all strains. In-
stead, we looked for compounds that showed significant speci-
ficity for the RpoB hypomorph, which is depleted for RNAP.

We prioritized 20 compounds with strong chemical-genetic
interaction with the RpoB hypomorph (p < 10−10), requir-
ing it to be among the two most inhibited strains for at least
one dose. Testing these compounds in an in vitro RNA poly-
merase assay (36, 37), three compounds – including the an-
tineoplastic human RNAP inhibitor actinomycin D – showed
direct inhibition of E. coli RNAP (Fig. 5a-b). While the pos-
itive predictive value was lower than using machine learning,
the approach readily identified new scaffolds against this im-
portant target, which has proved recalcitrant to the discovery
of new inhibitors through whole cell screening (38).

Discovering inhibitors of a novel target

Finally, we demonstrated that PROSPECT can identify in-
hibitors against a completely novel target that would not be
found by conventional strategies. Specifically, we identified a
compound that inhibits a new target, EfpA and optimized it
to achieve potent activity against wild-type Mtb.

We analyzed the first screen for compounds that did
not strongly inhibit wild-type Mtb, but were strongly active
against at least one hypomorph at all screening concentra-
tions. These were then ranked by how few hypomorphs were
significantly inhibited – a proxy for specificity – and whether
the compound was a chemically attractive scaffold. The high-
est ranked interaction was BRD-8000 with the hypomorph
of EfpA, an uncharacterized essential efflux pump. Measure-
ment of the compound’s MIC90 confirmed that BRD-8000 has
strong activity against the EfpA hypomorph (MIC90 = 6 µM)
with little wild-type activity (MIC90 ≥ 50 µM) (Fig. 5c).

We optimized BRD-8000, first by resolving the mixture
of stereoisomers present in the initial chemical library; the
(S,S)-trans stereoisomer is the active isomer (BRD-8000.1,
Table 1), with a wild-type MIC90 of 12.5 µM. Migrating
the pyridyl bromine from the 6- to the 5-position to obtain
BRD-8000.2 maintained hypomorph hypersensitivity while
improving wild-type MIC90 potency (MIC90 = 3 µM, Table
1). We generated more than 30 independent resistant mu-
tants against BRD-8000.2 in wild-type Mtb (resistance fre-
quency of ∼ 10˘8); all mutants contained the same C955A
mutation in efpA (EfpAV319F), thereby providing genetic sup-
port for EfpA as the target. Further chemical optimization
yielded BRD-8000.3, a methyl-pyrazole derivative of BRD-
8000.1 with MIC90 of 800 nM against wild-type Mtb, a ≥ 60-
fold overall improvement in activity from the original hit (Ta-
ble 1).

To functionally confirm that the BRD-8000 series targets
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Figure 4: Performance of a larger, 50,000-compound screen. a, ROC curve of primary data against a confirmatory secondary assay. We retested more
than 100 compounds predicted to have activity in the primary screen using a resazurin, growth-based colorimetric assay. Taking 75% inhibition in the
secondary assay as ground truth, we demonstrated the primary assay as predictive of real activity that could be detected by conventional methods. b,
Compounds in the library of bioactive compounds generally hit more strains than compounds in the unbiased library. Empirical cumulative distribution
functions of number of hypomorphs hit by compounds in the two screens is plotted. Shown by the dotted lines, 36% of compounds in the bioactive
library and 75% of compounds in the larger library hit 10 strains or fewer, suggesting that activity detected in the larger screen was generally more
hypomorph-specific. c, Lasso predictor scores from the folate biosynthesis inhibitor classifier applied to the large unbiased screening data. The highest-
scoring compounds were known folate inhibitors (sulfonamides and nitrothiophene compounds), thus validating the approach. New scaffolds were also
identified. d, Three new folate biosynthesis inhibitor chemotypes predicted by the Lasso classifier and confirmed by metabolite supplementation.

Figure 5: Discovery of new inhibitors in the absence of reference data, including inhibitors of a novel target in M. tuberculosis. a, Actual compound
performance of predicted RpoB inhibitors in an in vitro assay for inhibition of RNA synthesis by E. coli RNAP. Three compounds which showed statistically
significant inhibition are shown with a rifampin control (p < 0.05, two-tailed Wald test; n = 4). Error bars show the 95% confidence interval of the GLM
regression coefficients. Act. D: actinomycin D. b, New RNAP inhibitor chemotypes validated in vitro. c, Dose response of BRD-8000 on growth of wild
type Mtb, the EfpA hypomorph, and a mutant overexpressing EfpA, demonstrating hypersensitivity of the hypomorph. Individual replicates (n = 4) are
shown as open circles, means are shown as filled circles, and error bars show 95% confidence intervals. d, Schematic of the EtBr efflux assay. Bacteria
were loaded with EtBr and its efflux was monitored by change in fluorescence. e, Measurements of first-order rate constant for EtBr efflux, kobs, against
varying concentration of BRD-8000.2 enantiomers. Inhibition of EtBr efflux by BRD-8000.2 is enantiospecific, with level of efflux inhibition correlating
with Mtb growth inhibition. Individual replicates are shown as open circles, and fitted curves are shown as lines.
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MIC90 (µM)
Compound Structure H37Rv EfpAKD

BRD-8000 50 6.0

BRD-8000.1 12.5 0.6

BRD-8000.11 12.5 0.6

BRD-8000.2 3.0 0.2

BRD-8000.3 3.0 0.2

Table 1: Potencies of compounds targeting the essential efflux pump EfpA. MIC90: Minimum inhibitory concentration at 90%; EfpAKD: EfpA
hypomorph.

EfpA, we took advantage of the fact that BRD-8000 does not
kill Mycobacterium smegmatis (Msm), likely because EfpA is
not essential in Msm(39), to investigate the series’ effect on
efflux through EfpA (Fig. 5d). BRD-8000 and BRD-8000.2
inhibited efflux of ethidium bromide (EtBr), a known sub-
strate of EfpA (39), with an IC50 of 38 µM and 15 µM, re-
spectively, reflective of their corresponding MIC90 values (Ex-
tended Data Fig. 7a). This inhibition was stereospecific as the
inactive (R,R)-trans isomer of BRD-8000.2 has an efflux IC50
of 500 µM (Fig. 5e). Finally, BRD-8000.2 inhibits EfpA by
an uncompetitive or non-competitive inhibitory mechanism
as inhibition is independent of EtBr concentration (Extended
Data Fig. 7b), and has a high-affinity interaction with EfpA
that is eliminated from Msm when efpA is deleted. This high-
affinity interaction is restored by episomal complementation
of Mtb’s efpA homolog (Extended Data Fig. 7c).

The BRD-8000 series is bactericidal (Extended Data Fig.
7d), kills non-replicating phenotypically drug-tolerant Mtb
(MBC50 = 390 nM), has low human toxicity (hepatocyte IC50
= 100 µM), and is narrow-spectrum, not inhibiting growth
of E. coli, S. aureus, Pseudomonas aeruginosa, or Klebsiella
pneumoniae, while the MIC90 for M. marinum was 25 µM.
Having confirmed that BRD-8000 indeed inhibits the novel
target EfpA, we returned to the primary screening data to
identify additional EfpA inhibitors based on chemical-genetic
interaction profile similarity. We tested 11 prioritized com-
pounds for their ability to inhibit EtBr efflux and identified
three new scaffolds, encompassing six molecules, that inhib-
ited EtBr efflux (Extended Data Fig. 7e). While not as
specific for the EfpA efflux pump as BRD-8000, given that
EfpA is the only essential efflux pump in Mtb (17), these
compounds’ whole cell activity is likely due to their activ-
ity on EfpA. In particular, BRD-9327 does not act compet-
itively. Thus, by taking an iterative approach, we were able
to use PROSPECT to quickly expand the chemical diversity

of small molecule candidates against a novel target.

Discussion

We have developed PROSPECT, a powerful and rapid
chemical-genetic interaction profiling strategy, which is able
both to discover many new potential compounds for Mtb drug
development and to gain insight into their MOA from the pri-
mary screening data. By allowing immediate integration of
potential target information into hit prioritization, it shifts
hit selection away from the conventional approach of rely-
ing simply on compound potency. Interpreting this complex,
multi-dimensional data guided either by the chemical-genetic
interaction profiles of known compounds or, in the absence of
reference data, a manner that relies on hypomorph specificity,
we rapidly identified MOA for 45 new molecules. Importantly,
these hits included new scaffolds against known targets – a
valuable strategy to overcome antimicrobial resistance (40),
and the first inhibitors against completely new targets, taking
advantage of the enormous but underexplored target space in
Mtb as revealed by genomic studies. With its ability to iden-
tify ∼10-fold more hits than obtained by screening wild-type
Mtb alone, PROSPECT greatly expands both the chemical
and target space of identified compounds.

We demonstrate how PROSPECT can identify Mtb small
molecule candidates against a novel target that could not have
been discovered by conventional approaches with the discov-
ery of an EfpA with potent wild-type activity after chemical
optimization of the initial hit compound, a process similar
to the optimization required in conventional approaches to
improve the potency and drug-like characteristics of initial
hit compounds. Importantly, mining of the entire chemical-
genetic interaction dataset can be performed iteratively, with
the discovery of inhibitors of new targets, such as BRD-8000,
enabling the discovery of additional inhibitors (BRD-9327)
against the same target by chemical-genetic interaction pro-
files for scaffold hopping. While only the surface has been
scratched thus far for these large datasets, we have provided
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examples how integrating MOA insight into primary whole-
cell screening can transform the targets and molecules that
emerge and are prioritized. With this in mind, we have made
primary data publicly available (broad.io/cgtb) to catalyze
the entire community’s discovery of new inhibitor classes
and their respective targets and propose that PROSPECT is
widely applicable to important pathogens beyond Mtb.

References
1. W.H.O., Antimicrobial resistance: global report on surveillance.

(World Health Organization, 2014), pp. 257.
2. W.H.O., "Global Tuberculosis Report 2018," (World Health Organi-

zation, Geneva, 2018).
3. K. Andries et al., A diarylquinoline drug active on the ATP synthase

of Mycobacterium tuberculosis. Science 307, 223-227 (2005).
4. M. Matsumoto et al., OPC-67683, a Nitro-Dihydro-Imidazooxazole

Derivative with Promising Action against Tuberculosis In Vitro and
In Mice. PLoS Med. 3, 2131-2144 (2006).

5. K. Dheda et al., The epidemiology, pathogenesis, transmission, di-
agnosis, and management of multidrug-resistant, extensively drug-
resistant, and incurable tuberculosis. The Lancet Respiratory
Medicine 5, 291-360 (2017).

6. T. Christophe et al., High content screening identifies decaprenyl-
phosphoribose 2’ epimerase as a target for intracellular antimycobac-
terial inhibitors. PLoS Pathog. 5, e1000645 (2009).

7. A. E. Grzegorzewicz et al., Inhibition of mycolic acid transport across
the Mycobacterium tuberculosis plasma membrane. Nat. Chem.
Biol. 8, 334-341 (2012).

8. S. A. Stanley et al., Diarylcoumarins inhibit mycolic acid biosynthe-
sis and kill Mycobacterium tuberculosis by targeting FadD32. Proc.
Natl. Acad. Sci. U. S. A. 110, 11565-11570 (2013).

9. G. Giaever et al., Genomic profiling of drug sensitivities via induced
haploinsufficiency. Nat. Genet. 21, 278-283 (1999).

10. J. Nelson et al., MOSAIC: a chemical-genetic interaction data repos-
itory and web resource for exploring chemical modes of action. Bioin-
formatics 34, 1251-1252 (2018).

11. J. Wang et al., Platensimycin is a selective FabF inhibitor with potent
antibiotic properties. Nature 441, 358-361 (2006).

12. J. C. Evans et al., Validation of CoaBC as a Bactericidal Target
in the Coenzyme A Pathway of Mycobacterium tuberculosis. ACS
Infectious Disease 2, 958-968 (2016).

13. G. L. Abrahams et al., Pathway-selective sensitization of Mycobac-
terium tuberculosis for target-based whole-cell screening. Chem.
Biol. 19, 844-854 (2012).

14. R. G. Donald et al., A Staphylococcus aureus fitness test platform
for mechanism-based profiling of antibacterial compounds. Chem.
Biol. 16, 826-836 (2009).

15. J. Huber et al., Chemical genetic identification of peptidoglycan in-
hibitors potentiating carbapenem activity against methicillin-resistant
Staphylococcus aureus. Chem. Biol. 16, 837-848 (2009).

16. A. Typas et al., High-throughput, quantitative analyses of genetic
interactions in E. coli. Nat. Methods 5, 781-787 (2008).

17. M. A. DeJesus et al., Comprehensive Essentiality Analysis of the My-
cobacterium tuberculosis Genome via Saturating Transposon Muta-
genesis. MBio 8, (2017).

18. J. H. Kim et al., Protein inactivation in mycobacteria by controlled
proteolysis and its application to deplete the beta subunit of RNA
polymerase. Nucleic Acids Res. 39, 2210-2220 (2011).

19. J. H. Kim et al., A genetic strategy to identify targets for the de-
velopment of drugs that prevent bacterial persistence. Proc. Natl.
Acad. Sci. U. S. A. 110, 19095-19100 (2013).

20. C. Yu et al., High-throughput identification of genotype-specific can-
cer vulnerabilities in mixtures of barcoded tumor cell lines. Nat.
Biotechnol. 34, 419-423 (2016).

21. T. X. Han, X.-Y. Xu, M.-J. Zhang, X. Peng, L.-L. Du, Global fit-
ness profiling of fission yeast deletion strains by barcode sequencing.
Genome Biol. 11, R60-R60 (2010).

22. A. M. Smith et al., Highly-multiplexed barcode sequencing: An effi-
cient method for parallel analysis of pooled samples. Nucleic Acids
Res. 38, 1-7 (2010).

23. A. M. Smith et al., Quantitative phenotyping via deep barcode se-
quencing. Genome Res. 19, 1836-1842 (2009).

24. C. Vilchèze et al., Coresistance to isoniazid and ethionamide maps to
mycothiol biosynthetic genes in Mycobacterium bovis. Antimicrob.
Agents Chemother. 55, 4422-4423 (2011).

25. S. Wellington et al., A small-molecule allosteric inhibitor of Mycobac-
terium tuberculosis tryptophan synthase. Nat. Chem. Biol. 13,
943-950 (2017).

26. D. Moradigaravand et al., dfrA thyA Double Deletion in para-
Aminosalicylic Acid-Resistant Mycobacterium tuberculosis Beijing
Strains. Antimicrob. Agents Chemother. 60, 3864-3867 (2016).

27. L. van der Maaten, Accelerating t-SNE using Tree-Based Algorithms.
Journal of Machine Learning Research 15, 3221-3245 (2014).

28. R. Tibshirani, Regression Shrinkage and Selection via the Lasso. J.
Roy. Stat. Soc. Ser. B. (Stat. Method.) 58, 267 (1994).

29. B. Medapi, N. Meda, P. Kulkarni, P. Yogeeswari, D. Sriram, Develop-
ment of acridine derivatives as selective Mycobacterium tuberculosis
DNA gyrase inhibitors. Bioorg. Med. Chem. 24, 877-885 (2016).

30. J. Scovill, E. Blank, M. Konnick, E. Nenortas, T. Shapiro, An-
titrypanosomal Activities of Tryptanthrins. Antimicrob. Agents
Chemother. 46, 882-883 (2002).

31. J. M. Hwang et al., Design, synthesis, and structure-activity relation-
ship studies of tryptanthrins as antitubercular agents. J. Nat. Prod.
76, 354-367 (2013).

32. A. Banerjee et al., InhA, a Gene Encoding a Target for Isoniazid and
Ethionamide in Mycobacterium tuberculosis. Science 263, 227-330
(1994).

33. C. Vilchèze et al., Enhanced respiration prevents drug tolerance and
drug resistance in Mycobacterium tuberculosis. Proc. Natl. Acad.
Sci. U. S. A. 114, 4495-4500 (2017).

34. D. A. Negatu et al., Whole-Cell Screen of Fragment Library Identifies
Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular.
Antimicrob. Agents Chemother. 62, (2018).

35. R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clus-
ters in a data set via the gap statistic. J. Roy. Stat. Soc. Ser. B.
(Stat. Method.) 63, 411-423 (2001).

36. E. T. Kool. (University of Rochester, United States, 2000).

37. S. L. Daubendiek, E. T. Kool, Generation of catalytic RNA by rolling
transcription of synthectic DNA nanocircles. Nat. Biotechnol. 15,
273-277 (1997).

38. L. L. Silver, Challenges of antibacterial discovery. Clin. Microbiol.
Rev. 24, 71-109 (2011).

39. X. Z. Li, L. Zhang, H. Nikaido, Efflux pump-mediated intrinsic
drug resistance in Mycobacterium smegmatis. Antimicrob. Agents
Chemother. 48, 2415-2423 (2004).

40. L. L. Silver, in Antibacterials. (2017), chap. Chapter 24, pp. 31-67.

Acknowledgements
Funding was provided by Bill and Melinda Gates Foundation, Broad Institute
TB Gift Donors and Pershing Square Foundation.

Large-scale chemical-genetics yields new Mycobacterium tuberculosis inhibitor classes 9

https://broad.io/cgtb


Author contributions
The manuscript was written by E.O.J., E.S.L., and D.T.H. Statistical anal-
ysis was carried out by E.O.J. Computational pipelines were written by
E.O.J. and N.B. Experiments were designed as follows. Strain construction:
K.M.G., K.C.M., T.R.I., S.E., E.J.R., C.M.S, D.S. Assay development and
screening: E.O.J., J.E.G., M.F., D.T.H. Medicinal chemistry: T.K., B.K.H.,

M.H.S.-W., D.T.H. Mechanism of action follow-up: E.O.J., J.E.G., D.T.H.
Experiments were carried out as follows. Strain construction: R.E.A., N.B.,
I.D.S., M.G., J.A.M., C.E.M., K.G.P., J.T.P., P.A.P., M.K.P., N.R., N.S.,
C.T., S.W., J.B.W. Assay development: E.O.J., M.T. Compound screen-
ing: E.O.J., E.L., M.S., K.D., J.D., C.G., A.G., R.K., R.N., M.T., C.W.
Mechanism of action follow-up: E.O.J., J.E.G., E.O., E.M.

10 Johnson EO et al.


	Generating large-scale chemical-genetic interaction profiles from primary screening
	Chemical-genetic interactions of Mtb-bioactive compounds
	Discovering new inhibitor classes of well-validated targets using reference data
	Screening a larger, unbiased compound library
	Discovering inhibitors without reference data
	Discovering inhibitors of a novel target
	Discussion
	References
	Acknowledgements
	Author contributions



