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EVOLUTIONARY GAME DYNAMICS IN FINITE
POPULATIONS

CHRISTINE TAYLOR1, DREW FUDENBERG2, AKIRA SASAKI3, AND MARTIN A.
NOWAK4

Abstract. We introduce a model of stochastic evolutionary game dynam-
ics in finite populations which is similar to the familiar replicator dynamics
for infinite populations. Our focus is on the conditions for selection favoring
the invasion and/or fixation of new phenotypes. For infinite populations,
there are three generic selection scenarios describing evolutionary game
dynamics among two strategies. For finite populations, there are eight se-
lection scenarios. For a fixed payoff matrix a number of these scenarios
can occur for different population sizes. We discuss several examples with
unexpected behavior.

1. Introduction

In this paper, we study evolutionary dynamics of a game with two strategies
A and B. The payoff matrix for the game is

A B
A a b
B c d

Strategy A player receives payoff a when playing against another strategy A
player, and payoff c when playing against a strategy B player. A strategy B
player would receive payoffs b and d when playing against A and B players,
respectively.

We denote by xA and xB the frequency of individuals adopting strategy A
and B respectively. We have xA + xB = 1. The fitness of A and B players are
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given by

fA = axA + bxB

fB = cxA + dxB

The standard model of evolutionary selection dynamics in a single, infinite,
population of players is the replicator equations [Taylor et al., 1978, Hofbauer
et al., 1979, Hofbauer et al., 1998, and Hofbauer et al., 2003]. In our setting,
these equations take the form

ẋA = xA(fA − φ)(1)

ẋB = xB(fB − φ)

where φ is the average fitness of the population given by

φ = fAxA + fBxB

This set of replicator equations describes a deterministic selection process,
where the per capita rate of growth for each strategy is given by the difference
between its fitness and the average fitness of the entire population.

Since xA + xB = 1, we see that

ẋA = xA(1 − xA)(fA − fB)

and
fA − fB = (a− c)xA + (b− d)(1 − xA)

The equilibrium points are either on the boundary or in the interior.
There are three generic outcomes:

(1) A dominates B: If a > c and b > d, then the entire population will
eventually consist of A players. The only stable equilibrium is xA = 1.
A is a strict Nash equilibrium, and therefore an evolutionary stable
strategy (ESS), while B is not. We use the notation A←− B.

(2) A and B co-exist in stable equilibrium: If a < c and b > d, then the
interior equilibrium xA = b−d

b+c−a−d
is stable. Neither A nor B is a Nash

equilibrium. This is often refered to as Hawk-Dove, mixed strategy, or
polymorphic game by biologists. We use the notation A→← B.

(3) A and B are bi-stable: If a > c and b < d, the equilibrium point in the
interior where xA = d−b

a+d−b−c
is unstable, and the two boundary points

where xA = 0 or xA = 1 are attracting. A and B are both strict Nash
equilibria. We use the notation A←→ B.

Obviously if a < c and b < d, then B dominates A. This situation is
identical to the first case with A and B exchanged.

If a = c and b = d, then fA = fB for all frequencies. In this singular case,
both strategies are equally good. The frequency distribution does not change
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from one generation to the next. We call this the neutral case, and denote it
by A−−B.

Evolutionary game theory has been successfuly applied to the study of Dar-
winian process of natural selection [Maynard Smith, 1982]. The deterministic
model of evolutionary dynamics of a two-strategy game is well understood.
[Foster et al., 1990, Fudenberg et al., 1992] have analyzed stochastic versions
of the replicator equations on a continuum population, [Schreiber, 2001, Be-
naim et al., 2003] analyze urn processes that converge to the replicator equa-
tions over time as the population becomes infinite. However, evolution in
finite groups of players has received less attention, and most of the ana-
lytic results are for variants of the best-reply dynamics (e.g. [Young, 1993,
Kandori et al., 1993].) For the Hawk-Dove game, [Fogel et al., 1997, 1998,
Ficci et al. 2000] report some simulations of the “frequency-dependent roulette
wheel” selection dynamic, which is equivalent to the Moran process we ana-
lyze. [Fogel et al., 1997, 1998] emphasize that the finite population results
can be very different than the predictions of the replicator equation, while
[Ficci et al., 2000] argue that the two models make fairly similar predictions.
[Maynard Smith, 1988] argues that in finite population a mixed evolutionary
stable strategy (ESS) is more likely than genetic polymorphism in the Hawk-
Dove game. Like us, [Schaffer, 1988] focuses on the fact that the strategy that
maximizes absolute payoff need not be the one that maximizes relative payoff
when the population is finite; this leads Schaffer to define and analyze a mod-
ification of ESS. It seems natural to extend our understanding to a stochastic
model for finite populations. We focus on analytic results for explicit stochas-
tic process, as opposed to simulations or equilibrium definitions, and uncover
interesting selection phenomena for finite population size that do not exist in
the infinite limit.

In Section 2, we introduce a stochastic process for evolutionary game theory
in finite populations. In particular, we use a Moran process with frequency de-
pendent fitness. [Maruyama et al., 1981, Sasaki, 1989, Takahata et al., 1990,
Sasaki, 1992, Slatkin, 2000] study the fixation probability under balancing se-
lection in a finite population.

In Section 3, we define invasion and fixation rates, and compare them to the
benchmarks set by a neutral mutant in order to quantify selection pressure. We
first illustrate the population-size dependency of evolutionary games derived
from the fitness difference of the two strategies. Then we state our main
results on selection dynamics in finite populations. Our key result is that in
finite populations, there are eight selection scenarios, as opposed to three in
infinite populations.
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In addition to the payoff matrix, the population size, N , plays a vital role
in selection dynamics. In Section 4, we present examples to show how the
selection dynamics can vary as N changes.

On the other hand, there are games where population size does not affect
the selection dynamics. We give a characterization of those games in Section 5.
We also show that the singular case, a = c > b = d, displays positive selection
for B for finite population size N , but is entirely neutral for infinite population
size.

We give a summary and discussion of our results in Section 6.
In the Appendix, we develop the mathematical machinery for studying evo-

lutionary game theory in finite populations, and prove our results.

2. A Frequency Dependent Moran Process

Suppose the population consists of N individuals. The number of individuals
using strategy A is given by i, and the fitness of individuals using strategy A
is

fi = a(i− 1) + b(N − i).

The number of individuals using strategy B is given by N − i, and the fitness
of individuals using strategy B is given by

gi = ci + d(N − i− 1)

The selection dynamics of the game with N players can be formulated as a
Moran process [Moran, 1962] with frequency dependent fitness. At each time
step, an individual is chosen for reproduction proportional to its fitness. One
identical offspring is being produced which replaces another randomly chosen
individual. Thus the population size, N , is strictly constant. The probability
of adding an A-offspring is ifi

ifi+(N−i)gi
. At each time step, the number of A

individuals can either increase by one, stay the same, or fall by one. Therefore,
the transition matrix of the Markov process is tri-diagonal and defines a birth-
death process. The transition matrix is given by

Pi,i+1 =
ifi

ifi + (N − i)gi

N − i

N

Pi,i−1 =
(N − i)gi

ifi + (N − i)gi

i

N

Pi,i = 1− Pi,i+1 − Pi,i−1,

All other entries of the transition matrix are 0.
The process has two absorbing states, i = 0 and i = N : if the population

has reached either one of these states, then it will stay there forever. Let us
calculate the probability to be absorbed in one or the other of these two states.
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Denote by xi the probability to end up in state i = N when starting in state
i. We have the recursive relation

xi = Pi,i+1xi+1 + Pi,ixi + Pi,i−1xi−1

with boundary conditions x0 = 0 and xN = 1. The solution is given by
[Karlin et al., 1975]

xi =
1 +

∑i−1
j=1

∏j
k=1

gk

fk

1 +
∑N−1

j=1

∏j
k=1

gk

fk

.

We are interested in the probability that a single A individual reaches fixa-
tion in a population of B individuals. This probability is given by

ρAB = x1 =
1

1 +
∑N−1

j=1

∏j
k=1

gk

fk

.

Conversely, the probability that a single B individual reaches fixation in a
population of A individuals is given by

ρBA = 1 − xN−1 =

∏N−1
k=1

gk

fk

1 +
∑N−1

j=1

∏j
k=1

gk

fk

=
1

1 +
∑N−1

j=1

∏N−1
k=j

fk

gk

.

Observe that

ρAB

ρBA
=

N−1∏

k=1

fk

gk
.

2.1. Constant Selection. The fixation probabilities, ρAB and ρBA, can be
compared with corresponding probabilities for constant selection and random
drift. For constant selection, if A has fitness r and B has fitness 1, then for
all N ,

ρAB =
1− 1

r

1− 1
rN

and ρBA =
1 − r

1 − rN
.

An example for constant selection is also given by the game

A B
A r r
B 1 1

For neutral drift, if both A and B have the same fitness, then for all N ,

ρAB = ρBA =
1

N
.

An example is the game
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A B
A 1 1
B 1 1

3. Selection Dynamics in Finite Populations

We can use the probability of fixation of neutral mutants, 1/N , as a bench-
mark to study selection in finite populations. Thus, we can say that ‘selection
favors A replacing B’ if ρAB > 1/N . In contrast, ‘selection opposes A replacing
B’ if ρAB < 1/N .

Let us compare fi and gi for each i in order to evaluate whether selection
acts to increase or reduce the number of A players at position i. Let

hi = fi − gi,

so that hi is a linear function of i defined on i = 1, . . . , N − 1. Invasion
dynamics can be characterized by evaluating the sign of h1 and hN−1.

If h1 > 0 then we say ‘selection favors A invading B’. If hN−1 < 0 then we
say ‘selection favors B invading A’. These invasion criteria evaluate whether a
single individual of A (or B) has a higher fitness than the resident population.

Note that h1 > 0 (or hN−1 > 0) are simple conditions in terms of a, b, c, d
and N , while ρAB > 1/N (or ρBA > 1/N) are very complex conditions which
cannot be explicitly solved for N .

The difference in fitness (mean payoff) between an A strategist and a B
strategist, hi = fi − gi can be expressed as

(2) hi = ξ′i− ζ ′(N − i)

with

(3) ξ′ = ξ − a− d

N
, ζ ′ = ζ +

a− d

N
,

where

(4) ξ = a− c, ζ = d− b.

ξ and ζ represents respectively the initial disadvantage of strategy A, and that
of B. The evolutionary dynamics of game in the infinite population is classified
by the sign of ξ and ζ. In a finite population, the evolutionary outcome is based
on the modified parameters ξ′ and ζ ′, such that the game is

(1) bi-stable if ξ′ > 0 and ζ ′ > 0.
(2) A-dominate if ξ′ > 0 and ζ ′ < 0.
(3) B-dominate if ξ′ < 0 and ζ ′ > 0.
(4) polymorphic if ξ′ < 0 and ζ ′ < 0.
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This is not just a minor modification of corresponding classification in in-
finite population game (based on the signs of ξ and ζ), but rather reveals an
interesting population-size dependence in the evolutionary outcome (see Fig. 1
— as N varies, the cross-section (circle) for the 4 sectors of final outcomes of
game dynamics moves in ξ-ζ plane along the dotted line ξ + ζ = 0).

Suppose, for example, ξ and ζ are in the region below ξ-axis and above the
line ξ + ζ = 0 (i.e. ζ < 0 and ξ + ζ > 0). Suppose also that a > d. Then there
are two threshold population sizes for the evolutionary outcomes:

N1 =
a− d

ξ
and N2 =

a− d

|ζ| , (N1 < N2),

such that the A-dominate system (A is the only stable equilibrium) for suffi-
ciently large population size (N > N2) becomes bi-stable (both A and B are
locally stable) for intermediate N (N1 < N < N2), which is finally replaced
by the opposite global stability of B-dominate system (B becomes the only
stable equilibrium) for population size smaller than N1 . On the other hand,
if ξ > 0, ζ > 0, and a > d, then there is only one threshold population size
N1 = (a−d)/ξ, and bistability for sufficiently large population will give a way
to B-dominate dynamics if the population size N becomes smaller than N1.
A different N -dependence appears if the sign of a − d is reversed. Indeed, if
ξ > 0, ζ > 0 as before but now a < d, then bistability for sufficiently large
population collapses into A-dominate dynamics (rather than B-dominate one)
if N becomes smaller than N2.

The evolutionary dynamics of a two player game in a finite population is
characterized by 5 parameters, the payoffs and the population size N , which
we denote [a, b, c, d]N where N ≥ 2. As is shown in (3), the condition for
that the evolutionary game dynamics [a, b, c, d]N is A-dominant (the strategy
A enjoys advantage over B for any frequency of A) is given by

[a, b, c, d]N: A-dominant⇐⇒ a− c >
a− d

N
and d− b <

d − a

N
.

For the minimum population N = 2, this condition is equivalent to

[a, b, c, d]2: A-dominant⇐⇒ b >
a + d

2
> c.

This has a clear meaning. The spiteful strategy (b > c) enjoys advantage if the
population is small. The “spiteful” strategy acts not only to increase its own
payoff but also to decrease the payoffs of its opponents [Hamilton, 1971]. The
degree of this “spiteful” behavior increases as the population size decreases,
and hence “spite” is most evident if there are only two players.

Our main results are as follows:
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-4 -2 2 4

-4

-2

2

4

BI-STABLE

POLYMORPHIC A-DOMINATE

B-DOMINATE

ξ = a-c

ζ = d-b

((a-d)/N, (d-a)/N)

Figure 1. Classification of the game dynamics in ξ-ζ plane. As N
varies, the cross-section (circle) for the 4 sectors of final outcomes of
game dynamics moves along the dotted line ξ+ζ = 0. The coordinate
for the cross-section: (ξ, ζ) = ((a− d)/N, (d− a)/N).

Theorem 1. If b > c there exists a population size, N0 ≥ 2, such that for all
N < N0, we have ρBA < 1/N < ρAB.

We will compute N0 in the appendix. The theorem states that for sufficiently
small population size, for A to dominate B in the sense that selection favors
A invading and replacing B, but not vice versa, it suffices to have b > c. Note
that for infinite population size A dominates B if a > c and b > d, regardless
of the relative magnitude of b and c.

The intuitive proof of the theorem is as follows: if we consider a population
of N = 2 containing one A and one B player, then the payoff for A and B are,
respectively, b and c.

We state the following results, and we will present the proofs in the appen-
dix.

Theorem 2. If h1 > 0 and hN−1 > 0, then ρBA < 1/N < ρAB.

If selection favors A invading B, but opposes B invading A, then selection
must favor A replacing B and oppose B replacing A. We can say that, in this
case, A dominates B. The condition

{
ζ ′N < ξ′ + ζ ′

ξ′N > ξ′ + ζ ′
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is equivalent to h1 > 0 and hN−1 > 0. This condition implies

(ξ − ζ)N = (a + b− c− d)N > 2(a− d).

In the limit N →∞ we recover ξ > 0 (a > c) and ζ < 0 (d < b) as necessary
and sufficient conditions for A to dominate B.

Theorem 3. If ρAB < 1/N and ρBA < 1/N , then h1 < 0 and hN−1 > 0.

If selection opposes A replacing B and B replacing A, then selection must
oppose A invading B and B invading A as well. In this case, selection opposes
change. The condition

{
ζ ′N > ξ′ + ζ ′

ξ′N > ξ′ + ζ ′

is equivalent to h1 < 0 and hN−1 > 0. This condition implies

ξ + ζ = a− b− c + d > 0.

In the limit N → ∞, we recover ξ > 0 (a > c) and ζ > 0 (d > b) as
necessary and sufficient conditions for A and B to be bi-stable.

Theorem 4. If ρAB > 1/N and ρBA > 1/N , then h1 > 0 and hN−1 < 0.

If selection favors A and B replacing each other, then selection must favor
A and B invading each other as well. We say selection favors change. The
condition

{
ζ ′N < ξ′ + ζ ′

ξ′N < ξ′ + ζ ′

is equivalent to h1 < 0 and hN−1 > 0. This condition implies

ξ + ζ = a− b− c + d < 0.

In the limit N → ∞, we recover ξ < 0 (a < c) and ζ < 0 (d < b) as
necessary and sufficient conditions for A and B to be in stable equilibrium.

3.1. A Graphical Notation. We use the notation A ←
⇒B to mean that se-

lection favors A invading B but opposes A replacing B, and A←⇐ B to mean
that selection opposes B invading A and B replacing A. → and← indicate the
sign of invasion coefficients h1 and hN−1, while⇒ and ⇐ indicate the relative
values of fixation coefficients ρAB and ρBA with respect to 1/N .

There are 16 combinations of these arrows between A and B, eight of which
are excluded by Theorems 2-4.

Therefore, we have altogether eight selection scenarios in finite populations.
We list them as well as the corresponding scenarios in the infinite limit.
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N <∞ N →∞
A←⇐

←
⇐B: selection favors A A←− B

A→⇒
→
⇒B: selection favors B A −→ B

A→⇐
←
⇐B: selection favors A; selection favors mutual invasion A←− B

A→⇒
←
⇐B: selection favors change A→← B

A→⇒
←
⇒B: selection favors B; selection favors mutual invasion A −→ B

A←⇒
→
⇒B: selection favors A; selection opposes mutual invasion A −→ B

A←⇐
→
⇒B: selection opposes change A←→ B

A←⇐
→
⇐B: selection favors A; selection opposes mutual invasion A←− B

4. Examples

Since the definitions of invasion and fixation criteria depend on N , we see
that population size plays a key role in selection dynamics. Interestingly, for
a fixed payoff matrix, we observe that several selection scenarios can occur as
N increases.

We give some examples of this phenomenon.
Example 1. Consider the payoff matrix

A B
A 3.1 1.02
B 3 1
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Figure 2.
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For infinite population size, the fitness of A is greater than the fitness of
B at all frequencies. Hence, we say that A dominates B, A ←− B. This
also implies that A is a strict Nash equilibrium or evolutionary stable strategy
(ESS) while B is not.

For finite population size, we observe there are five cases depending on
N . As N increases, A gradually gains its dominance over B. We note that
a+ d > b + c, so selection will not favor change for any N . Also a + b > c + d,
so for large population size, selection cannot favor B.

We observe from Figure 2 that:

(1) For N ≤ 21, we have ρAB < 1/N < ρBA and h1, hN−1 < 0. Therefore,
selection favors B. A→⇒

→
⇒B.

(2) For 21 < N ≤ 30, we have ρAB < 1/N < ρBA and h1 < 0 < hN−1.
Therefore, selection favors B, but opposes mutual invasion. A←⇒

→
⇒B.

(3) For 30 < N ≤ 50, we have ρAB, ρBA < 1/N and h1 < 0 < hN−1.
Therefore, selection opposes change. A←⇐

→
⇒B.

(4) For 50 < N ≤ 101, we have ρBA < 1/N < ρAB and h1 < 0 < hN−1.
Therefore, selection favors A, but opposes mutual invasion. A←⇐

→
⇐B.

(5) For N ≥ 102, we have ρBA < 1/N < ρAB and h1, hN−1 > 0. Therefore,
selection favors A. A←⇐

←
⇐B.♦

Example 2. Consider the payoff matrix

A B
A 2.9 1.8
B 2.2 2

For infinite population size, the fitness of A is greater than the fitness of
B for high frequencies of A, the fitness of B is greater than the fitness of
A for low frequencies of A. Hence, we say that A and B are bi-stable, (the
unstable equilibrium is at xA = 2/9,) A ←→ B. Both strategies are strict
Nash equilibria.

For finite populations, we observe four cases from Figure 3. Note that
a + b > c + d, selection will not favor B for large N ; also a + d > b + c, so
selection will not favor change for any N .

(1) For N ≤ 3, we have ρAB < 1/N < ρBA and h1, hN−1 < 0. Therefore,
selection favors B. A→⇒

→
⇒B.

(2) For 3 < N ≤ 9, we have ρAB, ρBA < 1/N and h1 < 0 < hN−1.
Therefore, selection opposes change. A←⇐

→
⇒B.

(3) For 9 < N ≤ 76, we have ρBA < 1/N < ρAB and h1 < 0 < hN−1.
Therefore, selection favors A, but opposes mutual invasion. A←⇐

→
⇐B.

(4) For N ≥ 77, we have ρAB, ρBA < 1/N and h1 < 0 < hN−1. Therefore,
selection opposes change. A←⇐

→
⇒B.
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Figure 3.

Note that in this example, we see that there is a range of optimal
population size N where strategy A reaches fixation better than a neu-
tral mutant. This observation leads to novel results on the emergency
of cooperation in finite populations [Nowak et al., 2003]. ♦

Example 3. Consider the payoff matrix

A B
A 1.9 1.1
B 2 1

For infinite population size, the fitness of A is greater than the fitness of
B for low frequencies of A, but the fitness of B is greater than the fitness
of A for high frequencies of A. Hence, we say that A and B are in stable
equilibrium (at xA = 1/2), which also implies that neither A nor B is a strict
Nash equilibrium, A→← B.

For finite populations, we observe four cases from Figure 4. Note that we
have a + b = c + d and a > d, so (a + b − c − d)N < 2(a − d) for all N .
Therefore, there cannot be selection for A in finite populations. Also note
that a + d < b + c, so selection cannot oppose change for any N .

(1) For N ≤ 10, we have ρAB < 1/N < ρBA and h1, hN−1 < 0. Therefore,
selection favors B. A→⇒

→
⇒B.
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Figure 4.

(2) For 10 < N ≤ 29, we have ρAB < 1/N < ρBA and hN−1 < 0 < h1.
Therefore, selection favors B, and selection favors mutual invasion.
A→⇒

←
⇒B.

(3) For 30 ≤ N < 650, we have ρAB, ρBA > 1/N and hN−1 < 0 < h1.
Therefore, selection favors change. A→⇒

←
⇐B. This corresponds to the

deterministic case where the game is polymorphic.
(4) For N ≥ 650, we have ρBA < 1/N < ρAB and hN−1 < 0 < h1.

Therefore, selection favors A and mutual invasion. A→⇐
←
⇐B.

This example shows that for very large population size, a neutral
mutant can fare better than strategy B in this mixed strategy game.

In fact, in the case of Hawk-Dove games where a < c and b > d,
our stochastic analaysis shows that for sufficiently large population
size N , ab > cd if and only if ρAB > 1/N and ρBA < 1/N . There
is an intermediate range of population size N for which the game is
polymorphic. ♦

Example 4. Consider the payoff matrix

A B
A 2.07 1.07
B 2 1
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Figure 5.

For infinite population size, the fitness of A is greater than the fitness of
B for all frequencies. A dominates B, A ←− B, and A is a strict Nash
equilibrium or evolutionary stable strategy (ESS) while B is not.

For finite population size, we only have two cases from Figure 5. We note
that a + d = b + c. In this case, h1 = hN−1 = (a − c)(N − 2) + (b − c). So
selection favors A if (a− c)N > 2a − b − c, i.e. when N is big; and selection
favors B if (a− c)N < 2a− b− c, i.e. when N is small.

(1) For N ≤ 15, we have ρAB < 1/N < ρBA and h1, hN−1 < 0. Therefore,
selection favors B. A→⇒

→
⇒B.

(2) For N ≥ 16, we have ρBA < 1/N < ρAB and h1, hN−1 > 0. Therefore,
selection favors A. A←⇐

←
⇐B. ♦

Example 5. Now we consider the payoff matrix

A B
A 3 1
B 3 1

For infinite population size, since a = c and b = d, we have the neutral case
A−−B, where both strategies are equally good.

For finite populations, we see from Figure 6 only one selection scenario. For
all population size N , we have 1

2N
= ρAB < 1/N < ρBA = 3

2N
and h1, hN−1 < 0.

Therefore, selection favors B for all N . A→⇒
→
⇒B.
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Figure 6.

Note that a + b = c + d and a > d, so (a+ b− c− d)N < 2(a− d) for all N ,
there cannot be selection for A. Since a + d = b + c, selection cannot favor or
oppose change for any N .

This example shows that spite is irrelevant in large populations, but decisive
in small ones. As the population size decreases, the tendency of spitefulness
increases. ♦

For the game

A B
A s 1
B s 1

we can calculate ρAB and ρBA precisely as in Example 5. They are

ρAB =
2

(s + 1)N
and ρBA =

2s

(s + 1)N

ρAB

ρBA
=

1

s

NρAB and NρBA are constant in this case. As N →∞, fi

gi
→ 1 for all i, i.e.

the fitness of A and B are equal at all positions.
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5. Additional Results

Example 4 leads us to the following observation.

Observation 1. Assume that b 6= d. If for some N , ρAB = ρBA = 1/N , we
have hi = 0 for all i. hi = 0 for all i also implies that a + d = b + c.

Conversely, if a + d = b + c and d−a
d−b

is an integer, then for N = d−a
d−b

, we
have hi = 0 for all i and ρAB = ρBA = 1/N .

ρAB = ρBA = 1/N for all population size N if and only if a = b = c = d,
this is the case of neutral drift.

We will give the proof in the appendix. Note that one direction follows
easily from the discussion in Example 4 and the formulae for ρAB and ρBA.
So if the fitness of A and B are equal at all positions for a particular N , then
ρAB = ρBA = 1/N .

For constant selection with payoff matrix

A B
A r r
B 1 1

A and B have fitness r and 1 respectively, we see that the fixation probabilities
are

ρAB =
1− 1

r

1− 1
rN

and ρBA =
1 − r

1 − rN
.

We can ask for what constant fitness k, will these fixation probability be
equal to that of the game

A B
A s 1
B s 1

where

ρAB =
2

(s + 1)N
and ρBA =

2s

(s + 1)N
.

The answer depends on N .
Assume s > 1. When N = 2, we see that r = 1/s.
For large N , we expect r > 1, and

2

(s + 1)N
=

1− 1
r

1− 1
rN

< 1 − 1

r
.

Since s > 1, 2
(s+1)N

< 1/N , we see that 1 − 1
r

< 1/N , so r < 1 + 1/N . As

N → ∞, 1 < r < 1 + 1/N . Therefore, as N becomes sufficiently large, the
game becomes equivalent to random drift. A and B become equally good as
in the infinite case.
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We have the following theorem:

Theorem 5. The selection dynamics of the game

A B
A a b
B a b

in finite populations depends on the sign of a− b. We have two cases:

(1) If a < b, then h1 > 0, hN−1 > 0, and ρBA = 2a
(a+b)N

< 1
N

< ρAB =
2b

(a+b)N
. Selection favors A, A←⇐

←
⇐B.

(2) If a > b, then h1 < 0, hN−1 < 0, and ρAB = 2b
(a+b)N

< 1
N

< ρBA =
2a

(a+b)N
. Selection favors B, A→⇒

→
⇒B.

As N → ∞, this game becomes equivalent to random drift, where A and B
have equal fitness.

For generic payoff matrices, we can also find conditions on the entries of the
payoff matrix so that the selection scenario does not change as N changes.
Theorem 6. If b > c, a > c, and b > d, we have for all N , hi > 0 ∀i and
ρBA < 1/N < ρAB. So selection favors A, A←⇐

←
⇐B.

Proof: When N = 2, f1/g1 = b/c. If b > c, ρBA < 1/2 < ρAB, so A
replaces B but not vice versa. To have the same selection scenario, we want
ρBA < 1/N < ρAB for all N , and f1/g1, fN−1/gN−1 > 1. It is easy to check
that it suffices to have a > c and b > d. There are 5 possibilities:

(1) a > b > c > d
(2) a > b > d > c
(3) b > a > c > d
(4) b > a > d > c
(5) b > d > a > c

In all these cases, A←⇐
←
⇐B.

By symmetry, we can analyze the cases when selection favors B. ♦

6. Conclusions

We have used a Moran process with frequency dependent selection to study
evolutionary game dynamics in finite populations of size N . We have calcu-
lated the probability that a single individual using strategy A can take over
a population consisting of N − 1 individuals using another strategy, B. If
this probability is greater than 1/N then selection favors A replacing B. We
provide necessary and sufficient conditions for this to happen. Hence, we have
characterized selection dynamics in finite populations. Interestingly for a fixed
payoff matrix, describing the game between strategies A and B, the selection
scenario can change as a function of population size N . There are eight such
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selection scenarios. In the limit of N →∞ we always find convergence to one
of the three generic selection scenarios known from the deterministic replicator
dynamics.

There are many unexpected situations that can arise in finite populations.
For example, in a game where A dominates B for large N , it can happen that
selection favors B for small N . Similarly if both A and B are strict Nash
equilibria and evolutionarily stable strategies [Maynard Smith, 1982] for the
deterministic dynamics of N →∞, selection might completely favor one over
the other strategy for some finite range of N .

In a game between two strategies, A and B, deterministic selection dynamics
for N → ∞ are completely characterized by the relative magnitude of the
entries in each column of the payoff matrix, that is by the comparison between
a and c and the comparison between b and d. For a population size of N = 2 the
only relevant comparison is between b and c. All counterintuitive phenomena
of finite population size dynamics, N , emerge as a consequence of this tension.

Our companion paper [Fudenberg et al., 2003] looks at these issues in a
different but related way. That paper supposes that there is a small probability
of ”mutation” from one strategy to the other, so that there are no absorbing
states, and considers the limit of the long-run distribution as the probability
of mutation goes to 0. In small populations, this distrubution can assign
probability close to 1 to a “spiteful” but dominated strategy. The paper also
characterizes the long-run distribution as the population becomes infinite, and
finds that “spite” becomes unimportant except in knife-edge cases.

In addition to explaining selection phenonmenon in small populations un-
expected from deterministic analysis, our results in this paper have interesting
implications on the emergence of cooperation. [Nowak et al., 2003] shows that
a single cooperator using a reciprocal strategy can invade a population of de-
fectors with a probability that corresponds to a net selection advantage.

For games with more than two strategies, the dynamics become much more
complex even in the deterministic model. For example, there can be hetero-
clinic cycles if there are three strategies, and for more strategies, there can be
limit cycles and chaos [Hofbauer et al., 1998, Hofbauer et al., 2003]. As a first
step toward extending our stochastic model of frequency dependent Moran
process to multi-strategy game space, we plan to study the dynamics of Rock-
Paper-Scissors game in finite populations. It would also be interesting to find
conditions on the payoff matrix of an n-strategy game where a dominant strat-
egy would emerge in finite populations. We plan to pursue these questions in
our future work.

Appendix

Proof of Theorem 1: b > c implies that ρBA < 1/N < ρAB when N = 2.
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For selection to favor A for all N < N0, we want f1

g1
= b(N−1)

c+d(N−2)
> 1 and

fN−1

gN−1
= a(N−2)+b

c(N−1)
> 1. It suffices that N(a − c) > 2a − b − c and N(b − d) >

b + c− 2d. There are four cases.

(1) a > c, b > d: Since b > c, we check that f1/g1 and fN−1/gN−1 are both
greater than 1 for all N , so ρBA < 1/N < ρAB for all N . N0 =∞.

(2) a < c, b > d: N(a− c) > 2a− b− c is equivalent to N < 2a−b−c
a−c

= N0.

(3) a > c, b < d: N(b− d) > b + c− 2d is equivalent to N < b+c−2d
b−d

= N0.
(4) a < c, b < d: N(a − c) > 2a − b − c and N(b − d) > b + c − 2d is

equivalent to N < min(2a−b−c
a−c

, b+c−2d
b−d

) = N0.

So when N < N0, f1/g1, fN−1/gN−1 > 1, and thus ρBA < 1/N < ρAB,
A←⇐

←
⇐B, selection favors A.

A similar proposition holds in the case b < c.♦
We now prove our main results. To make the argument and analysis more

transparent, we will first make a change of basis. Instead of working with the

payoff matrix

(
a b
c d

)
directly, we will work with

(
a b
c d

)
instead, where

a = (N − 2)a + b = fN−1 b = (N − 1)b = f1

c = (N − 1)c = gN−1 d = c + (N − 2)d = g1

Let M = N − 2 and define

αi =
fi+1

gi+1
=

ia + (M − i)b

ic + (M − i)d

for i = 0, . . . ,M .
It’s easy to check that the difference αi−αi−1 has the same sign as ad − bc.

Hence, we have

Lemma 1. The sequence αi monotone increases with respect to i if ad − bc >
0, and monotone decreases if ad− bc < 0.

The following equivalences are easy to verify.

• fi and gi are positive for all i ⇔ a,b, c, and d are all positive.
• hi+1 > 0⇔ αi > 1, hi+1 < 0⇔ αi < 1, and hi+1 = 0⇔ αi = 1.

Define step functions β(x) and γ(x) , where for x ∈ [i, i + 1],

β(x) =
M∏

k=M−i

αk, γ(x) =
i∏

k=0

α−1
k .

Since

ρAB =
1

1 +
∑M

j=0

∏j
k=0 α−1

k
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and

ρBA =
1

1 +
∑M

j=0

∏M
k=j αk

,

ρBA and ρAB can be expressed in terms of the area under the functions β and
γ respectively. Namely,

1/ρAB − 1 =
M∑

j=0

j∏

k=0

α−1
k =

∫ N−1

0

γ(x)dx

and

1/ρBA − 1 =
M∑

j=0

M∏

k=j

αk =

∫ N−1

0

β(x)dx.

We will show that there are eight selection scenarios. Theorems 2, 3 and 4
follow easily from the following classification.

(1) α0, αM > 1: Since hi is linear in i, all hi are positive, hence all αi > 1.
One can check immediately that ρBA < 1/N < ρAB. We say that
selection favors A, A←⇐

←
⇐B. This implies Theorem 2.

(2) α0, αM < 1: Again hi are all negative, , αi < 1 ∀i and ρAB < 1/N <
ρBA. We say that selection favors B, A→⇒

→
⇒B.

(3) α0 < 1 and αM > 1: Since α0 = b/d and αM = a/c, we have ad > bc.
By Lemma 1, the sequence αi is monotone increasing, i.e.

α0 < α1 < · · · < αk−1 < 1 < αk < · · · < αM .

k is the unique integer where k ∈ ( b+c−2d+N(d−b)
a+d−b−c

, a−d+N(d−b)
a+d−b−c

).
We see that β(x) is a convex function that starts at αM > 1, and

concaves down to α0α1 · · ·αM . β(x) is greatest when x ∈ [M − k,M −
k + 1].

γ(x) is a convex function that starts at 1/α0 > 1, and concaves down
to 1/α0α1 · · ·αM . γ(x) is greatest when x ∈ [k − 1, k].

Looking at the β(x) and γ(x), and the integrals
∫ N−1

0
β(x)dx =

1/ρBA−1 and
∫ N−1

0
γ(x)dx = 1/ρAB−1, we see that ρAB and ρBA can-

not both be greater than 1/N : ρAB > 1/N implies that
∫ N−1

0
γ(x)dx <

N − 1. Since α0 < 1, 1/α0α1 · · ·αM < 1 must hold. Therefore,
β(x) is a concave down function that starts at αM > 1, and ends

at α0α1 · · ·αM > 1, so
∫ N−1

0
β(x)dx > N − 1, hence ρBA < 1/N .

There are three cases here:
(a) ρBA < 1/N < ρAB: Selection favors A but opposes mutual inva-

sion, A←⇐
→
⇐B.

(b) ρBA, ρAB < 1/N : Selection opposes change, A←⇐
→
⇒B. This implies

Theorem 3.
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(c) ρAB < 1/N < ρBA: Selection favors B but opposes mutual inva-
sion, A←⇒

→
⇒B.

(4) α0 > 1 and αM < 1: Lemma 1 implies α(x) is a monotone decreas-
ing function, and both β(x) and γ(x) are concave functions. Similar
analysis shows that there are again three cases:
(a) ρBA < 1/N < ρAB: Selection favors A and mutual invasion,

A→⇐
←
⇐B.

(b) ρBA, ρAB > 1/N : Selection favors change, A→⇒
←
⇐B. This implies

Theorem 4.
(c) ρAB < 1/N < ρBA: Selection favors B and mutual invasion,

A→⇒
←
⇒B.

As N varies, α0, αM , and α0 · · ·αM can each change their values with respect
to 1, thus varying the selection dynamics.

For the payoff matrix in Example 1, we plot β and γ for a range of population
size N : N = 20, 40, 60, 80, 100 in Figure 7. We see that α0 · · ·αM increases
from less than 1 to greater than 1. ρAB and ρBA change their values in relation
to 1 accordingly.
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Figure 7.

Proof of Observation 1: ρAB = ρBA = 1/N implies that

ρAB

ρBA

= α0α1 · · ·αM = 1

M∑

j=0

M∏

k=M−j

αk = N − 1

Suppose α0 = 1: h1 = 0. Since hi is a linear function in i, hi are either
all positive, all negative, or all 0 for i = 2, . . . , N − 1. Suppose hN−1 > 0,
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then αi > 1 for i = 1, . . . ,M . Hence α0α1 · · ·αM > 1 must hold. This is in
contradiction to the hypothesis that ρAB = ρBA. Similarly, hN−1 < 0 cannot
hold. Hence, hi = 0 must hold for all i, i.e. A and B have the same fitness.

Now suppose α0 < 1, then αM > 1 must hold, as α0α1 · · ·αM = 1. α0 < 1
implies that b < d, and αM > 1 implies a > c. Thus, ad > bc. αi is monotone
increasing by Lemma 1.

Thus β is a convex function that starts at αM > 1 and ends at α0α1 · · ·αM =
1 by assumption. β first increase, and then decreases, and it is concave down.
So the area under β between 0 and N − 1 must be greater than N − 1. But

∫ N−1

0

β(x)dx = 1/ρBA − 1 = N − 1

by hypothesis. We have a contradiction again. Therefore, α0 < 1 cannot hold.
Similarly, α0 > 1 can not hold.
We see finally that αi = fi+1

gi+1
= 1 for all i, so A and B have the same fitness

at all positions.
From the definitions of fi, gi and the fact that αi = 1 for all i, we can derive

algebraically that

a + d = b + c,N(d − b) = d− a.

In particular, if N(d− b) = d− a for all N , then a = b = c = d. ♦
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